Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity
Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.
2014-01-01
The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442
Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae
2014-02-01
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
Kriegel, Alison J; Liu, Yong; Liu, Pengyuan; Baker, Maria Angeles; Hodges, Matthew R; Hua, Xing; Liang, Mingyu
2013-12-01
Knowledge of miRNA expression and function in specific cell types in solid organs is limited because of difficulty in obtaining appropriate specimens. We used laser capture microdissection to obtain nine tissue regions from rats, including the nucleus of the solitary tract, hypoglossal motor nucleus, ventral respiratory column/pre-Bötzinger complex, and midline raphe nucleus from the brain stem, myocardium and coronary artery from the heart, and glomerulus, proximal convoluted tubule, and medullary thick ascending limb from the kidney. Each tissue region consists of or is enriched for a specific cell type. Differential patterns of miRNA expression obtained by deep sequencing of minute amounts of laser-captured cells were highly consistent with data obtained from real-time PCR analysis. miRNA expression patterns correctly clustered the specimens by tissue regions and then by primary tissue types (neural, muscular, or epithelial). The aggregate difference in miRNA profiles between tissue regions that contained the same primary tissue type was as large as one-half of the aggregate difference between primary tissue types. miRNAs differentially expressed between primary tissue types are more likely to be abundant miRNAs, while miRNAs differentially expressed between tissue regions containing the same primary tissue type were distributed evenly across the abundance spectrum. The tissue type-enriched miRNAs were more likely to target genes enriched for specific functional categories compared with either cell type-enriched miRNAs or randomly selected miRNAs. These data indicate that the role of miRNAs in determining characteristics of primary tissue types may be different than their role in regulating cell type-specific functions in solid organs.
Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F
1999-02-01
Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.
Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong
2018-01-01
Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P < 0.05). Genes co-expressed with ANGPTL3 and CFHR5 were significantly enriched in metabolism pathways characterizing liver tissues, including "starch and sucrose metabolism" and "drug metabolism-cytochrome P450". Conclusions: For primary CRC with liver metastasis, both the liver metastases and corresponding primary colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.
Wong, Maelene L.; Wong, Janelle L.; Horn, Rebecca M.; Sannajust, Kimberley C.; Rice, Dawn A.
2016-01-01
Effective solubilization of proteins by chaotropes in proteomic applications motivates their use in solubilization-based antigen removal/decellularization strategies. A high urea concentration has previously been reported to significantly reduce lipophilic antigen content of bovine pericardium (BP); however, structure and function of the resultant extracellular matrix (ECM) scaffold were compromised. It has been recently demonstrated that in vivo ECM scaffold fate is determined by two primary outcome measures as follows: (1) sufficient reduction in antigen content to avoid graft-specific adaptive immune responses and (2) maintenance of native ECM structural proteins to avoid graft-specific innate responses. In this work, we assessed residual antigenicity, ECM architecture, ECM content, thermal stability, and tensile properties of BP subjected to a gradient of urea concentrations to determine whether an intermediate concentration exists at which both antigenicity and structure–function primary outcome measures for successful in vivo scaffold outcome can simultaneously be achieved. Alteration in tissue structure–function properties at various urea concentrations with decreased effectiveness for antigen removal makes use of urea-mediated antigen removal unlikely to be suitable for functional scaffold generation. PMID:27230226
McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T
1990-06-01
To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.
Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki
2013-01-01
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; ...
2015-06-04
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki
2013-01-01
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue. PMID:24236073
The development of the immune tissues in marsupial pouch young.
Borthwick, Casey R; Young, Lauren J; Old, Julie M
2014-07-01
Current knowledge of the development of the marsupial immune system, particularly in the context of lymphoid tissue development and the appearance of lymphocytes, has been examined and limitations identified. While primary lymphoid tissues like the thymus have been extensively studied, secondary lymphoid tissues such as the spleen and lymph nodes have been examined to a lesser extent, partly due to the difficulty of macroscopically identifying these structures, particularly in very small neonates. In addition, little research has been conducted on the mucosal-associated lymphoid tissues; tissues that directly trap antigens and play an important role in the maturity of adaptive immune responses. Research on the development of the marsupial immune tissues to date serves as a solid foundation for further research, particularly on the mechanisms behind the development of the immune system of marsupials. With the recent sequencing and annotation of whole marsupial genomes, the current wealth of sequence data will be essential in the development of marsupial specific reagents, including antibodies, that are required to widen our specific knowledge of the complex marsupial immune system and its development. © 2014 Wiley Periodicals, Inc.
Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.
2013-01-01
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440
Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.
Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard
2017-07-01
Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting
2017-09-12
Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.; ...
2018-02-03
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
Liu, Jia; Liu, Yang; Wang, Yu; Abozeid, Ann; Zu, Yuan-Gang; Tang, Zhong-Hua
2017-02-20
The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
Zhang, Wenting; Lee, Woo Y; Zilberberg, Jenny
2017-01-01
We described here the manufacturing and implementation of two prototype perfusion culture devices designed primarily for the cultivation of difficult-to-preserve primary patient-derived multiple myeloma cells (MMC). The first device consists of an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment. The second platform is a 96-well plate-modified perfusion culture device that can be utilized to reconstruct several tissue and tumor microenvironments utilizing both primary human and murine cells. This culture device was designed and fabricated specifically to: (1) enable the preservation of primary MMC for downstream use in biological studies and chemosensitivity analyses and, (2) provide a high-throughput format that is compatible with plate readers specifically seeing that this system is built on an industry standard 96-well tissue culture plate.
Fu, Henry L.; Mueller, Jenna L.; Javid, Melodi P.; Mito, Jeffrey K.; Kirsch, David G.; Ramanujam, Nimmi; Brown, J. Quincy
2013-01-01
Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 µm). The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick) samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm−1 used in conjunction with a 4×0.1 NA objective ( = 0.165). This yielded an optical section thickness of 128 µm and an 8.9×contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues performed equivalently in regards to nuclear density quantification, to physical frozen sectioning and standard microscopy. PMID:23894357
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Rajangam, Thanavel; An, Seong Soo A
2013-01-01
Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine. PMID:24106425
Estrogen synthesis and signaling pathways during ageing: from periphery to brain
Cui, Jie; Shen, Yong; Li, Rena
2012-01-01
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissue as liver, heart, muscle, bone and brain. The tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. Here, we will focus on tissue and cell-specific estrogen synthesis and estrogen receptor signaling. This review will include three parts: (I) tissue and cell-specific estrogen synthesis and metabolism, (II) tissue and cell-specific distribution of estrogen receptors and signaling and (III) tissue-specific estrogen function and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease and Parkinson disease. This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases. PMID:23348042
Modelling the development and arrangement of the primary vascular structure in plants.
Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano
2014-09-01
The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.
Coley, Shana M; Crapanzano, John P; Saqi, Anjali
2015-05-01
Increasingly, minimally invasive procedures are performed to assess lung lesions and stage lung carcinomas. In cases of advanced-stage lung cancer, the biopsy may provide the only diagnostic tissue. The aim of this study was to determine which method-fine-needle aspiration (FNA), core biopsy (CBx), or both (B)--is optimal for providing sufficient tissue for rendering a specific diagnosis and pursuing molecular studies for guiding tumor-specific treatment. A search was performed for computed tomography-guided lung FNA, CBx, or B cases with rapid onsite evaluation. Carcinomas were assessed for the adequacy to render a specific diagnosis; this was defined as enough refinement to subtype a primary carcinoma or to assess a metastatic origin morphologically and/or immunohistochemically. In cases of primary lung adenocarcinoma, the capability of each modality to yield sufficient tissue for molecular studies (epidermal growth factor receptor, KRAS, or anaplastic lymphoma kinase) was also assessed. There were 210 cases, and 134 represented neoplasms, including 115 carcinomas. For carcinomas, a specific diagnosis was reached in 89% of FNA cases (33 of 37), 98% of CBx cases (43 of 44), and 100% of B cases (34 of 34). For primary lung adenocarcinomas, adequate tissue remained to perform molecular studies in 94% of FNA cases (16 of 17), 100% of CBx cases (19 of 19), and 86% of B cases (19 of 22). No statistical difference was found among the modalities for either reaching a specific diagnosis (p = .07, Fisher exact test) or providing sufficient tissue for molecular studies (p = .30, Fisher exact test). The results suggest that FNA, CBx, and B are comparable for arriving at a specific diagnosis and having sufficient tissue for molecular studies: they specifically attained the diagnostic and prognostic goals of minimally invasive procedures for lung carcinoma. © 2015 American Cancer Society.
Varley, J M; Armour, J; Swallow, J E; Jeffreys, A J; Ponder, B A; T'Ang, A; Fung, Y K; Brammar, W J; Walker, R A
1989-06-01
We have analysed the organisation of the retinoblastoma (RB1) gene in 77 primary breast carcinomas, in metastatic tissue derived from 16 of those primary tumours, and in a variety of benign breast lesions. Expression of RB1 was also assessed in most samples by immunohistochemical detection of the RB1 protein in tissue sections. Structural abnormalities to RB1 were detected in DNA from 15/77 (19%) of primary breast carcinomas examined. Where DNA was available from metastatic tissue derived from such primary tumours, the same aberration could be detected. No alterations were seen in benign breast lesions. 16/56 (29%) of tumours examined for expression by immunohistochemical methods showed a proportion of tumour cells to be completely negative for the RB1 protein. All tumours in which a structural alteration to RB1 was detected had a proportion of negative cells, except for one case where all cells were positive. Several primary tumour samples were identified where there was no detectable structural change to the gene, but there was loss of expression in some tumour cells. The data presented here demonstrate that changes to the RB1 gene leading to loss of expression of both alleles are frequent in primary human breast tumours.
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.
Menicanin, Danijela; Mrozik, Krzysztof Marek; Wada, Naohisa; Marino, Victor; Shi, Songtao; Bartold, P Mark; Gronthos, Stan
2014-05-01
Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)-labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo-expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam(®) scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model.
Menicanin, Danijela; Mrozik, Krzysztof Marek; Wada, Naohisa; Marino, Victor; Shi, Songtao; Bartold, P. Mark
2014-01-01
Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)–labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo–expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam® scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model. PMID:24351050
Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li
2013-01-01
1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining the treeline formation.
Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li
2013-01-01
1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining the treeline formation. PMID:23658621
Vozzi, Federico; Logrand, Federica; Cabiati, Manuela; Cicione, Claudia; Boffito, Monica; Carmagnola, Irene; Vitale, Nicoletta; Gori, Manuele; Brancaccio, Mara; Del Ry, Silvia; Gastaldi, Dario; Cattarinuzzi, Emanuele; Vena, Pasquale; Rainer, Alberto; Domenici, Claudio; Ciardelli, Gianluca; Sartori, Susanna
2018-06-05
Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of the cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and the preliminary biological validation of an innovative polyesterurethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by Thermally Induced Phase Separation (TIPS) from poly(-caprolactone) diol, 1,4-butane diisocyanate and L-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy and micro-tensile and -compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment and the surface treatment was studied by XPS, ATR-FTIR and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds and their colonization, survival and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cell, structural development of the heart and in its metabolism were analyzed. PUR scaffolds showed porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. AKT and ERK phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. RT-PCR analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, ET-1), hypertrophy-specific (CTGF) and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds. © 2018 IOP Publishing Ltd.
Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven
2017-04-01
The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
Apoplastic Diffusion Barriers in Arabidopsis
Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka
2013-01-01
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172
The landscape of genomic imprinting across diverse adult human tissues
Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli
2015-01-01
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952
Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor
Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea
2011-01-01
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085
Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor.
Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, J H David; Bottaro, Andrea
2011-06-01
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. Copyright © 2011 Wiley Periodicals, Inc.
Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E
2012-01-01
Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.
A Simplified Method for Tissue Engineering Skeletal Muscle Organoids in Vitro
NASA Technical Reports Server (NTRS)
Shansky, Janet; DelTatto, Michael; Chromiak, Joseph; Vandenburgh, Herman
1996-01-01
Tissue-engineered three dimensional skeletal muscle organ-like structures have been formed in vitro from primary myoblasts by several different techniques. This report describes a simplified method for generating large numbers of muscle organoids from either primary embryonic avian or neonatal rodent myoblasts, which avoids the requirements for stretching and other mechanical stimulation.
Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-01-01
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887
Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-03-21
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.
Lee, Myung-Shin; Lee, Jisu; Kim, Joo Heon; Kim, Won Tae; Kim, Wun-Jae; Ahn, Hanjong; Park, Jinsung
2015-01-01
The expression and function of caldesmon (CAD) in urothelial bladder carcinoma (BC) have not been reported. Here, we investigated the expression, prognostic value, and potential functional mechanism of CAD in primary non-muscle-invasive bladder cancer (NMIBC). Protein profiling of tissue samples using antibody microarrays showed significantly higher CAD expression in muscle-invasive BC tissues compared with NMIBC tissues. We then validated the CAD expression in BC cells by immunohistochemistry analysis using paraffin-embedded tissue blocks and western blots using BC cell lines. In addition, we examined the expression of CAD variants by reverse transcription-polymerase chain reaction, and confirmed the expression of low-molecular-weight isoforms (L-CAD), specifically encoded by WI-38 L-CAD II (transcript variant 2), in BC cells. Survival analysis in an independent primary NMIBC cohort comprising 132 patients showed that positive CAD expression was significantly associated with poorer prognosis than no CAD expression with regard to recurrence- and progression-free survival (p = 0.001 and 0.014, respectively). Multivariate analyses further indicated that positive CAD expression was an independent predictor of progression-free survival (p = 0.032; HR = 5.983). Data obtained from in vitro silencing and overexpression studies indicated that L-CAD promotes migration and invasiveness of BC cells. Immunofluorescence assays showed dramatic structural changes in the actin cytoskeleton of BC cells after L-CAD overexpression. Our findings collectively suggest that L-CAD overexpression in primary NMIBC is significantly associated with tumor progression and that a possible mechanism for L-CAD's activity is implicated in increased cell motility and invasive characteristics through morphological changes in BC cells. PMID:26430961
Arrhenius parameters for primary thermal injury in human tonsillar tissue
NASA Astrophysics Data System (ADS)
McMillan, Kathleen; Radabaugh, Rebecca; Coad, James E.
2011-03-01
Clinical implementation of a thermal therapy requires the ability to predict tissue injury following exposures to specific thermal histories. As part of an effort to develop a nonexcisional alternative to tonsillectomy, the degree of primary hyperthermic tissue injury in human tonsil was characterized. Fifteen fresh pediatric hypertrophic tonsillectomy specimens were sectioned and treated in a NIST-calibrated saline bath at temperatures of 40 to 70°C with hold times of one to seven minutes. The treated tissues were subsequently nitroblue tetrazolium (NBT) stained to assess for thermal respiratory enzyme inactivation as a marker of cellular injury/death. The NBT stains were quantitatively image analyzed and used to calculate Arrhenius parameters for primary thermal injury in human tonsils.
Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.
2010-01-01
Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227
Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P
2010-10-12
Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.
NASA Astrophysics Data System (ADS)
Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko
2010-12-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.
Sawyer, Andrew J; Kyriakides, Themis R
2016-02-01
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B
Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less
The landscape of genomic imprinting across diverse adult human tissues.
Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli
2015-07-01
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. © 2015 Baran et al.; Published by Cold Spring Harbor Laboratory Press.
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Constitutive modeling of jugular vein-derived venous valve leaflet tissues.
Kaul, Nayyan; Huang, Hsiao-Ying Shadow
2017-11-01
Venous valve tissues, though used in vein reconstruction surgeries and bioprosthetic valves with moderate success, have not been extensively studied with respect to their structure. Their inherent anisotropic, non-linear behavior combined with severe diseases which affect veins, such as chronic venous insufficiency, warrant understanding the structure and material behavior of these tissues. Hence, before any bioprosthetic grafts may be used in place of tissues, it is of the utmost importance to understand the mechanical and structural properties of these tissues as this may lead to higher success rates for valve replacement surgeries. The longevity of the bioprosthetics may also increase if the manufactured grafts behave the same as native valves. Building on the scant information about the uniaxial and biaxial mechanical properties of jugular venous valves and wall tissues from previous studies, the current focus of our investigation lies in understanding the material behavior by establishing a phenomenological strain energy-based constitutive relation for the tissues. We used bovine veins to study the behavior of valve leaflet tissue and adjoining wall tissue (from the proximal and distal ends of the veins) under different biaxial testing protocols. We looked at the behavior of numerical partial derivatives of the strain energy to select a suitable functional form for the strain energy for wall and valve tissues. Using this strain energy descriptor, we determined the Cauchy stress and compared it with experimental results under additional sets of displacement-controlled biaxial testing protocols to find material specific model parameters by the Powell's method algorithm. Results show that whereas wall tissue strain energy can be explained using a polynomial non-linear function, the valve tissue, due to higher non-linearities, requires an exponential function. This study may provide useful information for the primary stages of bioprosthetic designs and replacement surgeries and may support future studies investigating structural models. It may also support the study of valvular diseases by providing a way to understand material properties and behavior and to form a continuum model when required for numerical analyses and computational simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nguyen, An M; Levenston, Marc E
2012-01-01
Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.
NASA Astrophysics Data System (ADS)
Johnson, J. J.; Polito, M. J.; Olin, J.
2016-02-01
Determining the relative contributions of primary producers to salt marsh food webs is fundamental to understanding how these systems are structured. Biomarkers such as bulk carbon isotopes (13C/12C) and fatty acids have become popular tracers of trophic dynamics, based on the principle that the composition of biomarkers in consumer tissues is a reflection of the composition of these same biomarkers in a consumer's diet. However, the use of bulk stable isotope and fatty acid analyses to assess carbon flow in food webs is often hampered by confounding factors such as isotopic fractionation and fatty acid modifications that can occur between trophic levels. In contrast, compound-specific stable isotope analysis of amino acids may offer a more precise tracking of carbon flow through complex food webs. This is because the isotopic values of essential amino acids in consumer tissues are assimilated largely unchanged from their primary sources at the base of the food web. The aim of this study was to test the consistency of three different methods (bulk carbon stable isotope, fatty acid and compound-specific stable isotope analyses) while examining the carbon source pool underlying the diet of a common marsh consumer, the seaside sparrow (A. maritimus). This comparison allows us to gain a better idea of the relative merits of these analytical methods and contribute to a clearer model of overall trophic dynamics in a salt marsh food web.
Getzenberg, R H; Coffey, D S
1990-09-01
The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.
Lentiviral diseases of sheep and goats: chronic pneumonia leukoencephalomyelitis and arthritis.
Narayan, O; Cork, L C
1985-01-01
This review describes the pathogenesis of a slowly progressive disease complex caused by naturally occurring nononcogenic retroviruses in sheep and goats. In nature, infections are usually clinically silent, but disease may manifest itself after prolonged incubation periods. Clinically, this is seen as dyspnea, progressive paralysis, and/or progressive arthritis. In all organs the basic lesion is inflammatory with infiltration and proliferation of lymphocytes, plasma cells, and macrophages. Other organ-specific pathologic changes such as primary demyelination in the central nervous system and degeneration of cartilaginous structures in joints accompany inflammation. The viruses infect tissue-specific macrophage populations in vivo. Viral replication in these cells is restricted to minimal levels but continues indefinitely in the animal as a result of either failure to induce specific neutralizing antibodies or antigenic drift when neutralizing antibodies develop. Consistent low-grade viral replication sets the pace for disease by providing continuous antigenic stimulation for the inflammatory cellular immune response or antibodies that localize in the target tissues. These cells and immune complexes may have adverse effects on indigenous cell populations.
Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül
2015-01-01
Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures. © 2015 S. Karger AG, Basel.
Databases and Associated Tools for Glycomics and Glycoproteomics.
Lisacek, Frederique; Mariethoz, Julien; Alocci, Davide; Rudd, Pauline M; Abrahams, Jodie L; Campbell, Matthew P; Packer, Nicolle H; Ståhle, Jonas; Widmalm, Göran; Mullen, Elaine; Adamczyk, Barbara; Rojas-Macias, Miguel A; Jin, Chunsheng; Karlsson, Niclas G
2017-01-01
The access to biodatabases for glycomics and glycoproteomics has proven to be essential for current glycobiological research. This chapter presents available databases that are devoted to different aspects of glycobioinformatics. This includes oligosaccharide sequence databases, experimental databases, 3D structure databases (of both glycans and glycorelated proteins) and association of glycans with tissue, disease, and proteins. Specific search protocols are also provided using tools associated with experimental databases for converting primary glycoanalytical data to glycan structural information. In particular, researchers using glycoanalysis methods by U/HPLC (GlycoBase), MS (GlycoWorkbench, UniCarb-DB, GlycoDigest), and NMR (CASPER) will benefit from this chapter. In addition we also include information on how to utilize glycan structural information to query databases that associate glycans with proteins (UniCarbKB) and with interactions with pathogens (SugarBind).
Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.
Usui, Tatsuya; Sakurai, Masashi; Umata, Koji; Yamawaki, Hideyuki; Ohama, Takashi; Sato, Koichi
2018-02-21
In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three-dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Principles, Techniques, and Applications of Tissue Microfluidics
NASA Technical Reports Server (NTRS)
Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive
2011-01-01
The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.
Goh, Kheng Lim; Holmes, David F
2017-04-25
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Goh, Kheng Lim; Holmes, David F.
2017-01-01
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue. PMID:28441344
Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej
2015-01-01
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker specific for glandular epithelium and nervous tissue. Further studies should be performed to determine the structure of the tissue epitope recognized. PMID:26086646
Collagen fibril organization within rat vertebral bone modified with metastatic involvement.
Burke, Mikhail; Golaraei, Ahmad; Atkins, Ayelet; Akens, Margarete; Barzda, Virginijus; Whyne, Cari
2017-08-01
Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour. Copyright © 2017 Elsevier Inc. All rights reserved.
Kiriake, Aya; Madokoro, Mihoko; Shiomi, Kazuo
2014-08-01
Lionfish are representative venomous fish, having venomous glandular tissues in dorsal, pelvic and anal spines. Some properties and primary structures of proteinaceous toxins from the venoms of three species of lionfish, Pterois antennata, Pterois lunulata and Pterois volitans, have so far been clarified. Our recent survey established the presence of hyaluronidase, presumably a toxin-spreading factor, in the venoms of P. antennata and P. volitans. This prompted us to examine enzymatic properties and primary structures of lionfish hyaluronidases. The hyaluronidases of P. antennata and P. volitans were shown to be optimally active at pH 6.6, 37°C and 0.1 M NaCl and specifically active against hyaluronan. These enzymatic properties are almost the same as those of stonefish hyaluronidases. The primary structures (483 amino acid residues) of the lionfish hyaluronidases were elucidated by a cDNA cloning strategy using degenerate primers designed from the reported amino acid sequences of the stonefish hyaluronidases. Both lionfish hyaluronidases share as high as 99.6% of sequence identity with each other and also considerably high identities (72-77%) with the stonefish hyaluronidases but rather low identities (25-40%) with other hyaluronidases from mammals and venomous animals. In consistent with this, phylogenetic tree analysis revealed that the lionfish hyaluronidases, together with the stonefish hyaluronidases, form a cluster independently of other hyaluronidases. Nevertheless, the lionfish hyaluronidases as well as the stonefish hyaluronidases almost maintain structural features (active site, glyco_hydro_56 domain and cysteine location) observed in other hyaluronidases.
NASA Astrophysics Data System (ADS)
Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram
The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for which collagen scaffolds are currently being applied.
Mueller, Daniel; Tascher, Georg; Müller-Vieira, Ursula; Knobeloch, Daniel; Nuessler, Andreas K; Zeilinger, Katrin; Heinzle, Elmar; Noor, Fozia
2011-08-01
As the major research focus is shifting to three-dimensional (3D) cultivation techniques, hollow-fiber bioreactors, allowing the formation of tissue-like structures, show immense potential as they permit controlled in vitro cultivation while supporting the in vivo environment. In this study we carried out a systematic and detailed physiological characterization of human liver cells in a 3D hollow-fiber bioreactor system continuously run for > 2 weeks. Primary human hepatocytes were maintained viable and functional over the whole period of cultivation. Both general cellular functions, e.g. oxygen uptake, amino acid metabolism and substrate consumption, and liver-specific functions, such as drug-metabolizing capacities and the production of liver-specific metabolites were found to be stable for > 2 weeks. As expected, donor-to-donor variability was observed in liver-specific functions, namely urea and albumin production. Moreover, we show the maintenance of primary human hepatocytes in serum-free conditions in this set-up. The stable basal cytochrome P450 activity 3 weeks after isolation of the cells demonstrates the potential of such a system for pharmacological applications. Liver cells in the presented 3D bioreactor system could eventually be used not only for long-term metabolic and toxicity studies but also for chronic repeated dose toxicity assessment. Copyright © 2011 John Wiley & Sons, Ltd.
Genomic expression patterns of cardiac tissues from dogs with dilated cardiomyopathy.
Oyama, Mark A; Chittur, Sridar
2005-07-01
To evaluate global genome expression patterns of left ventricular tissues from dogs with dilated cardiomyopathy (DCM). Tissues obtained from the left ventricle of 2 Doberman Pinschers with end-stage DCM and 5 healthy control dogs. Transcriptional activities of 23,851 canine DNA sequences were determined by use of an oligonucleotide microarray. Genome expression patterns of DCM tissue were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with gene expression for tissues from 5 healthy control dogs. 478 transcripts were differentially expressed (> or = 2.5-fold change). In DCM tissue, expression of 173 transcripts was upregulated and expression of 305 transcripts was downregulated, compared with expression for control tissues. Of the 478 transcripts, 167 genes could be specifically identified. These genes were grouped into 1 of 8 categories on the basis of their primary physiologic function. Grouping revealed that pathways involving cellular energy production, signaling and communication, and cell structure were generally downregulated, whereas pathways involving cellular defense and stress responses were upregulated. Many previously unreported genes that may contribute to the pathophysiologic aspects of heart disease were identified. Evaluation of global expression patterns provides a molecular portrait of heart failure, yields insights into the pathophysiologic aspects of DCM, and identifies intriguing genes and pathways for further study.
Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants
NASA Astrophysics Data System (ADS)
Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan
Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy
Barth, Connor W.; Gibbs, Summer L.
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy. PMID:28255352
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy.
Barth, Connor W; Gibbs, Summer L
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
2013-06-01
research is to optimize an MRS-compatible, 3D Tissue Culture Bioreactor for use with primary human prostate tissue cultures (TSCs) and use it to...Tissue Culture Bioreactor ” to be submitted to the Journal Magnetic Resonance in Medicine. CONCLUSIONS: We have engineered a robust MR compatible 3D ...loss of structure, function or metabolism within a NMR compatible 3-D tissue culture bioreactor , and that magnetic resonance spectroscopy studies of
Tissue-specific effects of peptides.
Khavinson, V K
2001-08-01
Synthetic peptides (cytogens) Cortagen, Epithalon, Livagen, and Vilon stimulated the growth of explants from rat brain cortex, subcortical structures, liver, and thymus, respectively, in organotypic cultures. These peptides produced tissue-specific effects: they stimulated the growth of explants from tissues, whose cytomedins (peptide complexes) were used for chemical synthesis.
Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B
1993-01-01
The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203
Principles, Techniques, and Applications of Tissue Microfluidics
NASA Technical Reports Server (NTRS)
Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive
2011-01-01
The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and subsequent insertion into a diagnostic device. A more advanced form of tissue integration with microfluidics is tissue encapsulation, wherein the sample is completely encapsulated within a microfluidic device, to allow for full surface access. The immediate applications of these approaches lie with diagnostics of tissue slices and biopsy samples e.g. for cancer but the approaches would also be very useful in comparative genomics and other areas of fundamental research involving heterogeneous tissue samples.
Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.
McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L
2016-03-01
Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.
Brain metastasis detection by resonant Raman optical biopsy method
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2014-03-01
Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.
2016-01-01
Abstract The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355
DeRose, Yoko S.; Gligorich, Keith M.; Wang, Guoying; Georgelas, Ann; Bowman, Paulette; Courdy, Samir J.; Welm, Alana L.; Welm, Bryan E.
2013-01-01
Research models that replicate the diverse genetic and molecular landscape of breast cancer are critical for developing the next generation therapeutic entities that can target specific cancer subtypes. Patient-derived tumorgrafts, generated by transplanting primary human tumor samples into immune-compromised mice, are a valuable method to model the clinical diversity of breast cancer in mice, and are a potential resource in personalized medicine. Primary tumorgrafts also enable in vivo testing of therapeutics and make possible the use of patient cancer tissue for in vitro screens. Described in this unit are a variety of protocols including tissue collection, biospecimen tracking, tissue processing, transplantation, and 3-dimensional culturing of xenografted tissue, that enable use of bona fide uncultured human tissue in designing and validating cancer therapies. PMID:23456611
Kusakabe, Rie; Tani, Saori; Nishitsuji, Koki; Shindo, Miyuki; Okamura, Kohji; Miyamoto, Yuki; Nakai, Kenta; Suzuki, Yutaka; Kusakabe, Takehiro G; Inoue, Kunio
2013-01-01
Muscle-specific miR-1/206 and miR-133 families have been suggested to play fundamental roles in skeletal and cardiac myogenesis in vertebrates. To gain insights into the relationships between the divergence of these miRs and muscular tissue types, we investigated the expression patterns of miR-1 and miR-133 in two ascidian Ciona species and compared their genomic structures with those of other chordates. We found that Ciona intestinalis and Ciona savignyi each possess a single copy of the miR-1/miR-133 cluster, which is only 350 nucleotide long. During embryogenesis, Ciona miR-1 and miR-133 are generated as a single continuous primary transcript accumulated in the nuclei of the tail muscle cells, starting at the gastrula stage. In adults, mature miR-133 and miR-1 are differentially expressed in the heart and body wall muscle. Expression of the reporter gene linked to the 850-bp upstream region of the predicted transcription start site confirmed that this region drives the muscle-specific expression of the primary transcript of miR-1/miR-133. In many deuterostome lineages, including that of Ciona, the miR-1/133 cluster is located in the same intron of the mind bomb (mib) gene in reverse orientation. Our results suggest that the origin of genomic organization and muscle-specific regulation of miR-1/133 can be traced back to the ancestor of chordates. Duplication of this miR cluster might have led to the remarkable elaboration in the morphology and function of skeletal muscles in the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
Stoff-Khalili, Mariam A; Stoff, Alexander; Rivera, Angel A; Banerjee, Nilam S; Everts, Maaike; Young, Scott; Siegal, Gene P; Richter, Dirk F; Wang, Minghui; Dall, Peter; Mathis, J Michael; Zhu, Zeng B; Curiel, David T
2005-01-01
Introduction In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), α-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. Methods We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. Results Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. Conclusion These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast. PMID:16457694
Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization
Schild, Tanya; Low, Vivien; Blenis, John; Gomes, Ana P.
2018-01-01
Summary Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype. PMID:29533780
Freezing-induced deformation of biomaterials in cryomedicine
NASA Astrophysics Data System (ADS)
Ozcelikkale, Altug
Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water transport, thereby leading to previously unconsidered mechanisms of cell freezing response. In addition, cellular water transport is identified as the critical limiting factor on the amount of freezing-induced tissue deformation, particularly in native tissues with high cell densities. Finally, effects of cryopreservation on post-thaw biological functionality of collagen engineered tissue constructs is investigated where cell-matrix interactions during fibroblast migration are considered as the functional response. Simultaneous cell migration and extracellular matrix deformation are characterized. Results show diminished cell-matrix coupling by freeze/thaw accompanied by a subtle decrease in cell migration. A connection between these results and freezing-induced collagen fibril damage is also suggested. Overall, this dissertation provides new fundamental knowledge on cryodamage mechanisms and a collection of novel multi-purpose engineering tools that will open the way for rational design of cryomedicine technologies.
Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin
2018-06-01
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole
2015-12-01
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.
Choice of surrogate tissue influences neonatal EWAS findings.
Lin, Xinyi; Teh, Ai Ling; Chen, Li; Lim, Ives Yubin; Tan, Pei Fang; MacIsaac, Julia L; Morin, Alexander M; Yap, Fabian; Tan, Kok Hian; Saw, Seang Mei; Lee, Yung Seng; Holbrook, Joanna D; Godfrey, Keith M; Meaney, Michael J; Kobor, Michael S; Chong, Yap Seng; Gluckman, Peter D; Karnani, Neerja
2017-12-05
Epigenomes are tissue specific and thus the choice of surrogate tissue can play a critical role in interpreting neonatal epigenome-wide association studies (EWAS) and in their extrapolation to target tissue. To develop a better understanding of the link between tissue specificity and neonatal EWAS, and the contributions of genotype and prenatal factors, we compared genome-wide DNA methylation of cord tissue and cord blood, two of the most accessible surrogate tissues at birth. In 295 neonates, DNA methylation was profiled using Infinium HumanMethylation450 beadchip arrays. Sites of inter-individual variability in DNA methylation were mapped and compared across the two surrogate tissues at birth, i.e., cord tissue and cord blood. To ascertain the similarity to target tissues, DNA methylation profiles of surrogate tissues were compared to 25 primary tissues/cell types mapped under the Epigenome Roadmap project. Tissue-specific influences of genotype on the variable CpGs were also analyzed. Finally, to interrogate the impact of the in utero environment, EWAS on 45 prenatal factors were performed and compared across the surrogate tissues. Neonatal EWAS results were tissue specific. In comparison to cord blood, cord tissue showed higher inter-individual variability in the epigenome, with a lower proportion of CpGs influenced by genotype. Both neonatal tissues were good surrogates for target tissues of mesodermal origin. They also showed distinct phenotypic associations, with effect sizes of the overlapping CpGs being in the same order of magnitude. The inter-relationship between genetics, prenatal factors and epigenetics is tissue specific, and requires careful consideration in designing and interpreting future neonatal EWAS. This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .
Liu, Mengpei; Zhang, Lihua; Ser, Suk Lan; Cumming, Jonathan R; Ku, Kang-Mo
2018-04-13
The phytonutrient concentrations of broccoli ( Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.
NASA Astrophysics Data System (ADS)
Alenkina, Irina V.; Oshtrakh, Michael I.; Felner, Israel; Vinogradov, Alexander V.; Konstantinova, Tatiana S.; Semionkin, Vladimir A.
2016-10-01
Iron deposits in spleen and liver tissues obtained from several healthy people and patients with mantle cell lymphoma, acute myeloid leukemia and primary myelofibrosis were studied using Mössbauer spectroscopy and magnetization measurements. The results obtained demonstrated differences in the iron content in tissues as well as some variations in the ferrihydrite-like iron core structure in the iron storage proteins in these tissues. The presence of tiny amount of magnetite and paramagnetic component in spleen and liver tissue was also detected in different quantities in the studied tissues.
Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L
2014-06-27
Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. © 2013 Published by Elsevier Ltd.
Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita
2013-04-01
Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.
Nakano, Shusuke; Yokoyama, Yuta; Aoyagi, Satoka; Himi, Naoyuki; Fletcher, John S; Lockyer, Nicholas P; Henderson, Alex; Vickerman, John C
2016-06-08
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolution images. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat brain tissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral microinfarction can be detected by ToF-SIMS.
NASA Astrophysics Data System (ADS)
Schultz, David Sheldon
Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness. Substantial collagen crosslink accumulation is a primary factor causing the stiffening of sclera with increased age. The influence of crosslinks dominates diffusion and permeability behavior. Exogenous crosslinking may help modulate the mechanical and fluid transport properties of the sclera and cornea. Treatment with methylglyoxal reduces the permeability and increases the stiffness of both. However, differences in the pre-treatment level of organization within the microstructure encourages asymmetric results.
EFFECTS OF CYCLIC FLEXURAL FATIGUE ON PORCINE BIOPROSTHETIC HEART VALVE HETEROGRAFT BIOMATERIALS
Mirnajafi, Ali; Zubiate, Brett; Sacks, Michael S.
2009-01-01
While bioprosthetic heart valves (BHV) remain the primary treatment modality for adult heart valve replacement, continued problems with durability remain. Several studies have implicated flexure as a major damage mode in porcine-derived heterograft biomaterials used in BHV fabrication. While conventional accelerated wear testing can provide valuable insights into BHV damage phenomena, the constituent tissues are subjected to complex, time-varying deformation modes (i.e. tension and flexure), that do not allow for the control of the amount, direction, and location of flexure. Thus, in the present study customized fatigue testing devices were developed to subject circumferentially oriented porcine BHV tissue strips to controlled cyclic flexural loading. By using this approach, we were able to study layer-specific structural damage induced by cyclic flexural tensile and compressive stresses alone. 10×106, 25×106 and 50×106 cycle levels were used, with resulting changes in flexural stiffness and collagen structure assessed. Results indicated that flexural rigidity was markedly reduced after only 10×106 cycles, and progressively decayed at a lower rate with cycle number thereafter. Moreover, the against-curvature fatigue direction induced the most damage, suggesting that the ventricularis and fibrosa layers have low resistance to cyclic flexural compressive and tensile loads, respectively. The histological analyses indicated progressive collagen fiber delamination as early as 10×106 cycles, but otherwise no change in gross collagen orientation. Our results underscore that porcine-derived heterograft biomaterials are very sensitive to flexural fatigue, with delamination of the tissue layers the primary underlying mechanism. This appears to be in contrast to pericardial BHV, wherein high tensile stresses are considered to be the major cause of structural failure. These findings point towards the need for the development of chemical fixation technologies that minimize flexure induced damage to extend porcine heterograft biomaterial durability. PMID:20166221
Primary Cilia Are Not Calcium-Responsive Mechanosensors
Delling, M.; Indzhykulian, A. A.; Liu, X.; Liu, Y.; Xie, T.; Corey, D. P.; Clapham, D. E.
2016-01-01
Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium1. This Ca2+- Responsive MechanoSensor (CaRMS) hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers2,3. Here, we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. First, we developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator (GECI) in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca2+ influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signaling. PMID:27007841
A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.
Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J
2015-02-17
Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.
Verma, Vivek; Kim, Young; Lee, Min-Cheol; Lee, Jae-Tae; Cho, Sunghoon; Park, In-Kyu; Min, Jung Joon; Lee, Je Jung; Lee, Shee Eun; Rhee, Joon Haeng
2016-01-01
Dendritic cell (DC) based anti-cancer immunotherapy is well tolerated in patients with advanced cancers. However, the clinical responses seen after adoptive DC therapy have been suboptimal. Several factors including scarce DC numbers in tumors and immunosuppressive tumor microenvironments contribute to the inefficacy of DCs as cellular vaccines. Hence DC based vaccines can benefit from novel methods of cell delivery that would prevent the direct exposure of immune cells to suppressive tumor microenvironments. Here we evaluated the ability of DCs harbored in biocompatible scaffolds (referred to as biomatrix entrapped DCs; beDCs) in activating specific anti-tumor immune responses against primary and post-surgery secondary tumors. Using a preclinical cervical cancer and a melanoma model in mice, we show that single treatment of primary and post-surgery secondary tumors using beDCs resulted in significant tumor growth retardation while multiple inoculations were required to achieve a significant anti-tumor effect when DCs were given in free form. Additionally, we found that, compared to the tumor specific E6/E7 peptide vaccine, total tumor lysate induced higher expression of CD80 and CD40 on DCs that induced increased levels of IFNγ production upon interaction with host lymphocytes. Remarkably, a strong immunocyte infiltration into the host-implanted DC-scaffold was observed. Importantly, the host-implanted beDCs induced the anti-tumor immune responses in the absence of any stromal cell support, and the biomatrix structure was eventually absorbed into the surrounding host tissue. Collectively, these data indicate that the scaffold-based DC delivery may provide an efficient and safe way of delivering cell-based vaccines for treatment of primary and post-surgery secondary tumors. PMID:27223090
NASA Astrophysics Data System (ADS)
Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.
2018-01-01
Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.
Tissue Engineering Strategies for the Tendon/ligament-to-bone insertion
Smith, Lester; Xia, Younan; Galatz, Leesa M.; Genin, Guy M.; Thomopoulos, Stavros
2012-01-01
Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require re-attachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of re-injury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations. PMID:22185608
Tissue-engineering strategies for the tendon/ligament-to-bone insertion.
Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros
2012-01-01
Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.
Advancing the Capabilities of an Authentic Ex Vivo Model of Primary Human Prostate Cancer
2014-10-01
maintained the PTEN expression of the native tissues after 5 days in culture. Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant...room temperature 1 h room temperature 30 min room temperature Abcam, Cambridge, MA, USA p63 SMA CD68 PSMA Mouse monoclonal Mouse monoclonal Mouse...Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant glands as expected in both native tissue and in TSCs after 5 days.47
Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil
2009-01-01
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829
Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G
2017-03-23
In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
3D printing of layered brain-like structures using peptide modified gellan gum substrates.
Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G
2015-10-01
The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Díaz-Delgado, J; Ressio, R; Groch, K R; Catão-Dias, J L
2018-06-01
A considerable amount of knowledge on natural and anthropogenic pathologic conditions affecting different cetacean species has been gained over the last decades. Nonetheless, the immunopathological bases for most of these processes have been poorly documented or remain unknown. Comparative immunopathological investigations in these species are precluded by the limited number of specific antibodies, most of which are not commercially available, and the reduced spectrum of validated and/or cross-reactive ones. To partially fill in this gap of knowledge, a set of commercially available primary antibodies were tested for cross-reactivity against leukocytes and cytokines in formalin-fixed, paraffin-embedded (FFPE) lymphoid tissues (lymph nodes, spleen and thymus) of three bycaught, apparently healthy and fresh Franciscanas (Pontoporia blainvillei) using immunohistochemistry. On the basis of similar region specificity within the lymphoid organs, cellular morphology and staining pattern with human control tissues, 13/19 primary antibodies (caspase 3, CD3, CD57, CD68, FoxP3, HLA-DRα, IFNγ, IgG, IL4, IL10, Lysozyme, TGFβ and PAX-5) exhibited satisfactory cross-reactivity. Our results expand the spectrum of suitable cross-reactive primary antibodies in FFPE cetacean tissues. Further comparative immunopathological studies focused on infectious diseases and ecotoxicology may benefit from establishment of baseline expression of immunologically relevant molecules in various cetaceans species. Copyright © 2018 Elsevier B.V. All rights reserved.
A taxonomy of epithelial human cancer and their metastases
2009-01-01
Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination. Conclusion Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile. PMID:20017941
Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.
Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula
2016-08-01
Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. © 2015 Society for Laboratory Automation and Screening.
Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes
Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian
2014-01-01
Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918
Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S
2017-03-28
The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.
Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S.
2017-01-01
The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients. PMID:28206954
Journot, Valérie; Tabuteau, Sophie; Collin, Fidéline; Molina, Jean-Michel; Chene, Geneviève; Rancinan, Corinne
2008-03-01
Since 2003, the Medical Dictionary for Regulatory Activities (MedDRA) is the regulatory standard for safety report in clinical trials in the European Community. Yet, we found no published example of a practical experience for a scientifically oriented statistical analysis of events coded with MedDRA. We took advantage of a randomized trial in HIV-infected patients with MedDRA-coded events to explain the difficulties encountered during the events analysis and the strategy developed to report events consistently with trial-specific objectives. MedDRA has a rich hierarchical structure, which allows the grouping of coded terms into 5 levels, the highest being "System Organ Class" (SOC). Each coded term may be related to several SOCs, among which one primary SOC is defined. We developed a new general 5-step strategy to select a SOC as trial primary SOC, consistently with trial-specific objectives for this analysis. We applied it to the ANRS 099 ALIZE trial, where all events were coded with MedDRA version 3.0. We compared the MedDRA and the ALIZE primary SOCs. In the ANRS 099 ALIZE trial, 355 patients were recruited, and 3,722 events were reported and documented, among which 35% had multiple SOCs (2 to 4). We applied the proposed 5-step strategy. Altogether, 23% of MedDRA primary SOCs were modified, mainly from MedDRA primary SOCs "Investigations" (69%) and "Ear and labyrinth disorders" (6%), for the ALIZE primary SOCs "Hepatobiliary disorders" (35%), "Musculoskeletal and connective tissue disorders" (21%), and "Gastrointestinal disorders" (15%). MedDRA largely enhanced in size and complexity with versioning and the development of Standardized MedDRA Queries. Yet, statisticians should not systematically rely on primary SOCs proposed by MedDRA to report events. A simple general 5-step strategy to re-classify events consistently with the trial-specific objectives might be useful in HIV trials as well as in other fields.
Toward the human cellular microRNAome.
McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K
2017-10-01
MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.
Determinants of gliadin-specific T cell selection in celiac disease.
Petersen, Jan; van Bergen, Jeroen; Loh, Khai Lee; Kooy-Winkelaar, Yvonne; Beringer, Dennis X; Thompson, Allan; Bakker, Sjoerd F; Mulder, Chris J J; Ladell, Kristin; McLaren, James E; Price, David A; Rossjohn, Jamie; Reid, Hugh H; Koning, Frits
2015-06-15
In HLA-DQ8-associated celiac disease (CD), the pathogenic T cell response is directed toward an immunodominant α-gliadin-derived peptide (DQ8-glia-α1). However, our knowledge of TCR gene usage within the primary intestinal tissue of HLA-DQ8 (+) CD patients is limited. We identified two populations of HLA-DQ8-glia-α1 tetramer(+) CD4(+) T cells that were essentially undetectable in biopsy samples from patients on a gluten-free diet but expanded rapidly and specifically after antigenic stimulation. Distinguished by expression of TRBV9, both T cell populations displayed biased clonotypic repertoires and reacted similarly against HLA-DQ8-glia-α1. In particular, TRBV9 paired most often with TRAV26-2, whereas the majority of TRBV9(-) TCRs used TRBV6-1 with no clear TRAV gene preference. Strikingly, both tetramer(+)/TRBV9(+) and tetramer(+)/TRBV9(-) T cells possessed a non-germline-encoded arginine residue in their CDR3α and CDR3β loops, respectively. Comparison of the crystal structures of three TRBV9(+) TCRs and a TRBV9(-) TCR revealed that, as a result of distinct TCR docking modes, the HLA-DQ8-glia-α1 contacts mediated by the CDR3-encoded arginine were almost identical between TRBV9(+) and TRBV9(-) TCRs. In all cases, this interaction centered on two hydrogen bonds with a specific serine residue in the bound peptide. Replacement of serine with alanine at this position abrogated TRBV9(+) and TRBV9(-) clonal T cell proliferation in response to HLA-DQ8-glia-α1. Gluten-specific memory CD4(+) T cells with structurally and functionally conserved TCRs therefore predominate in the disease-affected tissue of patients with HLA-DQ8-mediated CD. Copyright © 2015 by The American Association of Immunologists, Inc.
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Zhen, Hanson H.; Oro, Anthony E.
2013-01-01
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463
Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome
Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio
2012-01-01
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964
Alaiyan, Bilal; Ilyayev, Nadia; Stojadinovic, Alexander; Izadjoo, Mina; Roistacher, Marina; Pavlov, Vera; Tzivin, Victoria; Halle, David; Pan, Honguang; Trink, Barry; Gure, Ali O; Nissan, Aviram
2013-04-17
The transition from normal epithelium to adenoma and, to invasive carcinoma in the human colon is associated with acquired molecular events taking 5-10 years for malignant transformation. We discovered CCAT1, a non-coding RNA over-expressed in colon cancer (CC), but not in normal tissues, thereby making it a potential disease-specific biomarker. We aimed to define and validate CCAT1 as a CC-specific biomarker, and to study CCAT1 expression across the adenoma-carcinoma sequence of CC tumorigenesis. Tissue samples were obtained from patients undergoing resection for colonic adenoma(s) or carcinoma. Normal colonic tissue (n = 10), adenomatous polyps (n = 18), primary tumor tissue (n = 22), normal mucosa adjacent to primary tumor (n = 16), and lymph node(s) (n = 20), liver (n = 8), and peritoneal metastases (n = 19) were studied. RNA was extracted from all tissue samples, and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR) with confirmatory in-situ hybridization (ISH). Borderline expression of CCAT1 was identified in normal tissue obtained from patients with benign conditions [mean Relative Quantity (RQ) = 5.9]. Significant relative CCAT1 up-regulation was observed in adenomatous polyps (RQ = 178.6 ± 157.0; p = 0.0012); primary tumor tissue (RQ = 64.9 ± 56.9; p = 0.0048); normal mucosa adjacent to primary tumor (RQ = 17.7 ± 21.5; p = 0.09); lymph node, liver and peritoneal metastases (RQ = 11,414.5 ± 12,672.9; 119.2 ± 138.9; 816.3 ± 2,736.1; p = 0.0001, respectively). qRT-PCR results were confirmed by ISH, demonstrating significant correlation between CCAT1 up-regulation measured using these two methods. CCAT1 is up-regulated across the colon adenoma-carcinoma sequence. This up-regulation is evident in pre-malignant conditions and through all disease stages, including advanced metastatic disease suggesting a role in both tumorigenesis and the metastatic process.
3D bioprinted functional and contractile cardiac tissue constructs
Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J.; Atala, Anthony
2018-01-01
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-μm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. PMID:29452273
Mohammadkhah, Melika; Simms, Ciaran K; Murphy, Paula
2017-02-01
Detection and visualisation of Collagen structure are important to understand the relationship between mechanical behaviour and microstructure in skeletal muscle since Collagen is the main structural protein in animal connective tissues, and is primarily responsible for their passive load-bearing properties. In the current study, the direct detection and visualization of Collagen using fluorescently tagged CNA35 binding protein (fused to EGFP or tdTomato) is reported for the first time on fixed skeletal muscle tissue. This Technical Note also establishes a working protocol by examining tissue preparation, dilution factor, exposure time etc. for sensitivity and specificity. Penetration of the binding protein into intact mature skeletal muscle was found to be very limited, but detection works well on tissue sections with higher sensitivity on wax embedded sections compared to frozen sections. CNA35 fused to tdTomato has a higher sensitivity than CNA35 fused to EGFP but both show specific detection. Best results were obtained with 15μm wax embedded sections, with blocking of non-specific binding in 1% BSA and antigen retrieval in Sodium Citrate. There was a play-off between dilution of the binding protein and time of incubation but both CNA35-tdTomato and CNA35-EGFP worked well with approximately 100μg/ml of purified protein with overnight incubation, while CNA35-tdTomato could be utilized at 5 fold less concentration. This approach can be applied to study the relationship between skeletal muscle micro-structure and to observe mechanical response to applied deformation. It can be used more broadly to detect Collagen in a variety of fixed tissues, useful for structure-functions studies, constitutive modelling, tissue engineering and assessment of muscle tissue pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Connective tissue and inflammation].
Jakab, Lajos
2014-03-23
The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.
Nanotopography-guided tissue engineering and regenerative medicine☆
Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang
2017-01-01
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841
Rahman, Hafizur; Currier, Eric; Johnson, Marshall; Goding, Rick; Johnson, Amy Wagoner; Kersh, Mariana E
2017-11-01
Rotator cuff tears (RCTs) are one of the primary causes of shoulder pain and dysfunction in the upper extremity accounting over 4.5 million physician visits per year with 250,000 rotator cuff repairs being performed annually in the U.S. While the tear is often considered an injury to a specific tendon/tendons and consequently treated as such, there are secondary effects of RCTs that may have significant consequences for shoulder function. Specifically, RCTs have been shown to affect the joint cartilage, bone, the ligaments, as well as the remaining intact tendons of the shoulder joint. Injuries associated with the upper extremities account for the largest percent of workplace injuries. Unfortunately, the variable success rate related to RCTs motivates the need for a better understanding of the biomechanical consequences associated with the shoulder injuries. Understanding the timing of the injury and the secondary anatomic consequences that are likely to have occurred are also of great importance in treatment planning because the approach to the treatment algorithm is influenced by the functional and anatomic state of the rotator cuff and the shoulder complex in general. In this review, we summarized the contribution of RCTs to joint stability in terms of both primary (injured tendon) and secondary (remaining tissues) consequences including anatomic changes in the tissues surrounding the affected tendon/tendons. The mechanical basis of normal shoulder joint function depends on the balance between active muscle forces and passive stabilization from the joint surfaces, capsular ligaments, and labrum. Evaluating the role of all tissues working together as a system for maintaining joint stability during function is important to understand the effects of RCT, specifically in the working population, and may provide insight into root causes of shoulder injury.
Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth
Rodas-Junco, Beatriz A.; Canul-Chan, Michel; Rojas-Herrera, Rafael A.; De-la-Peña, Clelia; Nic-Can, Geovanny I.
2017-01-01
Adult stem cells have attracted scientific attention because they are able to self-renew and differentiate into several specialized cell types. In this context, human dental tissue-derived mesenchymal stem cells (hDT-MSCs) have emerged as a possible solution for repairing or regenerating damaged tissues. These cells can be isolated from primary teeth that are naturally replaced, third molars, or other dental tissues and exhibit self-renewal, a high proliferative rate and a great multilineage potential. However, the cellular and molecular mechanisms that determine lineage specification are still largely unknown. It is known that a change in cell fate requires the deletion of existing transcriptional programs, followed by the establishment of a new developmental program to give rise to a new cell lineage. Increasing evidence indicates that chromatin structure conformation can influence cell fate. In this way, reversible chemical modifications at the DNA or histone level, and combinations thereof can activate or inactivate cell-type-specific gene sequences, giving rise to an alternative cell fates. On the other hand, miRNAs are starting to emerge as a possible player in establishing particular somatic lineages. In this review, we discuss two new and promising research fields in medicine and biology, epigenetics and stem cells, by summarizing the properties of hDT-MSCs and highlighting the recent findings on epigenetic contributions to the regulation of cellular differentiation. PMID:29270128
Beenken, Andrew; Eliseenkova, Anna V; Ibrahimi, Omar A; Olsen, Shaun K; Mohammadi, Moosa
2012-01-27
Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1-3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the "universal FGFR ligand" because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the "b" and "c" splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.
Sargis, Robert M.; Neel, Brian A.; Brock, Clifton O.; Lin, Yuxi; Hickey, Allison T.; Carlton, Daniel A.; Brady, Matthew J.
2012-01-01
Emerging data suggest that environmental endocrine disrupting chemicals (EDCs) may contribute to the pathophysiology of obesity and diabetes. In prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100 nM TF for 48 h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF-treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulin’s diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes. PMID:22387882
Speckle contrast techniques in the study of tissue thermal modification and denaturation
NASA Astrophysics Data System (ADS)
Agafonov, Dmitry N.; Kuznetsova, Liana V.; Zimnyakov, Dmitry A.; Sviridov, Alexander P.; Omelchenko, Alexander I.
2002-05-01
Results of the contrast analysis of time-averaged dynamic speckle patterns in application to monitoring of the structure modification of the thermally treated collagenous tissue such as cartilage are presented. The modification presumably induced by the bound to free water phase transition in the matrix of the treated tissue cause the specific feature of evolution of the time-averaged speckle contrast with the change of the current temperature of modified collagen tissue. This evolution appears as hysteresis associated with irreversible changes in tissue structure.
Atherton, Daniel S; Sexton, Katherine C; Otali, Dennis; Bell, Walter C; Grizzle, William E
2016-01-01
The availability of high-quality human tissues is necessary to advance medical research. Although there are inherent and induced limitations on the use of human tissues in research, biorepositories play critical roles in minimizing the effects of such limitations. Specifically, the optimal utilization of tissues in research requires tissues to be diagnosed accurately, and the actual specimens provided to investigators must be carefully described (i.e., there must be quality control of each aliquot of the tissue provided for research, including a description of any damage to tissues). Tissues also should be collected, processed, stored, and distributed (i.e., handled) uniformly under a rigorous quality management system (QMS). Frequently, tissues are distributed to investigators by tissue banks which have collected, processed, and stored them by standard operating procedures (SOPs). Alternatively, tissues for research may be handled via SOPs that are modified to the specific requirements of investigators (i.e., using a prospective biorepository model). The primary goal of any type of biorepository should be to ensure its specimens are of high quality and are utilized appropriately in research; however, approaches may vary based on the tissues available and requested. For example, extraction of specific molecules (e.g., microRNA) to study molecular characteristics of a tissue may require less clinical annotation than tissues that are utilized to identify how the molecular expression might be used to clarify a clinical outcome of a disease or the response to a specific therapy. This review focuses on the limitations of the use of tissues in research and how the design and operations of a tissue biorepository can minimize some of these limitations.
Actis, Ricardo L; Ventura, Liliana B; Smith, Kirk E; Commean, Paul K; Lott, Donovan J; Pilgram, Thomas K; Mueller, Michael J
2006-08-01
The primary objective of conservative care for the diabetic foot is to protect the foot from excessive pressures. Pressure reduction and redistribution may be achieved by designing and fabricating orthotic devices based on foot structure, tissue mechanics, and external loads on the diabetic foot. The purpose of this paper is to describe the process used for the development of patient-specific mathematical models of the second and third rays of the foot, their solution by the finite element method, and their sensitivity to model parameters and assumptions. We hypothesized that the least complex model to capture the pressure distribution in the region of the metatarsal heads would include the bony structure segmented as toe, metatarsal and support, with cartilage between the bones, plantar fascia and soft tissue. To check the hypothesis, several models were constructed with different levels of details. The process of numerical simulation is comprised of three constituent parts: model definition, numerical solution and prediction. In this paper the main considerations relating model selection and computation of approximate solutions by the finite element method are considered. The fit of forefoot plantar pressures estimated using the FEA models and those explicitly tested were good as evidenced by high Pearson correlations (r=0.70-0.98) and small bias and dispersion. We concluded that incorporating bone support, metatarsal and toes with linear material properties, tendon and fascia with linear material properties, soft tissue with nonlinear material properties, is sufficient for the determination of the pressure distribution in the metatarsal head region in the push-off position, both barefoot and with shoe and total contact insert. Patient-specific examples are presented.
EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis.
Spizzo, Gilbert; Fong, Dominic; Wurm, Martin; Ensinger, Christian; Obrist, Peter; Hofer, Carina; Mazzoleni, Guido; Gastl, Guenther; Went, Philip
2011-05-01
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein with oncogenic features that is expressed on healthy human epithelia and corresponding malignant tumours. EpCAM expression frequently correlates with more aggressive tumour behaviour and new EpCAM-specific therapeutic agents have recently been approved for clinical use in patients with cancer. However, no consensus exists on how and when to evaluate EpCAM expression in patients with cancer. EpCAM expression was assessed by a well-established immunohistochemical staining protocol in 2291 primary tumour tissues and in 108 metastases using the EpCAM-specific antibody clone VU1D9. A total immunostaining score was calculated as the product of a proportion score and an intensity score. Four expression subgroups (no, weak, moderate and intense) were defined. As described previously, the term 'EpCAM overexpression' was reserved for tissues showing a total immunostaining score >4. EpCAM was highly expressed in most tumours of gastrointestinal origin and in some carcinomas of the genitourinary tract. However, hepatocellular carcinomas, clear cell renal cell cancer, urothelial cancer and squamous cell cancers were frequently EpCAM negative. EpCAM expression in breast cancer depended on the histological subtype; lobular histology usually showed no or weak expression. Most metastases were EpCAM positive and they frequently reflected the expression phenotype of the primary tumour. EpCAM expression was detected on adenocarcinomas of various primary sites. If EpCAM-specific antibodies are intended to be used in patients with cancer, we recommend prior immunohistochemical evaluation of EpCAM expression, particularly in patients with renal cell cancer, hepatocellular carcinoma, urothelial carcinoma, breast cancer and squamous cell carcinomas.
Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering☆
Moioli, Eduardo K.; Clark, Paul A.; Xin, Xuejun; Lal, Shan; Mao, Jeremy J.
2010-01-01
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches. PMID:17499385
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy.
Fields, Mark; Spencer, Nicholas; Dudhia, Jayesh; McMillan, Paul F
2017-06-01
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H 2 O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H 2 O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H 2 O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure. © 2017 Wiley Periodicals, Inc.
Structural and quantitative expression analyses of HERV gene family in human tissues.
Ahn, Kung; Kim, Heui-Soo
2009-08-31
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Constant Applied Force Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E. A. C.
2003-01-01
Reduced weight-bearing caused by immobilization, bed-rest or microgravity leads to atrophy in mechanosensitive tissue such as muscle and bone. We hypothesize that bone tissue requires earth s gravity (1-g) for the maintenance of extracellular matrix, integrin, and kinase-mediated cell growth and survival pathways. We investigate the role of matrix-integrin signaling in bone cells using cell culture centrifugation to provide different levels of hypergravity mechanostimulation. The 10-50-g range we use also mimics physiological intermedullary pressure (1.2 - 5 kPa). 24 hours at 50-g increased primary rat osteoblast proliferation on collagen Type I and fibronectin, but not laminin or uncoated plastic. BrdU incorporation in primary osteoblasts over 24 h showed hypergravity increased the number of cells actively synthesizing DNA from about 60% at 1-g to over 90% at 25-g. Primary rat fibroblasts grown at 50-g (24 h) showed no proliferation increase, suggesting this is a tissue-specific phenomenon. These results suggest that the betal and alpha4 integrins may be involved. To further test this, we used osteocytic-like MLO-Y4 cells that showed increased proliferation at 1-g with stable expression of a betal integrin cytoplasmic tail and transmembrane domain construct. At 50-g, MLO-Y4/betal cells showed greater MAPK activation than MLO-Y4 vector controls, suggesting that betal integrin is involved in transducing mitogenic signals in response to hypergravity. Preliminary results also show that interfering with the alpha4 integrin in primary osteoblasts grown on fibronectin blocked the proliferation response. These results indicate that cells from mechanosensitive bone tissue can respond to gravity-generated forces, and this response involves specific matrix and integrin-dependent signaling pathways.
Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S.; Ishikawa, Masaya
2014-01-01
Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (−1 to −4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142
Workman, Heather C; Miller, Jamie K; Ingalla, Ellen Q; Kaur, Rouminder P; Yamamoto, Diane I; Beckett, Laurel A; Young, Lawrence Jt; Cardiff, Robert D; Borowsky, Alexander D; Carraway, Kermit L; Sweeney, Colleen; Carraway, Kermit L
2009-01-01
Previous studies indicate that overexpression of the membrane-associated mucin MUC4 is potently anti-adhesive to cultured tumor cells, and suppresses cellular apoptotic response to a variety of insults. Such observations raise the possibility that MUC4 expression could contribute to tumor progression or metastasis, but the potential involvement of MUC4 in breast cancer has not been rigorously assessed. The present study aimed to investigate the expression of the membrane mucin MUC4 in normal breast tissue, primary breast tumors and lymph node metastases, and to evaluate the role of MUC4 in promoting the malignant properties of breast tumor cells. MUC4 expression levels in patient-matched normal and tumor breast tissue was initially examined by immunoblotting lysates of fresh frozen tissue samples with a highly specific preparation of anti-MUC4 monoclonal antibody 1G8. Immunohistochemical analysis was then carried out using tissue microarrays encompassing patient-matched normal breast tissue and primary tumors, and patient-matched lymph node metastases and primary tumors. Finally, shRNA-mediated knockdown was employed to assess the contribution of MUC4 to the cellular growth and malignancy properties of JIMT-1 breast cancer cells. Immunoblotting and immunohistochemistry revealed that MUC4 levels are suppressed in the majority (58%, p < 0.001) of primary tumors relative to patient-matched normal tissue. On the other hand, lymph node metastatic lesions from 37% (p < 0.05) of patients expressed higher MUC4 protein levels than patient-matched primary tumors. MUC4-positive tumor emboli were often found in lymphovascular spaces of lymph node metastatic lesions. shRNA-mediated MUC4 knockdown compromised the migration, proliferation and anoikis resistance of JIMT-1 cells, strongly suggesting that MUC4 expression actively contributes to cellular properties associated with breast tumor metastasis. Our observations suggest that after an initial loss of MUC4 levels during the transition of normal breast tissue to primary tumor, the re-establishment of elevated MUC4 levels confers an advantage to metastasizing breast tumor cells by promoting the acquisition of cellular properties associated with malignancy.
A DNA methylation map of human cancer at single base-pair resolution.
Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M
2017-10-05
Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.
Tziafas, Dimitrios; Kodonas, Konstantinos
2015-11-27
Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events.
Tziafas, Dimitrios; Kodonas, Konstantinos
2015-01-01
Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events. PMID:29567934
Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G
2015-07-01
The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.
pH regulators in invadosomal functioning: proton delivery for matrix tasting.
Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien
2012-01-01
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M
2014-12-01
Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.
Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration
NASA Astrophysics Data System (ADS)
Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter
2016-06-01
Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50-170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation.
Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration
Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter
2016-01-01
Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation. PMID:27340110
Detection of lobular structures in normal breast tissue.
Apou, Grégory; Schaadt, Nadine S; Naegel, Benoît; Forestier, Germain; Schönmeyer, Ralf; Feuerhake, Friedrich; Wemmert, Cédric; Grote, Anne
2016-07-01
Ongoing research into inflammatory conditions raises an increasing need to evaluate immune cells in histological sections in biologically relevant regions of interest (ROIs). Herein, we compare different approaches to automatically detect lobular structures in human normal breast tissue in digitized whole slide images (WSIs). This automation is required to perform objective and consistent quantitative studies on large data sets. In normal breast tissue from nine healthy patients immunohistochemically stained for different markers, we evaluated and compared three different image analysis methods to automatically detect lobular structures in WSIs: (1) a bottom-up approach using the cell-based data for subsequent tissue level classification, (2) a top-down method starting with texture classification at tissue level analysis of cell densities in specific ROIs, and (3) a direct texture classification using deep learning technology. All three methods result in comparable overall quality allowing automated detection of lobular structures with minor advantage in sensitivity (approach 3), specificity (approach 2), or processing time (approach 1). Combining the outputs of the approaches further improved the precision. Different approaches of automated ROI detection are feasible and should be selected according to the individual needs of biomarker research. Additionally, detected ROIs could be used as a basis for quantification of immune infiltration in lobular structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amit, Ido; Winter, Deborah R; Jung, Steffen
2016-01-01
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
Clinical radiological aspects of primary endodontic lesions with secondary periodontal involvement
Jivoinovici, R; Suciu, Ileana; Gheorghiu, I; Suciu, Ioana
2017-01-01
Damage of pulp tissue usually begins in the coronal pulp. Its mistreatment or its lack of on time detection determines the progressive inclusion of the whole endodontic space in its evolution, opening the way of its expansion in the surrounding tissues of the tooth, and on the marginal apical tissue. Aim. The goal of this study was to highlight that the primary endodontic lesions with secondary periodontal implication healed and bone repair was obtained due to a proper disinfection and an adequate sealing of the endodontic system. In primary endodontic lesion with secondary periodontal involvement, endodontic treatment is required in the first stage followed by specific periodontal treatment. The prognosis is good if an appropriate endodontic approach is chosen, depending on the stage of the periodontal disease and the treatment response. The identification of the etiological factors is the most important to establish the appropriate treatment. In all clinical cases selected in this article, the healing tendency was noticed after an adequate disinfection and sealing of the endodontic system. PMID:28255382
Engert, Christoph G; Droste, Rita; van Oudenaarden, Alexander; Horvitz, H Robert
2018-04-01
To better understand the tissue-specific regulation of chromatin state in cell-fate determination and animal development, we defined the tissue-specific expression of all 36 C. elegans presumptive lysine methyltransferase (KMT) genes using single-molecule fluorescence in situ hybridization (smFISH). Most KMTs were expressed in only one or two tissues. The germline was the tissue with the broadest KMT expression. We found that the germline-expressed C. elegans protein SET-17, which has a SET domain similar to that of the PRDM9 and PRDM7 SET-domain proteins, promotes fertility by regulating gene expression in primary spermatocytes. SET-17 drives the transcription of spermatocyte-specific genes from four genomic clusters to promote spermatid development. SET-17 is concentrated in stable chromatin-associated nuclear foci at actively transcribed msp (major sperm protein) gene clusters, which we term msp locus bodies. Our results reveal the function of a PRDM9/7-family SET-domain protein in spermatocyte transcription. We propose that the spatial intranuclear organization of chromatin factors might be a conserved mechanism in tissue-specific control of transcription.
NASA Astrophysics Data System (ADS)
Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.
2017-09-01
In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.
Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering
NASA Technical Reports Server (NTRS)
Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)
2003-01-01
The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.
Marking cell lineages in living tissues.
Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim
2005-05-01
We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.
A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.
Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R
2015-10-05
Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.
NASA Astrophysics Data System (ADS)
Henderson, Eric R.; DSouza, Alisha V.; Paulsen, Keith D.; Pogue, Brian W.
2017-02-01
Sarcomas are cancers of the bones, muscles, nerves, and fat that require complete surgical removal for cure. The primary surgical goal therefore is to remove the tumor with a zone of normal, non-cancerous tissue surrounding the tumor, considered a `negative' surgical margin. At present, surgeons rely on radiologic imaging and visual and tactile clues to gauge cancer depth and guide surgical excision. This can result in removal of too much or too little tissue, which can lead to unnecessary removal of vital structures or incomplete cancer removal, respectively. Both results can have negative effects on ultimate patient outcome, with positive margins reported in 23% of sarcoma surgeries. Near-infrared (NIR) fluorescence probes are molecules that when stimulated with specific, known frequencies of near-infrared light will emit light of another distinct frequency. NIR light penetrates human tissue reasonably well and therefore can be used to detect the presence and location of unseen structures labeled with NIR fluorescence probes through several centimeters of tissue. Intra-operative near-infrared (NIR) fluorescence probes have been effective for this purpose in brain tumor surgery and may be applicable to sarcoma surgery. Foundational research is needed to explore the potential of this affibody probe and perfusion probes to estimate margin thickness in sarcoma surgery. In this study we will determine if sarcoma labeling using NIR fluorescence probes is superior with perfusion probes or a novel affibody probe. We will also determine whether NIR fluorescence using perfusion probes or a novel affibody probe can be correlated accurately to margin thickness.
Perrine-Walker, Francine; Rochette, Juliette; Martinière, Alexandre; Bach, Lien; Gojon, Alain
2016-01-01
Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3−) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3− through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3−. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3− stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3− mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. PMID:27543115
McDonnell, Liam A; Heeren, Ron M A; de Lange, Robert P J; Fletcher, Ian W
2006-09-01
To expand the role of high spatial resolution secondary ion mass spectrometry (SIMS) in biological studies, numerous developments have been reported in recent years for enhancing the molecular ion yield of high mass molecules. These include both surface modification, including matrix-enhanced SIMS and metal-assisted SIMS, and polyatomic primary ions. Using rat brain tissue sections and a bismuth primary ion gun able to produce atomic and polyatomic primary ions, we report here how the sensitivity enhancements provided by these developments are additive. Combined surface modification and polyatomic primary ions provided approximately 15.8 times more signal than using atomic primary ions on the raw sample, whereas surface modification and polyatomic primary ions yield approximately 3.8 and approximately 8.4 times more signal. This higher sensitivity is used to generate chemically specific images of higher mass biomolecules using a single molecular ion peak.
Primary blast-induced traumatic brain injury: lessons from lithotripsy
NASA Astrophysics Data System (ADS)
Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.
2017-11-01
Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.
Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M
1992-02-01
The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.
Clinical Recommendations on Carious Tissue Removal in Cavitated Lesions.
Schwendicke, Falk; Frencken, Jo; Innes, Nicola
2018-01-01
Non-cleansable carious lesions where sealing is no longer an option should be restored in the vast majority of cases. Prior to restoring the cavity, carious tissue removal is performed, mainly to increase the longevity of the restoration. Such removal, however, should not be conducted in a way that the vital pulp is harmed. This means that in teeth with shallow or moderately deep lesions, selective removal to firm dentine is recommended, while in deep lesions (radiographically extending into the pulpal third or quarter of the dentine) selective removal to soft dentine should be performed. In permanent teeth, stepwise removal is a possible alternative, while in primary teeth the Hall Technique can be considered too. To assess carious tissue removal, the hardness of the dentine should be the primary criterion. Moisture, colour, and additional parameters (like fluorescence of bacterial porphyrins, etc.) might be used, but should be critically evaluated towards their validity and patients' benefit. There is insufficient evidence to recommend a specific single carious tissue removal method. However, hand or chemomechanical excavation seem useful, as they reduce pain and discomfort during treatment. Current evidence also does not support any specific restoration material or (bonding) strategy for restoring cavities resulting from different carious tissue removal strategies. Prior to restoring the cavity, cavity disinfection is not recommended any longer. © 2018 S. Karger AG, Basel.
Nanotopography-guided tissue engineering and regenerative medicine.
Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang
2013-04-01
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering
Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.
2018-01-01
Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344
3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.
Lee, Wonjae; Park, Jon
2016-07-06
Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.
3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Park, Jon
2016-07-01
Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.
3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds
Lee, Wonjae; Park, Jon
2016-01-01
Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562
Krupska, Izabela; Bruford, Elspeth A; Chaqour, Brahim
2015-09-23
"CCN" is an acronym referring to the first letter of each of the first three members of this original group of mammalian functionally and phylogenetically distinct extracellular matrix (ECM) proteins [i.e., cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), and nephroblastoma-overexpressed (NOV)]. Although "CCN" genes are unlikely to have arisen from a common ancestral gene, their encoded proteins share multimodular structures in which most cysteine residues are strictly conserved in their positions within several structural motifs. The CCN genes can be subdivided into members developmentally indispensable for embryonic viability (e.g., CCN1, 2 and 5), each assuming unique tissue-specific functions, and members not essential for embryonic development (e.g., CCN3, 4 and 6), probably due to a balance of functional redundancy and specialization during evolution. The temporo-spatial regulation of the CCN genes and the structural information contained within the sequences of their encoded proteins reflect diversity in their context and tissue-specific functions. Genetic association studies and experimental anomalies, replicated in various animal models, have shown that altered CCN gene structure or expression is associated with "injury" stimuli--whether mechanical (e.g., trauma, shear stress) or chemical (e.g., ischemia, hyperglycemia, hyperlipidemia, inflammation). Consequently, increased organ-specific susceptibility to structural damages ensues. These data underscore the critical functions of CCN proteins in the dynamics of tissue repair and regeneration and in the compensatory responses preceding organ failure. A better understanding of the regulation and mode of action of each CCN member will be useful in developing specific gain- or loss-of-function strategies for therapeutic purposes.
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet
2015-07-03
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.
2008-01-01
In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; McCarthy, M.; Lin, Y-H
2006-01-01
In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.
2014-11-01
Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.
Zuscik, M J; Piascik, M T; Perez, D M
1999-12-01
The functionality of a 3422-base pair promoter fragment from the mouse alpha(1B)-adrenergic receptor (alpha(1B)AR) gene was examined. This fragment, cloned from a mouse genomic library, was found to have significant sequence homology to the known human and rat alpha(1B)AR promoters. However, the consensus motif of several key cis-acting elements is not conserved among the rat, human, and mouse genes, suggesting species specificity. Confirming fidelity of the murine promoter, robust in vitro expression of a chloramphenicol acetyltransferase (CAT) reporter was detected in known alpha(1B)AR-expressing BC(3)H1, NB41A3, and DDT(1)MF-2 cells transiently transfected with a promoter-CAT construct. Conversely, minimal CAT expression was detected in known alpha(1B)AR-negative RAT-1 and R3T3 cells. These findings were extended by transfecting the same promoter-CAT construct into various primary cell types. In support of the hypothesis that alpha(1)ARs are differentially expressed in the smooth muscle of the vasculature, primary cultures of superior mesenteric and renal artery vascular smooth muscle cells showed significantly stronger CAT expression than did vascular smooth muscle cells derived from pulmonary, femoral, and iliac arteries. Primary osteoblastic bone-forming cells, which are known to be alpha(1B)AR negative, showed minimal CAT expression. Indicating regulatory function through cis-acting elements, RAT-1, R3T3, NB41A3, BC(3)H1, and DDT(1)MF2 cells transfected with the promoter-CAT construct all showed increased CAT production when challenged with forskolin or hypoxic conditions. Additionally, tissue-specific regulation of the promoter was observed when cells were simultaneously challenged with both forskolin and hypoxia. These results collectively demonstrate that a 3.4-kb PvuII fragment of the murine alpha(1B)AR gene promoter can: 1) drive tissue-specific production of a CAT reporter in both clonal and primary cell lines; and 2) confer tissue-specific regulation of that CAT reporter when induced by challenge with forskolin and/or hypoxic conditions.
The Prevalence of Stages of Heart Failure in Primary Care: A Population-Based Study.
Jorge, Antonio Lagoeiro; Rosa, Maria Luiza G; Martins, Wolney A; Correia, Dayse Mary S; Fernandes, Luiz Claudio M; Costa, Jean A; Moscavitch, Samuel D; Jorge, Bruno Afonso L; Mesquita, Evandro T
2016-02-01
Planning strategies to prevent heart failure (HF) in developing countries require epidemiologic data in primary care. The purpose of this study was to estimate the prevalence of HF stages and their phenotypes, HF with preserved ejection fraction (HFPEF), and HF with reduced EF (HFREF) and to determine B-type natriuretic peptide (BNP) levels to identify HF in the adult population. This is a cross-sectional study including 633 individuals, aged ≥45 years, who were randomly selected and registered in a primary care program of a medium-sized city in Brazil. All participants were underwent clinical evaluations, BNP measurements, electrocardiograms, and tissue Doppler echocardiography in a single day. The participants were classified as stage 0 (healthy, 11.7%), stage A (risk factors, 36.6%), stage B (structural abnormalities, 42.7%), or stage C (symptomatic HF, 9.3%). Among patients with HF, 59% presented with HFPEF and 41% presented with HFREF. The mean BNP levels were 20 pg/mL(-1) in stage 0, 20 pg/mL(-1) in stage A, 24 pg/mL(-1) in stage B, 93 pg/mL(-1) in HFPEF, and 266 pg/mL(-1) in HFREF. The cutoff BNP level with optimal sensitivity (92%) and specificity (91%) to identify HF was 42 pg/mL(-1). The present study demonstrated a high prevalence of individuals at risk for HF and the predominance of HFPEF in a primary care setting. The clinical examination, along with BNP and tissue Doppler echocardiography, may facilitate early detection of stages A and B HF and allow implementation of interventions aimed at preventing progression to symptomatic HF. Copyright © 2015 Elsevier Inc. All rights reserved.
The terminator mouse: salvation for primary cell culture.
Kabgani, Nazanin; Moeller, Marcus J
2013-11-01
The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations.
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-01-01
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-04-21
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.
Robotic Prostate Biopsy in Closed MRI Scanner
2009-02-01
radioactive seeds or diagnosis by harvesting tissue samples inside the mag- net bore, under remote control of the physician without mov- ing the patient out...and allows fast removal for reloading brachytherapy needles or col- lecting harvested biopsy tissue. The primary actuated motions of the robot...include two prismatic motions and two rotational motions for aligning the needle axis. In addition to these base motions, application-specific motions are
Huang, Guo-Shiang; Tseng, Ting-Chen; Dai, Niann-Tzyy; Fu, Keng-Yen; Dai, Lien-Guo; Hsu, Shan-Hui
2015-10-01
Adipose-derived adult stem cells (ASCs) have gained much attention because of their multipotency and easy access. Here we describe a novel chitosan-based selection (CS) system instead of the conventional plastic adherence (PA) to obtain the primary ASCs. The minimal amount of adipose tissue for consistent isolation of ASCs is reduced from 10 mL to 5 mL. The selection is based on the specific interaction between cells and chitosan materials, which separate ASCs by forming spheroids during primary culture. The primary culture period was reduced from 4 days to one day and more ASCs (ten-fold expansion) were achieved in a week. The average duration for obtaining 1 × 10(7) cells takes about seven days from 5 mL of adipose tissue, compared to 14 days using the conventional PA method from 10 mL of adipose tissue. The replicative senescence of CS-ASCs is not evident until the fifteenth passage (vs. eighth for the PA-ASCs). The obtained ASCs (CS-ASCs) have less doubling time for the same passage of cells and show greater stemness than those obtained from the conventional PA method (PA-ASCs). Moreover, CS-ASCs undergo trilineage differentiation more effectively than PA-ASCs. The greater differentiation potential of CS-ASCs may be associated with the enrichment and maintenance of CD271 positive cells by chitosan selection of primary culture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functional Analysis of Arabidopsis Sucrose Transporters
DOE Office of Scientific and Technical Information (OSTI.GOV)
John M. Ward
2009-03-31
Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter frommore » companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.« less
Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.
Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko
2015-03-01
Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Cunningham, Jessica J.; Brown, Joel S.; Vincent, Thomas L.
2015-01-01
Background and objective: Systemic therapy for metastatic cancer is currently determined exclusively by the site of tumor origin. Yet, there is increasing evidence that the molecular characteristics of metastases significantly differ from the primary tumor. We define the evolutionary dynamics of metastases that govern this molecular divergence and examine their potential contribution to variations in response to targeted therapies. Methodology: Darwinian interactions of transformed cells with the tissue microenvironments at primary and metastatic sites are analyzed using evolutionary game theory. Computational models simulate responses to targeted therapies in different organs within the same patient. Results: Tumor cells, although maximally fit at their primary site, typically have lower fitness on the adaptive landscapes offered by the metastatic sites due to organ-specific variations in mesenchymal properties and signaling pathways. Clinically evident metastases usually exhibit time-dependent divergence from the phenotypic mean of the primary population as the tumor cells evolve and adapt to their new circumstances. In contrast, tumors from different primary sites evolving on identical metastatic adaptive landscapes exhibit phenotypic convergence. Thus, metastases in the liver from different primary tumors and even in different hosts will evolve toward similar adaptive phenotypes. The combination of evolutionary divergence from the primary cancer phenotype and convergence towards similar adaptive strategies in the same tissue cause significant variations in treatment responses particularly for highly targeted therapies. Conclusion and implications: The results suggest that optimal therapies for disseminated cancer must take into account the site(s) of metastatic growth as well as the primary organ. PMID:25794501
Screening and characterization of plant cell walls using carbohydrate microarrays.
Sørensen, Iben; Willats, William G T
2011-01-01
Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.
Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum
NASA Astrophysics Data System (ADS)
Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.
2013-06-01
Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.
A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity
Cerchiari, Alec E.; Garbe, James C.; Jee, Noel Y.; Todhunter, Michael E.; Broaders, Kyle E.; Peehl, Donna M.; Desai, Tejal A.; LaBarge, Mark A.; Thomson, Matthew; Gartner, Zev J.
2015-01-01
Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue–ECM boundary, rather than by differential homo- and heterotypic energies of cell–cell interaction. Surprisingly, interactions with the tissue–ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell–cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell–cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell–ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer. PMID:25633040
Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito
2010-01-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...
Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer
Boneberg, E-M; Legler, D F; Hoefer, M M; Öhlschlegel, C; Steininger, H; Füzesi, L; Beer, G M; Dupont-Lampert, V; Otto, F; Senn, H-J; Fürstenberger, G
2009-01-01
Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer. Methods: We analysed the expression of angiogenic, lymphangiogenic or antiangiogenic factors, their respective receptors and specific markers for endothelial and lymphendothelial cells by quantitative real-time RT-PCR in primary breast cancer and compared the expression profiles to non-cancerous, tumour-adjacent tissues and breast tissues from healthy women. Results: We found decreased mRNA amounts of major angiogenic and lymphangiogenic factors in tumour compared to healthy tissues, whereas antiangiogenic factors were upregulated. Concomitantly, angiogenic and lymphangiogenic receptors were downregulated in breast tumours. This antiangiogenic, antilymphangiogenic microenvironment was even more pronounced in aggressive tumours and accompanied by reduced amounts of endothelial and lymphatic endothelial cell markers. Conclusion: Primary breast tumours are not a site of highly active angiogenesis and lymphangiogenesis. Selection for tumour cells that survive with minimal vascular supply may account for this observation in clinical apparent tumours. PMID:19672262
LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.
2007-01-01
Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478
Ratkiewicz, A; Galasinski, W
1976-01-01
The characteristics of the ribonucleic acids of Guerin tumor was the subject of this work. The effect of tumor development on the structure of the ribonucleic acids in the liver of tumor bearing rats was studied. Some differences of nucleotide compositions in RNAs isolated from subcellular fractions of liver of control and tumor bearing rats and of cancer tissue were observed. The nucleotide compositions of cancer nuclear RNA is distinctly different from liver RNA. The changes in primary structure of liver RNAs due by development of tumor in rats may be result of metabolic peculiarities of these RNAs.
Trafficking of dietary fat in lean rats.
Bessesen, D H; Rupp, C L; Eckel, R H
1995-03-01
Despite increasing interest in the role that fuel partitioning plays in determining body composition, the relative importance of oxidative versus storage pathways in the clearance of dietary fat remains unclear. A widely held view is that the primary destination of chylomicron triglyceride fatty acids (TGFA) is adipose tissue, and the primary source of lipid fuel for skeletal muscle is non-esterified fatty acids (NEFA). An alternate view is that muscle, not adipose tissue, is the primary site of TGFA clearance. This view is supported by estimates of the total lipoprotein lipase content of muscle and adipose tissue. To directly study the partitioning of dietary fat between oxidation and storage, 14C-labeled oleic acid was fed to Sprague Dawley rats and its metabolic rate followed over 30 days. Two hours after ingestion, more than 3.5 times as much label was found in skeletal muscle tissue (2.42 +/- 0.45 nmols) and CO2 (0.25 +/- 0.01 nmols) than was found in adipose tissue (0.71 +/- 0.14 nmols). Intramuscular triglyceride was the lipid class most extensively labeled. After skeletal muscle, liver was the next most important site of TGFA clearance. Surprisingly a substantial quantity of label remained associated with the GI tract even 24 hours after ingestion. Between 2 and 10 days following ingestion there was a net decline in the 14C content of muscle, liver and GI tract, associated with a net rise in the 14C content of adipose tissue. These findings demonstrate: 1) the importance of skeletal muscle and liver in whole organism TGFA clearance, 2) the importance of intramuscular partitioning of lipid fuels between direct oxidation and storage as TG, 3) the potentially important role of the GI tract in the delivery of dietary fat to the circulation 10-24 hours following ingestion, and 4) the stability of adipose tissue as a storage site. The complex nature of the tissue-specific clearance of TGFA over time is perhaps better described by the term "trafficking" than by the more commonly used term "partitioning." Future studies of TGFA clearance combined with sampling of relevant tissues over time will provide insight into the specific roles that abnormalities in liver, muscle and adipose tissue TGFA metabolism play in the development of hypertriglyceridemic disorders and states of increased or reduced body weight.
Motor neuron mitochondrial dysfunction in spinal muscular atrophy
Miller, Nimrod; Shi, Han; Zelikovich, Aaron S.; Ma, Yong-Chao
2016-01-01
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease. PMID:27488123
Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang
2018-02-20
Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.
NASA Astrophysics Data System (ADS)
Young, Colin Christopher
Carbon nanotubes (CNTs) possess a variety of properties which make them attractive as building blocks for high performance multi-functional materials. The discovery that superacids such as chlorosulfonic acid (ClHSO 3) act as true solvents for CNTs has led to the development of fluid processing techniques by which a variety of macroscopic CNT materials can be fabricated. This work presents two studies which are linked by the common thread of CNT materials development from acid solution precursors. The first study compares the rheology of two different CNT species in ClHSO3 as a function of concentration and frequency. The development of elastic structure with increasing solution concentration is found to depend strongly on the morphology of the liquid crystalline phase domains in the biphasic regime; physical interactions between non-interpenetrating liquid crystal domains are found to be a significant source of viscoelastic stress. An analysis of the scaling of viscoelastic behavior at short time scales, based on models of semiflexible polymer rheology, reveals that the primary contribution to the stress at short times is longitudinal tension resulting from contour fluctuations of individual CNTs; this tension-dominated stress is the primary viscoelastic stress for low concentration solutions. The second study investigates the electrochemical properties of macroscopic CNT fibers for applications in electrophysiology and cardiac medicine. CNT fibers exhibit much lower interfacial impedance with physiological saline and cardiac tissue than platinum wire of the same geometric surface area. Equivalent circuit modeling demonstrates that the low area-specific impedance of these fibers arises from a large double layer capacitance, which in turn arises from wetting of the internal porous surface area. Aging and storage conditions are shown to affect the wettability of this structure, and an electrowetting treatment is demonstrated which creates a stable increase in CNT fiber electrode performance. The specific circuit behavior of the CNT fiber is used to construct a theoretical model for CNT fiber electrode performance in cardiac tissue in vivo and to calculate a transfer function which represents the efficiency with which a cellular action potential may be transmitted through a CNT fiber between two electrically separated regions of cardiac tissue.
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.
2018-01-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D
2016-10-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.
Schlötzer-Schrehardt, Ursula; Hammer, Christian M; Krysta, Anita W; Hofmann-Rummelt, Carmen; Pasutto, Francesca; Sasaki, Takako; Kruse, Friedrich E; Zenkel, Matthias
2012-09-01
To test the hypothesis that a primary disturbance in lysyl oxidase-like 1 (LOXL1) and elastin metabolism in the lamina cribrosa of eyes with pseudoexfoliation syndrome constitutes an independent risk factor for glaucoma development and progression. Observational, consecutive case series. Posterior segment tissues obtained from 37 donors with early and late stages of pseudoexfoliation syndrome without glaucoma, 37 normal age-matched control subjects, 5 eyes with pseudoexfoliation-associated open-angle glaucoma, and 5 eyes with primary open-angle glaucoma (POAG). Protein and mRNA expression of major elastic fiber components (elastin, fibrillin-1, fibulin-4), collagens (types I, III, and IV), and lysyl oxidase crosslinking enzymes (LOX, LOXL1, LOXL2) were assessed in situ by quantitative real-time polymerase chain reaction, (immuno)histochemistry, and light and electron microscopy. Lysyl oxidase-dependent elastin fiber assembly was assessed by primary optic nerve head astrocytes in vitro. Expression levels of elastic proteins, collagens, and lysyl oxidases in the lamina cribrosa. Lysyl oxidase-like 1 proved to be the major lysyl oxidase isoform in the normal lamina cribrosa in association with a complex elastic fiber network. Compared with normal and POAG specimens, lamina cribrosa tissues obtained from early and late stages of pseudoexfoliation syndrome without and with glaucoma consistently revealed a significant coordinated downregulation of LOXL1 and elastic fiber constituents on mRNA and protein level. In contrast, expression levels of collagens and other lysyl oxidase isoforms were not affected. Dysregulated expression of LOXL1 and elastic proteins was associated with pronounced (ultra)structural alterations of the elastic fiber network in the laminar beams of pseudoexfoliation syndrome eyes. Inhibition of LOXL1 interfered with elastic fiber assembly by optic nerve head astrocytes in vitro. The findings provide evidence for a pseudoexfoliation-specific elastinopathy of the lamina cribrosa resulting from a primary disturbance in LOXL1 regulation and elastic fiber homeostasis, possibly rendering pseudoexfoliation syndrome eyes more vulnerable to pressure-induced optic nerve damage and glaucoma development and progression. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.
Fisher, Robert J; Peattie, Robert A
2007-01-01
The reconstruction of tissues ex vivo and production of cells capable of maintaining a stable performance for extended time periods in sufficient quantity for synthetic or therapeutic purposes are primary objectives of tissue engineering. The ability to characterize and manipulate the cellular microenvironment is critical for successful implementation of such cell-based bioengineered systems. As a result, knowledge of fundamental biomimetics, transport phenomena, and reaction engineering concepts is essential to system design and development. Once the requirements of a specific tissue microenvironment are understood, the biomimetic system specifications can be identified and a design implemented. Utilization of novel membrane systems that are engineered to possess unique transport and reactive features is one successful approach presented here. The limited availability of tissue or cells for these systems dictates the need for microscale reactors. A capstone illustration based on cellular therapy for type 1 diabetes mellitus via encapsulation techniques is presented as a representative example of this approach, to stress the importance of integrated systems.
Micro-tattoo guided OCT imaging of site specific inflammation
NASA Astrophysics Data System (ADS)
Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.
2010-02-01
Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.
Feng, Zhang-Qi; Chu, Xuehui; Huang, Ning-Ping; Wang, Tao; Wang, Yichun; Shi, Xiaolei; Ding, Yitao; Gu, Zhong-Ze
2009-05-01
Liver tissue engineering requires a perfect extracellular matrix (ECM) for primary hepatocytes culture to maintain high level of liver-specific functions and desirable mechanical stability. The aim of this study was to develop a novel natural nanofibrous scaffold with surface-galactose ligands to enhance the bioactivity and mechanical stability of primary hepatocytes in culture. The nanofibrous scaffold was fabricated by electrospinning a natural material, galactosylated chitosan (GC), into nanofibers with an average diameter of approximately 160 nm. The GC nanofibrous scaffolds displayed slow degradation and suitable mechanical properties as an ECM for hepatocytes according to the evaluation of disintegration and Young's modulus testing. The results of morphology characterization, double-staining fluorescence assay and function detection showed that hepatocytes cultured on GC nanofibrous scaffold formed stably immobilized 3D flat aggregates and exhibited superior cell bioactivity with higher levels of liver-specific function maintenance in terms of albumin secretion, urea synthesis and cytochrome P-450 enzyme than 3D spheroid aggregates formed on GC films. These spheroid aggregates could be detached easily during culture period from the flat GC films. We suggest such GC-based nanofibrous scaffolds could be useful for various applications such as bioartificial liver-assist devices and tissue engineering for liver regeneration as primary hepatocytes culture substrates.
Long-term culture of human liver tissue with advanced hepatic functions.
Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S
2017-06-02
A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.
A DNA methylation map of human cancer at single base-pair resolution
Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M
2017-01-01
Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523
Protein-based hydrogels for tissue engineering
Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.
2017-01-01
The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513
Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R
2014-01-01
The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.
Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R
2014-01-01
The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies. PMID:25495506
Bioprinting for vascular and vascularized tissue biofabrication.
Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T
2017-03-15
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M
2009-06-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.
Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.
2009-01-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040
Balafoutas, Dimitrios; zur Hausen, Axel; Mayer, Sebastian; Hirschfeld, Marc; Jaeger, Markus; Denschlag, Dominik; Gitsch, Gerald; Jungbluth, Achim; Stickeler, Elmar
2013-06-03
Cancer-testis antigens (CTA) comprise a family of proteins, which are physiologically expressed in adult human tissues solely in testicular germ cells and occasionally placenta. However, CTA expression has been reported in various malignancies. CTAs have been identified by their ability to elicit autologous cellular and or serological immune responses, and are considered potential targets for cancer immunotherapy. The breast differentiation antigen NY-BR-1, expressed specifically in normal and malignant breast tissue, has also immunogenic properties. Here we evaluated the expression patterns of CTAs and NY-BR-1 in breast cancer in correlation to clinico-pathological parameters in order to determine their possible impact as prognostic factors. The reactivity pattern of various mAbs (6C1, MA454, M3H67, 57B, E978, GAGE #26 and NY-BR-1 #5) were assessed by immunohistochemistry in a tissue micro array series of 210 randomly selected primary invasive breast cancers in order to study the diversity of different CTAs (e.g. MAGE-A, NY-ESO-1, GAGE) and NY-BR-1. These expression data were correlated to clinico-pathological parameters and outcome data including disease-free and overall survival. Expression of at least one CTA was detectable in the cytoplasm of tumor cells in 37.2% of the cases. NY-BR-1 expression was found in 46.6% of tumors, respectively. Overall, CTA expression seemed to be linked to adverse prognosis and M3H67 immunoreactivity specifically was significantly correlated to shorter overall and disease-free survival (p=0.000 and 0.024, respectively). Our findings suggest that M3H67 immunoreactivity could serve as potential prognostic marker in primary breast cancer patients. The exclusive expression of CTAs in tumor tissues as well as the frequent expression of NY-BR-1 could define new targets for specific breast cancer therapies.
Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua
2015-08-12
Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain Sex Matters: estrogen in cognition and Alzheimer’s disease
Li, Rena; Cui, Jie; Shen, Yong
2014-01-01
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360
Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang
2010-01-01
The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268
Podlipská, Jana; Guermazi, Ali; Lehenkari, Petri; Niinimäki, Jaakko; Roemer, Frank W; Arokoski, Jari P; Kaukinen, Päivi; Liukkonen, Esa; Lammentausta, Eveliina; Nieminen, Miika T; Tervonen, Osmo; Koski, Juhani M; Saarakkala, Simo
2016-03-01
Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level.
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-01-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
NASA Astrophysics Data System (ADS)
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-06-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.
Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model
NASA Technical Reports Server (NTRS)
Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.
1993-01-01
During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.
Chlapek, Petr; Zitterbart, Karel; Kren, Leos; Filipova, Lenka; Sterba, Jaroslav; Veselska, Renata
2017-01-01
Medulloblastoma comprises four main subgroups (WNT, SHH, Group 3 and Group 4) originally defined by transcriptional profiling. In primary medulloblastoma tissues, these groups are thought to be distinguishable using the immunohistochemical detection of β-catenin, filamin A, GAB1 and YAP1 protein markers. To investigate the utility of these markers for in vitro studies using medulloblastoma cell lines, immunoblotting and indirect immunofluorescence were employed for the detection of β-catenin, filamin A, GAB1 and YAP1 in both DAOY and D283 Med reference cell lines and the panel of six medulloblastoma cell lines derived in our laboratory from the primary tumor tissues of known molecular subgroups. Immunohistochemical detection of these markers was performed on formalin-fixed paraffin-embedded tissue of the matching primary tumors. The results revealed substantial divergences between the primary tumor tissues and matching cell lines in the immunoreactivity pattern of medulloblastoma-subgroup-specific protein markers. Regardless of the molecular subgroup of the primary tumor, all six patient-derived medulloblastoma cell lines exhibited a uniform phenotype: immunofluorescence showed the nuclear localization of YAP1, accompanied by strong cytoplasmic positivity for β-catenin and filamin A, as well as weak positivity for GAB1. The same immunoreactivity pattern was also found in both DAOY and D283 Med reference medulloblastoma cell lines. Therefore, we can conclude that various medulloblastoma cell lines tend to exhibit the same characteristics of protein marker expression under standard in vitro conditions. Such a finding emphasizes the importance of the analyses of primary tumors in clinically oriented medulloblastoma research and the urgent need to develop in vitro models of improved clinical relevance, such as 3D cultures and organotypic slice cultures.
Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan
2018-04-27
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.
Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing
2009-03-11
Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.
Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji
2008-07-01
This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.
Schob, Stefan; Münch, Benno; Dieckow, Julia; Quäschling, Ulf; Hoffmann, Karl-Titus; Richter, Cindy; Garnov, Nikita; Frydrychowicz, Clara; Krause, Matthias; Meyer, Hans-Jonas; Surov, Alexey
2018-04-01
Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)-minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28-89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis. Copyright © 2018. Published by Elsevier Inc.
Extraction of membrane structure in eyeball from MR volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kin, Taichi; Mori, Kensaku
2017-03-01
This paper presents an accurate extraction method of spherical shaped membrane structures in the eyeball from MR volumes. In ophthalmic surgery, operation field is limited to a small region. Patient specific surgical simulation is useful to reduce complications. Understanding of tissue structure in the eyeball of a patient is required to achieve patient specific surgical simulations. Previous extraction methods of tissue structure in the eyeball use optical coherence tomography (OCT) images. Although OCT images have high resolution, imaging regions are limited to very small. Global structure extraction of the eyeball is difficult from OCT images. We propose an extraction method of spherical shaped membrane structures including the sclerotic coat, choroid, and retina. This method is applied to a T2 weighted MR volume of the head region. MR volume can capture tissue structure of whole eyeball. Because we use MR volumes, out method extracts whole membrane structures in the eyeball. We roughly extract membrane structures by applying a sheet structure enhancement filter. The rough extraction result includes parts of the membrane structures. Then, we apply the Hough transform to extract a sphere structure from the voxels set of the rough extraction result. The Hough transform finds a sphere structure from the rough extraction result. An experimental result using a T2 weighted MR volume of the head region showed that the proposed method can extract spherical shaped membrane structures accurately.
Establishment and characterization of Xenopus oviduct cells in primary culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, J.; Tata, J.R.
1987-11-01
Based on previously established procedure of Xenopus hepatocytes, the authors describe tubular oviduct cells in primary culture which continue to secrete substantial quantities of egg jelly for several days, as can be visualized microscopically. Freshly isolated cells exhibited a culture shock response, from which they recovered by the third day in culture. This recovery was characterized by (a) the diminished synthesis of heat shock proteins hsp 70 and hsp 85, (b) the cessation of the drop in number of estrogen receptor, and (c) the enhanced rate of synthesis of cellular and secreted proteins. The oviduct estrogen receptor had the samemore » characteristics as those in other estrogen target tissues and was present in the same amount as in adult female Xenopus hepatocytes. The successful establishment and characterization of primary cultures of both liver and oviduct cells now fulfill the conditions required for investigating the basis for tissue specificity of regulation by estrogen of Xenopus egg protein gene expression in primary cell culture.« less
Histological evidence for a supraspinous ligament in sauropod dinosaurs
Cerda, Ignacio A.; Casal, Gabriel A.; Martinez, Rubén D.; Ibiricu, Lucio M.
2015-01-01
Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin of this structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of the supraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains of primary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element. PMID:26587248
Schroeder, Barbara; Park, Cheol Hong; Chandra Mohan, KVP; Khurana, Ashwani; Corominas-Faja, Bruna; Cuyàs, Elisabet; Alarcón, Tomás; Kleer, Celina; Menendez, Javier A.; Lupu, Ruth
2016-01-01
The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies. PMID:27223424
Kugler, Jamie E.; Horsch, Marion; Huang, Di; Furusawa, Takashi; Rochman, Mark; Garrett, Lillian; Becker, Lore; Bohla, Alexander; Hölter, Sabine M.; Prehn, Cornelia; Rathkolb, Birgit; Racz, Ildikó; Aguilar-Pimentel, Juan Antonio; Adler, Thure; Adamski, Jerzy; Beckers, Johannes; Busch, Dirk H.; Eickelberg, Oliver; Klopstock, Thomas; Ollert, Markus; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Garfinkel, Benny; Orly, Joseph; Ovcharenko, Ivan; Bustin, Michael
2013-01-01
The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1tm1/tm1, Hmgn3tm1/tm1, and Hmgn5tm1/tm1 mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgntm1/tm1 lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner. PMID:23620591
A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery.
Warram, Jason M; de Boer, Esther; Moore, Lindsay S; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L
2015-07-01
Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However, a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n = 11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. © 2015 Wiley Periodicals, Inc.
Host responses in tissue repair and fibrosis.
Duffield, Jeremy S; Lupher, Mark; Thannickal, Victor J; Wynn, Thomas A
2013-01-24
Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis.
Yu, Dan; Li, Zhenli; Gan, Meifu; Zhang, Hanyun; Yin, Xiaoyang; Tang, Shunli; Wan, Ledong; Tian, Yiping; Zhang, Shuai; Zhu, Yimin; Lai, Maode; Zhang, Dandan
2015-11-01
Dual specificity phosphatase 22 (DUSP22) is a novel dual specificity phosphatase that has been demonstrated to be a cancer suppressor gene associated with numerous biological and pathological processes. However, little is known of DUSP22 expression profiling in colorectal cancer and its prognostic value. Our study aims to investigate the role of DUSP22 expression in the prognosis of colorectal cancer. We detected the mRNA expression in 92 paired primary colorectal cancer tissues and the corresponding adjacent normal tissues by using QuantiGenePlex assay. The Friedman test was used to determine the statistical difference of gene expression. Kaplan-Meier survival analysis was performed. Mann-Whitney test and Kruskal-Wallis test were used to conduct data analyses to determine the prognostic value. Statistical significance was set at P < 0.05. In 74 of 92 cases, DUSP22 mRNA was reduced in primary colorectal cancer tissues, compared to the adjacent normal tissues. The mRNA levels of DUSP22 were significantly lower in colorectal cancer tissues than in adjacent normal tissues (0.0290 vs. 0.0658; P < 0.001). Low expression of DUSP22 correlated significantly with large tumor size (P = 0.013). No association was observed between DUSP22 mRNA expression and differentiation, histopathological type, tumor invasion, lymph node metastases, metastases, TNM stage, and Duke's phase (all P > 0.05). Kaplan-Meier analysis indicated that DUSP22 expression had no significant relationship with overall survival in all patients (P > 0.05). Interestingly, low expression level of DUSP22 in stage IV patients had a poor survival measures with a marginal P value (P = 0.07). Reduced DUSP22 expression was found in colorectal cancer specimens. Low expression level of DUSP22 in stage IV patients had a poor survival outcome. Further study is required for the investigation of the role of DUSP22 in colorectal cancer.
Constitutive formulations for the mechanical investigation of colonic tissues.
Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N
2014-05-01
A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.
Sankar, Sharanya; Sharma, Chandra S; Rath, Subha N; Ramakrishna, Seeram
2018-01-01
Biomimetic scaffolds mimicking the natural hierarchical structure of tissues have recently attracted the interest of researchers and provide a promising strategy to resemble the nonhomogeneous property of tissues. This review provides an overview of the various hierarchical length scales in the native tissues of the musculoskeletal system. It further focuses on electrospinning as a technique to mimic the tissue structures with specific emphasis on bone. The effect of cellular alignment, infiltration, vascularisation, and differentiation in these nanostructures has also been discussed. An outline of the various additive manufacturing techniques in combination with electrospinning has been elaborated. The review concludes with the challenges and future directions to understand the intricacies of bottom-up approach to engineer the systems at a macroscale. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DNA methyl transferases are differentially expressed in the human anterior eye segment.
Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc
2014-08-01
DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Nielsen, Mette J.; Sand, Jannie M.; Henriksen, Kim; Genovese, Federica; Bay-Jensen, Anne-Christine; Smith, Victoria; Adamkewicz, Joanne I.; Christiansen, Claus; Leeming, Diana J.
2013-01-01
Abstract Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers. PMID:23046407
Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis
Eckstein, F.; Guermazi, A.; Gold, G.; Duryea, J.; Le Graverand, M.-P. Hellio; Wirth, W.; Miller, C.G.
2015-01-01
summary Imaging in clinical trials is used to evaluate subject eligibility, and/or efficacy of intervention, supporting decision making in drug development by ascertaining treatment effects on joint structure. This review focusses on imaging of bone and cartilage in clinical trials of (knee) osteoarthritis. We narratively review the full-text literature on imaging of bone and cartilage, adding primary experience in the implementation of imaging methods in clinical trials. Aims and constraints of applying imaging in clinical trials are outlined. The specific uses of semi-quantitative and quantitative imaging biomarkers of bone and cartilage in osteoarthritis trials are summarized, focusing on radiography and magnetic resonance imaging (MRI). Studies having compared both imaging methodologies directly and those having established a relationship between imaging biomarkers and clinical outcomes are highlighted. To make this review of practical use, recommendations are provided as to which imaging protocols are ideal for capturing specific aspects of bone and cartilage tissue, and pitfalls in their usage are highlighted. Further, the longitudinal sensitivity to change, of different imaging methods is reported for various patient strata. From these power calculations can be accomplished, provided the strength of the treatment effect is known. In conclusion, current imaging methodologies provide powerful tools for scoring and measuring morphological and compositional aspects of most articular tissues, capturing longitudinal change with reasonable to excellent sensitivity. When employed properly, imaging has tremendous potential for ascertaining treatment effects on various joint structures, potentially over shorter time scales than required for demonstrating effects on clinical outcomes. PMID:25278061
Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F
2014-08-28
Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.
Primary mediastinal liposarcoma - computed tomography and pathological findings: a case report
Thomaz, Fabiana Barroso; Guimarães, Anderson Nassar; de Magalhães, Isabela Fernandes; Magalhães, Fabio Vargas; Gonçalves, Letícia Pereira; Domingues, Romeu Cortes
2009-01-01
Liposarcomas are the most common soft tissue sarcoma of adults, and primary mediastinal liposarcomas are rare. We present a case of a 50-year-old man with primary mediastinal liposarcoma without any invasion into the surrounding structures, such as the esophagus, trachea, or left atrium of the heart. Following surgical removal of the liposarcoma, the patient has had no recurrence after one year. Surgical removal is the treatment of choice for a mediastinal liposarcoma; however, careful long-term follow-up is necessary because the recurrence rate is very high. PMID:19918396
Estimating ankle rotational constraints from anatomic structure
NASA Astrophysics Data System (ADS)
Baker, H. H.; Bruckner, Janice S.; Langdon, John H.
1992-09-01
Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.
Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash
2017-02-01
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantification of loading in biomechanical testing: the influence of dissection sequence.
Funabashi, Martha; El-Rich, Marwan; Prasad, Narasimha; Kawchuk, Gregory N
2015-09-18
Sequential dissection is a technique used to investigate loads experienced by articular tissues. When the joint of interest is tested in an unconstrained manner, its kinematics change with each tissue removal. To address this limitation, sufficiently rigid robots are used to constrain joint kinematics. While this approach can quantify loads experienced by each tissue, it does not assure similar results when removal order is changed. Specifically, structure loading is assumed to be independent of removal order if the structure behaves linearly (i.e. principle of superposition applies), but dependent on removal order when response is affected by material and/or geometry nonlinearities and/or viscoelasticiy (e.g. biological tissues). Therefore, this experiment was conducted to evaluate if structure loading created through robotic testing is dependent on the order in which connectors are removed. Six identical models were 3D printed. Each model was composed of 2 rigid bodies and 3 connecting structures with nonlinear time-dependent behavior. To these models, pure rotations were applied about a predefined static center of rotation using a parallel robot. A unique dissection sequence was used for each of the six models and the same movements applied robotically after each dissection. When comparing the moments experienced by each structure between different removal sequences, a statistically significant difference (p<0.05) was observed. These results suggest that even in an optimized environment, the sequence in which nonlinear viscoelastic structures are removed influence model loading. These findings support prior work suggesting that tissue loads obtained from robotic testing are specific to removal order. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iron biomineralization of brain tissue and neurodegenerative disorders
NASA Astrophysics Data System (ADS)
Mikhaylova (Mikhailova), Albina
The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies. The continued development of this technique should lead to major advances in mapping iron anomalies and the related chemical and structural information directly to cells and tissue structures in human brain tissue. At present this is done primarily by iron staining methods and any information on the relationship between iron distribution and cellular structures obtained this way is limited. Iron staining also offers no information on the specific compounds of iron that are present. This can be vitally important as the form of iron [including its oxidation state] in the human body can determine whether it plays a detrimental or beneficial role in neurophysiological processes.
Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.
2015-01-01
Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970
Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A
2015-09-01
Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.
Wranik, W Dominika; Hayden, Jill A; Price, Sheri; Parker, Robin M N; Haydt, Susan M; Edwards, Jeanette M; Suter, Esther; Katz, Alan; Gambold, Liesl L; Levy, Adrian R
2016-10-04
Western publicly funded health care systems increasingly rely on interdisciplinary teams to support primary care delivery and management of chronic conditions. This knowledge synthesis focuses on what is known in the academic and grey literature about optimal structural characteristics of teams. Its goal is to assess which factors contribute to the effective functioning of interdisciplinary primary care teams and improved health system outcomes, with specific focus on (i) team structure contribution to team process, (ii) team process contribution to primary care goals, and (iii) team structure contribution to primary care goals. The systematic search of academic literature focuses on four chronic conditions and co-morbidities. Within this scope, qualitative and quantitative studies that assess the effects of team characteristics (funding, governance, organization) on care process and patient outcomes will be searched. Electronic databases (Ovid MEDLINE, Embase, CINAHL, PAIS, Web of Science) will be searched systematically. Online web-based searches will be supported by the Grey Matters Tool. Studies will be included, if they report on interdisciplinary primary care in publicly funded Western health systems, and address the relationships between team structure, process, and/or patient outcomes. Studies will be selected in a three-stage screening process (title/abstract/full text) by two independent reviewers in each stage. Study quality will be assessed using the Mixed Methods Assessment Tool. An a priori framework will be applied to data extraction, and a narrative framework approach is used for the synthesis. Using an integrated knowledge translation approach, an electronic decision support tool will be developed for decision makers. It will be searchable along two axes of inquiry: (i) what primary care goals are supported by specific team characteristics and (ii) how should teams be structured to support specific primary care goals? The results of this evidence review will contribute directly to the design of interdisciplinary primary care teams. The optimized design will support the goals of primary care, contributing to the improved health of populations. PROSPERO CRD42016041884.
Qureshi, A I; Nussey, S S; Bano, G; Musonda, P; Whitehead, S A; Mason, H D
2008-08-01
Histological studies have demonstrated that polycystic ovaries (PCO) contain increased numbers of preantral follicles with a specific increase in primary follicles. Polycystic ovary syndrome is associated with hyperandrogenism and pre- and postnatal androgenization of primates increases the pool of growing follicles producing changes resembling PCO. In vitro studies could test the hypothesis that androgens alter early folliculogenesis, but conventional culture techniques for small follicles are generally unsuitable in non-rodent species. Our objective was to develop and use a method to investigate the effects of testosterone on early folliculogenesis. We adapted an in ovo technique in which lamb cortical ovarian fragments were grafted onto the chorioallantoic membrane of fertilised chick eggs. Optimal experimental conditions for vascularisation and survival of tissue were determined and the model then used to investigate the effects of testosterone on follicle growth. Eggs were inoculated with testosterone at the time of implantation of the ovarian tissue, which was retrieved 5 days later. Tissue was sectioned and follicles staged and counted. There was no wholesale initiation of primordial follicle growth over the 5-day in ovo culture. Importantly, the proportion of primordial, primary and secondary follicles remained similar to those in unimplanted tissue. Testosterone increased the number of primary follicles by 50% compared with controls, an effect that was largely due to a reduction in atresia. In conclusion, incubation of ovarian cortex with testosterone reproduces the changes in early folliculogenesis reported in histological studies of PCO.
Halper, Jaroslava; Kjaer, Michael
2014-01-01
Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Imaging of skull base lesions.
Kelly, Hillary R; Curtin, Hugh D
2016-01-01
Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.
Cell-scaffold interactions in the bone tissue engineering triad.
Murphy, Ciara M; O'Brien, Fergal J; Little, David G; Schindeler, Aaron
2013-09-20
Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them--otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.
Sager, Ross; Lee, Jung-Youn
2014-01-01
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways. PMID:25262225
Persistent measles virus infection of the intestine: confirmation by immunogold electron microscopy.
Lewin, J; Dhillon, A P; Sim, R; Mazure, G; Pounder, R E; Wakefield, A J
1995-01-01
This study sought to investigate persistent measles virus infection of the intestine: a novel protocol for immunogold electron microscopy was developed using a polyclonal anti-measles nucleoprotein antibody on reprocessed, formalin fixed paraffin wax embedded tissue sections. Antibody binding was detected using both immunoperoxidase and light microscopy on tissue sections, and 10 nm gold conjugated secondary antibody and electron microscopy on ultrathin sections. The techniques were validated using both measles infected vero cells and human tissues with established measles infection: these included brain affected by subacute sclerosing panencephalitis and acute measles appendicitis. The technique was applied subsequently to six untreated cases of granulomatous Crohn's disease, and two cases of ileocaecal tuberculosis, a granulomatous control. Mumps primary antibody--applied to both mumps infected vero cells, and measles infected vero cells and tissues studied by immunoperoxidase, and measles antibody on mumps infected cells studied by immunoperoxidase and immunogold--were used as specificity controls: the primary antibodies identified their respective target antigen and there was no antibody cross reactivity. Measles virus nucleocapsids labelled with gold conjugated antibody in both infected cells and tissues, including foci of granulomatous inflammation in five of six cases of Crohn's disease: in the fifth case, the granuloma could not be identified in ultrathin section. In one of the tuberculosis cases, a low level of signal was noted while the second case was negative. Labelling adopted a characteristic pattern in all infected tissues, strengthening the specificity of these findings. This study provides the first direct confirmation of persistent measles virus infection of the intestine. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7737565
Glomus tumor of the liver in a cow
HORIUCHI, Noriyuki; KOMAGATA, Makoto; SHITAMURA, Keiichi; CHIBA, Shiori; MATSUMOTO, Kotaro; INOKUMA, Hisashi; MATSUI, Takane; KOBAYASHI, Yoshiyasu
2015-01-01
An 11-year-old Holstein-Friesian cow exhibited anorexia and jaundice. A large mass was found in the liver during necropsy. Macroscopically, the mass was composed of dark red multilobular tissue and a centrally located abscess, which was connected to the hepatic duct. Histologically, the mass consisted of proliferation of small neoplastic cells and was demarcated from the hepatic parenchyma by a thick region of granulation tissue. The neoplastic cells were predominantly arranged in solid sheets, but they also formed blood-filled cancellous structures, and proliferating foci were seen around blood vessels. Periodic acid-Schiff reaction demonstrated that a fine basement membrane-like structure surrounded the neoplastic cells. Immunohistochemically, the neoplastic cells were positive for vimentin and alpha smooth muscle actin and negative for cytokeratin, factor VIII-related antigen, chromogranin and desmin. Based on its histopathological features, the hepatic neoplasm was diagnosed as a primary glomus tumor. This is the first report about a primary glomus tumor of the liver in a cow. PMID:25715802
Tang, Dalin; Yang, Chun; Geva, Tal; del Nido, Pedro J.
2010-01-01
Recent advances in medical imaging technology and computational modeling techniques are making it possible that patient-specific computational ventricle models be constructed and used to test surgical hypotheses and replace empirical and often risky clinical experimentation to examine the efficiency and suitability of various reconstructive procedures in diseased hearts. In this paper, we provide a brief review on recent development in ventricle modeling and its potential application in surgical planning and management of tetralogy of Fallot (ToF) patients. Aspects of data acquisition, model selection and construction, tissue material properties, ventricle layer structure and tissue fiber orientations, pressure condition, model validation and virtual surgery procedures (changing patient-specific ventricle data and perform computer simulation) were reviewed. Results from a case study using patient-specific cardiac magnetic resonance (CMR) imaging and right/left ventricle and patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) were reported. The models were used to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design and test a surgical hypothesis that PVR with small patch and aggressive scar tissue trimming in PVR surgery may lead to improved recovery of RV function and reduced stress/strain conditions in the patch area. PMID:21344066
Drager, B J; Harkey, M A; Iwata, M; Whiteley, A H
1989-05-01
Adult tissues of the sea urchin, Strongylocentrotus purpuratus, were analyzed for the products of a set of genes whose expression, in the embryo, is restricted to the skeletogenic primary mesenchyme (PM). Three embryonic PM-specific mRNAs were found to be abundant in adult skeletal tissues (test and lantern), but not in a variety of soft tissues. Homologous mRNAs were also found in skeletal tissues of the congeneric sea urchin, S. droebachiensis, as well as a more distantly related echinoid, Dendraster excentricus, and an asteroid, Evasterias troschellii. The distributions of two of these RNAs were analyzed in regenerating spines of adult S. purpuratus using in situ hybridization. These gene products were localized primarily in the calcoblasts that accumulated at the regeneration site. In nonregenerating spines SpLM 18 RNAs, the most abundant of these gene products, were localized in a small population of noncalcoblast cells scattered through the spine shaft, and were absent from calcoblasts. These observations suggest that a program of gene expression associated with the process of calcification is conserved both developmentally through the period of metamorphosis and evolutionarily among the echinoderms.
Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks
McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2018-01-01
Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634
Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf.
Lin, Qiaohui; Facon, Maud; Putaux, Jean-Luc; Dinges, Jason R; Wattebled, Fabrice; D'Hulst, Christophe; Hennen-Bierwagen, Tracie A; Myers, Alan M
2013-12-01
Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.
Ostrowski, Anja; Nordmeyer, Daniel; Boreham, Alexander; Holzhausen, Cornelia; Mundhenk, Lars; Graf, Christina; Meinke, Martina C; Vogt, Annika; Hadam, Sabrina; Lademann, Jürgen; Rühl, Eckart; Alexiev, Ulrike
2015-01-01
Summary The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties. PMID:25671170
Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications.
Grix, Tobias; Ruppelt, Alicia; Thomas, Alexander; Amler, Anna-Klara; Noichl, Benjamin P; Lauster, Roland; Kloke, Lutz
2018-03-22
Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P 450 3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.
Tal, Inbal; Kozlovsky, Tom; Brisker, Dafna; Giladi, Moshe; Khananshvili, Daniel
2016-04-01
In mammals, three sodium-calcium exchanger (NCX) protein isoforms (NCX1, NCX2, and NCX3) mediate Ca(2+) fluxes across the membrane to maintain cellular Ca(2+) homeostasis. NCX isoforms and their splice variants are expressed in a tissue-specific manner to meet physiological demands. NCX1 is ubiquitously expressed, NCX2 is expressed in the brain and spinal cord, and NCX3 is expressed in the brain and skeletal muscle. Eukaryotic NCXs contain two cytosolic regulatory Ca(2+)-binding domains, CBD1 and CBD2, which form a two-domain tandem (CBD12) through a short linker. Ca(2+) binding to the CBDs underlies allosteric regulation of NCX. Previous structural and functional studies in NCX1 have shown that the CBDs synergistically interact, where their interactions are modulated in a splice variant-specific manner by splicing segment at CBD2. Here, we analyze the equilibrium and kinetic properties of Ca(2+) binding to purified preparations of CBD1, CBD2, and CBD12 from NCX2 and from NCX3 splice variants. We show that CBD1 interacts with CBD2 in the context of the CBD12 tandem in all NCX isoforms, where these interactions specifically modulate Ca(2+) sensing at the primary sensor of CBD1 to meet the physiological requirements. For example, the rate-limiting slow dissociation of "occluded" Ca(2+) from the primary allosteric sensor of variants expressed in skeletal muscle is ∼10-fold slower than that of variants expressed in the brain. Notably, these kinetic differences between NCX variants occur while maintaining a similar Ca(2+) affinity of the primary sensor, since the resting [Ca(2+)]i levels are similar among different cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.
Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.
Park, Eon Joo; Ogden, Lisa A; Talbot, Amy; Evans, Sylvia; Cai, Chen-Leng; Black, Brian L; Frank, Deborah U; Moon, Anne M
2006-06-01
Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.
Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering.
Sang, Yonghuan; Li, Meirong; Liu, Jiejie; Yao, Yuling; Ding, Zhaozhao; Wang, Lili; Xiao, Liying; Lu, Qiang; Fu, Xiaobing; Kaplan, David L
2018-03-21
Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.
Kettenbach, Arminja N; Sano, Hiroyuki; Keller, Susanna R; Lienhard, Gustav E; Gerber, Scott A
2015-01-30
The study of cellular signaling remains a significant challenge for translational and clinical research. In particular, robust and accurate methods for quantitative phosphoproteomics in tissues and tumors represent significant hurdles for such efforts. In the present work, we design, implement and validate a method for single-stage phosphopeptide enrichment and stable isotope chemical tagging, or SPECHT, that enables the use of iTRAQ, TMT and/or reductive dimethyl-labeling strategies to be applied to phosphoproteomics experiments performed on primary tissue. We develop and validate our approach using reductive dimethyl-labeling and HeLa cells in culture, and find these results indistinguishable from data generated from more traditional SILAC-labeled HeLa cells mixed at the cell level. We apply the SPECHT approach to the quantitative analysis of insulin signaling in a murine myotube cell line and muscle tissue, identify known as well as new phosphorylation events, and validate these phosphorylation sites using phospho-specific antibodies. Taken together, our work validates chemical tagging post-single-stage phosphoenrichment as a general strategy for studying cellular signaling in primary tissues. Through the use of a quantitatively reproducible, proteome-wide phosphopeptide enrichment strategy, we demonstrated the feasibility of post-phosphopeptide purification chemical labeling and tagging as an enabling approach for quantitative phosphoproteomics of primary tissues. Using reductive dimethyl labeling as a generalized chemical tagging strategy, we compared the performance of post-phosphopeptide purification chemical tagging to the well established community standard, SILAC, in insulin-stimulated tissue culture cells. We then extended our method to the analysis of low-dose insulin signaling in murine muscle tissue, and report on the analytical and biological significance of our results. Copyright © 2014 Elsevier B.V. All rights reserved.
[Gas gangrene of the abdominal wall due to underlying GI pathology: seven cases].
Monneuse, O; Gruner, L; Barth, X; Malick, P; Timsit, M; Gignoux, B; Tissot, E
2007-01-01
Gas gangrene of the abdominal wall is a rare clinical occurrence with high rates of morbidity and mortality. The primary source of the infection is often unknown. To analyze the primary underlying intestinal etiologies and diagnostic approaches of gas gangrene of the abdominal wall, and to highlight specific treatment problems, particularly that of constructing a colostomy exteriorized through a massively infected abdominal wall. Seven cases of abdominal wall gas gangrene due to a gastrointestinal etiology were identified. (Cases arising from proctologic sources or related to recent abdominal surgery were excluded.) During the same period, 39 other patients presenting with abdominal wall gangrene from non-intestinal sources were treated. The etiologies were: perforated sigmoid diverticulitis (n=2), perforated appendicitis (n=1), acute pancreatitis with associated cecal perforation (n=1), and perforated colorectal cancer (n=3). Four of the seven patients died despite treatment (mortality of 57%). The clinical presentations of these seven cases demonstrate that a GI source must be suspected whenever a patient presents with abdominal wall gas gangrene, even when there are no specific GI symptoms. Imaging, particularly with CT scan, is essential both to visualize the extent of tissue necrosis and to reveal underlying primary GI pathology. This optimizes the surgical approach both by allowing for complete debridement and drainage of infected tissue, and by focussing the intervention on correction of the underlying primary GI source of infection.
Autoantigens in systemic autoimmunity: critical partner in pathogenesis
Rosen, A.; Casciola-Rosen, L.
2013-01-01
Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as ‘neo-antigens’, that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo. PMID:19493056
2009-01-01
Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668
Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry
Kim, Eun Young; Kim, Ji Won; Kim, Won Kon; Han, Baek Soo; Park, Sung Goo; Chung, Bong Hyun; Lee, Sang Chul; Bae, Kwang-Hee
2014-01-01
Background Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. Methods and Results We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. Conclusions These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity. PMID:24844710
Nolan, Daniel J.; Ginsberg, Michael; Israely, Edo; Palikuqi, Brisa; Poulos, Michael G.; James, Daylon; Ding, Bi-Sen; Schachterle, William; Liu, Ying; Rosenwaks, Zev; Butler, Jason M.; Xiang, Jenny; Rafii, Arash; Shido, Koji; Rabbany, Sina Y.; Elemento, Olivier; Rafii, Shahin
2013-01-01
SUMMARY Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration. PMID:23871589
The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).
Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying
2016-09-01
Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture.
Han, Zhaoxue; Crisp, Peter A; Stelpflug, Scott; Kaeppler, Shawn M; Li, Qing; Springer, Nathan M
2018-05-30
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regnerants but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species. Copyright © 2018, Genetics.
Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues
NASA Technical Reports Server (NTRS)
Griko, Y. V.; Yan, Xiaoli
2016-01-01
Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Salehi, Mohammad; Schneider, Lilli; Ströbel, Philipp; Marx, Alexander; Packeisen, Jens; Schlücker, Sebastian
2014-01-01
SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates.SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05890e
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
A General Map of Iron Metabolism and Tissue-specific Subnetworks
Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.
2009-01-01
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358
Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology
Uto, Koichiro; Tsui, Jonathan H.; DeForest, Cole A.; Kim, Deok-Ho
2016-01-01
Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine. PMID:28522885
Brines, M; Cerami, A
2008-11-01
In its classic hormonal role, erythropoietin (EPO) is produced by the kidney and regulates the number of erythrocytes within the circulation to provide adequate tissue oxygenation. EPO also mediates other effects directed towards optimizing oxygen delivery to tissues, e.g. modulating regional blood flow and reducing blood loss by promoting thrombosis within damaged vessels. Over the past 15 years, many unexpected nonhaematopoietic functions of EPO have been identified. In these more recently appreciated nonhormonal roles, locally-produced EPO signals through a different receptor isoform and is a major molecular component of the injury response, in which it counteracts the effects of pro-inflammatory cytokines. Acutely, EPO prevents programmed cell death and reduces the development of secondary, pro-inflammatory cytokine-induced injury. Within a longer time frame, EPO provides trophic support to enable regeneration and healing. As the region immediately surrounding damage is typically relatively deficient in endogenous EPO, administration of recombinant EPO can provide increased tissue protection. However, effective use of EPO as therapy for tissue injury requires higher doses than for haematopoiesis, potentially triggering serious adverse effects. The identification of a tissue-protective receptor isoform has facilitated the engineering of nonhaematopoietic, tissue-protective EPO derivatives, e.g. carbamyl EPO, that avoid these complications. Recently, regions within the EPO molecule mediating tissue protection have been identified and this has enabled the development of potent tissue-protective peptides, including some mimicking EPO's tertiary structure but unrelated in primary sequence.
The structure-mechanical relationship of palm vascular tissue.
Wang, Ningling; Liu, Wangyu; Huang, Jiale; Ma, Ke
2014-08-01
The structure-mechanical relationship of palm sheath is studied with numerical and experimental methods. The cellular structure of the vascular tissue is rebuilt with an image-based reconstruction method and used to create finite element models. The validity of the models is firstly verified with the results from the tensile tests. Then, the cell walls inside each of the specific regions (fiber cap, vessel, xylem, etc.) are randomly removed to obtain virtually imperfect structures. By comparing the magnitudes of performance degradation in the different imperfect structures, the influences of each region on the overall mechanical performances of the vascular tissue are discussed. The longitudinal stiffness and yield strength are sensitive to the defects in the vessel regions. While in the transverse directions (including the radial and tangential directions), the parenchymatous tissue determines the mechanical properties of the vascular tissue. Moreover, the hydraulic, dynamic response and energy absorption behavior of the vascular tissue are numerically explored. The flexibility of natural palm tissue enhances its impact resistance. Under the quasi-static compression, the cell walls connecting the fiber cap and the vessel dissipate more energy. The dominant role of the fiber cap in the plastic energy dissipation under high-speed impact is observed. And the radially-arranged fiber cap also allows the palm tissue to improve its tangential mechanical performances under hydraulic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kurosaki, M; Li Calzi, M; Scanziani, E; Garattini, E; Terao, M
1995-01-01
The expression of the xanthine oxidoreductase gene was studied in various mouse organs and tissues, under basal conditions and on treatment with bacterial lipopolysaccharide. Levels of xanthine oxidoreductase protein and mRNA were compared in order to understand the molecular mechanisms regulating the expression of this enzyme system. The highest amounts of xanthine oxidoreductase and the respective mRNA are observed in the duodenum and jejunum, where the protein is present in an unusual form because of a specific proteolytic cleavage of the primary translation product present in all locations. Under basal conditions, multiple tissue-specific mechanisms of xanthine oxidoreductase regulation are evident. Lipopolysaccharide increases enzyme activity in some, but not all tissues, mainly via modulation of the respective transcript, although translational and post-translational mechanisms are also active. In situ hybridization studies on tissue sections obtained from mice under control conditions or with lipopolysaccharide treatment demonstrate that xanthine oxidoreductase is present in hepatocytes, predominantly in the proximal tubules of the kidney, epithelial layer of the gastrointestinal mucosa, the alveolar compartment of the lung, the pulpar region of the spleen and the vascular component of the heart. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7864814
A Ratiometric Threshold for Determining Presence of Cancer During Fluorescence-guided Surgery
Warram, Jason M; de Boer, Esther; Moore, Lindsay S.; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L
2015-01-01
Background&Objective Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Methods Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n=11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. Results During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Conclusion Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. PMID:26074273
Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus
Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen
2018-01-01
Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. PMID:29370089
Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.
Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen; Kneipp, Janina
2018-01-25
Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus , using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues.
Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun
2016-05-23
Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.
Autophagy drives epidermal deterioration in a Drosophila model of tissue aging.
Scherfer, Christoph; Han, Violet C; Wang, Yan; Anderson, Aimee E; Galko, Michael J
2013-04-01
Organismal lifespan has been the primary readout in aging research. However, how longevity genes control tissue-specific aging remains an open question. To examine the crosstalk between longevity programs and specific tissues during aging, biomarkers of organ-specific aging are urgently needed. Since the earliest signs of aging occur in the skin, we sought to examine skin aging in a genetically tractable model. Here we introduce a Drosophila model of skin aging. The epidermis undergoes a dramatic morphological deterioration with age that includes membrane and nuclear loss. These changes were decelerated in a long-lived mutant and accelerated in a short-lived mutant. An increase in autophagy markers correlated with epidermal aging. Finally, the epidermis of Atg7 mutants retained younger characteristics, suggesting that autophagy is a critical driver of epidermal aging. This is surprising given that autophagy is generally viewed as protective during aging. Since Atg7 mutants are short-lived, the deceleration of epidermal aging in this mutant suggests that in the epidermis healthspan can be uncoupled from longevity. Because the aging readout we introduce here has an early onset and is easily visualized, genetic dissection using our model should identify other novel mechanisms by which lifespan genes feed into tissue-specific aging.
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ren; Boudreau, Aaron; Bissell, Mina J
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemicalmore » cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.« less
Brain tissue segmentation based on DTI data
Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.
2008-01-01
We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258
Structural requirements of research tissue banks derived from standardized project surveillance.
Herpel, E; Koleganova, N; Schreiber, B; Walter, B; Kalle, C V; Schirmacher, P
2012-07-01
Tissue banks constitute decisive and rate-limiting resource and technology platforms for basic and translational biomedical research, notably in the area of cancer. Thus, it is essential to plan and structure tissue banking and allocate resources according to research needs, but essential requirements are still incompletely defined. The tissue bank of the National Center of Tumor Diseases Heidelberg (NCT) was founded with the intention to provide tissues of optimal quality and to prioritize the realization of research projects. We analysed its structure and prospective project management registration as well as tracking records for all projects of the NCT tissue bank as of its start in 2005 in order to obtain information that may be relevant for tissue bank planning. All project proposals submitted to the NCT tissue bank (n = 681) were included in the study. For a detailed evaluation of provided services, only projects that were completed until July 2011 (n = 605) were analysed. For these 605 projects, NCT tissue bank provided 769 specific services. In all projects/services, we recorded project leader, type and amount of material provided, type of research (basic/translational), work load of project and project completion. Furthermore, all completed projects were tracked after 90 days according to a standard protocol to determine principal investigators' (PI) satisfaction and quality of the provided material. Until July 2011, 605 projects had been successfully completed as documented by material transfer agreement. Of the projects, 72.7 % addressed basic research, 22.3 % were translational research projects and 3 % concerned epidemiological research; 91 % (n = 546) concerned a single PI and the NTC tissue bank. For these projects, 769 specific services were provided. Of these services, 288 concerned providing formalin-fixed and paraffin-embedded (FFPE) tissue (extracts, full size sections), 126 providing fresh frozen materials (including fresh frozen sections), 137 providing tissue micro-array (TMA)-based sections and 199 providing immunohistochemical services. Project tracking demonstrated that all projects had started within 90 days after reception of the material by the PIs, and PI satisfaction with provided material exceeded 97 %. Standardized registration and tracking provides valuable structural information for planning and financing of tissue banks and allocation of resources. The high number of completed projects as well as high user satisfaction demonstrates that structuring of tissue banks should be preferably research-oriented and highly efficient. The comparable number of requests for FFPE and fresh frozen tissue as well as TMA-based services underpins the need for a broad approach in terms of methods and material types in order to fulfil research needs.
Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.
Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A
1982-07-01
Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.
Current progress in 3D printing for cardiovascular tissue engineering.
Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K
2015-03-16
3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.
NASA Astrophysics Data System (ADS)
Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace
2015-08-01
The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.
X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors.
Law, Ruby H P; Wu, Guojie; Leung, Eleanor W W; Hidaka, Koushi; Quek, Adam J; Caradoc-Davies, Tom T; Jeevarajah, Devadharshini; Conroy, Paul J; Kirby, Nigel M; Norton, Raymond S; Tsuda, Yuko; Whisstock, James C
2017-05-09
The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO ( trans -4-aminomethylcyclohexanecarbonyl-l-tyrosine- n -octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3' subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S' subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders.
X-ray crystal structure of plasmin with tranexamic acid–derived active site inhibitors
Wu, Guojie; Leung, Eleanor W. W.; Hidaka, Koushi; Quek, Adam J.; Caradoc-Davies, Tom T.; Jeevarajah, Devadharshini; Kirby, Nigel M.; Norton, Raymond S.; Tsuda, Yuko; Whisstock, James C.
2017-01-01
The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO (trans-4-aminomethylcyclohexanecarbonyl-l-tyrosine-n-octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3′ subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S′ subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders. PMID:29296720
2014-07-01
Device Fabrication The migration devices were fabricated at the Cornell NanoScale Science and Technology Facility (CNF) using standard lithography ...mutations interfere with tissue-specific genes: lamin mutations may inhibit binding to tissue-specific factors [27] or lead to abnormal gene activation...mutations associated with stri- ated muscle disease can interfere with coupling to SUN proteins [77,78], emerin [59,77], Klaroid (a Drosophila nesprin
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-01-01
Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-05-01
The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.
Bile duct epithelial tight junctions and barrier function
Rao, R.K.; Samak, G.
2013-01-01
Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411
Tuohy, Vincent K.; Jaini, Ritika; Johnson, Justin M.; Loya, Matthew G.; Wilk, Dennis; Downs-Kelly, Erinn; Mazumder, Suparna
2016-01-01
We have proposed that safe and effective protection against the development of adult onset cancers may be achieved by vaccination against tissue-specific self-proteins that are “retired” from expression at immunogenic levels in normal tissues as we age, but are overexpressed in emerging tumors. α-Lactalbumin is an example of a “retired” self-protein because its expression in normal tissues is confined exclusively to the breast during late pregnancy and lactation, but is also expressed in the vast majority of human triple negative breast cancers (TNBC)—the most aggressive and lethal form of breast cancer and the predominant form that occurs in women at high genetic risk including those with mutated BRCA1 genes. In anticipation of upcoming clinical trials, here we provide preclinical data indicating that α-lactalbumin has the potential as a vaccine target for inducing safe and effective primary immunoprevention as well as immunotherapy against TNBC. PMID:27322324
Policy for accommodating and adjustment of utilities on the primary road system.
DOT National Transportation Integrated Search
2012-01-01
This chapter covers initial placement, adjustment and maintenance : of utility facilities in, on, above or below the right-of-way of primary highways, including : attachments to primary highway structures. It embodies the basic specifications and : s...
Policy for accommodating and adjustment of utilities on the primary road system.
DOT National Transportation Integrated Search
2005-12-01
This chapter covers initial placement, adjustment and maintenance : of utility facilities in, on, above or below the right-of-way of primary highways, including : attachments to primary highway structures. It embodies the basic specifications and : s...
Classification, imaging, biopsy and staging of osteosarcoma
Kundu, Zile Singh
2014-01-01
Osteosarcoma is the most common primary osseous malignancy excluding malignant neoplasms of marrow origin (myeloma, lymphoma and leukemia) and accounts for approximately 20% of bone cancers. It predominantly affects patients younger than 20 years and mainly occurs in the long bones of the extremities, the most common being the metaphyseal area around the knee. These are classified as primary (central or surface) and secondary osteosarcomas arising in preexisting conditions. The conventional plain radiograph is the best for probable diagnosis as it describes features like sun burst appearance, Codman's triangle, new bone formation in soft tissues along with permeative pattern of destruction of the bone and other characteristics for specific subtypes of osteosarcomas. X-ray chest can detect metastasis in the lungs, but computerized tomography (CT) scan of the thorax is more helpful. Magnetic resonance imaging (MRI) of the lesion delineates its extent into the soft tissues, the medullary canal, the joint, skip lesions and the proximity of the tumor to the neurovascular structures. Tc99 bone scan detects the osseous metastases. Positron Emission Tomography (PET) is used for metastatic workup and/or local recurrence after resection. The role of biochemical markers like alkaline phosphatase and lactate dehydrogenase is pertinent for prognosis and treatment response. The biopsy confirms the diagnosis and reveals the grade of the tumor. Enneking system for staging malignant musculoskeletal tumors and American Joint Committee on Cancer (AJCC) staging systems are most commonly used for extremity sarcomas. PMID:24932027
The potential impact of bone tissue engineering in the clinic
Mishra, Ruchi; Bishop, Tyler; Valerio, Ian L; Fisher, John P; Dean, David
2016-01-01
Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic. PMID:27549369
Taking advantage of acoustic inhomogeneities in photoacoustic measurements
NASA Astrophysics Data System (ADS)
Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan
2016-03-01
Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.
Ueda, Kenji; Xu, Zheng-Jun; Miyagi, Nobuaki; Ono, Michiyuki; Wabiko, Hiroetsu; Masuda, Kiyoshi; Inoue, Masayasu
2013-07-01
The nuclear matrix is involved in many nuclear events, but its protein architecture in plants is still not fully understood. A cDNA clone was isolated by immunoscreening with a monoclonal antibody raised against nuclear matrix proteins of Daucus carota L. Its deduced amino acid sequence showed about 40% identity with the PESCADILLO protein of zebrafish and humans. Primary structure analysis of the protein revealed a Pescadillo N-terminus domain, a single breast cancer C-terminal domain, two nuclear localization signals, and a potential coiled-coil region as also found in animal PESCADILLO proteins. Therefore, we designated this gene DcPES1. Although DcPES1 mRNA was detected in all tissues examined, its levels were highest in tissues with proliferating cells. Immunofluorescence using specific antiserum against the recombinant protein revealed that DcPES1 localized exclusively in the nucleolus. Examination of fusion proteins with green fluorescent protein revealed that the N-terminal portion was important for localization to the nucleoli of tobacco and onion cells. Moreover, when the nuclear matrix of carrot cells was immunostained with an anti-DcPES1 serum, the signal was detected in the nucleolus. Therefore, the DcPES1 protein appears to be a component of or tightly bound to components of the nuclear matrix. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Automatic recognition and analysis of synapses. [in brain tissue
NASA Technical Reports Server (NTRS)
Ungerleider, J. A.; Ledley, R. S.; Bloom, F. E.
1976-01-01
An automatic system for recognizing synaptic junctions would allow analysis of large samples of tissue for the possible classification of specific well-defined sets of synapses based upon structural morphometric indices. In this paper the three steps of our system are described: (1) cytochemical tissue preparation to allow easy recognition of the synaptic junctions; (2) transmitting the tissue information to a computer; and (3) analyzing each field to recognize the synapses and make measurements on them.
Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt
2017-10-01
Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
MRI-guided fluorescence tomography of the breast: a phantom study
NASA Astrophysics Data System (ADS)
Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.
2009-02-01
Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.
Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana
2018-07-01
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.
Label-free photoacoustic microscopy of peripheral nerves
NASA Astrophysics Data System (ADS)
Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.
2014-01-01
Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
2017-12-01
abnormalities Primary 18 [16] R00-R99 [780-799] Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified Primary 19† [17...criteria: • Behavioral, emotional, moral, and other psychological trauma. • Illness or disease associated with infectious agents, genetic conditions...medical treatment, and resolves in days or months with full recovery (i.e., body tissues have recovered full structural and functional integrity
Growing Three-Dimensional Corneal Tissue in a Bioreactor
NASA Technical Reports Server (NTRS)
Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.
2003-01-01
Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.
Horta-Barbosa, L.; Warren, Joel
1969-01-01
A series of 19 different primary and serial tissue cultures were investigated for their sensitivity to virulent or attenuated rubella virus (RV). Primary guinea pig tissues, a serial passage of baby hamster kidney, and primary human amnion were comparable to African green monkey kidney tissue cultures in their sensitivity. In general, primary human tissues were relatively insusceptible to the Gilchrist strain of RV. RV interfered with the growth of vesicular stomatitis virus. Based on this finding, it was possible to develop an assay method in guinea pig tissue cultures by using VSV as the challenge virus. This system appeared to be comparable in sensitivity to the use of primary monkey kidney tissue cultures for the detection of small amounts of RV and offers the advantages of economy, rapidity, and safety. PMID:4979943
The retinal specific CD147 Ig0 domain: from molecular structure to biological activity
Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy. G.; Jones, David N.M.; Kieft, Jeffrey S.; Eisenmesser, Elan Zohar
2011-01-01
CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. We present the first crystal structure of the human CD147 Ig0 domain and show that the CD147 Ig0 domain is a crystallographic dimer with an I-type domain structure, which is maintained in solution. Furthermore, we have utilized our structural data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Finally, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation. PMID:21620857
Physiologically relevant organs on chips.
Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P
2014-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Major Histopathologic Diagnoses of Chronic Wounds.
Turi, George K; Donovan, Virginia; DiGregorio, Julie; Criscitelli, Theresa M; Kashan, Benjamin; Barrientos, Stephan; Balingcongan, Jose Ramon; Gorenstein, Scott; Brem, Harold
2016-08-01
To clarify the histopathology of acute osteomyelitis, chronic osteomyelitis, primary vasculitis, and secondary-type vasculitis. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Describe the parameters and significance of this study.2. Identify chronic wound diagnosis and treatment.3. Differentiate the histopathology of osteomyelitis and vasculitis. The presence of a chronic wound can result in significant morbidity/mortality. Understanding the pathological alterations of wound tissue that are refractory to standard wound therapy is essential for effective wound management and healing. The authors describe 4 wound etiologies, specifically, acute osteomyelitis, chronic osteomyelitis, primary vasculitis, and secondary-type vasculitis. A tertiary care hospital. A retrospective review of 1392 wound operations performed during a 24-month period at a tertiary care hospital was conducted. Tissue specimens reviewed included soft tissue infections of the lower extremity, sacrum, hip/pelvis, trunk, perineum, and buttocks. Acute osteomyelitis is defined as bone tissue with a predominance of polymorphonuclear leukocytes, evidence of osteoclast bone resorption with scalloping of the cortical bone edges, and bone detritus. Chronic osteomyelitis is defined as bone tissue with a significant amount of fibrosis surrounding devitalized tissue and heavy infiltration of lymphocytes and plasma cells. Primary-type vasculitis is defined primarily as inflammation and necrosis of blood vessel walls. In cutaneous lesions of granulomatosis with polyangiitis, ulceration with numerous inflammatory granulomas is seen in the papillary dermis. Secondary vasculitis is defined by vessel wall infiltration by inflammatory cells and fibrinoid necrosis of the small vessel wall. Pathologies of these 4 types of wounds can complicate standard algorithms designed for diagnosis and treatment, and accurate diagnosis through histopathologic analysis can help tailor targeted treatment.
Allograft replacement for absent native tissue.
Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J; Warren, Russell F; Doyle, Maureen; Rodeo, Scott A
2013-03-01
Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs.
Allograft Replacement for Absent Native Tissue
Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.
2013-01-01
Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387
Bridge, J A; Roberts, C A; Degenhardt, J; Walker, C; Lackner, R; Linder, J
1998-02-01
Cytogenetic analysis of a primary lipoma of the lung removed from a 56-year-old woman revealed the presence of a supernumerary marker chromosome in all metaphase cells analyzed; namely, 47,XX,+mar. To the best of our knowledge, this is the first cytogenetic description of a primary lipoma of lung. Genetic analysis of intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma have revealed the presence of one to three supernumerary ring or giant marker chromosomes composed of chromosome 12 segments as the characteristic anomaly. The marker chromosome in the present case was shown to be composed entirely of chromosome 12 material by subsequent analysis with a chromosome 12-specific paint probe and fluorescence in situ hybridization. Thus, analogous to intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma, extra chromosome 12 material is present. These findings support a pathogenetic relationship between this lipoma of unusual anatomic location and common adipose tissue tumors.
NASA Astrophysics Data System (ADS)
Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun
2017-02-01
Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.
Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I
2013-05-30
Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology
NASA Astrophysics Data System (ADS)
Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi
2014-03-01
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
Moerman, Kevin M; van Vijven, Marc; Solis, Leandro R; van Haaften, Eline E; Loenen, Arjan C Y; Mushahwar, Vivian K; Oomens, Cees W J
2017-04-01
Pressure ulcers are a type of local soft tissue injury due to sustained mechanical loading and remain a common issue in patient care. People with spinal cord injury (SCI) are especially at risk of pressure ulcers due to impaired mobility and sensory perception. The development of load improving support structures relies on realistic tissue load evaluation e.g. using finite element analysis (FEA). FEA requires realistic subject-specific mechanical properties and geometries. This study focuses on the effect of geometry. MRI is used for the creation of geometrically accurate models of the human buttock for three able-bodied volunteers and three volunteers with SCI. The effect of geometry on observed internal tissue deformations for each subject is studied by comparing FEA findings for equivalent loading conditions. The large variations found between subjects confirms the importance of subject-specific FEA.
Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.
2011-01-01
Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.
Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win
2018-02-27
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
An integral theory of female urinary incontinence. Experimental and clinical considerations.
Petros, P E; Ulmsten, U I
1990-01-01
In this Theory paper, the complex interplay of the specific structures involved in female urinary continence are analyzed. In addition the effects of age, hormones, and iatrogenically induced scar tissue on these structures, are discussed specifically with regard to understanding the proper basis for treatment of urinary incontinence. According to the Theory stress and urge symptoms may both derive, for different reasons from the same anatomical defect, a lax vagina. This laxity may be caused by defects within the vaginal wall itself, or its supporting structures i.e. ligaments, muscles, and their connective tissue insertions. The vagina has a dual function. It mediates (transmits) the various muscle movements involved in bladder neck opening and closure through three separate closure mechanisms. It also has a structural function, and prevents urgency by supporting the hypothesized stretch receptors at the proximal urethra and bladder neck. Altered collagen/elastin in the vaginal connective tissue and/or its ligamentous supports may cause laxity. This dissipates the muscle contraction, causing stress incontinence, and/or activation of an inappropriate micturition reflex, ("bladder instability") by stimulation of bladder base stretch receptors. The latter is manifested by symptoms of frequency, urgency, nocturia with or without urine loss.
Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)
Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J
2016-01-01
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567
Biofabrication strategies for 3D in vitro models and regenerative medicine
NASA Astrophysics Data System (ADS)
Moroni, Lorenzo; Burdick, Jason A.; Highley, Christopher; Lee, Sang Jin; Morimoto, Yuya; Takeuchi, Shoji; Yoo, James J.
2018-05-01
Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.
Gajewska, Malgorzata; McNally, Sara
2017-01-01
Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).
Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.
2013-01-01
The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375
NASA Technical Reports Server (NTRS)
Wessels, A.; Anderson, R. H.; Markwald, R. R.; Webb, S.; Brown, N. A.; Viragh, S.; Moorman, A. F.; Lamers, W. H.
2000-01-01
The development of the atrial chambers in the human heart was investigated immunohistochemically using a set of previously described antibodies. This set included the monoclonal antibody 249-9G9, which enabled us to discriminate the endocardial cushion-derived mesenchymal tissues from those derived from extracardiac splanchnic mesoderm, and a monoclonal antibody recognizing the B isoform of creatine kinase, which allowed us to distinguish the right atrial myocardium from the left. The expression patterns obtained with these antibodies, combined with additional histological information derived from the serial sections, permitted us to describe in detail the morphogenetic events involved in the development of the primary atrial septum (septum primum) and the pulmonary vein in human embryos from Carnegie stage 14 onward. The level of expression of creatine kinase B (CK-B) was found to be consistently higher in the left atrial myocardium than in the right, with a sharp boundary between high and low expression located between the primary septum and the left venous valve indicating that the primary septum is part of the left atrial gene-expression domain. This expression pattern of CK-B is reminiscent of that of the homeobox gene Pitx2, which has recently been shown to be important for atrial septation in the mouse. This study also demonstrates a poorly appreciated role of the dorsal mesocardium in cardiac development. From the earliest stage investigated onward, the mesenchyme of the dorsal mesocardium protrudes into the dorsal wall of the primary atrial segment. This dorsal mesenchymal protrusion is continuous with a mesenchymal cap on the leading edge of the primary atrial septum. Neither the mesenchymal tissues of the dorsal protrusion nor the mesenchymal cap on the edge of the primary septum expressed the endocardial tissue antigen recognized by 249-9G9 at any of the stages investigated. The developing pulmonary vein uses the dorsal mesocardium as a conduit to reach the primary atrial segment. Initially, the pulmonary pit, which will becomes the portal of entry for the pulmonary vein, is located along the midline, flanked by two myocardial ridges. As development progresses, tissue remodeling results in the incorporation of the portal of entry of the pulmonary vein in left atrial myocardium, which is recognized because of its high level of creatine. Closure of the primary atrial foramen by the primary atrial septum occurs as a consequence of the fusion of these mesenchymal structures. Copyright 2000 Wiley-Liss, Inc.
Multiscale Characterization of Engineered Cardiac Tissue Architecture.
Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna
2016-11-01
In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.
Yang, Qian; Bavi, Prashant; Wang, Julia Y; Roehrl, Michael H
2017-09-25
Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Hence, we embarked on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were obtained from colon cancer patients. Tissue proteins were extracted, and autoantigens were uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Five of these were reproducibly found in two independent experiments, including olfactomedin 4 (OLFM4), CD11b, integrin α2 (ITGA2), periostin, and thrombospondin-2. Further confirmation with tissue from 43 patients by Western blotting, immunohistochemistry, and tissue microarray deemed OLFM4, CD11b, and ITGA2 to be significantly overexpressed in both primary colon tumors and liver metastases. These tumor tissue autoantigens may serve as promising markers for developing differential diagnostics and immunotherapies for colorectal cancers, in particular, those with tendency to progress to liver metastases. Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Cancer tissue immunogens - antigens capable of inducing specific antibody production in patients - are promising targets for development of precision diagnostics and immunotherapies. In our manuscript, we describe on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were analyzed. Putative autoantigens were first uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Using follow-up validation in two independent cohorts, we discovered that OLFM4, CD11b, and ITGA2 are proteins that are overexpressed in both primary colon tumors and liver metastases. We highlight the possible roles of these 3 proteins in carcinogenesis and tumor microenvironment and the implications for autoantigenic immune recognition. More generally, colon cancer biomarkers with autoantigenic properties, like the ones we describe in our manuscript, may open new opportunities for diagnosis, molecular classification, and therapy of colorectal cancer, particularly of aggressive tumors with tendency to progress to liver metastases. The autoantigenic properties of biomarkers are also expected to be of great relevance for immunotherapeutic development. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.
The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific.
Wallace, Joseph M; Rajachar, Rupak M; Chen, Xiao-Dong; Shi, Songtao; Allen, Matthew R; Bloomfield, Susan A; Les, Clifford M; Robey, Pamela G; Young, Marian F; Kohn, David H
2006-07-01
Biglycan (bgn) is a small leucine-rich proteoglycan (SLRP) enriched in the extracellular matrix of skeletal tissues. While bgn is known to be involved in the growth and differentiation of osteoblast precursor cells and regulation of collagen fibril formation, it is unclear how these functions impact bone's geometric and mechanical properties, properties which are integral to the structural function of bone. Because the genetic control of bone structure and function is both local- and gender-specific and because there is evidence of gender-specific effects associated with genetic deficiencies, it was hypothesized that the engineered deletion of the gene encoding bgn would result in a cortical bone mechanical phenotype that was bone- and gender-specific. In 11-week-old C57BL6/129 mice, the cortical bone in the mid-diaphyses of the femora and tibiae of both genders was examined. Phenotypic changes in bgn-deficient mice relative to wild type controls were assayed by four-point bending tests to determine mechanical properties at the whole bone (structural) and tissue levels, as well as analyses of bone geometry and bone formation using histomorphometry. Of the bones examined, bgn deficiency most strongly affected the male tibiae, where enhanced cross-sectional geometric properties and bone mineral density were accompanied by decreased tissue-level yield strength and pre-yield structural deformation and energy dissipation. Because pre-yield properties alone were impacted, this implies that the gene deletion causes important alterations in mineral and/or the matrix/mineral ultrastructure and suggests a new understanding of the functional role of bgn in regulating bone mineralization in vivo.
Some news from the unknown soldier, the Peyer's patch macrophage.
Wagner, Camille; Bonnardel, Johnny; Da Silva, Clément; Martens, Liesbet; Gorvel, Jean-Pierre; Lelouard, Hugues
2018-01-31
In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions. Copyright © 2018 Elsevier Inc. All rights reserved.
Tissue-specific mutation accumulation in human adult stem cells during life
NASA Astrophysics Data System (ADS)
Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben
2016-10-01
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.
Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C
2009-01-01
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Sarkar, Abby J; Chaturvedi, Kirti; Chen, Cui Ping; Sarkar, Dipak K
2010-01-01
Thrombospondin-1 (TSP-1), a multifunctional matrix glycoprotein, has been shown to control tumor growth by inhibiting angiogenesis in various tissues. However, the role of this glycoprotein in pituitary angiogenesis is not well studied. In this report, we determined the changes in the production and action of TSP-1 on endothelial cells in anterior pituitary following estradiol treatment, which is known to increase prolactin-secreting tumor growth and vascularization in this tissue. We showed that TSP-1 immunoreactive protein is distributed in the anterior pituitary, particularly in the endothelial cells. Estradiol treatment for 2 and 4 weeks decreased the total tissue immunoreactive level of TSP-1 as well as the endothelial cell-specific immunoreactive level of this protein in the anterior pituitary. The steroid treatment also decreased the protein levels of TSP-1 in anterior pituitary tissues and in purified pituitary endothelial cells in primary cultures. Determination of the effects of TSP-1 on proliferation and migration of pituitary-derived endothelial cells in primary cultures elucidated an inhibitory action of TSP-1 on these vascular cell functions. These results suggest that locally produced TSP-1 may regulate estrogen angiogenic action on the pituitary. PMID:17283240
Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing
2018-01-01
Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects. PMID:29666653
Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi
2018-01-01
Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.
The effect of adriamycin exposure on the notochord of mouse embryos.
Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula
2012-04-01
The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.
Structural polymorphism at LCR and its role in beta-globin gene regulation.
Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree
2010-09-01
Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong
2017-01-01
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343
Structure-function relationships of human meniscus.
Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K
2017-03-01
Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (p<0.05) of elastic parameters (equilibrium and instantaneous moduli) and strain-dependent biomechanical parameters (strain-dependent fibril network modulus and permeability) were observed in the anterior horn of the medial meniscus. This location had also higher (p<0.05) PG content in the deep meniscus, higher (p<0.05) collagen content in the entire tissue depth, and lower (p<0.05) collagen orientation angle at the superficial tissue, as compared to many other locations. On the other hand, in certain comparisons (such as anterior vs. middle sites of the medial meniscus) significantly higher (p<0.05) collagen content and lower orientation angle, without any difference in the PG content, were consistent with increased meniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.
Epigenetic regulatory mechanisms in vertebrate eye development and disease
Cvekl, A; Mitton, KP
2014-01-01
Eukaryotic DNA is organized as a nucleoprotein polymer termed chromatin with nucleosomes serving as its repetitive architectural units. Cellular differentiation is a dynamic process driven by activation and repression of specific sets of genes, partitioning the genome into transcriptionally active and inactive chromatin domains. Chromatin architecture at individual genes/loci may remain stable through cell divisions, from a single mother cell to its progeny during mitosis, and represents an example of epigenetic phenomena. Epigenetics refers to heritable changes caused by mechanisms distinct from the primary DNA sequence. Recent studies have shown a number of links between chromatin structure, gene expression, extracellular signaling, and cellular differentiation during eye development. This review summarizes recent advances in this field, and the relationship between sequence-specific DNA-binding transcription factors and their roles in recruitment of chromatin remodeling enzymes. In addition, lens and retinal differentiation is accompanied by specific changes in the nucleolar organization, expression of non-coding RNAs, and DNA methylation. Epigenetic regulatory mechanisms in ocular tissues represent exciting areas of research that have opened new avenues for understanding normal eye development, inherited eye diseases and eye diseases related to aging and the environment. PMID:20179734
Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.
Commensal–dendritic-cell interaction specifies a unique protective skin immune signature
Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine
2015-01-01
The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086
Mostert, Bianca; Jiang, Yuqiu; Sieuwerts, Anieta M; Wang, Haiying; Bolt-de Vries, Joan; Biermann, Katharina; Kraan, Jaco; Lalmahomed, Zarina; van Galen, Anne; de Weerd, Vanja; van der Spoel, Petra; Ramírez-Moreno, Raquel; Verhoef, Cornelis; Ijzermans, Jan N M; Wang, Yixin; Gratama, Jan-Willem; Foekens, John A; Sleijfer, Stefan; Martens, John W M
2013-07-01
Although anti-EGFR therapy has established efficacy in metastatic colorectal cancer, only 10-20% of unselected patients respond. This is partly due to KRAS and BRAF mutations, which are currently assessed in the primary tumor. To improve patient selection, assessing mutation status in circulating tumor cells (CTCs), which possibly better represent metastases than the primary tumor, could be advantageous. We investigated the feasibility of KRAS and BRAF mutation detection in colorectal CTCs by comparing three sensitive methods and compared mutation status in matching primary tumor, liver metastasis and CTCs. CTCs were isolated from blood drawn from 49 patients before liver resection using CellSearch™. DNA and RNA was isolated from primary tumors, metastases and CTCs. Mutations were assessed by co-amplification at lower denaturation temperature-PCR (Transgenomic™), real-time PCR (EntroGen™) and nested Allele-Specific Blocker (ASB-)PCR and confirmed by Sanger sequencing. In 43 of the 49 patients, tissue RNA and DNA was of sufficient quantity and quality. In these 43 patients, discordance between primary and metastatic tumor was 23% for KRAS and 7% for BRAF mutations. RNA and DNA from CTCs was available from 42 of the 43 patients, in which ASB-PCR was able to detect the most mutations. Inconclusive results in patients with low CTC counts limited the interpretation of discrepancies between tissue and CTCs. Determination of KRAS and BRAF mutations in CTCs is challenging but feasible. Of the tested methods, nested ASB-PCR, enabling detection of KRAS and BRAF mutations in patients with as little as two CTCs, seems to be superior. Copyright © 2012 UICC.
Nocini, Pier Francesco; Zanotti, Guglielmo; Castellani, Roberto; Grasso, Silvia; Cristofaro, Maria Giulia; De Santis, Daniele
2013-06-01
To evaluate fundamental cell functions, such as adhesion, IL-6 production and proliferation of human gingival keratinocytes cultured on a newly engineered collagen matrix (CM-10826) and to assess the degree of specific biocompatibility of this new device. Primary cultures of human keratinocytes were derived "in vitro" from biopsies of independent donors. Their true epithelial origin was ensured by the expression of cytokeratin 14. Adhesion, proliferation and production of IL-6 cytokine was then measured in the presence or absence of CM-10826 activity or of its relevant components. Functional tests revealed that keratinocytes adhered to CM-10826 and up-regulated their basal IL-6 production. The type of keratinocytes used expressed cytokeratin 14. Proliferation experiments demonstrated that the best cellular response was observed in the presence of Collagen I, the main component of CM-10826. No undesired effects were observed as for keratinocyte viability, morphology or differentiation. Our results demonstrate that CM-10826 has a favourable biological effect on the "in vitro" response of gingival keratinocytes in terms of IL-6 production, cell growth and adhesion. These findings may encourage a possible use of this collagen membrane as a tissue which, alone, may substitute for autologous gingival grafts thereby overcoming the limitations of autologous tissue. © 2012 John Wiley & Sons A/S.
Co-expression networks reveal the tissue-specific regulation of transcription and splicing
Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.
2017-01-01
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288
In vitro 3D regeneration-like growth of human patient brain tissue.
Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J
2018-05-01
In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.
Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang
2017-06-01
Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation
Jiang, Jianqiao; White-Cooper, Helen
2013-01-01
The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955
Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies
NASA Astrophysics Data System (ADS)
Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon
2009-11-01
Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.
Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo.
Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric
2014-01-01
Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.
Magnetic resonance brain tissue segmentation based on sparse representations
NASA Astrophysics Data System (ADS)
Rueda, Andrea
2015-12-01
Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).
The mechanics of the primary cilium: an intricate structure with complex function.
Hoey, David A; Downs, Matthew E; Jacobs, Christopher R
2012-01-03
The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Yih-Leong; Lee, Yung-Chie; Liao, Wei-Yu; Wu, Chen-Tu
2004-05-01
Thyroid transcription factor-1 (TTF-1) is a tissue-specific transcription factor expressed in the thyroid and lung. The clinical utility and limitation of TTF-1 in primary or metastatic carcinomas of the lung have not been previously studied in detail. We examined TTF-1 expression in 510 primary lung and 107 metastatic neoplasms. TTF-1 was detectable in 4/99 (4%) squamous cell carcinomas, 169/176 (96%) solitary adenocarcinomas, 34/34 (100%) multifocal adenocarcinomas, 1/1 (100%) signet ring cell carcinoma, 16/20 (80%) mucinous adenocarcinomas, 23/23 (100%) nonmucinous bronchioloalveolar carcinomas, 19/36 (53%) small cell carcinomas, and 39/44 (89%) sclerosing hemangioma. TTF-1 was absent in all eight carcinoids, three atypical carcinoids, 23 pleomorphic carcinomas, 25 lymphoepithelioma-like carcinomas, the sarcomatous component of one pseudomesotheliomatous carcinoma, and one mesothelioma. In four combined small cell carcinomas and 12 adenosquamous carcinomas, TTF-1 expression was only demonstrated in the adenocarcinoma component. There were 78 TTF-1 non-immunoreactive metastatic cases from 22 livers, 20 colorectums, 10 breasts, six nasopharynx, four larynx, four ovaries, three salivary glands, three esophagus, two adrenal glands, two kidneys, one bile duct, and one endometrium. TTF-1 was also detected in all 10 cervical lymph nodes, seven brain, and 6/7 (86%) bony tissues of 24 patients with metastatic carcinomas of unknown primary site, but it was absent in 125 patients with metastatic carcinomas other than lung origin in cervical lymph nodes, brain, and bony tissues. These results indicate the clinical usefulness and limitation in certain primary and metastatic lung neoplasms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestov, Nikolay B., E-mail: korn@mail.ibch.ru; Dmitriev, Ruslan I.; Kostina, Maria B.
Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2),more » the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.« less
Gaykalova, Daria A; Vatapalli, Rajita; Wei, Yingying; Tsai, Hua-Ling; Wang, Hao; Zhang, Chi; Hennessey, Patrick T; Guo, Theresa; Tan, Marietta; Li, Ryan; Ahn, Julie; Khan, Zubair; Westra, William H; Bishop, Justin A; Zaboli, David; Koch, Wayne M; Khan, Tanbir; Ochs, Michael F; Califano, Joseph A
2015-01-01
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.
Kirkton, Robert D; Bursac, Nenad
2011-01-01
Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.
Challenges and opportunities for tissue-engineering polarized epithelium.
Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P
2014-02-01
The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.
Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn
2017-08-01
The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.
Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad
2018-05-01
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Conceptual design and structural analysis for an 8.4-m telescope
NASA Astrophysics Data System (ADS)
Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego
2004-09-01
This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.
Rice, Gavin; Barmina, Olga; Hu, Kevin; Kopp, Artyom
2018-03-01
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments. © 2018 Wiley Periodicals, Inc.
Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.
Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan
2017-01-01
The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold structures. All the experiments were performed in order to show how to possibly solve certain limitations and issues that are currently reported by research workplaces on the field of scaffold bio-fabrication. These results should provide new valuable knowledge for further research.
Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-01-01
The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation-specific PCR, semi-quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3-methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC. PMID:28656302
Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J
2015-12-01
Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.
Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice.
Dolmans, Marie-Madeleine; Martinez-Madrid, Belen; Gadisseux, Elodie; Guiot, Yves; Yuan, Wu Yuan; Torre, Antoine; Camboni, Alessandra; Van Langendonckt, Anne; Donnez, Jacques
2007-08-01
This study was designed to evaluate follicular survival and growth after short-term transplantation of fresh isolated human follicles and ovarian cortical tissue to nude mice. Ovarian biopsies were obtained from nine women undergoing laparoscopy. Twelve nude mice were xenografted with an ovarian cortical fragment in the right ovarian bursa, and a clot containing isolated follicles in the left, for a period of 7 days. One ungrafted fragment was used as a control. Histological sections were analyzed to determine follicle number and stage. The proliferative status of follicular cells was assessed by Ki-67 immunostaining. A total of 659 follicles was analyzed by histology and 545 follicles by immunohistochemistry. The percentage of primordial follicles was found to be markedly reduced 1 week post-grafting when compared with ungrafted tissue, while the percentage of primary follicles had significantly increased. Only 8% of follicles showed Ki-67-positive granulosa cells before grafting, whereas 1 week after grafting, 71% of follicles in fragments and 67% of isolated follicles were Ki-67-positive (P<0.001). Moreover, the histological aspect of isolated follicle grafts was similar to that of grafted fragments: follicles were surrounded by vimentin-positive stroma-like tissue of human origin, as confirmed by fluorescent in situ hybridization with human-specific probes. Our results demonstrate, for the first time, that isolated human follicles are able to survive and grow after xenografting. This study also shows massive in vivo follicular activation after transplantation of grafted fragments and isolated follicles. One week after grafting, well-structured stroma-like tissue of human origin was observed around the isolated follicles. The potential origin of this stroma is discussed.
Structural basis for the specific recognition of IL-18 by its alpha receptor.
Wei, Hui; Wang, Dongli; Qian, Yun; Liu, Xi; Fan, Shilong; Yin, Hsien-Sheng; Wang, Xinquan
2014-11-03
Interleukin 18 (IL-18), a member of the IL-1 family of cytokines, is an important regulator of innate and acquired immune responses. It signals through its ligand-binding primary receptor IL-18Rα and accessory receptor IL-18Rβ. Here we report the crystal structure of IL-18 with the ectodomain of IL-18Rα, which reveals the structural basis for their specific recognition. It confirms that surface charge complementarity determines the ligand-binding specificity of primary receptors in the IL-1 receptor family. We suggest that IL-18 signaling complex adopts an architecture similar to other agonistic cytokines and propose a general ligand-receptor assembly and activation model for the IL-1 family. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade.
Chao, C; Al-Saleem, T; Brooks, J J; Rogatko, A; Kraybill, W G; Eisenberg, B
2001-04-01
Vascular endothelial growth factor (VEGF), an endothelial-specific mitogen overexpressed in various epithelial malignancies is thought to be a potent regulator of angiogenesis. We hypothesized that some soft tissue sarcomas, due to their high propensity for hematogenous metastases (1) would overexpress VEGF, (2) that the degree of expression may represent a significant biologic predictor for disease-specific survival, and (3) that recurrent tumor would express as high or higher VEGF compared with the primary tumor. Selected paraffin-embedded tissue of surgical specimens from 79 patients with soft tissue sarcomas, treated between 1989 and 1995 were stained with a rabbit polyclonal anti-VEGF antibody at a concentration of 2 microg/ml. Slides were assessed for VEGF expression as high or low by two investigators blinded to the clinicopathologic data. Twelve patients had VEGF expression of their primary tumors, and their recurrent tumors were compared. The Fishers' exact test assessed for differences in VEGF expression; survival analyses were performed according to the methods of Kaplan and Meier. Seventy-eight percent (29 of 37) of patients who died of disease had high VEGF expression. However, VEGF expression was not an independent predictor of either overall or disease-free survival. Tumor grade correlated with VEGF expression significantly. For the low-grade tumors, 7 of 13 expressed low VEGF, whereas for high-grade tumors, 53 of 66 expressed high VEGF (P = .016). Seven of the 12 paired tumor samples expressed identical VEGF immunostaining. The majority of high-grade soft tissue sarcomas in this study have high intensity VEGF expression. This finding may provide useful information on individual soft tissue sarcomas and offer the basis for therapeutic and biologic targeting in high-risk patients using anti-angiogenesis strategies. However, in our analysis, after accounting for tumor grade, VEGF does not seem to be an independent predictor of clinical outcome.
Irisin exerts dual effects on browning and adipogenesis of human white adipocytes.
Zhang, Yuan; Xie, Chao; Wang, Hai; Foss, Robin M; Clare, Morgan; George, Eva Vertes; Li, Shiwu; Katz, Adam; Cheng, Henrique; Ding, Yousong; Tang, Dongqi; Reeves, Westley H; Yang, Li-Jun
2016-08-01
To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.
Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L
2018-05-27
Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.
Souady, Jamal; Soltwisch, Jens; Dreisewerd, Klaus; Haier, Jörg; Peter-Katalinić, Jasna; Müthing, Johannes
2009-11-15
The thin-layer chromatography (TLC) immunoenzyme overlay assay is a widely used tool for antibody-mediated identification of glycosphingolipids (GSLs) in mixtures. However, because the majority of GSLs is left unexamined in a chromatogram of a single assay, we developed a novel method that permits detection of various GSLs by sequential multiple immunostaining combined with individual coloring of GSLs in the same chromatogram. Specific staining was achieved by means of primary anti-GSL antibodies, directed against lactosylceramide, globotriaosylceramide, and globotetraosylceramide, in conjunction with alkaline phosphatase (AP)- or horseradish peroxidase (HRP)-conjugated secondary antibodies together with the appropriate chromogenic substrates. Triple coloring with 5-bromo-4-chloro-3-indolyl phosphate (BCIP)-AP, Fast Red-AP, and 3,3'-diaminobenzidine (DAB)-HRP resulted in blue, red, and black precipitates, respectively, following three sequential immunostaining rounds. Structures of antibody-detected GSLs were determined by direct coupling of TLC with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. This combinatorial technique was used to demonstrate structural GSL profiling of crude lipid extracts from human hepatocellular cancer. This powerful technology allows efficient structural characterization of GSLs in small tissue samples and marks a further step forward in the emerging field of glycosphingolipidomics.
Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim
2005-11-01
Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.
Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith
2017-01-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.
Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes
NASA Astrophysics Data System (ADS)
Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei
2015-03-01
Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.
Giardini-Rosa, Renata; Joazeiro, Paulo P.; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna
2014-01-01
External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm2) directly from a small population of donor cells (20,000–40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model. PMID:24124666
Giardini-Rosa, Renata; Joazeiro, Paulo P; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna; Waldman, Stephen D
2014-03-01
External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.
Artificial engineering of secondary lymphoid organs.
Tan, Jonathan K H; Watanabe, Takeshi
2010-01-01
Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.
[A method for the primary culture of fibroblasts isolated from human airway granulation tissues].
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua
2013-04-01
To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.
The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.
Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif asmore » delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.« less
Models of CNS radiation damage during space flight
NASA Astrophysics Data System (ADS)
Hopewell, J. W.
1994-10-01
The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.
NASA Astrophysics Data System (ADS)
Toledo-Aral, Juan J.; Moss, Brenda L.; He, Zhi-Jun; Koszowski, Adam G.; Whisenand, Teri; Levinson, Simon R.; Wolf, John J.; Silos-Santiago, Inmaculada; Halegoua, Simon; Mandel, Gail
1997-02-01
Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.
2011-01-01
Background One member of the W family of human endogenous retroviruses (HERV) appears to have been functionally adopted by the human host. Nevertheless, a highly diversified and regulated transcription from a range of HERV-W elements has been observed in human tissues and cells. Aberrant expression of members of this family has also been associated with human disease such as multiple sclerosis (MS) and schizophrenia. It is not known whether this broad expression of HERV-W elements represents transcriptional leakage or specific transcription initiated from the retroviral promoter in the long terminal repeat (LTR) region. Therefore, potential influences of genomic context, structure and orientation on the expression levels of individual HERV-W elements in normal human tissues were systematically investigated. Results Whereas intronic HERV-W elements with a pseudogene structure exhibited a strong anti-sense orientation bias, intronic elements with a proviral structure and solo LTRs did not. Although a highly variable expression across tissues and elements was observed, systematic effects of context, structure and orientation were also observed. Elements located in intronic regions appeared to be expressed at higher levels than elements located in intergenic regions. Intronic elements with proviral structures were expressed at higher levels than those elements bearing hallmarks of processed pseudogenes or solo LTRs. Relative to their corresponding genes, intronic elements integrated on the sense strand appeared to be transcribed at higher levels than those integrated on the anti-sense strand. Moreover, the expression of proviral elements appeared to be independent from that of their corresponding genes. Conclusions Intronic HERV-W provirus integrations on the sense strand appear to have elicited a weaker negative selection than pseudogene integrations of transcripts from such elements. Our current findings suggest that the previously observed diversified and tissue-specific expression of elements in the HERV-W family is the result of both directed transcription (involving both the LTR and internal sequence) and leaky transcription of HERV-W elements in normal human tissues. PMID:21226900
NASA Astrophysics Data System (ADS)
Wen, Lianggong
Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites intrinsic characteristics of collagen, bypassing the need for additional primary and secondary imaging labels. However, single view image collection from endogenous SHG contrast of collagen molecules is not "a true 3D technique", because collagen fibers oriented along the plane of the lasers used to excite them are invisible to the excitation The loss of information means that researchers cannot resolve the 3D structure of the ECM using this technique. We are developing a new, multi-view approach that involves rotation of agarose embedded sample in FEP tubing, so that the excitation beam path travels to from multiple angles, to reveal new insight in understanding the 3D collagen structure and its role in normal and diseased tissue.
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk
Gil, Geun-Cheol; Velander, William H; Van Cott, Kevin E
2008-01-01
Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors. PMID:18456721
Mattioli, S; Imberti, L; Stellini, R; Primi, D
1995-09-01
Hepatitis A virus (HAV) is a positive-strand RNA virus with a genome length of approximately 7,480 nucleotides. Although HAV morphogenesis is thought to be similar to that of poliovirus, the prototype picornavirus, the complete characterization of the antigenic structure of this virus remains elusive. All the available evidences, however, support the existence, on HAV virions and empty capsids, of an immunodominant neutralization antigenic site which is conformation dependent and whose structure involves residues of both VP1 and VP3 capsid proteins. This particular feature and the difficulty of obtaining high virus yield in tissue cultures make HAV an ideal target for developing synthetic peptides that simulate the structure of its main antigenic determinant. To this end we utilized, in the present work, the divide-couple-recombine approach to generate a random library composed of millions of different hexapeptides. This vast library was screened with a well-characterized anti-HAV monoclonal antibody. By this strategy we identified a peptide that reacted specifically with monoclonal and polyclonal anti-HAV antibodies and, in mice, induced a specific anti-virus immune response. Furthermore, the peptide could also be used in an enzyme-linked immunosorbent assay for revealing a primary immunoglobulin M immune response in sera of acutely infected human patients. Interestingly, no sequence homology was found between the identified peptide and the HAV capsid proteins VP1 and VP3. Collectively, these data represent an additional important paradigm of a mimotope capable of mimicking an antigenic determinant with unknown tertiary structure.
Moonens, Kristof; Van den Broeck, Imke; De Kerpel, Maia; Deboeck, Francine; Raymaekers, Hanne; Remaut, Han; De Greve, Henri
2015-03-27
Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Vitved, L; Holmskov, U; Koch, C; Teisner, B; Hansen, S; Salomonsen, J; Skjødt, K
2000-09-01
Mannose-binding lectin (MBL) participates in the innate immune system as an activator of the complement system and as an opsonin after binding to certain carbohydrate structures on microorganisms. We isolated and characterized cDNA transcripts encoding an MBL homologue from three members of the carp family Cyprinidae, the zebrafish Danio rerio, the goldfish Carassius auratus, and the carp Cyprinus carpio. The carp and zebrafish transcripts contain two polyadenylation sites and RT-PCR on mRNA from carp tissues revealed the carp transcript to be most prominently expressed in the spleen. The deduced mature proteins contain 228 or 233 amino acids with a short N-terminal segment containing a single conserved cysteine expected to form interchain disulfide bridges, a collagen domain interrupted by four amino acids between two glycine residues, a neck region predicted to form an alpha-helical coiled-coil structure, and a C-terminal carbohydrate recognition domain (CRD). Several of the structurally important residues in the CRD are conserved, but the residues known to interact with the calcium ion and hydroxyl groups of the carbohydrate ligand are different. The amino acid motif EPN, important for mannose specificity, was QPD in the Cyprinidae homologue, suggesting specificity for galactose instead. The identity between the deduced amino acid sequences is more than 90% between the carp and the goldfish and 68% and 65% between these two species, respectively, and the zebrafish. The identity with bird and mammalian MBLs ranges from 28 to 33%.
Oh, Won-Jong; Gu, Chenghua
2013-10-16
Nerves and vessels often run parallel to one another, a phenomenon that reflects their functional interdependency. Previous studies have suggested that neurovascular congruency in planar tissues such as skin is established through a "one-patterns-the-other" model, in which either the nervous system or the vascular system precedes developmentally and then instructs the other system to form using its established architecture as a template. Here, we find that, in tissues with complex three-dimensional structures such as the mouse whisker system, neurovascular congruency does not follow the previous model but rather is established via a mechanism in which nerves and vessels are patterned independently. Given the diversity of neurovascular structures in different tissues, guidance signals emanating from a central organizer in the specific target tissue may act as an important mechanism to establish neurovascular congruency patterns that facilitate unique target tissue function. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ankri, Rinat; Fixler, Dror
2017-07-01
Optical imaging is a powerful tool for investigating the structure and function of tissues. Tissue optical imaging technologies are generally discussed under two broad regimes: microscopic and macroscopic, while the latter is widely investigated in the field of light-tissue interaction. Among the developed optical technologies for tissue investigation, the diffusion reflectance (DR) method is a simple and safe technology. However, this method suffers from low specificity and low signal-to-noise ratio, so the extraction of the tissue properties is not an easy task. In this review, we describe the use of gold nanorods (GNRs) in DR spectroscopy. The GNRs present unique optical properties which enhance the scattering and absorption properties of a tissue. The GNRs can be easily targeted toward abnormal sites in order to improve the DR signal and to distinguish between the healthy and the abnormal sites in the tissue, with high specificity. This article describes the use of the DR-GNRs method for the detection of cancer and atherosclerosis, from light transfer theory, through the extraction of the tissue properties using the diffusion theory and up to DR in vivo measurements.
[Herpes simplex virus and malignancies of female genital organs].
Cokić-Damjanović, J; Horvat, E; Balog, A
2001-01-01
Primary herpes simplex virus (HSV) infections of female genital tract usually end with remission, while the virus remains in the organism--almost in the sacral ganglion in a latent form, protected from humoral and cellular immunity. Stress induces the virus and the result is recurrent genital infection. Frequent exacerbations damage some parts of vital cellular structures without cytolysis, but stimulate malignant transformations. Vulvar (portio vaginalis uteri) and endometrial tumor tissue samples were analyzed for HSV by direct and indirect fluorescent antibody technique (FAT). Pre and postoperative sera samples were analyzed for presence of anti-HSV antibodies--IgM and IgG by Elisa-Enzygnost method. Acellular filtrates obtained by ultrasonic destruction of malignant tissues were used as inoculum for rabbit corneal scarification. Out of 63 tissue samples, 42 were positive for HSV antigen i.e. 67.3%. According to location 50% of vulvar, 76% PVU and 65% of endometrial tissues were positive. This antigen induces production of virus specific antibodies. Two types of antigens are known: the so-called T-antigen persisting in the cell nucleus and cell-surface antigen--product of the viral genome and can be evidenced by immunofluorescence method. Anti HSV antibodies were present in 63 preoperative serum samples and belonged to IgG group, but not one to IgM, implying a long and chronic course of infection excluding acute primary. Out of 38 postoperative serums the titer of antibodies decreased in 36 evidently, but in two samples remained unchanged. Two samples of endometrial and one from PVU origin contained HSV antigen type one. In the remaining 16 samples HSV 2 antigen was present. Rabbit corneal scarification was the proof of complete infectious virus in malignant tissues. Acellular filtrate of malignant tissues served as inoculum. Corneas of examined rabbits showed a mild inflammation after 24 hours which disappeared in the next 24 hours. We could not isolate the infectious virus by rabbit corneal scarification. Instead of herpetic changes, mild inflammation was evident. This abortive, incomplete symptomatology was probably caused by nonstructural early protein, which is a product of viral genome incorporated in malignant cells. On the basis of our results, we can conclude that HSV can have, beside other factors, a very important, maybe an initial role in development of malignant changes of female genital tract, not only on vulva and PVU, but on endometrium as well. HSV I can cause genital infections and have some role in malignant changes as well as HSV 2. However, complete infective virion couldn't be isolated from malignant tissues.
Preparation of positional renal slices for study of cell-specific toxicity.
Ruegg, C E; Gandolfi, A J; Nagle, R B; Krumdieck, C L; Brendel, K
1987-04-01
To reduce structural complexity, rabbit kidneys were sliced perpendicular to their cortical-papillary axis to isolate four distinct cell groupings. This positional orientation allows identification of each renal cell type based on its location within the slice. A mechanical slicer was used to make several precision-cut slices rapidly from an oriented cylindrical core of renal tissue, with minimal tissue trauma. Slices were then submerged under a gently circulating oxygenated media in a fritted glass support system that maintains viability (intracellular K+/DNA ratio) and structural integrity (histology) for at least 30 h. A high dose of mercuric chloride (10(-3) M) was used to demonstrate the structural and biochemical changes of intoxicated slices. This method provides a controlled subchronic in vitro system for the study of the individual cell types involved in cell-specific renal toxicities and may also be a useful tool for addressing other pharmacological and physiological research questions.
VIRUS-SPECIFIC POLYSOMES IN CELLS INFECTED WITH THE VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS,
VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS, *RIBOSOMES, *TISSUE CULTURE CELLS, RIBOSOMES, GROWTH(PHYSIOLOGY), INFECTIOUS DISEASES, ARBOVIRUSES, VIRUSES, NUCLEIC ACIDS, BIOSYNTHESIS, USSR, MOLECULAR STRUCTURE.
Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian
2017-10-01
Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.
2013-01-01
Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138
Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs.
Moyron-Quiroz, Juan E; Rangel-Moreno, Javier; Hartson, Louise; Kusser, Kim; Tighe, Michael P; Klonowski, Kimberly D; Lefrançois, Leo; Cauley, Linda S; Harmsen, Allen G; Lund, Frances E; Randall, Troy D
2006-10-01
Secondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs. We found that influenza-specific CD8 cells in the lung acquired a memory phenotype, underwent homeostatic proliferation, recirculated through nonlymphoid tissues, and responded to and cleared a challenge infection in the complete absence of SLOs. Similarly, influenza-specific virus-neutralizing antibody was generated and maintained in the absence of SLOs. Inducible bronchus-associated lymphoid tissue (iBALT) was also formed in the lungs of previously infected mice and may provide a niche for the maintenance of memory cells at the local level. These data show that SLOs are dispensable for the maintenance of immunologic memory and directly demonstrate the utility of local tissues, such as iBALT, in secondary immune responses.
NASA Astrophysics Data System (ADS)
Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.
2013-04-01
Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.
Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology
Bodle, Josephine C.; Hanson, Ariel D.
2011-01-01
This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267
Miners, Andrew L.; Bougie, Tracy L.
2011-01-01
Objective To describe the subjective pain and functional improvements of a patient with chronic Achilles tendinopathy following a treatment plan incorporating active and passive tissue warm-up, followed respectively by soft tissue mobilization utilizing both Graston Technique® and Active Release Techniques®, eccentric exercise, and static stretching in combination with cryotherapy. Background The primary characterization of chronic Achilles tendinopathy is gradual onset of pain and dysfunction focused in one or both Achilles tendons arising secondary to a history of repetitive use or excessive overload. Intervention and Outcome Conservative treatment is commonly the initial strategy for patient management. Tissue heating, soft tissue mobilization, eccentric training, and static stretching with cryotherapy were implemented to reduce pain and improve function. Summary A specific protocol of heat, soft tissue mobilization, eccentric exercise, stretching, and cryotherapy appeared to facilitate a rapid and complete recovery from chronic Achilles tendinopathy. PMID:22131563
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Dynamic landscape and regulation of RNA editing in mammals
Tan, Meng How; Li, Qin; Shanmugam, Raghuvaran; Piskol, Robert; Kohler, Jennefer; Young, Amy N.; Liu, Kaiwen Ivy; Zhang, Rui; Ramaswami, Gokul; Ariyoshi, Kentaro; Gupte, Ankita; Keegan, Liam P.; George, Cyril X.; Ramu, Avinash; Huang, Ni; Pollina, Elizabeth A.; Leeman, Dena S.; Rustighi, Alessandra; Sharon Goh, Y. P.; Chawla, Ajay; Del Sal, Giannino; Peltz, Gary; Brunet, Anne; Conrad, Donald F.; Samuel, Charles E.; O’Connell, Mary A.; Walkley, Carl R.; Nishikura, Kazuko; Li, Jin Billy
2017-01-01
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules1. Although many editing sites have recently been discovered2–7, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood8–10. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing. PMID:29022589
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...
2016-05-26
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Dynamic landscape and regulation of RNA editing in mammals.
Tan, Meng How; Li, Qin; Shanmugam, Raghuvaran; Piskol, Robert; Kohler, Jennefer; Young, Amy N; Liu, Kaiwen Ivy; Zhang, Rui; Ramaswami, Gokul; Ariyoshi, Kentaro; Gupte, Ankita; Keegan, Liam P; George, Cyril X; Ramu, Avinash; Huang, Ni; Pollina, Elizabeth A; Leeman, Dena S; Rustighi, Alessandra; Goh, Y P Sharon; Chawla, Ajay; Del Sal, Giannino; Peltz, Gary; Brunet, Anne; Conrad, Donald F; Samuel, Charles E; O'Connell, Mary A; Walkley, Carl R; Nishikura, Kazuko; Li, Jin Billy
2017-10-11
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
Microstructure based hygromechanical modelling of deformation of fruit tissue
NASA Astrophysics Data System (ADS)
Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.
2017-10-01
Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.
Co-expression networks reveal the tissue-specific regulation of transcription and splicing.
Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis
2017-11-01
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.
Evans, Conor L; Potma, Eric O; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P; Xie, X Sunney
2005-11-15
Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by combining coherent anti-Stokes Raman scattering (CARS) with video-rate microscopy. Backscattering of the intense forward-propagating CARS radiation in tissue gives rise to a strong epi-CARS signal that makes in vivo imaging possible. This substantially large signal allows for real-time monitoring of dynamic processes, such as the diffusion of chemical compounds, in tissues. By tuning into the CH(2) stretching vibrational band, we demonstrate CARS imaging and spectroscopy of lipid-rich tissue structures in the skin of a live mouse, including sebaceous glands, corneocytes, and adipocytes, with unprecedented contrast at subcellular resolution.
Alkema, Nicolette G; Tomar, Tushar; Duiker, Evelien W; Jan Meersma, Gert; Klip, Harry; van der Zee, Ate G J; Wisman, G Bea A; de Jong, Steven
2015-10-06
Using patient-derived xenografts (PDXs) for preclinical cancer research demands proper storage of tumour material to facilitate logistics and to reduce the number of animals needed. We successfully established 45 subcutaneous ovarian cancer PDXs, reflecting all histological subtypes, with an overall take rate of 68%. Corresponding cells from mouse replaced human tumour stromal and endothelial cells in second generation PDXs as demonstrated with mouse-specific vimentin and CD31 immunohistochemical staining. For biobanking purposes two cryopreservation methods, a fetal calf serum (FCS)-based (95%v/v) "FCS/DMSO" protocol and a low serum-based (10%v/v) "vitrification" protocol were tested. After primary cryopreservation, tumour take rates were 38% and 67% using either the vitrification or FCS/DMSO-based cryopreservation protocol, respectively. Cryopreserved tumour tissue of established PDXs achieved take rates of 67% and 94%, respectively compared to 91% using fresh PDX tumour tissue. Genotyping analysis showed that no changes in copy number alterations were introduced by any of the biobanking methods. Our results indicate that both protocols can be used for biobanking of ovarian tumour and PDX tissues. However, FCS/DMSO-based cryopreservation is more successful. Moreover, primary engraftment of fresh patient-derived tumours in mice followed by freezing tissue of successfully established PDXs is the preferred way of efficient ovarian cancer PDX biobanking.
Comparative study of the primary cilia in thyrocytes of adult mammals
Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I
2015-01-01
Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270
Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells
NASA Technical Reports Server (NTRS)
Towmey, J. J.
1976-01-01
Some immune response are effected through immunoglobulins (Ig), of which five classes have been recognized, namely, IgA, IgD, IgE, IgG, and IgM. Auto-antibodies associated with rheumatoid arthritis, termed rheumatoid factors (RF) react with antigenic determinants on IgG heavy chains. RF has predominant but not complete IgM specificity. This auto-antibody response was not detected in treated patients with primary brain tumors (where tissue is sequestered from the immune system by an intact bloodbrain barrier) or with multiple myeloma where humoral immunity is usually impaired. In addition, the prevalence of RF is not increased with solid tumors prior to initiation of chemotherapy or radiotherapy. It is proposed that RF is related to prior chemotherapy or radiotherapy of tumors anatomically accessible to immunologic tissues capable of antibody responses. A primary IgG response occurs, antigen-antibody complexes form, complexed IgG becomes immunologic, and an RF response results.
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
Chromatin Immunoprecipitation in Early Mouse Embryos.
García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel
2018-01-01
Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.
NASA Astrophysics Data System (ADS)
Duer, Melinda J.
2015-04-01
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Zeng, Meijuan; Ximenes, Eduardo; Ladisch, Michael R; Mosier, Nathan S; Vermerris, Wilfred; Huang, Chia-Ping; Sherman, Debra M
2012-02-01
Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind < leaves < pith with 90% conversion of cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. Copyright © 2011 Wiley Periodicals, Inc.
A review of rapid prototyping techniques for tissue engineering purposes.
Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna
2008-01-01
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
[Cytochemical localization and properties of selected nucleolytic enzymes].
Sierakowska, Halina
2015-01-01
In the article there are shortly outlined studies on cytochemical localization of selected nucleolytic enzymes carried out between 1957-1986 by David Shugar and his coworkers. The histochemical localization of several nucleolytic enzymes in animal and plant tissues was determined by synthesis of specific substrates, alpha-naphthyl esters of 5'- and 3'-nucleotides and their derivatives. In rat tissues phosphodiesterase I was localized in the plasma membrane whereas phosphodiesterase II in the lizosomes, reflecting their physiological roles. The localization of pancreatic type ribonuclease in animal tissues was determined, indicating its role in extracellular digestion. Plant nucleotide pyrophosphatase was localized in several tissues, purified to near homogeneity from potato tubers and its properties and substrate specificity were determined. Application of this enzyme for removal of m7GMP from the "cap" of eukaryotic mRNA allowed to elucidate the role of "cap" in mRNA binding to ribosomes in the process of translation. Furthermore, cyclic nucleotide phosphodiesterase was isolated from potato tubers and its physicochemical properties, oligomeric structure and substrate specificity were elucidated.
Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori
2009-01-01
We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.
Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37
Bennici, Carmelo; Quatrini, Paola; Catania, Valentina; Mazzola, Salvatore; Ghersi, Giulio; Cuttitta, Angela
2015-01-01
Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended. PMID:26162075
Furtner, J; Schöpf, V; Preusser, M; Asenbaum, U; Woitek, R; Wöhrer, A; Hainfellner, J A; Wolfsberger, S; Prayer, D
2014-05-01
Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n=22) and PCNSL (n=8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p=0.011) and ITSS (p=0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Experimental evaluation of multiscale tendon mechanics.
Fang, Fei; Lake, Spencer P
2017-07-01
Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Park, Christopher Y.; Krishnan, Arjun; Zhu, Qian; Wong, Aaron K.; Lee, Young-Suk; Troyanskaya, Olga G.
2015-01-01
Motivation: Leveraging the large compendium of genomic data to predict biomedical pathways and specific mechanisms of protein interactions genome-wide in metazoan organisms has been challenging. In contrast to unicellular organisms, biological and technical variation originating from diverse tissues and cell-lineages is often the largest source of variation in metazoan data compendia. Therefore, a new computational strategy accounting for the tissue heterogeneity in the functional genomic data is needed to accurately translate the vast amount of human genomic data into specific interaction-level hypotheses. Results: We developed an integrated, scalable strategy for inferring multiple human gene interaction types that takes advantage of data from diverse tissue and cell-lineage origins. Our approach specifically predicts both the presence of a functional association and also the most likely interaction type among human genes or its protein products on a whole-genome scale. We demonstrate that directly incorporating tissue contextual information improves the accuracy of our predictions, and further, that such genome-wide results can be used to significantly refine regulatory interactions from primary experimental datasets (e.g. ChIP-Seq, mass spectrometry). Availability and implementation: An interactive website hosting all of our interaction predictions is publically available at http://pathwaynet.princeton.edu. Software was implemented using the open-source Sleipnir library, which is available for download at https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org. Contact: ogt@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25431329
Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules
Faure, Andre J.; Schmidt, Dominic; Watt, Stephen; Schwalie, Petra C.; Wilson, Michael D.; Xu, Huiling; Ramsay, Robert G.; Odom, Duncan T.; Flicek, Paul
2012-01-01
The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein–DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels. PMID:22780989
Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E
2015-09-01
Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. © International & American Associations for Dental Research 2015.
Functional MRI registration with tissue-specific patch-based functional correlation tensors.
Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang
2018-06-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.
Proof of the quantitative potential of immunofluorescence by mass spectrometry.
Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L
2017-03-01
Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes
NASA Astrophysics Data System (ADS)
Liu, Chunyan; Qi, Yifei; Qiao, Ruirui; Hou, Yi; Chan, Kaying; Li, Ziqian; Huang, Jiayi; Jing, Lihong; Du, Jun; Gao, Mingyuan
2016-06-01
Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation.Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation. Electronic supplementary information (ESI) available: (1) Molecular structure of Jeffamine-modified FA; (2) immunohistochemical analysis of FR expression in the colorectal tissue derived from mice treated with NaCl at different weeks; (3) biodistributions of probes of NP-FA and NP-IgG in the main organs of mice. See DOI: 10.1039/c5nr07858j
Freed, Christopher R; Hansberry, Shantisha T; Arrieta, Martha I
2013-09-01
To examine a local primary health care infrastructure and the reality of primary health care from the perspective of residents of a small, urban community in the southern United States. Data derive from 13 semi-structured focus groups, plus three semi-structured interviews, and were analyzed inductively consistent with a grounded theory approach. Structural barriers to the local primary health care infrastructure include transportation, clinic and appointment wait time, and co-payments and health insurance. Hidden barriers consist of knowledge about local health care services, non-physician gatekeepers, and fear of medical care. Community residents have used home remedies and the emergency department at the local academic medical center to manage these structural and hidden barriers. Findings might not generalize to primary health care infrastructures in other communities, respondent perspectives can be biased, and the data are subject to various interpretations and conceptual and thematic frameworks. Nevertheless, the structural and hidden barriers to the local primary health care infrastructure have considerably diminished the autonomy community residents have been able to exercise over their decisions about primary health care, ultimately suggesting that efforts concerned with increasing the access of medically underserved groups to primary health care in local communities should recognize the centrality and significance of power. This study addresses a gap in the sociological literature regarding the impact of specific barriers to primary health care among medically underserved groups.
Lahiani, Amal; Klaiman, Eldad; Grimm, Oliver
2018-01-01
Context: Medical diagnosis and clinical decisions rely heavily on the histopathological evaluation of tissue samples, especially in oncology. Historically, classical histopathology has been the gold standard for tissue evaluation and assessment by pathologists. The most widely and commonly used dyes in histopathology are hematoxylin and eosin (H&E) as most malignancies diagnosis is largely based on this protocol. H&E staining has been used for more than a century to identify tissue characteristics and structures morphologies that are needed for tumor diagnosis. In many cases, as tissue is scarce in clinical studies, fluorescence imaging is necessary to allow staining of the same specimen with multiple biomarkers simultaneously. Since fluorescence imaging is a relatively new technology in the pathology landscape, histopathologists are not used to or trained in annotating or interpreting these images. Aims, Settings and Design: To allow pathologists to annotate these images without the need for additional training, we designed an algorithm for the conversion of fluorescence images to brightfield H&E images. Subjects and Methods: In this algorithm, we use fluorescent nuclei staining to reproduce the hematoxylin information and natural tissue autofluorescence to reproduce the eosin information avoiding the necessity to specifically stain the proteins or intracellular structures with an additional fluorescence stain. Statistical Analysis Used: Our method is based on optimizing a transform function from fluorescence to H&E images using least mean square optimization. Results: It results in high quality virtual H&E digital images that can easily and efficiently be analyzed by pathologists. We validated our results with pathologists by making them annotate tumor in real and virtual H&E whole slide images and we obtained promising results. Conclusions: Hence, we provide a solution that enables pathologists to assess tissue and annotate specific structures based on multiplexed fluorescence images. PMID:29531846
Lahiani, Amal; Klaiman, Eldad; Grimm, Oliver
2018-01-01
Medical diagnosis and clinical decisions rely heavily on the histopathological evaluation of tissue samples, especially in oncology. Historically, classical histopathology has been the gold standard for tissue evaluation and assessment by pathologists. The most widely and commonly used dyes in histopathology are hematoxylin and eosin (H&E) as most malignancies diagnosis is largely based on this protocol. H&E staining has been used for more than a century to identify tissue characteristics and structures morphologies that are needed for tumor diagnosis. In many cases, as tissue is scarce in clinical studies, fluorescence imaging is necessary to allow staining of the same specimen with multiple biomarkers simultaneously. Since fluorescence imaging is a relatively new technology in the pathology landscape, histopathologists are not used to or trained in annotating or interpreting these images. To allow pathologists to annotate these images without the need for additional training, we designed an algorithm for the conversion of fluorescence images to brightfield H&E images. In this algorithm, we use fluorescent nuclei staining to reproduce the hematoxylin information and natural tissue autofluorescence to reproduce the eosin information avoiding the necessity to specifically stain the proteins or intracellular structures with an additional fluorescence stain. Our method is based on optimizing a transform function from fluorescence to H&E images using least mean square optimization. It results in high quality virtual H&E digital images that can easily and efficiently be analyzed by pathologists. We validated our results with pathologists by making them annotate tumor in real and virtual H&E whole slide images and we obtained promising results. Hence, we provide a solution that enables pathologists to assess tissue and annotate specific structures based on multiplexed fluorescence images.
Engineering complex orthopaedic tissues via strategic biomimicry.
Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H
2015-03-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.
Engineering Complex Orthopaedic Tissues via Strategic Biomimicry
Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.
2014-01-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration. PMID:25465616
A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
Engelmayr, George C; Sacks, Michael S
2006-08-01
The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.
Allele Compensation in Tip60+/− Mice Rescues White Adipose Tissue Function In Vivo
Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric
2014-01-01
Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/− mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/− mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/− displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/− mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice. PMID:24870614
Hayashi, Masamichi; Guerrero-Preston, Rafael; Sidransky, David; Koch, Wayne M.
2015-01-01
Molecular deep surgical margin analysis has been shown to predict locoregional recurrences of head and neck squamous cell carcinoma (HNSCC). In order to improve the accuracy and versatility of the analysis, we used a highly tumor-specific methylation marker and highly sensitive detection technology to test DNA from surgical margins. Histologically cancer-negative deep surgical margin samples were prospectively collected from 82 eligible HNSCC surgeries by an imprinting procedure (n=75) and primary tissue collection (n=70). Bisulfite treated DNA from each sample was analyzed by both conventional quantitative methylation-specific polymerase chain reaction (QMSP) and QMSP by droplet digital PCR (ddQMSP) targeting PAX5 gene promoter methylation. The association between the presence of PAX5 methylation and locoregional recurrence free survival (LRFS) was evaluated. PAX5 methylation was found in 68.0% (51/75) of tumors in the imprint samples and 71.4% (50/70) in the primary tissue samples. Among cases which did not have postoperative radiation, (n=31 in imprint samples, n=29 in tissue samples), both conventional QMSP and ddQMSP revealed that PAX5 methylation positive margins was significantly associated with poor LRFS by univariate analysis. In particular, ddQMSP increased detection of the PAX5 marker from 29% to 71% in the non-radiated imprint cases. Also, PAX5 methylated imprint margins were an excellent predictor of poor LRFS (HR=3.89, 95%CI:1.19-17.52, P=0.023) by multivariate analysis. PAX5 methylation appears to be an excellent tumor-specific marker for molecular deep surgical margin analysis of HNSCC. Moreover, the ddQMSP assay displays increased sensitivity for methylation marker detection. PMID:26304463
Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L
2000-08-25
Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.
Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.
2013-01-01
Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852
Bryant, Stephanie J; Vernerey, Franck J
2018-01-01
Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
In this research, a novel method of fresh bruise detection was developed using a structured illumination reflectance imaging (SIRI) system. The SIRI system projects sinusoidal patterns of illumination onto samples, and image demodulation is then used to recover depth-specific information through var...
Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-09-01
The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation‑specific PCR, semi‑quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3‑methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC.
McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.
2012-01-01
Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190
ERIC Educational Resources Information Center
Roring, Catherine Mary
2013-01-01
Many risk factors have been identified for children entering Kindergarten. Many at-risk children eventually get classified as having a Specific Learning disability. Some of these risk factors include having a primary home language other than English (Hosp & Reschly, 2004), having non-intact families (Pong, 1997), being of minority status…
Luo, Zhongli; Zhang, Shuguang
2012-07-07
Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.
A recombinant fungal lectin for labeling truncated glycans on human cancer cells.
Audfray, Aymeric; Beldjoudi, Mona; Breiman, Adrien; Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne
2015-01-01
Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.
A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells
Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne
2015-01-01
Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789
Murine Electrophysiological Models of Cardiac Arrhythmogenesis
2016-01-01
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512
Salihbegović, Adis; Clark, John; Sarajlić, Nermin; Radović, Svjetlana; Finlay, Finlay; Jogunčić, Anes; Spahić, Emina; Tuco, Vedo
2018-04-18
The Tomašica grave-site near Prijedor in the north of Bosnia is reported to be the largest primary mass grave discovered thus far relating to the 1992-95 war. A total of 275 complete bodies and 125 body parts were exhumed from it in 2013. Post mortem examinations of the victims showed that nearly all had died from gunshot injuries but an additional striking feature was the degree of preservation of many of the bodies, even 21 years on, with skin, soft tissues and internal organs still present in abundance and gross structures clearly identifiable. Histology was performed on 68 samples of soft tissue from a total 13 bodies, on both skin and internal organs, and the degree of preservation was assessed in terms of the ability to recognize microscopic structure. Further comparison was made with samples taken a month or so later (56 tissue samples from 9 bodies, all but one different from the first group), after the bodies had been covered in salt as a means of general preservation. Generally, at a microscopic level, skin and subcutaneous tissues were better preserved than internal organs, while tissues sampled at the time of autopsy were better preserved than those sampled weeks later.
HISTOPATHOLOGICAL EFFECTS IN MICE OF HETEROLOGOUS ANTILYMPHOCYTE SERUM
Taub, Robert N.; Lance, Eugene M.
1968-01-01
The effects of heterologous rabbit anti-mouse lymphocyte antiserum on the morphology of lymphoid and other tissues was investigated in CBA mice. The lymphoid tissues exhibited characteristic changes specific for ALS treatment, which were an invariable accompaniment to its immunosuppressive effects. These consisted of peripheral lymphopenia occurring at some time during a course of ALS treatment and persistent depletion of small lymphocytes in lymph node paracortical areas and splenic follicular periarteriolar zones. The thymic histology was generally well preserved. It is suggested that the relevant lesions reflect a rapid depletion of the pool of recirculating lymphocytes, possibly by a primary cytotoxic effect exerted on cells peripheral to lymphoid tissue. Other histologic features attendant to the administration of ALS were accounted for as consequences of immunization of ALS recipients to rabbit serum constituents or by the deleterious effects of antibodies directed against tissues other than lymphoid cells. PMID:5688077
Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).
Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G
1992-01-01
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562
Final acceptance testing of the LSST monolithic primary/tertiary mirror
NASA Astrophysics Data System (ADS)
Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu
2014-07-01
The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.
[Chromosome variability in the tissue culture of rare Gentiana species].
Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A
2008-01-01
Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.
Force transmission in epithelial tissues.
Vasquez, Claudia G; Martin, Adam C
2016-03-01
In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.
Gao, Shegan; Liang, Shuo; Ding, Kaili; Qu, Zhifeng; Wang, Ying; Feng, Xiaoshan
2016-06-01
Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death. Copyright © 2016 Elsevier B.V. All rights reserved.
Three Dimensional Primary Hepatocyte Culture
NASA Technical Reports Server (NTRS)
Yoffe, Boris
1998-01-01
Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.
Imaging of juvenile idiopathic arthritis. Part I: Clinical classifications and radiographs
Matuszewska, Genowefa; Gietka, Piotr; Płaza, Mateusz; Walentowska-Janowicz, Marta
2016-01-01
Juvenile idiopathic arthritis is the most common autoimmune systemic disease of the connective tissue affecting individuals at the developmental age. Radiography is the primary modality employed in the diagnostic imaging in order to identify changes typical of this disease entity and rule out other bone-related pathologies, such as neoplasms, posttraumatic changes, developmental defects and other forms of arthritis. The standard procedure involves the performance of comparative joint radiographs in two planes. Radiographic changes in juvenile idiopathic arthritis are detected in later stages of the disease. Bone structures are assessed in the first place. Radiographs can also indirectly indicate the presence of soft tissue inflammation (i.e. in joint cavities, sheaths and bursae) based on swelling and increased density of the soft tissue as well as dislocation of fat folds. Signs of articular cartilage defects are also seen in radiographs indirectly – based on joint space width changes. The first part of the publication presents the classification of juvenile idiopathic arthritis and discusses its radiographic images. The authors list the affected joints as well as explain the spectrum and specificity of radiographic signs resulting from inflammatory changes overlapping with those caused by the maturation of the skeletal system. Moreover, certain dilemmas associated with the monitoring of the disease are reviewed. The second part of the publication will explain issues associated with ultrasonography and magnetic resonance imaging, which are more and more commonly applied in juvenile idiopathic arthritis for early detection of pathological features as well as the disease complications. PMID:27679726
NASA Technical Reports Server (NTRS)
Fredieu, J. R.; Cui, Y.; Maier, D.; Danilchik, M. V.; Christian, J. L.
1997-01-01
When Xenopus gastrulae are made to misexpress Xwnt-8, or are exposed to lithium ions, they develop with a loss of anterior structures. In the current study, we have characterized the neural defects produced by either Xwnt-8 or lithium and have examined potential cellular mechanisms underlying this anterior truncation. We find that the primary defect in embryos exposed to lithium at successively earlier stages during gastrulation is a progressive rostral to caudal deletion of the forebrain, while hindbrain and spinal regions of the CNS remain intact. Misexpression of Xwnt-8 during gastrulation produces an identical loss of forebrain. Our results demonstrate that lithium and Wnts can act upon either prospective neural ectodermal cells, or upon dorsal mesodermal cells, to cause a loss of anterior pattern. Specifically, ectodermal cells isolated from lithium- or Wnt-exposed embryos are unable to form anterior neural tissue in response to inductive signals from normal dorsal mesoderm. In addition, although dorsal mesodermal cells from lithium- or Wnt-exposed embryos are specified properly, and produce normal levels of the anterior neural inducing molecules noggin and chordin, they show a greatly reduced capacity to induce anterior neural tissue in conjugated ectoderm. Taken together, our results are consistent with a model in which Wnt- or lithium-mediated signals can induce either mesodermal or ectodermal cells to produce a dominant posteriorizing morphogen which respecifies anterior neural tissue as posterior.
de Laurentiis, Annamaria; Gaspari, Marco; Palmieri, Camillo; Falcone, Cristina; Iaccino, Enrico; Fiume, Giuseppe; Massa, Ornella; Masullo, Mariorosario; Tuccillo, Franca Maria; Roveda, Laura; Prati, Ubaldo; Fierro, Olga; Cozzolino, Immacolata; Troncone, Giancarlo; Tassone, Pierfrancesco; Scala, Giuseppe; Quinto, Ileana
2011-01-01
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100–120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis. PMID:21372249
Materials Engineering by Ameloblasts
2015-01-01
Enamel is unique. It is the only epithelial-derived mineralized tissue in mammals and has a distinct micro- and nanostructure with nanofibrous apatite crystals as building blocks. It is synthesized by a highly specialized cell, the ameloblast, which secretes matrix proteins with little homology to any other known amino acid sequence, but which is composed of a primary structure that makes it competent to self-assemble and control apatite crystal growth at the nanometer scale. The end-product of ameloblast activity is a marvel of structural engineering: a material optimized to provide the tooth with maximum biting force, withstanding millions of cycles of loads without catastrophic failure, while also protecting the dental pulp from bacterial attack. This review attempts to bring into context the mechanical behavior of enamel with the developmental process of amelogenesis and structural development, since they are linked to tissue function, and the importance of controlling calcium phosphate mineralization at the nanometer scale. The origins of apatite nanofibers, the development of a stiffness gradient, and the biological processes responsible for the synthesis of a hard and fracture-resistant dental tissue are discussed with reference to the evolution of enamel from a fibrous composite to a complex, tough, and damage-tolerant coating on dentin. PMID:25800708
Ventura, P; Toullec, G; Fricano, C; Chapron, L; Meunier, V; Röttinger, E; Furla, P; Barnay-Verdier, S
2018-04-01
In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.
Dolmans, M M; Iwahara, Y; Donnez, J; Soares, M; Vaerman, J L; Amorim, C A; Poirel, H
2016-10-01
What is the risk of finding malignant cells in cryopreserved ovarian tissue from sarcoma patients? Minimal disseminated disease (MDD) was not detected in frozen-thawed ovarian tissue from 26 patients by any of the sensitive methods applied. In case of leukemia, the risk of malignant cell transmission through the graft is well known and widely documented. However, for bone cancer, like Ewing sarcoma or osteosarcoma, only a small number of case reports, have been published. These cancers often affect prepubertal girls, in whom ovarian tissue cryopreservation and transplantation is the only option to preserve fertility. The presence of malignant cells in cryopreserved ovarian tissue from patients with bone/soft tissue sarcoma was investigated with disease-specific markers for each patient, using immunohistochemistry (IHC), FISH and real-time quantitative RT-PCR (qPCR), with the original tumor serving as a positive control. Forty-eight sarcoma patients were enrolled in the study, 12 of whom subsequently died. In each case, tissue from the primary tumor was investigated in order to identify markers (immunohistochemical and/or molecular) to analyze the ovarian tissue case by case. Ovarian tissue from osteosarcoma (n = 15), liposarcoma (n = 1) and undifferentiated sarcoma (n = 5) patients could not be evaluated, as no specific markers were detected by FISH or sensitive IHC in any of their primary tumoral tissue. One patient with Li-Fraumeni syndrome was also excluded from the study. IHC analyses were therefore performed on ovarian tissue from 26 patients and qPCR on 19. The primary tumors involved were Ewing sarcoma family of tumors (n = 14), rhabdomyosarcoma (n = 7), synovial sarcoma (n = 2), clear cell sarcoma (n = 2) and a malignant peripheral nerve sheath tumor (n = 1). MDD was not detected in any of the 26 analyzed samples using sensitive techniques in this largest reported series, even from patients who subsequently died and/or those who presented with metastasis (11/26), hence the most aggressive forms of bone cancer. Indeed, anti-CD99 IHC and PCR performed on patients presenting with Ewing sarcoma family of tumors (n = 14) was negative in all cases. In patients with soft tissue sarcoma (n = 12) primitive tumor markers were detected by IHC and were negative in ovarian tissue. PCR could only be performed in 6/12 of these patients, again proving negative. Cryopreserved ovarian fragments to be transplanted cannot be tested, so this analysis of malignant cells cannot guarantee that all cryopreserved fragments will not contain any disseminated disease. Moreover, molecular markers are not readily available for all types of tumors. These results are reassuring regarding the risk of malignant cells in the ovary for transplantation, as the study involves a large series including different types of sarcomas. We believe this will help clinicians in their patient counseling for fertility preservation and restoration. This work was supported by the Fonds National de la Recherche Scientifique de Belgique-FNRS under Grants Nos 7.4578.14 (Télévie to MS) and 5/4/150/5 to MMD. The authors declare no competing financial interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J
2018-04-05
Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.
3D printing process of oxidized nanocellulose and gelatin scaffold.
Xu, Xiaodong; Zhou, Jiping; Jiang, Yani; Zhang, Qi; Shi, Hongcan; Liu, Dongfang
2018-08-01
For tissue engineering applications tissue scaffolds need to have a porous structure to meet the needs of cell proliferation/differentiation, vascularisation and sufficient mechanical strength for the specific tissue. Here we report the results of a study of the 3D printing process for composite materials based on oxidized nanocellulose and gelatin, that was optimised through measuring rheological properties of different batches of materials after different crosslinking times, simulation of the pneumatic extrusion process and 3D scaffolds fabrication with Solidworks Flow Simulation, observation of its porous structure by SEM, measurement of pressure-pull performance, and experiments aimed at finding out the vitro cytotoxicity and cell morphology. The materials printed are highly porous scaffolds with good mechanical properties.
NASA Astrophysics Data System (ADS)
Leonardi, Lorenzo; Sowa, Michael G.; Hewko, Mark D.; Schattka, Bernhard J.; Payette, Jeri R.; Hastings, Michelle; Posthumus, Trevor B.; Mantsch, Henry H.
2003-07-01
The present and accepted standard for determining the status of tissue relies on visual inspection of the tissue. Based on the surface appearance of the tissue, medical personnel will make an assessment of the tissue and proceed to a course of action or treatment. Visual inspection of tissue is central to many areas of clinical medicine, and remains a cornerstone of dermatology, reconstructive plastic surgery, and in the management of chronic wounds, and burn injuries. Near infrared spectroscopic imaging holds the promise of being able to monitor the dynamics of tissue physiology in real-time and detect pathology in living tissue. The continuous measurement of metabolic, physiological, or structural changes in tissue is of primary concern in many clinical and biomedical domains. A near infrared hyperspectral imaging system was constructed for the assessment of burn injuries and skin flaps or skin grafts. This device merged basic science with engineering and integrated manufacturing to develop a device suitable to detect ischemic tissue. This device has the potential of providing measures of tissue physiology, oxygen delivery and tissue hydration during patient screening, in the operating room or during therapy and post-operative/treatment monitoring. Results from a pre-clinical burn injury study will be presented.
ERIC Educational Resources Information Center
Asmus, Elaine Garbarino
2007-01-01
Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…
Development and evolution of the vertebrate primary mouth
Soukup, Vladimír; Horácek, Ivan; Cerny, Robert
2013-01-01
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates. PMID:22804777
Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A.
2013-01-01
Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4+ and CD8+ T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4+ and CD8+ T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4+ T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8+ T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4+ T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens. PMID:23596288
Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A; Veazey, Ronald S
2013-06-01
Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4(+) and CD8(+) T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4(+) and CD8(+) T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4(+) T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8(+) T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4(+) T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens.
Hypermethylation of the TSLC1 Gene Promoter in Primary Gastric Cancers and Gastric Cancer Cell Lines
Honda, Teiichiro; Waki, Takayoshi; Jin, Zhe; Sato, Kiyoshi; Motoyama, Teiichi; Kawata, Sumio; Kimura, Wataru; Nishizuka, Satoshi; Murakami, Yoshinori
2002-01-01
The TSLC1 (tumor suppressor in lung cancer–1) gene is a novel tumor suppressor gene on chromosomal region 11q23.2, and is frequently inactivated by concordant promoter hypermethylation and loss of heterozygosity (LOH) in non‐small cell lung cancer (NSCLC). Because LOH on 11q has also been observed frequently in other human neoplasms including gastric cancer, we investigated the promoter methylation status of TSLC1 in 10 gastric cancer cell lines and 97 primary gastric cancers, as well as the corresponding non‐cancerous gastric tissues, by bisulfite‐SSCP analysis followed by direct sequencing. Allelic status of the TSLC1 gene was also investigated in these cell lines and primary gastric cancers. The TSLC1 promoter was methylated in two gastric cancer cell lines, KATO‐III and ECC10, and in 15 out of 97 (16%) primary gastric cancers. It was not methylated in non‐cancerous gastric tissues, suggesting that this hypermethylation is a cancer‐specific alteration. KATO‐III and ECC10 cells retained two alleles of TSLC1, both of which showed hypermethylation, associated with complete loss of gene expression. Most of the primary gastric cancers with promoter methylation also retained heterozygosity at the TSLC1 locus on 11q23.2. These data indicate that bi‐allelic hypermethylation of the TSLC1 promoter and resulting gene silencing occur in a subset of primary gastric cancers. PMID:12716461
3D bioprinted functional and contractile cardiac tissue constructs.
Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J; Atala, Anthony
2018-04-01
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-µm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and oxygen supply to the cardiac muscle, resulting in permanent cardiac cell death. Eventually, scar tissue formed in the damaged cardiac muscle that cannot conduct electrical or mechanical stimuli thus leading to a reduction in the pumping efficiency of the heart. The therapeutic options available for end-stage heart failure is to undergo heart transplantation or the use of mechanical ventricular assist devices (VADs). However, many patients die while being on a waiting list, due to the organ shortage and limitation of VADs, such as surgical complications, infection, thrombogenesis, and failure of the electrical motor and hemolysis. Ultimately, 3D bioprinting strategy aims to create clinically applicable tissue constructs that can be immediately implanted in the body. To date, the focus on replicating complex and heterogeneous tissue constructs continues to increase as 3D bioprinting technologies advance. In this study, we demonstrated the feasibility of 3D bioprinting strategy to bioengineer the functional cardiac tissue that possesses a highly organized structure with unique physiological and biomechanical properties similar to native cardiac tissue. This bioprinting strategy has great potential to precisely generate functional cardiac tissues for use in pharmaceutical and regenerative medicine applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kirkton, Robert D.; Bursac, Nenad
2012-01-01
Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair. PMID:21556054
Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna
2015-01-01
The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216
Autophagy in adipose tissue biology.
Zhang, Yong; Zeng, Xiangang; Jin, Shengkan
2012-12-01
Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V
2008-01-01
We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.
Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.
Bonar, Nicolle A; Petersen, Christian P
2017-03-01
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.
Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing.
Cheng, Fang; Eriksson, John E
2017-09-01
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Biomimicry in biomedical research
Zhang, Ge
2012-01-01
Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5 PMID:23275257
Kurrant, Douglas; Fear, Elise; Baran, Anastasia; LoVetri, Joe
2017-12-01
The authors have developed a method to combine a patient-specific map of tissue structure and average dielectric properties with microwave tomography. The patient-specific map is acquired with radar-based techniques and serves as prior information for microwave tomography. The impact that the degree of structural detail included in this prior information has on image quality was reported in a previous investigation. The aim of the present study is to extend this previous work by identifying and quantifying the impact that errors in the prior information have on image quality, including the reconstruction of internal structures and lesions embedded in fibroglandular tissue. This study also extends the work of others reported in literature by emulating a clinical setting with a set of experiments that incorporate heterogeneity into both the breast interior and glandular region, as well as prior information related to both fat and glandular structures. Patient-specific structural information is acquired using radar-based methods that form a regional map of the breast. Errors are introduced to create a discrepancy in the geometry and electrical properties between the regional map and the model used to generate the data. This permits the impact that errors in the prior information have on image quality to be evaluated. Image quality is quantitatively assessed by measuring the ability of the algorithm to reconstruct both internal structures and lesions embedded in fibroglandular tissue. The study is conducted using both 2D and 3D numerical breast models constructed from MRI scans. The reconstruction results demonstrate robustness of the method relative to errors in the dielectric properties of the background regional map, and to misalignment errors. These errors do not significantly influence the reconstruction accuracy of the underlying structures, or the ability of the algorithm to reconstruct malignant tissue. Although misalignment errors do not significantly impact the quality of the reconstructed fat and glandular structures for the 3D scenarios, the dielectric properties are reconstructed less accurately within the glandular structure for these cases relative to the 2D cases. However, general agreement between the 2D and 3D results was found. A key contribution of this paper is the detailed analysis of the impact of prior information errors on the reconstruction accuracy and ability to detect tumors. The results support the utility of acquiring patient-specific information with radar-based techniques and incorporating this information into MWT. The method is robust to errors in the dielectric properties of the background regional map, and to misalignment errors. Completion of this analysis is an important step toward developing the method into a practical diagnostic tool. © 2017 American Association of Physicists in Medicine.
Pattern Genes Suggest Functional Connectivity of Organs
NASA Astrophysics Data System (ADS)
Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang
2016-05-01
Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues
NASA Astrophysics Data System (ADS)
Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina
2014-08-01
We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.
Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue
NASA Astrophysics Data System (ADS)
Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.
2013-12-01
We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.
Hewitt, M J; Anderson, K; Hall, G D; Weston, M; Hutson, R; Wilkinson, N; Perren, T J; Lane, G; Spencer, J A
2007-01-01
To evaluate the use of image-guided biopsy (IGB) in routine clinical practice to obtain site-specific diagnoses in women presenting with peritoneal carcinomatosis (PC). Retrospective case study. Tertiary referral centre. A total of 149 consecutive women with PC who underwent IGB. Biopsy was performed in women considered unsuitable for primary surgery because of poor performance status or disease unlikely to be optimally debulked, with a prior history of malignancy or where there was clinicoradiological uncertainty about primary tumour site. Standard haematoxylin-eosin histological analysis was supplemented with immunohistochemistry. The rate of site-specific diagnosis. A total of 149 women underwent IGB using computed tomography or ultrasound over a 6-year period. The only complication was one rectus sheath haematoma. In 138 (93%) women, a site-specific cancer diagnosis was made on the IGB (including 111 müllerian tract, 8 gastrointestinal tract, 4 breast and 3 lymphoma); in ten women, a repeat biopsy was necessary, giving an overall failure rate of 7%. In a further six women, malignancy was confirmed but a site-specific diagnosis could not be made, and in four women, biopsy showed benign tissue. A site-specific diagnosis was obtained in 29 of the 32 women (94%) with previous malignancy, of which 18/32 (56%) showed a new primary cancer. IGB is a safe and accurate technique for providing site-specific diagnoses in women with PC in routine clinical practice, including those with a previous relevant malignancy. IGB can replace laparoscopic or open biopsy in defining primary therapeutic options. The data would suggest that the biopsy should be performed with ultrasound where feasible.
Hyaluronic acid: its role in voice.
Ward, P Daniel; Thibeault, Susan L; Gray, Steven D
2002-09-01
The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.
Reference Models for Multi-Layer Tissue Structures
2016-09-01
simulation, finite element analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and
Tissue-engineered microenvironment systems for modeling human vasculature.
Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas
2014-09-01
The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro. © 2014 by the Society for Experimental Biology and Medicine.
Blood Type Biochemistry and Human Disease
Ewald, D Rose; Sumner, Susan CJ
2016-01-01
Associations between blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. In the 1950s, the chemical identification of the carbohydrate structure of surface antigens led to the understanding of biosynthetic pathways. The blood type is defined by oligosaccharide structures, which are specific to the antigens, thus, blood group antigens are secondary gene products, while the primary gene products are various glycosyltransferase enzymes that attach the sugar molecules to the oligosaccharide chain. Blood group antigens are found on red blood cells, platelets, leukocytes, plasma proteins, certain tissues, and various cell surface enzymes, and also exist in soluble form in body secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions, urine, and amniotic fluid. Recent advances in technology, biochemistry, and genetics have clarified the functional classifications of human blood group antigens, the structure of the A, B, H, and Lewis determinants and the enzymes that produce them, and the association of blood group antigens with disease risks. Further research to identify differences in the biochemical composition of blood group antigens, and the relationship to risks for disease, can be important for the identification of targets for the development of nutritional intervention strategies, or the identification of druggable targets. PMID:27599872
Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.
2006-01-01
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312
Myocardial tissue engineering using electrospun nanofiber composites
Kim, Pyung-Hwan; Cho, Je-Yoel
2016-01-01
Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36] PMID:26497579
Occurrence of human bocaviruses and parvovirus 4 in solid tissues.
Norja, Päivi; Hedman, Lea; Kantola, Kalle; Kemppainen, Kaisa; Suvilehto, Jari; Pitkäranta, Anne; Aaltonen, Leena-Maija; Seppänen, Mikko; Hedman, Klaus; Söderlund-Venermo, Maria
2012-08-01
Human bocaviruses 1-4 (HBoV1-4) and parvovirus 4 (PARV4) are recently discovered human parvoviruses. HBoV1 is associated with respiratory infections of young children, while HBoV2-4 are enteric viruses. The clinical manifestations of PARV4 remain unknown. The objective of this study was to determine whether the DNAs of HBoV1-4 and PARV4 persist in human tissues long after primary infection. Biopsies of tonsillar tissue, skin, and synovia were examined for HBoV1-4 DNA and PARV4 DNA by PCR. Serum samples from the tissue donors were assayed for HBoV1 and PARV4 IgG and IgM antibodies. To obtain species-specific seroprevalences for HBoV1 and for HBoV2/3 combined, the sera were analyzed after virus-like particle (VLP) competition. While HBoV1 DNA was detected exclusively in the tonsillar tissues of 16/438 individuals (3.7%), all of them ≤8 years of age. HBoV2-4 and PARV4 DNAs were absent from all tissue types. HBoV1 IgG seroprevalence was 94.9%. No subject had HBoV1 or PARV4 IgM, nor did they have PARV4 IgG. The results indicate that HBoV1 DNA occurred in a small proportion of tonsils of young children after recent primary HBoV1 infection, but did not persist long in the other tissue types studied, unlike parvovirus B19 DNA. The results obtained by the PARV4 assays are in line with previous results on PARV4 epidemiology. Copyright © 2012 Wiley Periodicals, Inc.
Jiang, Weiqin; Shen, Yifei; Ding, Yongfeng; Ye, Chuyu; Zheng, Yi; Zhao, Peng; Liu, Lulu; Tong, Zhou; Zhou, Linfu; Sun, Shuo; Zhang, Xingchen; Teng, Lisong; Timko, Michael P; Fan, Longjiang; Fang, Weijia
2018-01-15
Synchronous multifocal tumors are common in the hepatobiliary and pancreatic system but because of similarities in their histological features, oncologists have difficulty in identifying their precise tissue clonal origin through routine histopathological methods. To address this problem and assist in more precise diagnosis, we developed a computational approach for tissue origin diagnosis based on naive Bayes algorithm (TOD-Bayes) using ubiquitous RNA-Seq data. Massive tissue-specific RNA-Seq data sets were first obtained from The Cancer Genome Atlas (TCGA) and ∼1,000 feature genes were used to train and validate the TOD-Bayes algorithm. The accuracy of the model was >95% based on tenfold cross validation by the data from TCGA. A total of 18 clinical cancer samples (including six negative controls) with definitive tissue origin were subsequently used for external validation and 17 of the 18 samples were classified correctly in our study (94.4%). Furthermore, we included as cases studies seven tumor samples, taken from two individuals who suffered from synchronous multifocal tumors across tissues, where the efforts to make a definitive primary cancer diagnosis by traditional diagnostic methods had failed. Using our TOD-Bayes analysis, the two clinical test cases were successfully diagnosed as pancreatic cancer (PC) and cholangiocarcinoma (CC), respectively, in agreement with their clinical outcomes. Based on our findings, we believe that the TOD-Bayes algorithm is a powerful novel methodology to accurately identify the tissue origin of synchronous multifocal tumors of unknown primary cancers using RNA-Seq data and an important step toward more precision-based medicine in cancer diagnosis and treatment. © 2017 UICC.
NASA Astrophysics Data System (ADS)
Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.
2016-03-01
Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.
Low tumour cell content in a lung tumour bank: implications for molecular characterisation.
Goh, Felicia; Duhig, Edwina E; Clarke, Belinda E; McCaul, Elizabeth; Passmore, Linda; Courtney, Deborah; Windsor, Morgan; Naidoo, Rishendren; Franz, Louise; Parsonson, Kylie; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M
2017-10-01
Lung cancer encompasses multiple malignant epithelial tumour types, each with specific targetable, potentially actionable mutations, such that precision management mandates accurate tumour typing. Molecular characterisation studies require high tumour cell content and low necrosis content, yet lung cancers are frequently a heterogeneous mixture of tumour and stromal cells. We hypothesised that there may be systematic differences in tumour cell content according to histological subtype, and that this may have implications for tumour banks as a resource for comprehensive molecular characterisation studies in lung cancer. To investigate this, we estimated tumour cell and necrosis content of 4267 samples resected from 752 primary lung tumour specimens contributed to a lung tissue bank. We found that banked lung cancer samples had low tumour cell content (33%) generally, although it was higher in carcinoids (77.5%) than other lung cancer subtypes. Tumour cells comprise a variable and often small component of banked resected tumour samples, and are accompanied by stromal reaction, inflammation, fibrosis, and normal structures. This has implications for the adequacy of unselected tumour bank samples for diagnostic and molecular investigations, and further research is needed to determine whether tumour cell content has a significant impact on analytical results in studies using tissue from tumour bank resources. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma
Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.
2014-01-01
Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439
NASA Astrophysics Data System (ADS)
Del Lama, L. S.; Cunha, D. M.; Poletti, M. E.
2017-08-01
The presence and morphology of microcalcification clusters are the main point to provide early indications of breast carcinomas. However, the visualization of those structures may be jeopardized due to overlapping tissues even for digital mammography systems. Although digital mammography is the current standard for breast cancer diagnosis, further improvements should be achieved in order to address some of those physical limitations. One possible solution for such issues is the application of the dual-energy technique (DE), which is able to highlight specific lesions or cancel out the tissue background. In this sense, this work aimed to evaluate several quantities of interest in radiation applications and compare those values with works present in the literature to validate a modified PENELOPE code for digital mammography applications. For instance, the scatter-to-primary ratio (SPR), the scatter fraction (SF) and the normalized mean glandular dose (DgN) were evaluated by simulations and the resulting values were compared to those found in earlier studies. Our results present a good correlation for the evaluated quantities, showing agreement equal or better than 5% for the scatter and dosimetric-related quantities when compared to the literature. Finally, a DE imaging chain was simulated and the visualization of microcalcifications was investigated.
Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.
Smith, Jay; Finnoff, Jonathan T
2009-02-01
Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.
Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro
Le Saux, Olivier; Bunda, Severa; VanWart, Christopher M.; Douet, Vanessa; Got, Laurence; Martin, Ludovic; Hinek, Aleksander
2017-01-01
Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations. PMID:16543900
Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang
2016-01-01
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543
Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang
2016-01-01
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.
Bao, Kai; Akguel, Baki; Bostanci, Nagihan
2014-01-01
In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro. © 2014 S. Karger AG, Basel.
Monoclonal Antibodies against the Drosophila Nervous System
NASA Astrophysics Data System (ADS)
Fujita, Shinobu C.; Zipursky, Stephen L.; Benzer, Seymour; Ferrus, Alberto; Shotwell, Sandra L.
1982-12-01
A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.