Microtensile Bond Strength of Polyacid-modified Composite Resin to Irradiated Primary Molars.
Keles, Sultan; Yilmaz, Yucel; Sezen, Orhan
2018-02-01
This study evaluated the influence of various doses of radiotherapy on the microtensile bond strength (pTBS) of compomer resin to dentin and enamel in primary molars. Thirty-five intact primary molars were collected and divided into seven groups. Teeth were irradiated with doses from 10 to 60 Gy, except for the control group. Compomer restorations were performed, and enamel-compomer resin beams and dentin-compomer resin beams were tested at a crosshead speed of 1 mm/min. No statistically significant difference was found between the irradiated tooth enamel and the control group (F = 1.1468; p = 0.194). However, statistically significant differences were evident among the dentin groups (F = 11.050; p < 0.001). Radiation may not cause a significant difference in the pTBS of compomer resin to primary tooth enamel, but appears to dose dependently decrease its bond strength to primary tooth dentin. Radiotherapy may affect the success rate of compomer fillings in primary teeth, especially in deeper cavities with exposed dentin.
Potential effects of tooth-brushing on human dentin wear following exposure to acidic soft drinks.
Choi, S; Park, K-H; Cheong, Y; Moon, S W; Park, Y-G; Park, H-K
2012-08-01
This study used scanning electron microscopy and atomic force microscopy to examine the short-term potential effects of brushing time and the start-time of tooth-brushing after demineralization on primary dentin wear in vitro. Thirty-six noncarious primary central incisors were assigned to 12 experimental groups. Exposure to cola drinks was used to initiate the demineralization process. Three brushing times (5, 15 and 30 s) and four start-times of brushing (0, 30, 60 and 120 min) after an erosive attack were used for the abrasion process. Tooth-brushing the softened dentin surface led to increases in the open tubular fraction and microstructural changes on the dentin surface. Brushing immediately after exposure to cola resulted in the greatest irreversible dentin loss, whereas brushing 60 or 120 min after pretreatment resulted in the least irreversible dentin loss. However, brushing time had no effect on the irreversible loss of dentin wear. Based on these experimental results, tooth-brushing should be performed at least 60 min after consuming a cola drink to achieve the desired tooth cleaning and avoid the introduction of surface lesions on dentin. © 2012 The Authors Journal of Microscopy © 2012 Wadsworth Center, New York State Department of Health.
In-vitro Thermal Maps to Characterize Human Dental Enamel and Dentin.
Lancaster, Paula; Brettle, David; Carmichael, Fiona; Clerehugh, Val
2017-01-01
The crown of a human tooth has an outer layer of highly-mineralized tissue called enamel, beneath which is dentin, a less-mineralized tissue which forms the bulk of the tooth-crown and root. The composition and structure of enamel and dentin are different, resulting in different thermal properties. This gives an opportunity to characterize enamel and dentin from their thermal properties and to visually present the findings as a thermal map. The thermal properties of demineralized enamel and dentin may also be sufficiently different from sound tissue to be seen on a thermal map, underpinning future thermal assessment of caries. The primary aim of this novel study was to produce a thermal map of a sound, human tooth-slice to visually characterize enamel and dentin. The secondary aim was to map a human tooth-slice with demineralized enamel and dentin to consider future diagnostic potential of thermal maps for caries-detection. Two human slices of teeth, one sound and one demineralized from a natural carious lesion, were cooled on ice, then transferred to a hotplate at 30°C where the rewarming-sequence was captured by an infra-red thermal camera. Calculation of thermal diffusivity and thermal conductivity was undertaken, and two methods of data-processing used customized software to produce thermal maps from the thermal characteristic-time-to-relaxation and heat-exchange. The two types of thermal maps characterized enamel and dentin. In addition, sound and demineralized enamel and dentin were distinguishable within both maps. This supports thermal assessment of caries and requires further investigation on a whole tooth.
Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.
2013-01-01
Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517
NASA Astrophysics Data System (ADS)
Trunina, Natalia; Derbov, Vladimir; Tuchin, Valery; Altshuler, Gregory
2008-06-01
Dentinal permeation is of interest in a wide context of tooth care and treatment, in particular, tooth color improvement using combination of chemical whitening agents and light activation. A simple model of dentinal permeation accounting for the morphology of human tooth dentine and including dentinal tubules, more dense and homogeneous peritubular dentine, and less dense and less homogeneous intertubular dentin is proposed. Calculation of permeability of dentine layer is carried out for H IIO and H IIO II versus the tubule diameter and tubule density taken from the microphotograph analysis. This opens the possibility to calculate the distribution of permeability over the tooth surface taking into account the variations of tubule diameter and density as well as those of the diffusion coefficients and layer thickness
Tooth quality in dental fluorosis genetic and environmental factors.
Vieira, A P G F; Hanocock, R; Eggertsson, H; Everett, E T; Grynpas, M D
2005-01-01
Dental fluorosis (DF) affects the appearance and structure of tooth enamel and can occur following ingestion of excess fluoride during critical periods of amelogenesis. This tooth malformation may, depending on its severity, influence enamel and dentin microhardness and dentin mineralization. Poor correlation between tooth fluoride (F) concentration and DF severity was shown in some studies, but even when a correlation was present, tooth fluoride concentration explained very little of DF severity. This fact calls into question the generally accepted hypothesis that the main factor responsible for DF severity is tooth fluoride concentration. It has been shown previously that genetic factors (susceptibility to DF) play an important role in DF severity although DF severity relates to individual susceptibility to fluoride exposure (genetics), tooth fluoride concentration relates to fluoride ingestion (environmental). The objective of this study was to investigate the correlation between tooth fluoride concentration, DF severity, and tooth mechanical and materials properties. Three strains of mice (previously shown to have different susceptibility to DF) at weaning were treated with four different levels of F in their water (0, 25, 50, and 100 ppm) for 6 weeks. Mice teeth were tested for fluoride by instrumental neutron activation analysis (INAA), DF severity determined by quantitative light-induced fluorescence [QLF], and tooth quality (enamel and dentin microhardness and dentin mineralization). Tooth fluoride concentration (environment factor) correlated positively with DF severity (QLF) (rs=0.608), fluoride treatment group (rs=0.952). However, tooth fluoride concentration correlated negatively with enamel microhardness (rs=-0.587), dentin microhardness (rs=-0.268) and dentin mineralization (rs=-0.245). Dental fluorosis (genetic factor) severity (QLF) correlated positively with fluoride treatment (rs=0.608) and tooth fluoride concentration (rs=0.583). DF severity correlated negatively with enamel microhardness (rs=-0.564) and dentin microhardness (rs=-0.356). Genetic factors (DF severity) and the environmental factor (fluoride concentration in tooth structure) have similar influence on tooth biomechanical properties, whereas only the environmental factor has an influence on tooth material property (mineralization).
Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?
SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer
2013-01-01
Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586
Gilissen, Emmanuel; Thiery, Ghislain
2015-01-01
The form of two hard tissues of the mammalian tooth, dentine and enamel, is the result of a combination of the phylogenetic inheritance of dental traits and the adaptive selection of these traits during evolution. Recent decades have been significant in unveiling developmental processes controlling tooth morphogenesis, dental variation and the origination of dental novelties. The enamel-dentine junction constitutes a precursor for the morphology of the outer enamel surface through growth of the enamel cap which may go along with the addition of original features. The relative contribution of these two tooth components to morphological variation and their respective response to natural selection is a major issue in paleoanthropology. This study will determine how much enamel morphology relies on the form of the enamel-dentine junction. The outer occlusal enamel surface and the enamel-dentine junction surface of 76 primate second upper molars are represented by polygonal meshes and investigated using tridimensional topometrical analysis. Quantitative criteria (elevation, inclination, orientation, curvature and occlusal patch count) are introduced to show that the enamel-dentine junction significantly constrains the topographical properties of the outer enamel surface. Our results show a significant correlation for elevation, orientation, inclination, curvature and occlusal complexity between the outer enamel surface and the enamel dentine junction for all studied primate taxa with the exception of four modern humans for curvature (p<0.05). Moreover, we show that, for all selected topometrical parameters apart from occlusal patch count, the recorded correlations significantly decrease along with enamel thickening in our sample. While preserving tooth integrity by providing resistance to wear and fractures, the variation of enamel thickness may modify the curvature present at the occlusal enamel surface in relation to enamel-dentine junction, potentially modifying dental functionalities such as blunt versus sharp dental tools. In terms of natural selection, there is a balance between increasing tooth resistance and maintaining efficient dental tools. In this sense the enamel cap acts as a functional buffer for the molar occlusal pattern. In primates, results suggest a primary emergence of dental novelties on the enamel-dentine junction and a secondary transposition of these novelties with no or minor modifications of dental functionalities by the enamel cap. Whereas enamel crenations have been reported by previous studies, our analysis do not support the presence of enamel tubercles without dentine relief nuclei. As is, the enamel cap is, at most, a secondary source of morphological novelty. PMID:26406597
Adaptive properties of human cementum and cementum dentin junction with age
Jang, Andrew T.; Lin, Jeremy D.; Choi, Ryan M.; Choi, Erin M.; Seto, Melanie L.; Ryder, Mark I.; Gansky, Stuart A.; Curtis, Donald A.; Ho, Sunita P.
2014-01-01
Objectives The objective of this study was to evaluate age related changes age related changes in physical (structure/mechanical properties) and chemical (elemental/inorganic mineral content) properties of cementum layers interfacing dentin. Methods Human mandibular molars (N=43) were collected and sorted by age (younger = 19–39, middle = 40–60, older = 61–81 years). The structures of primary and secondary cementum (PC, SC) types were evaluated using light and atomic force microscopy (AFM) techniques. Chemical composition of cementum layers were characterized through gravimetric analysis by estimating ash weight and concentrations of Ca, Mn, and Zn trace elements in the analytes through inductively coupled plasma mass spectroscopy. The hardness of PC and SC was determined using microindentation and site-specific reduced elastic modulus properties were determined using nanoindentation techniques. Results PC contained fibrous, 1–3 µm wide hygroscopic radial PDL-inserts. SC illustrated PC-like structure adjacent to a multilayered architecture composing of regions that contained mineral dominant lamellae. The width of cementum dentin junction (CDJ) decreased as measured from cementum enamel junction (CEJ) to the tooth apex (49–21µm), and significantly decreased with age (44–23µm; p<0.05). The inorganic ratio defined as the ratio of post-burn to pre-burn increased with age within primary cementum (PC) and secondary cementum (SC). Cementum showed an increase in hardness with age (PC (0.40–0.46GPa), SC (0.37–0.43GPa)), while dentin showed a decreasing trend (coronal dentin (0.70–0.72GPa); apical dentin (0.63 – 0.73 GPa)). Significance The observed physicochemical changes are indicative of an increased mineralization of cementum and CDJ over time. Changes in tissue properties of the teeth can alter overall tooth biomechanics, and in turn the entire bone-tooth complex including the periodontal ligament. This study provides baseline information about the changes in physicochemical properties of cementum with age, which can be identified as adaptive in nature. PMID:25133753
Developing a tooth restorability index.
McDonald, Ailbhe; Setchell, Derrick
2005-01-01
It is generally agreed that the inherent strength of a tooth is dependent on the remaining dentine. It therefore seems logical that preservation of coronal dentine is important to the survival of intra- and extra-coronal restorations. The clinical assessment of the amount of dentine needed for functional requirements and the strategic value of remaining tooth structure is currently based on clinical opinion. This paper discusses what recommendations have been published and proposes an index that may be useful in assessing the restorability of a tooth. An index used to assess the amount and contribution of remaining coronal dentine to resistance and retention form could be of value in treatment planning.
Assessment of the amount of remaining coronal dentine in root-treated teeth.
Bandlish, R B; McDonald, A V; Setchell, D J
2006-10-01
There is currently no standardised technique to measure the amount of coronal dentine remaining in a root-treated tooth after crown preparation. The aim of this study was to develop a method of measuring remaining coronal dentine in root-treated teeth and to propose an index for grading tooth restorability. The study recruited 20 patients who had completed molar endodontic treatment at the Eastman Dental Hospital and had been prescribed an amalgam coronal-radicular core with a full coverage cast restoration. Using a series of interlocking special trays and impressions, a method was devised to produce a cast of the amount of remaining dentine coronal to the finish line after crown preparation. This cast was scanned using a laser profilometer and the volume of remaining dentine was calculated. A tooth restorability index (TRI) was developed to assess the strategic value of the remaining dentine. The TRI allowed scores of 0-3 in each sextant with a maximum score of 18 per tooth. Twenty teeth were scored by three examiners and the TRI scores varied from 2 to 13. The volume of coronal dentine varied from 61.73 to 232.22 mm(3). A tooth restorability index has been devised to assess the strategic value of remaining dentine. A Kappa statistic was calculated to produce values of 0.584, 0.688 and 0.720, giving moderate-good agreement between the examiners.
Dietary adaptions in the ultrastructure of dinosaur dentine.
Brink, Kirstin S; Chen, Yu-Cheng; Wu, Ya-Na; Liu, Wei-Min; Shieh, Dar-Bin; Huang, Timothy D; Sun, Chi-Kuang; Reisz, Robert R
2016-12-01
Teeth are key to understanding the feeding ecology of both extant and extinct vertebrates. Recent studies have highlighted the previously unrecognized complexity of dinosaur dentitions and how specific tooth tissues and tooth shapes differ between taxa with different diets. However, it is unknown how the ultrastructure of these tooth tissues contributes to the differences in feeding style between taxa. In this study, we use third harmonic generation microscopy and scanning electron microscopy to examine the ultrastructure of the dentine in herbivorous and carnivorous dinosaurs to understand how the structure of this tissue contributes to the overall utility of the tooth. Morphometric analyses of dentinal tubule diameter, density and branching rates reveal a strong signal for dietary preferences, with herbivorous saurischian and ornithischian dinosaurs consistently having higher dentinal tubule density than their carnivorous relatives. We hypothesize that this relates to the hardness of the dentine, where herbivorous taxa have dentine that is more resistant to breakage and wear at the dentine-enamel junction than carnivorous taxa. This study advocates the detailed study of dentine and the use of advanced microscopy techniques to understand the evolution of dentition and feeding ecology in extinct vertebrates. © 2016 The Author(s).
Effect of gamma irradiation on the wear behavior of human tooth dentin.
Qing, Ping; Huang, Shengbin; Gao, ShanShan; Qian, LinMao; Yu, HaiYang
2016-12-01
The objective of this study was to evaluate the effect of gamma irradiation on the wear behavior of human tooth dentin in terms of possible alterations in crystallinity, grain size, and composition. Human premolars (n = 19) were collected to obtain the perpendicular or parallel to the direction of the dentin tubule specimens. Each specimen was subjected to 60 Gy of gamma irradiation, in daily increments of 2 Gy. The nanoscratch tests were conducted. The scratch traces were observed via scanning electron microscope (SEM) and surface profilometer. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the alteration of crystallography and chemical composition of dentin after irradiation. The change of surface microhardness (SMH) was also evaluated. The nanoscratch results showed that the friction coefficient of dentin after irradiation became higher, and the depths and widths of scratch were greater than that of dentin before irradiation. Additionally, irradiation decreased the crystallinity of dentin and induced the formation of bigger crystals. The carbonate/mineral ratio was increased. Furthermore, a significant reduction in microhardness after irradiation was observed. The main damage mechanisms consisted of the formation of delamination and crack in both the specimens cut perpendicular and parallel to tubule dentin after irradiation. Irradiation affected directly the wear behavior of tooth dentin, accompanied by the alterations in crystallography, chemical composition, and surface microhardness of dentin. This would help extend understanding the influence of irradiation on dentin and provide suggestions for selecting more suitable materials for irradiated tooth.
Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.
Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor
2009-07-01
Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.
Prevalence and Indicators of Tooth Wear among Chinese Adults
Wei, Zhao; Du, Yangge; Zhang, Jing; Tai, Baojun
2016-01-01
Numerous epidemiological studies have focused on the prevalence and related indicators of tooth wear. However, no sufficient studies have been conducted with Chinese adults. The purpose of this study was to assess the prevalence of tooth wear and identify related indicators among adults aged 36 to 74 years in Wuhan City, P.R. China. A cross-sectional and analytic study was conducted with 720 participants, aged 35–49 yrs and 50–74 yrs, in 2014. Each age group included 360 participants, of which 50% were males and 50% were females. All participants completed a questionnaire before examination. Tooth wear was assessed using the modified Basic Erosive Wear Examination (BEWE) index. The data were analyzed using the chi-square test and binary logistic regression analysis. The prevalence of tooth wear was 67.5% and 100% in the 35–49 and 50–74 age groups, respectively. The prevalence of dentin exposure was 64.7% and 98.3%, respectively. A significantly higher prevalence of tooth wear and dentin exposure was found in the 50–74 yr group than in the 35–49 yr group (p < 0.05). Critical indicators of tooth wear and dentin exposure included high frequency of acidic drinks and foods consumption, low socio-economic status, and unilateral chewing. The frequency of changing toothbrushes and the habit of drinking water during meals were associated with tooth wear. In addition, the usage of hard-bristle toothbrushes and consuming vitamin C and aspirin were found to be linked with dentin exposure. In conclusion, the prevalence of tooth wear and dentin exposure observed in Chinese adults was high, and the results revealed an association between tooth wear and socio-behavioral risk indicators. PMID:27583435
Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth
Niu, Lin; Dong, Shao-Jie; Kong, Ting-Ting; Wang, Rong; Zou, Rui; Liu, Qi-Da
2016-01-01
During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino–enamel junction (DEJ) of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ) junction play an important role in tooth heat transfer and protects the pulp from heat damage. PMID:27662186
Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth.
Niu, Lin; Dong, Shao-Jie; Kong, Ting-Ting; Wang, Rong; Zou, Rui; Liu, Qi-Da
During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino-enamel junction (DEJ) of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ) junction play an important role in tooth heat transfer and protects the pulp from heat damage.
Kaya, E; Elbay, M; Yiğit, D
2017-06-01
The Self-Adjusting File (SAF) system has been recommended for use in permanent teeth since it offers more conservative and effective root-canal preparation when compared to traditional rotary systems. However, no study had evaluated the usage of SAF in primary teeth. The aim of this study was to evaluate and compare the use of SAF, K file (manual instrumentation) and Profile (traditional rotary instrumentation) systems for primary-tooth root-canal preparation in terms of instrumentation time and amounts of dentin removed using micro-computed tomography (μCT) technology. Study Design: The study was conducted with 60 human primary mandibular second molar teeth divided into 3 groups according to instrumentation technique: Group I: SAF (n=20); Group II: K file (n=20); Group III; Profile (n=20). Teeth were embedded in acrylic blocks and scanned with a μCT scanner prior to instrumentation. All distal root canals were prepared up to size 30 for K file,.04/30 for Profile and 2 mm thickness, size 25 for SAF; instrumentation time was recorded for each tooth, and a second μCT scan was performed after instrumentation was complete. Amounts of dentin removed were measured using the three-dimensional images by calculating the difference in root-canal volume before and after preparation. Data was statistically analysed using the Kolmogorov-Smirnov and Kruskal-Wallis tests. Manual instrumentation (K file) resulted in significantly more dentin removal when compared to rotary instrumentation (Profile and SAF), while the SAF system generated significantly less dentin removal than both manual instrumentation (K file) and traditional rotary instrumentation (Profile) (p<.05). Instrumentation time was significantly greater with manual instrumentation when compared to rotary instrumentation (p<.05), whereas instrumentation time did not differ significantly between the Profile and SAF systems. Within the experimental conditions of the present study, the SAF seems as a useful system for root-canal instrumentation in primary molars because it removed less dentin than other systems, which is especially important for the relatively thin-walled canals of primary teeth, and because it involves less clinical time, which is particularly important in the treatment of paediatric patients.
Measurements and modelling of the influence of dentine colour and enamel on tooth colour.
Battersby, Paul D; Battersby, Stephen J
2015-03-01
We provide a quantitative predictive model for the extent to which coloured dentine, visible through the enamel, contributes to tooth colour. Our model uses (L(*),a(*),b(*)) measurements rather than spectral measurements. We have used a model system, composed of a slice of bovine enamel placed on top of coloured paper. We have measured the colour of the enamel-paper combination, as an analogue for a tooth, and have related this to the colour of the paper, as an analogue for dentine. By changing the paper colour, we have been able to explore how the colour of dentine determines tooth colour, according to our model system. We have also compared hydrated and desiccated samples. In qualitative terms, superimposing the enamel on top of the paper increases the "lightness" for all colours tested except white while simultaneously reducing the chromaticity, a measure of the extent to which the colour differs from grey. Desiccated enamel is much more effective at increasing the lightness and reducing the chromaticity than hydrated enamel. Quantitatively, our measurements are reproduced by the mathematical model we have developed to within 2% in "lightness" and about 8% in chromaticity. We are able to predict the colour of an analogue for a tooth, composed of bovine enamel and coloured paper, from the colour of an analogue for the dentine, the coloured paper alone, with good accuracy. This understanding provides insights into the role of dentine colour in determining tooth colour. Our work helps quantify the importance of dentine colour, compared to other, extrinsic causes of colour, such as staining, in determining the visible colour of teeth. Our predicted colours represent a baseline to which extrinsic sources will add. Copyright © 2015. Published by Elsevier Ltd.
Diagnosis and Management of Hidden Caries in a Primary Molar Tooth.
Gera, Arwa; Zilberman, Uri
2017-01-01
Hidden caries is a dentinal lesion beneath the dentinoenamel junction, visible on radiographs. A single report described this lesion in primary dentition. This case report describes a case of hidden caries in a mandibular second primary molar, misdiagnosed as malignant swelling. A 3-year-old white girl was referred to the Department of Pediatric Dentistry with a chief complaint of pain and extraoral swelling on the right side of the mandible for the last 3 months. She was earlier referred to the surgical department for biopsy of the lesion. Radiographic and computed tomography scan examination showed a periapical lesion with buccal plate resorption and radiolucency beneath the enamel on the mesial part of tooth 85. The tooth was extracted, and follow-up of 2 years showed normal development of tooth 45. The main problem is early detection and treatment, since the outer surface of enamel may appear intact on tactile examination. Gera A, Zilberman U. Diagnosis and Management of Hidden Caries in a Primary Molar Tooth. Int J Clin Pediatr Dent 2017;10(1):99-102.
Kwoni, Eri; Choi, Samjin; Cheong, Youjin; Park, Ki-Ho; Park, Hun-Kuk
2012-07-01
Scanning electron microscopy (SEM) was used to examine the abrasive and erosive potential of the brushing time on the dentin surface eroded by acidic soft drinks to suggest an optimized toothbrushing start time after the consumption of cola (pH 2.52) in children. Thirty-six non-carious primary central incisors were assigned to 12 experimental groups (n = 3) based on the erosive and abrasive treatment protocols. Cola exposure was used as the erosive treatment. Three brushing durations (5, 15, and 30 sec) and four brushing start times (immediately, 30 min, 60 min, and 120 min) after an erosive pre-treatment were used for the abrasive treatment. Toothbrushing after exposure to acidic soft drinks led to an increase in the open-tubule fraction and microstructural changes. Toothbrushing immediately after the erosive pre-treatment showed the largest abrasive and erosive potential on the dentin whereas that 60 and 120 min after the pre-treatment showed the least abrasive and erosive potential on the dentin. Toothbrushing for both 60 and 120 min after the pre-treatment showed similar erosive and abrasive potentials on the dentin. The brushing duration showed no effect on the erosive and abrasive potential on the dentin. Therefore, to achieve the desired tooth surface cleaning and less surface lesion on the dentin surface, toothbrushing should be performed at least 1 hour after cola consumption. Three-minute brushing after cola consumption is sufficient to prevent dental lesions, and prolonged brushing can irritate the gingival tissues.
Effect of tooth substrate and porcelain thickness on porcelain veneer failure loads in vitro.
Ge, Chunling; Green, Chad C; Sederstrom, Dalene A; McLaren, Edward A; Chalfant, James A; White, Shane N
2017-12-19
Bonded porcelain veneers are widely used esthetic restorations. High success and survival rates have been reported, but failures do occur. Fractures are the commonest failure mode. Minimally invasive or thin veneers have gained popularity. Increased enamel and porcelain thickness improve the strength of veneers bonded to enamel, but less is known about dentin or mixed substrates. The purpose of this in vitro study was to measure the influences of tooth substrate type (all-enamel, all-dentin, or half-dentin-half-enamel) and veneer thickness on the loads needed to cause initial and catastrophic porcelain veneer failure. Model discoid porcelain veneer specimens of varying thicknesses were bonded to the flattened facial surfaces of incisors with different enamel and dentin tooth substrates, artificially aged, and loaded to failure with a small sphere. Initial and catastrophic fracture events were identified and analyzed statistically and fractographically. Fracture events included initial Hertzian cracks, intermediate radial cracks, and catastrophic gross failure. All specimens retained some porcelain after catastrophic failure. Cement failure occurred at the cement-porcelain interface not at the cement-tooth interface. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or mixed substrates. Increased porcelain thickness substantially raised the loads to catastrophic failure on enamel substrates but only moderately raised the loads to catastrophic failure on dentin or mixed substrates. The veneers bonded to half-dentin-half-enamel behaved remarkably like those bonded wholly to dentin. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or half-enamel-half dentin. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
An unusual case of severe primary molar infraocclusion.
Gondim, Juliana Oliveira; Neto, José Jeová Siebra Moreira; de Carvalho, Fernanda Matias; da Costa, Raquel Campelo Ferreira; Monteiro, Aline Levi Baratta; Giro, Elisa Maria Aparecida
2013-01-01
Dentoalveolar ankylosis is described as the direct union between root cementum/dentin and alveolar bone. Its etiology is unknown, and conflicting opinions have been presented to explain it. Late detection of ankylosed primary teeth may cause serious problems to the occlusion and generally demands a more complex treatment approach. The purpose of this report is to present an unusual case of severe infraocclusion of the primary maxillary right second molar associated with a posterior crossbite in a 6-year-old child. The initial treatment option was tooth extraction, but the tooth resumed eruption spontaneously. After correction of the posterior crossbite and a 1-year follow-up, the tooth remained in occlusion and the permanent successor was developing without problems. From this unusual outcome, it may be concluded that further investigation of this anomaly of eruption is needed.
Dentin and pulp sense cold stimulus.
Tokuda, Masayuki; Tatsuyama, Shoko; Fujisawa, Mari; Morimoto-Yamashita, Yoko; Kawakami, Yoshiko; Shibukawa, Yoshiyuki; Torii, Mistuso
2015-05-01
Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Sook-Kyung; Hu, Jan C.-C.; Lee, Kyung-Eun; Simmer, James P.; Kim, Jung-Wook
2009-01-01
The dentin sialophosphoprotein (DSPP) gene on chromosome 4q21.3 encodes the major noncollagenous protein in tooth dentin. DSPP mutations are the principal cause of dentin dysplasia type II, dentinogenesis imperfecta type II, and dentinogenesis imperfecta type III. We have identified a DSPP splice junction mutation (IVS2-6T>G) in a family with dentin dysplasia type II. The primary dentition is discolored brown with severe attrition. The mildly discolored permanent dentition has thistle-shaped pulp chambers, pulp stones, and eventual pulp obliteration. The mutation is in the sixth nucleotide from the end of intron 2, perfectly segregates with the disease phenotype, and is absent in 200 normal control chromosomes. An in vitro splicing assay shows that pre-mRNA splicing of the mutant allele generates wild-type mRNA and mRNA lacking exon 3 in approximately equal amounts. Skipping exon 3 might interfere with signal peptide cleavage, causing endoplasmic reticulum stress, and also reduce DSPP secretion, leading to haploinsufficiency. PMID:19026876
The effect of dentinal stimulation on pulp nerve function and pulp morphology in the dog.
Hirvonen, T J; Närhi, M V
1986-11-01
The effect of dentinal stimulation on pulpal nerve responses and pulp morphology has been studied in the dog. Canine tooth (n = 25) dentin was stimulated by drilling, probing, and air-blasting for from two to five hours. Acid-etching was used to open dentinal tubules. All test teeth showed disruption of the odontoblast layer and its separation from the predentin; also, dislocation of odontoblast nuclei into dentinal tubules was found in most cases. Single-fiber (n = 14, conduction velocity = 24.3 +/- 7.4 (SD) m/s) recordings of the responses of canine tooth pulpal nerves to dentinal stimulation were made in ten of the stimulated teeth. No changes in the sensitivity of the nerves to dentinal stimulation could be detected. It is concluded that pulpal nerve function and morphological changes of the pulp are not clearly correlated. The condition of the dentin surface seems to be the important factor.
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID). PMID:25587986
Finite element stress analysis of stainless steel crowns.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar M; Chakraborty, Amrita; Sugandhan, S
2015-01-01
Though stainless steel crowns (SSCs) have often been stated as the best restorative modality, there are limited studies demonstrating its efficacy in restoring the functional integrity of the primary dentition. Hence has arisen, the necessity to establish the supremacy of SSCs. Evaluation of the efficacy of SSC to with stand compressive (0°), shearing (90°), and torsional (45°) stress when used as a restorative material. The study design employed four finite element models, each with differing amounts of tooth structure, which were exported to ANSYS software and subjected to an average simulated bite force of 245N. Four maxillary deciduous primary molars restored with SSCs (3M ESPE) were subjected to spiral computed tomography (CT) in order to obtain three-dimensional (3D) images, which were then converted into finite element models. They were each subjected to forces along the long axis of the tooth and at 45°and 90°. The maximal equivalent von Mises stress was demonstrated in the SSCs of all the models with only a minimal amount observed in the underlying dentine. In all situations, the maximal equivalent von Mises stress was well below the ultimate tensile strength values of stainless steel and dentine. Even at maximal physiologic masticatory force levels, a grossly destructed tooth restored with SSC is able to resist deformation.
Construction and in vitro test of a new electrode for dentin resistance measurement.
Stein, Steffen; Gente, Michael
2013-10-01
It is necessary to reduce the tooth substance before treating a tooth with a dental crown. The preparation often requires reduction of the dentin. This results in a dentin wound and a thinner substance over the pulp, increases the risk of inflammation, and could result in necrosis of the pulp. To give the dentist information about the amount of dentin over the pulp during preparation, the Prepometer was developed. The function of this device is based on the measurement of the electric resistance of the tooth substance. The measuring behavior of the first-generation Prepometer is characterized by smaller values of electric resistance before reaching full contact of the measuring head to the dentin surface and the actual value RT. This measuring behavior can mislead inexperienced therapists with inaccurate values that suggest thinner dentin than the reality. In this study, a new electrode based on the technology of active guard drive was constructed to overcome this issue. The results show that improvement in the measuring behavior of the new electrode could be achieved, eliminating the earlier disadvantage of the Prepometer.
The role of erosion, abrasion and attrition in tooth wear.
Barbour, Michele E; Rees, Gareth D
2006-01-01
There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.
Prospective in (Primate) Dental Analysis through Tooth 3D Topographical Quantification
Guy, Franck; Gouvard, Florent; Boistel, Renaud; Euriat, Adelaïde; Lazzari, Vincent
2013-01-01
The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel–dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel–dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel–dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel–dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel–dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of association between enamel–dentine junction and enamel, the enamel cap altering in different ways the “transcription” of the enamel–dentine junction morphology. PMID:23826088
NASA Astrophysics Data System (ADS)
Deyhle, Hans; Weitkamp, Timm; Lang, Sabrina; Schulz, Georg; Rack, Alexander; Zanette, Irene; Müller, Bert
2012-10-01
The complex hierarchical structure of human tooth hard tissues, enamel and dentin, guarantees function for decades. On the micrometer level the dentin morphology is dominated by the tubules, micrometer-narrow channels extending from the dentin-enamel junction to the pulp chamber. Their structure has been extensively studied, mainly with two-dimensional approaches. Dentin tubules are formed during tooth growth and their orientation is linked to the morphology of the nanometer-sized components, which is of interest for example for the development of bio-inspired dental fillings. Therefore, a method has to be identified that can access the three-dimensional organization of the tubules, e.g. density and orientation. Tomographic setups with pixel sizes in the sub-micrometer range allow for the three-dimensional visualization of tooth dentin tubules both in phase and absorption contrast modes. We compare high-resolution tomographic scans reconstructed with propagation based phase retrieval algorithms as well as reconstructions without phase retrieval concerning spatial and density resolution as well as rendering of the dentin microstructure to determine the approach best suited for dentin tubule imaging. Reasonable results were obtained with a single-distance phase retrieval algorithm and a propagation distance of about 75% of the critical distance of d2/λ, where d is the size of the smallest objects identifiable in the specimen and λ is the X-ray wavelength.
The effect of casein phosphopeptide-amorphous calcium phosphate on erosive dentine wear.
Ranjitkar, S; Narayana, T; Kaidonis, J A; Hughes, T E; Richards, L C; Townsend, G C
2009-06-01
Erosive tooth wear is a growing concern in clinical dentistry. Our aims were to assess the effect of Tooth Mousse (TM) in managing erosive dentine wear in vitro. Opposing enamel and dentine specimens from 36 third molar teeth were worn under a load of 100 N for 75 000 cycles in electromechanical tooth wear machines. In experiment 1, TM was applied continuously at the wear interface and the mean dentine wear rate was compared with those of specimens subjected to continuous application of hydrochloric acid (HCl, pH 3.0) and deionized water (DW, pH 6.1) as lubricants. In experiment 2, specimens were subjected to TM application every 1600 cycles at both pH 3.0 and 6.1, and the mean dentine wear rates were compared with those of specimens worn with continuous application of HCl and DW lubricants. Dentine wear was reduced significantly with continuous application of TM compared with HCl and DW lubricants. Specimens prepared with continuous TM application displayed smooth wear facets, whereas more pronounced microwear details were observed with HCl and DW lubricants. Both remineralization and lubrication seem to contribute to reduction in dentine wear associated with TM application, although lubrication appears to have a more pronounced effect.
NASA Astrophysics Data System (ADS)
Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko
2011-10-01
The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.
Comparing two quantitative methods for studying remineralization of artificial caries.
Lo, E C M; Zhi, Q H; Itthagarun, A
2010-04-01
To compare the detection of changes before and after remineralization of artificial enamel and dentin caries by microCT scanning, polarized light microscopy (PLM) and transverse microradiography (TMR). Fourteen extracted premolars were cut into tooth blocks and painted with an acid-resistant varnish leaving one enamel and one dentin surface exposed. The tooth blocks were immersed into demineralizing solution for 4 days to produce artificial caries-like lesions and scanned by microCT. Then the 14 tooth blocks were randomly allocated into two groups. Seven tooth blocks in Group I were cut longitudinally through the exposed surface into 100-150 microm thick sections and microradiographs were taken. The other seven tooth blocks in Group II were left intact. All the tooth blocks and sections were then immersed into remineralizing solution for 5 days. PLM and TMR of the tooth sections in Group I were taken again. Depth of the lesion on the TMR was measured. Tooth blocks in Group II were scanned by microCT. Mean lesion depth in Group I reduced by 13.0% and 8.2% after remineralization for enamel and dentin, respectively (paired t-test, P<0.001). In Group II, linear attenuation coefficient (LAC) of the region of interest (ROI) increased by 11.1% and 23.8% after remineralization for enamel and dentin lesions, respectively (paired t-test, P<0.001). Both microCT and microradiography are able to detect a change of similar magnitude in the artificial caries lesions after remineralization. MicroCT may be used to substitute TMR and PLM in in vitro studies about caries. Copyright 2010 Elsevier Ltd. All rights reserved.
Excimer laser interaction with dentin of the human tooth
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.
1989-01-01
The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.
Dentinal tubules revealed with X-ray tensor tomography.
Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz
2016-09-01
Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. Copyright © 2016 The Academy of Dental Materials. All rights reserved.
Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee
2013-06-01
This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schierz, Oliver; Dommel, Sandra; Hirsch, Christian; Reissmann, Daniel R
2014-09-01
Tooth wear is an increasing problem in a society where people are living longer. The purpose of this study was to assess the effect of age, sex, and location of teeth on the severity of tooth wear and to determine the prevalence of dentin exposure in the general population of Germany. Tooth wear was measured in casts of both jaws of 836 persons with a 6-point (0-5) ordinal rating scale. Linear random-intercept regression models with the covariates of age, sex, jaw, and tooth group (with the participant as a grouping variable) were computed to determine the association of these covariates with tooth wear of a single tooth. The mean tooth wear score across all age groups, both sexes, and all teeth was 2.9 (standard deviation, 0.8), and the prevalence of teeth with exposed dentin was 23.4%. The participants' age was correlated with the mean tooth wear scores (r=0.51). The tooth wear level among women was on average 0.15 units lower than among men, and tooth wear was on average 0.59 units higher for anterior teeth than for posterior teeth. Increased tooth wear in anterior teeth may be due to the initially predominant guidance by anterior teeth, with age-related linear progress in tooth wear. Occlusal tooth wear scores and dentin exposure increase with age. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Water evaporation from substrate tooth surface during dentin treatments.
Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi
2011-01-01
The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.
Tooth wear in three ethnic groups in Sabah (northern Borneo).
Milosevic, A; Lo, M S
1996-12-01
The prevalence and associated aetiologies of tooth wear were investigated in three ethnic groups in Sabah (Northern Borneo) using the Tooth Wear Index (TWI). The number of surfaces with enamel wear only, dentine exposed for less than a third or dentine exposed for more than a third were categorised into the TW minimal, moderate or severe respectively. A structured questionnaire was used to elicit medical/dental history, oral hygiene practices, satisfaction with body image, diet and other personal habits/details. The sample comprised of a self selected sample of 148 dental hospital attenders; 47 (32 per cent) each of ethnic Chinese and Malay and 54 (36 per cent) of ethnic Kadazan, matched for age and with a similar number of scoreable teeth per subject. Dentine exposure within the total sample was a common finding (95 per cent TW with moderate, 41 per cent TW severe). The Kadazan group had significantly (P < 0.05) more surfaces with severe tooth wear than the Chinese or Malay. Tobacco chewing was positively associated (rho = +0.4, P < 0.05) with both moderate and severe tooth wear, as was the habit of crushing/eating bones. Neither carbonated beverages or fresh fruit intake were associated with tooth wear, but their frequency of consumption was low. The buccal and occlusal surfaces of the posterior teeth were the most severely worn. Generally, wear was greater in the upper anterior sextant compared to the lower anterior sextant, with the exception of the lower incisal edges in the Kadazan group. Tooth wear into dentine was a common occurrence, especially among the Kadazan subjects and least among the Chinese subjects. The aetiological factors associated with this tooth wear are different to those encountered in Western cultures.
Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi
2017-10-01
We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p < 0.01). The lesion depth of FJ was significantly shallower than those of other materials (p < 0.01); that of CV was significantly shallower than those of BC, HC, SF, and the control; and those of BC0 and BC17 were significantly shallower than that of the control (p < 0.05). The resin-type tooth-coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.
[Comparison of translucency between enamel, dentin and Vita veneer porcelain].
Xiong, Fang; Chao, Yong-lie; Zhu, Zhi-min
2007-12-01
To compare the translucency between enamel, dentin and dental porcelain. 32 newly extracted vital human central incisors were collected and cut into 0.8mm enamel slices and 1.0 mm dentin slices. 1.0 mm dental porcelain specimen were made with different Vita veneer porcelain, EN1, EN2, T4, Window, A1, A2, A3, A3.5, A4, B2, C2, D2, 3 samples for each kind. The transmittance and reflectance of tooth slices and porcelain specimen were measured by PR-650 spectra scan spectrocolorimeter. The transmittance coefficients were also calculated. The 95% confidence interval was obtained by SPSS 12.0 software package. SNK method was used to compare the transmittance coefficients of different dentin porcelains. The transmittance coefficient of tooth enamel ranged from 0.0817 mm(-1) to 0.1009 mm(-1), which was higher than that of two kinds of enamel porcelain (0.0507 mm(-1) for EN1 and 0.0408 mm(-1) for EN2). The transmittance coefficient of dentin (0.0418-0.0482 mm(-1)) was also higher than that of dentin porcelain (0.016-0.027 mm(-1)). The transmittance coefficient of dentin porcelain decreased with the increasing of chroma (P<0.05). Prominent difference exists between translucency of tooth tissue and dental porcelain, especially between enamel and enamel porcelain.
Functional remineralization of carious dentin
NASA Astrophysics Data System (ADS)
Pugach, Megan Kardon
A primary goal of dental tissue engineering is the biological reconstruction of tooth substrate destroyed by caries or other diseases affecting tooth mineralization. Traditionally, dentists treat caries by using invasive techniques to remove the diseased dental tissue and restore the lesion, ideally preventing further progression of decay. Success in strategies associated with remineralization of enamel and root caries have contributed to the less invasive prospect of remineralization of dentinal carious lesions. The central hypothesis of this dissertation is that carious dentin lesions can be remineralized if the lesions contain residual mineral. Caries Detector (CD) stained zones (pink, light pink, transparent and normal) of arrested carious dentin lesions were characterized according to microstructure by atomic force microscopy (AFM) imaging, mineral content by digital transverse microradiography, and nanomechanical properties by AFM-based nanoindentation. CD-stained and unstained zones had significantly different microstructure, mineral content and nanomechanical properties. Furthermore, the most demineralized carious zone contained residual mineral. To obtain reproducible, standardized dentin caries lesions, we characterized the lesions from an artificial carious dentin lesion model using a 0.05M acetate demineralization buffer. The artificial caries-like lesions produced by the buffer had similar mineral content and nanomechanical properties in the stained and unstained zones as natural dentin lesions. Both natural and artificial lesions had significant correlations between mineral content and nanomechanical properties. Mineral crystallite size and shape was examined by small angle x-ray scattering. Both natural and artificial carious dentin had different mineral sizes than normal dentin. Collagen in natural and artificial carious dentin lesions was examined by trichrome stain, AFM high-resolution imaging, and UV resonance Raman spectroscopy, to determine if fibrils were intact and mineralization levels. It appeared that the collagen in the most demineralized pink zones of the lesions was intact and contained intrafibrillar mineral. Natural and artificial carious dentin lesions were treated with remineralization solutions containing different amounts of Ca2+ and PO 43-, with and without CO32- and with and without 2 ppm fluoride. The hydrated nanomechanical properties of the lesions were partially restored. This suggests that the most CD-stained zones of arrested dentin caries lesions may be remineralizable. These results suggest that remineralization as an approach of minimally invasive dentistry using non-invasive treatments to restore dental tissues is possible.
The reduction in fatigue crack growth resistance of dentin with depth.
Ivancik, J; Neerchal, N K; Romberg, E; Arola, D
2011-08-01
The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.
Al-Batayneh, Ola B; Seow, W Kim; Walsh, Laurence J
2014-01-01
Most studies of cavity preparation using Er:YAG lasers have employed permanent teeth. This study's purpose was to compare the cutting efficiency of an Er:YAG laser versus diamond burs in primary and permanent teeth in order to measure thermal effects on the pulp and evaluate lased surfaces using scanning electron microscopy (SEM). A total of 80 primary and permanent teeth were used. Crater depths and mass loss were measured after delivering laser pulses at varying energies onto sound or carious enamel or dentin using the Key-3 laser. Control samples were cut using diamond burs in an air turbine handpiece. Thermal changes were measured using miniature thermocouples placed into the pulp chamber. Lased surfaces were evaluated using SEM. Laser ablation crater-like defects were deeper in dentin than enamel at the same pulse energy. Greater ablation rates for dentin and enamel and significantly more efficient removal of carious tooth structure by laser was present in primary teeth. Temperature rises in the pulp did not exceed the 5.5 degrees Celsius threshold in any teeth during laser ablation. The Er:YAG laser is an efficient device for cavity preparations in primary teeth, with no unacceptable increases in temperature detected in this model.
[Study of influence of endoopalescence on the solid tissue by means of raster microscope].
Kobakhidze, G D; Vadachkoriia, N R
2006-05-01
During the process of endowhitening as a result of penetration of peroxide into dentine tubules the adhesion of tooth tissues sharply decreases, it requires the delay of restoration by filling for several days. Surely it is not comfortable for the patient. The best way out is the application of antioxidants after whitening. Under their influence the sedimentary layer on the hard tissues of the teeth neutralizes much quicker. The urgency of this issue is preconditioned by the fact that under the influence of antioxidant the restored adhesiveness enables the immediate restoration of tooth. Our previous experiment is the good proof of that. In the experiment we studied the level of micro leakage and origination of microfissures by effecting with antioxidant, precisely with 10% sodium ascorbate on the hard tissues of tooth after using the whitening agent. As a result of this experiment we have not obtained any microfissure in the teeth covered with antioxidant unlike those teeth where we had not used the antioxidant. According to the reference data it is known that after acide angraving there occurs the removing of adhesive layer from the enamel and dentin of tooth. As a result of this the prisms of enamel and the dentine tubules are widened and this creates condition for the further penetration of the primer of the adhesive system. This process is followed by the origination of transitional i.e. hybrid layer. The latter one is the best link for the adhesive tar and tooth tissues. Modern investigations in the esthetic stomatology prove that the whitening agents produce the peroxide molecules during the process of whitening. These molecules cause the widening of the tooth enamel prisms. We also studied the results of post endo-whitening influence of peroxidation processes on the enamel and dentine of tooth by means of the raster microscope. Studies by electron microscope showed that the antioxidant - 10% sodium ascorbate was characterized by high penetration and was equally distributed in the dentine. It totally covered the dentine, actively interacted with the peroxide accumulated in the tubules and caused their neutralization. In the II experimental group, most parts of the dentine tubules were tightly obturated, it originated the strong hybrid circle and the fissure was not observed in any of it's areas. It may be concluded that the adhesiveness disturbed as a result of peroxidation processes improved by their neutralization by means of antioxidant that accelerated the terms of filling postponed after the application of whitener enabled the immediate filling of the tooth. Development of strong hybrid layer on the electron-diffraction pattern of teeth of this group without the microfissure is the precondition for successful therapy.
An automatic robotic system for three-dimensional tooth crown preparation using a picosecond laser.
Wang, Lei; Wang, Dangxiao; Zhang, Yuru; Ma, Lei; Sun, Yuchun; Lv, Peijun
2014-09-01
Laser techniques have been introduced into dentistry to overcome the drawbacks of traditional treatment methods. The existing methods in dental clinical operations for tooth crown preparation have several drawbacks which affect the long-term success of the dental treatment. To develop an improved robotic system to manipulate the laser beam to achieve safe and accurate three-dimensional (3D) tooth ablation, and thus to realize automatic tooth crown preparation in clinical operations. We present an automatic laser ablation system for tooth crown preparation in dental restorative operations. The system, combining robotics and laser technology, is developed to control the laser focus in three-dimensional motion aiming for high speed and accuracy crown preparation. The system consists of an end-effector, a real-time monitor and a tooth fixture. A layer-by-layer ablation method is developed to control the laser focus during the crown preparation. Experiments are carried out with picosecond laser on wax resin and teeth. The accuracy of the system is satisfying, achieving the average linear errors of 0.06 mm for wax resin and 0.05 mm for dentin. The angle errors are 4.33° for wax resin and 0.5° for dentin. The depth errors for wax resin and dentin are both within 0.1 mm. The ablation time is 1.5 hours for wax resin and 3.5 hours for dentin. The ablation experimental results show that the movement range and the resolution of the robotic system can meet the requirements of typical dental operations for tooth crown preparation. Also, the errors of tooth shape and preparation angle are able to satisfy the requirements of clinical crown preparation. Although the experimental results illustrate the potential of using picosecond lasers for 3D tooth crown preparation, many research issues still need to be studied before the system can be applied to clinical operations. © 2014 Wiley Periodicals, Inc.
Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad
2015-05-01
The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a specific case. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microtensile bond strength of contemporary adhesives to primary enamel and dentin.
Marquezan, Marcela; da Silveira, Bruno Lopes; Burnett, Luiz Henrique; Rodrigues, Célia Regina Martins Delgado; Kramer, Paulo Floriani
2008-01-01
The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2, Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Immediately to adhesive application, a composite resin (Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a = 0.05). In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and self-etching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.
Dejak, Beata; Młotkowski, Andrzej
2013-12-01
The objective was to compare equivalent stresses in molars restored with endocrowns as well as posts and cores during masticatory simulation using finite element analysis. Four three-dimensional models of first mandibular molars were created: A - intact tooth; B - tooth restored by ceramic endocrown; C - tooth with FRC posts, composite core and ceramic crown; D - tooth with cast post and ceramic crown. The study was performed using finite element analysis, with contact elements. The computer simulations of mastication were conducted. The equivalent stresses of modified von Mises failure criterion (mvM) in models were calculated, Tsai-Wu index for FRC post was determinate. Maximal values of the stresses in the ceramic, cement and dentin were compared between models and to strength of the materials. Contact stresses in the cement-tissue adhesive interface around restorations were considered as well. During masticatory simulation, the lowest mvM stresses in dentin arisen in molar restored with endocrown (Model B). Maximal mvM stress values in structures of restored molar were 23% lower than in the intact tooth. The mvM stresses in the endocrown did not exceed the tensile strength of ceramic. In the molar with an FRC posts (Model C), equivalent stress values in dentin increased by 42% versus Model B. In ceramic crown of Model C the stresses were 31% higher and in the resin luting cement were 61% higher than in the tooth with endocrown. Tensile contact stresses in the adhesive cement-dentin interface around FRC posts achieved 4 times higher values than under endocrown and shear stresses increased twice. The contact stress values around the appliances were several time smaller than cement-dentin bond strength. Teeth restored by endocrowns are potentially more resistant to failure than those with FRC posts. Under physiological loads, ceramic endocrowns ideally cemented in molars should not be demaged or debonded. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Kijsamanmith, Kanittha; Vongsavan, Noppakun; Matthews, Bruce
2018-03-01
To determine the percentage of the blood flow signal that is derived from dental pulp when recording from exposed dentine in a human premolar. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-33 yr.) with a laser Doppler flow meter (Periflux 4001) using either a red (635 nm) or an infrared (780 nm) laser. After exposing dentine above the buccal pulpal horn (cavity diam. 1.6 mm, depth 3 mm) and isolating the crown with opaque rubber dam, blood flow was recorded alternately with infrared or red light from the exposed dentine under four conditions: before and after injecting local anaesthetic (3% Mepivacaine without vasoconstrictor) (LA) over the apex of the root of the tooth; after exposing the pulp by cutting a buccal, class V cavity in the tooth; and after sectioning the coronal pulp transversely through the exposure. There was no significant change in mean blood flow recorded with either light source when the tooth was anaesthetized or when the pulp was exposed. After the pulp had been sectioned, the blood flow recorded with infrared light fell by 67.8% and with red light, by 68.4%. The difference between these effects was not significant. When recording blood flow from exposed coronal dentine with either infrared or red light in a tooth isolated with opaque rubber dam, about 68% to the signal was contributed by the pulp. The signal:noise ratio was better with infrared than red light, and when recording from dentine than enamel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ammari, Michelle Mikhael; Moliterno, Luiz Flávio Martins; Hirata Júnior, Raphael; Séllos, Mariana Canano; Soviero, Vera Mendes; Coutinho Filho, Wagner Pereira
2014-01-01
The aim of this study was to compare the efficacy of chemochemical methods (Carisolv™ and Papacárie®) versus the manual method (excavators) in reducing the cariogenic microbiota in dentine caries of primary teeth. Forty-six healthy children (5 to 9 years old) having at least one primary tooth with a cavitated dentine carious lesion were included in the study. The teeth presented no clinical or radiographic signs of pulpal involvement. The sample of 74 teeth was randomly divided into three different groups: Papacárie® (n = 25), Carisolv™ (n = 27) and Manual (n = 22). Samples of carious and sound dentine were collected with sterile excavators before and after caries removal in the three groups. The dentine samples were transferred to glass tubes containing a 1mL thioglycollate medium used as a carrier and enriched for microbiological detection of mutans streptococci and Lactobacillus spp, after incubation for 6h at room temperature. The minimum detection value for colony forming units (CFU) was 3.3 x 102 CFU/ml, and the results were converted into scores from 0 to 4. A significant difference was observed in relation to the microbiological scores before and after caries removal for all methods (Wilcoxon test; p < 0.001). The use of chemomechanical methods for caries removal did not improve the reduction of cariogenic microorganisms in dentine caries lesions, in comparison with manual excavation.
Response of feline intradental nerve fibers to tooth cutting by Er:YAG laser.
Chaiyavej, S; Yamamoto, H; Takeda, A; Suda, H
2000-01-01
The aim of this study was to investigate the response of intradental A- and C-fibers during tooth cutting by Er:YAG laser. Bipolar electrical stimulation was applied to the cat's canine to identify functional single nerve fibers of the inferior alveolar nerve. The tip of the canine tooth was cut in 0.5-mm steps until the pulp was exposed. Teeth were alternately cut by using Er:YAG laser (50 mJ, 5 pps) and micromotor under water cooling. The nerve response recorded from the single nerve fibers during laser cutting was compared with that during micromotor cutting. All 26 A-fibers responded to laser cutting with high frequency of nerve firings. The nerve firing rate was significantly higher during laser cutting compared with that during micromotor cutting of superficial dentin (Chi(2) test, P < 0.05) but was not significantly different at deep dentin (P > or = 0. 05). Nine of 11 C-fibers responded to laser cutting when the deep dentin was cut. Among those nine nerve fibers, three also showed a low frequency response to laser cutting of the superficial dentin. During the tooth cutting, Er:YAG laser was more effective in activating intradental A-fibers compared with micromotor and also caused the activation of intradental C-fibers. Copyright 2000 Wiley-Liss, Inc.
X-linked hypophosphatemia: the mutant gene is expressed in teeth as well as in kidney.
Shields, E D; Scriver, C R; Reade, T; Fujiwara, T M; Morgan, K; Ciampi, A; Schwartz, S
1990-01-01
Mutation at a locus (HPDR) on the X chromosome (McKusick 30780 [HPDR1]; 30781 [HPDR2]) causes impaired renal phosphate transport, hypophosphatemia, and an associated impairment in the process of mineralization in bone and teeth (X-linked hypophosphatemia [XLH]). We measured the dental pulp profile area (PRATIO [= pulp area/tooth area]) and serum phosphorus (Pi) values in uniformly treated XLH patients (six males, 81 teeth, 1,457 Pi values; 11 females, 129 teeth, 1,439 Pi values). Serum Pi values, reflecting the metabolic environment of tooth development, were obtained by repeated measurement between 1 mo and 26 years of age during treatment. PRATIO values calculated from standardized Rinn radiographs were used as outcome measurements of tooth development in XLH patients and in age-matched controls (12 males, 100 teeth; 27 females, 275 teeth). Age-dependent serum Pi values were not different in the treated XLH males and females. In teeth forming primary dentin there was no gene dosage effect on PRATIO values apparent in subjects below 15 years of age. However, in teeth forming secondary dentin a gene dosage was found in the subjects aged 15 to 25 years: XLH male teeth (n = 65) mean +/- SD = 0.163 +/- 0.046; XLH female teeth (n = 75) mean +/- SD = 0.137 +/- 0.039; control teeth (n = 209) mean +/- SD = 0.116 +/- 0.023; (higher PRATIO values mean less development or mineralization of secondary dentin); differences in these PRATIO values (males vs. female and XLH vs. control) were significant by mixed-model analysis of variance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2155529
Influence of different transitional restorations on the fracture resistance of premolar teeth.
Qualtrough, A J; Cawte, S G; Wilson, N H
2001-01-01
Controversy exists over the most favorable material and type of restoration to be used to transitionally restore teeth destined to be crowned. This in vitro study uses fracture resistance testing to compare eight different transitional restorations in maxillary premolars. Ninety sound maxillary premolars were randomly selected and allocated to nine groups, each comprising 10 teeth. One group remained unrestored and was used as the control. Teeth in the remaining groups were prepared to a standard cavity form using: a copy milling process removing the palatal cusp. Restorations were placed using amalgam with dentin pins and cavity varnish; amalgam with an amalgam bonding agent; resin composite with dentin pins and a dentin bonding agent; resin composite with a dentin bonding agent only; resin-modified glass ionomer with dentin pins; resin-modified glass ionomer cement alone and cermet with dentin pins and cermet alone. Each restored tooth was then subjected to axial loading via a bar contacting the buccal and restored palatal cusps until failure of the restored tooth occurred. The mean load-to-fracture values were statistically compared and the modes of failure recorded. It was found that the choice of restorative material and type of restoration had little effect on the fracture resistance of the restored tooth with the exception of those teeth restored with reinforced glass ionomer cement alone, which exhibited a significantly lower resistance to fracture than the other restored teeth. However, the choice of restorative material/technique did influence the mode of failure. Failure in teeth restored with resin-modified glass ionomer cement alone produced the least damage to the remaining tooth tissue when failure occurred. Consequently, this material may offer the most favorable range of properties for the transitional restoration of extensively broken-down maxillary premolar teeth destined to be crowned. Furthermore, the findings of this study fail to support the use of dentin pins in the placement of bonded build-up restorations.
Bodur, Haluk; Ece, Gülden
2012-01-01
The aim of this study was to evaluate the effectiveness of different irrigation solutions at different time intervals for the elimination of E.faecalis and C.albicans penetrated into the dentine tubules of primary and permanent teeth in vitro. The 4 mm primary and permanent teeth sections were sterilized and contaminated with a mixture of E.faecalis and C.albicans strains. After the application of different irrigation solutions (Sodium hypochlorite, Chlorhexidine gluconate, Octenidine Dihydrochloride, saline) to the contaminated tooth sections according to study groups, neutralizers were applied for inactivation of the solutions after 30 sec, 1 min and 5 min. Dentine shavings were placed into TSB and 10µL from each tube was inoculated on agar plates, followed by an incubation period of 24h at 37°C. The colonies were counted macroscopically. The results were compared by using Kruskal-Wallis and Mann Whitney U tests, with a significance level at p<0.05. Among the irrigation solutions that were tested against E.faecalis on primary and permanent teeth, the most effective one was found as 5-minute application of 0.1% Octenidine Dihydrochloride. The antibacterial effects of the tested solutions on the same time periods against C.albicans revealed no significant difference. There were no statistically significant differences between primary and permanent teeth with respect to the antimicrobial activity of the tested solutions. Moreover, Octenidine Dihydrochloride may be used as an alternative endodontic irrigant. Key words:Chlorhexidine gluconate, dentine tubules, irrigation solutions, Octenidine Dihydrochloride, Sodium hypochlorite. PMID:22143724
Zhang, Ning; Zhang, Ke; Weir, Michael D; Xu, David J; Reynolds, Mark A; Bai, Yuxing; Xu, Hockin H K
2018-06-21
Biofilms at the tooth-restoration bonded interface can produce acids and cause recurrent caries. Recurrent caries is a primary reason for restoration failures. The objectives of this study were to synthesize a novel bioactive dental bonding agent containing dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) to inhibit biofilm formation at the tooth-restoration margin and to investigate the effects of water-aging for 6 months on the dentin bond strength and protein-repellent and antibacterial durability. A protein-repellent agent (MPC) and antibacterial agent (DMAHDM) were added to a Scotchbond multi-purpose (SBMP) primer and adhesive. Specimens were stored in water at 37 °C for 1, 30, 90, or 180 days (d). At the end of each time period, the dentin bond strength and protein-repellent and antibacterial properties were evaluated. Protein attachment onto resin specimens was measured by the micro-bicinchoninic acid approach. A dental plaque microcosm biofilm model was used to test the biofilm response. The SBMP + MPC + DMAHDM group showed no decline in dentin bond strength after water-aging for 6 months, which was significantly higher than that of the control (P < 0.05). The SBMP + MPC + DMAHDM group had protein adhesion that was only 1/20 of that of the SBMP control (P < 0.05). Incorporation of MPC and DMAHDM into SBMP provided a synergistic effect on biofilm reduction. The antibacterial effect and resistance to protein adsorption exhibited no decrease from 1 to 180 d (P > 0.1). In conclusion, a bonding agent with MPC and DMAHDM achieved a durable dentin bond strength and long-term resistance to proteins and oral bacteria. The novel dental bonding agent is promising for applications in preventive and restorative dentistry to reduce biofilm formation at the tooth-restoration margin.
[Destructive and protective factors in the development of tooth-wear].
Jász, Máté; Varga, Gábor; Tóth, Zsuzsanna
2006-12-01
The experience of the past decade proves that tooth wear occurs in an increasing number of cases in general dental practice. Tooth wear may have physical (abrasion and attrition) and/or chemical (erosion) origin. The primary physical causes are inadequate dental hygienic activities, bad oral habits or occupational harm. As for dental erosion, it is accelerated by the highly erosive foods and drinks produced and sold in the past decades, and the number of cases is also boosted by the fact that bulimia, anorexia nervosa and gastro-oesophageal reflux disease prevalence have become more common. The most important defensive factor against tooth wear is saliva, which protects teeth from the effect of acids. Tertiary dentin formation plays an important role in the protection of the pulp. Ideally, destructive and protective factors are in balance. Both an increase in the destructive forces, and the insufficiency of defense factors result in the disturbance of the equilibrium. This results in tooth-wear, which means an irreversible loss of dental hard tissue. The rehabilitation of the lost tooth material is often very difficult, irrespectively of whether it is needed because of functional or esthetic causes. For that reason, the dentist should carry out primary and secondary dental care and prevention more often, i.e. dental recall is indispensable every 4-6 months.
Baba, Otto; Qin, Chunlin; Brunn, Jan C; Wygant, James N; McIntyre, Bradley W; Butler, William T
2004-10-01
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are acidic proteins found in the extracellular matrices of bones and teeth. Recent data from gene knockouts, along with those of gene mutations, indicate that these two phosphoproteins are critical for bone and tooth development and/or maintenance. However, the precise functions of the two proteins have not been elucidated. In order to gain insights into their functions in tooth formation, we performed systematic, comparative investigations on the immunolocalization of DMP1 and dentin sialoprotein (DSP, a cleaved fragment of DSPP), using the rat first molar at different developmental stages as a model. Immunohistochemistry (IHC) was performed with specific, monoclonal antibodies against the COOH-terminal fragments of DMP1 and against DSP. In 1-day- and 1-week-old rats, weak immunoreactions for DMP1 were observed in dentinal tubules while stronger reactions for DSP were seen in the tubules and predentin. In rats older than 2 weeks, immunoreactions for DMP1 were found in dentinal tubules, predentin and odontoblasts. In 5-week- and 8-week-old rats, strong immunoreactions for DMP1 were widely distributed in odontoblasts and predentin. The distribution pattern of DSP was strikingly similar to that of DMP1 after 2 weeks and the localization of each was distinctly different from that of bone sialoprotein (BSP). The unique colocalization of DMP1 and DSPP in tooth development suggests that the two proteins play complementary and/or synergistic roles in formation and maintenance of healthy teeth.
Concept and clinical application of the resin-coating technique for indirect restorations.
Nikaido, Toru; Tagami, Junji; Yatani, Hirofumi; Ohkubo, Chikahiro; Nihei, Tomotaro; Koizumi, Hiroyasu; Maseki, Toshio; Nishiyama, Yuichiro; Takigawa, Tomoyoshi; Tsubota, Yuji
2018-03-30
The resin-coating technique is one of the successful bonding techniques used for the indirect restorations. The dentin surfaces exposed after cavity preparation are coated with a thin film of a coating material or a dentin bonding system combined with a flowable composite resin. Resin coating can minimize pulp irritation and improve the bond strength between a resin cement and tooth structures. The technique can also be applied to endodontically treated teeth, resulting in prevention of coronal leakage of the restorations. Application of a resin coating to root surface provides the additional benefit of preventing root caries in elderly patients. Therefore, the coating materials have the potential to reinforce sound tooth ("Super Tooth" formation), leading to preservation of maximum tooth structures.
In vitro reproduction of incisal/occlusal cupping/cratering.
Dzakovich, John J; Oslak, Robert R
2013-06-01
Occlusal cupping/cratering (depressed dentin surrounded by elevated rims of enamel) has been postulated to be the result of abrasion, bruxism, attrition, acid erosion, stress corrosion, or a combination of these. The primary etiology or the multifactorial sequence of occlusal cupping/cratering remains scientifically unsubstantiated. The purpose of this study was to reproduce occlusal/incisal cupping/cratering in vitro. This study was designed to create cupping/cratering on the occlusal surfaces of extracted human teeth rather than to quantify the amount of lost tooth structure caused by abrasion. One name-brand toothbrush was tested with 2 different dentifrices (of different abrasive potentials [low and high]) and water only (nonabrasive) on extracted human teeth. Six specimens of 4 teeth each (24 teeth) were subjected to horizontal brushing in a 1:1 toothpaste/water slurry and water only. The control group, brushed with water only, demonstrated no visible loss of tooth structure. Each of the specimens brushed with toothpaste, regardless of the degree of abrasivity, demonstrated visible wear of the dentin, resulting in occlusal/incisal cupping/cratering. Pronounced cupping/cratering was caused by horizontal brushing with commercial toothpastes. Brushing in water demonstrated no visual loss of occlusal tooth structure. (J Prosthet Dent 2013;109:384-391). Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Prabhakar, A R; Manojkumar, A Jaiswal; Basappa, N
2013-01-01
Currently, fluoride is the most effective preventive treatment for remineralization of incipient carious lesions and dentinal hypersensitivity due to wasting disorders. The products containing fluoride, calcium and phosphate are also claim to remineralize early, non-cavitated enamel demineralization. The aim of this study was to investigate and compare the efficacy of two such products, Tooth Mousse and Clinpro tooth crème on remineralization and tubule occluding ability with 5000ppm fluoride-containing toothpaste. Thirty third molar teeth were placed in demineralizing solution for 5 days such that only a window of 1mm x 5mm was exposed to the environment to produce artificial caries-like lesions and randomly assigned to three groups: Group I, 5000ppm sodium fluoride; Group II, GC MI paste plus and Group III, Clinpro tooth crème. Axial longitudinal sections of 140-160 μm of each tooth which included the artificial carious lesion taken and were photographed under polarized light microscope. The demineralized areas were then quantified with a computerized imaging system. The experimental materials were applied onto the tooth sections as a topical coating and subjected to pH-cycling for 28 days. To evaluate tubule occlusion ability, thirty dentin specimens of 2mm thickness were obtained from cervical third of sound third molars. Specimens were ultrasonicated and etched with 6% citric acid for 2 minutes to simulate the hypersensitive dentin. Specimens were randomly divided into above mentioned three groups (n=10). The test agents were brushed over the specimens with an electric toothbrush, prepared and observed under Scanning Electron Microscope for calculation of the percentage of occluded tubules. Group I showed a significantly greater percentage of remineralization than Group III and Group II. Comparison of the remineralization potential between group II and group III were not significant.In case of dentine hypersensitivity, Group I and group III showed greater percentage of tubule occlusion ability than Group II. Intergroup comparison of the tubule occlusion potential of group I and group III were not significant. Within the limitations of our study, sodium fluoride showed relatively greatest remineralizing and dentinal tubule occlusion property when compared with GC MI paste plus and Clinpro tooth crème.
[Mantle dentin as biomodel of materials for structural teeth restoration].
Starodubova, A V; Vinnichenko, Yu A; Pourovskaya, I Ya; Rusanov, F S
The article describes a structural element of natural teeth - mantle dentin. It has been shown that the presence of this element in the structure of a natural tooth largely ensures its strength under the influence of repeated loads in a functional oral environment and arrests crack growth at the enamel/dentine interface. This later effect is explained by the influence of a thin layer of mantle dentine, which has physical and mechanical characteristics different from that of the main dentin.
Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.
1986-08-01
of the tooth . At the same time, enamel porcelains can be applied from the incisal one-third, through the middle one-third, and be subtly blended into...alumina (aluminum oxide) in a glass matrix. 1 Natural tooth color and opacification are obtained by the addition of metallic oxides to the porcelain...are classified as opaque, dentin (or body), and enamel (or incisal) porcelain powders with numerous color concentrates, such s opaque and dentin color
Monitoring of copper nanoparticle penetration into dentin of human tooth in vitro
NASA Astrophysics Data System (ADS)
Selifonov, Alexey A.; Glukhovskoy, Evgeny G.; Skibina, Yulia S.; Zakharevich, Andrey M.; Begletsova, Nadezhda N.; Tuchin, Valery V.
2018-04-01
Study of the penetration depth of synthesized copper nanoparticles into cut samples of human dentin was conducted. The scanning electron microscopy was used to determine the elemental composition of fresh transverse cleavage of the dentin cut for determination of the copper nanoparticles penetration with an effective antiseptic effect. The morphology of the cut surface of the dentin of a human tooth was studied and the lower limit of the diffusion boundary was determined. It was found that copper nanoparticles penetrate into the dentin cut to a depth of 1.8 μm with the diffusion coefficient of 1.8×10-11 cm2/s. Despite the rather small size of the synthesized copper nanoparticles (20-80 nm), a rather small penetration depth can be explained by the high aggregation ability of copper nanoparticles, as well as the ability of a micellar solution of sodium dodecyl sulfate, in which nanoparticles were stabilized, to form conglomerates in micelles of much larger sizes.
Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta
2013-02-01
The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Müller, Werner E G; Neufurth, Meik; Tolba, Emad; Wang, Shunfeng; Geurtsen, Werner; Feng, Qingling; Schröder, Heinz C; Wang, Xiaohong
2016-06-01
Dental hypersensitivity has become one of the most common and most costly diseases in the world, even though those maladies are very rarely life threatening. Using amorphous microparticles, fabricated from the natural polymer (polyphosphate), we intend to reseal the dentinal tubules exposed and reduce by that the hypersensitivity. Amorphous microparticles (termed aCa-polyP-MP) were prepared from Na-polyphosphate (polyP) and CaCl2, then incubated with human teeth. The potential of the microparticles to plug the dentinal tubules was determined by microscopic and spectroscopic techniques. We demonstrate that, in contrast to polyP, the aCa-polyP-MP efficiently reseal dentinal tubules exposed at the tooth surface. Scanning electron microscopical (SEM) and energy dispersive X-ray spectroscopic (EDX) studies showed that the tooth cement and dentin surfaces, incubated with aCa-polyP-MP, form a nearly homogenous, approximately 50-μm thick solid polyP layer on the tooth cement and dentin surfaces, while no coating on the tooth surface, incubated with Na-polyP [Ca(2+)], was observed. Determination of the mechanical properties of the polyP coating revealed a Martens hardness of 3.85±0.64GPa and a reduced elastic modulus of 94.72±8.54GPa already after a 3h exposure to the aCa-polyP-MP, which become close to those of the natural enamel (4.33±0.69GPa and 101.61±8.52GPa, respectively) after prolonged incubation periods. In addition, aCa-polyP-MP turned out to display morphogenetic activity. Incubation of precursor odontoblasts cultures in the presence of aCa-polyP-MP resulted in a 7-fold increase of the steady-state-expression level of the gene encoding for the alkaline phosphatase (ALP) during a 7 d incubation period. Ca-polyP microparticles, consisting of the biocompatible natural polymer polyP, provide a potential sealing material for dentinal tubules on the tooth surface. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek
2012-05-01
This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.
Effect of restoration volume on stresses in a mandibular molar: a finite element study.
Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles
2014-10-01
There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises stresses to the yield strengths of the materials revealed a relationship between a tooth's restoration volume proportion and the potential for failure, although factors other than restoration volume proportion may also impact the stresses generated in moderate-sized restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Loch, Carolina; Swain, Michael V; Fraser, Sara J; Gordon, Keith C; Kieser, Jules A; Fordyce, R Ewan
2014-01-01
Dolphins show increased tooth number and simplified tooth shape compared to most mammals, together with a simpler ultrastructural organization and less demanding biomechanical function. However, it is unknown if these factors are also reflected in the chemical composition of their teeth. Here, the bulk chemical composition and elemental distribution in enamel and dentine of extant dolphins were characterized and interpreted using X-ray and spectroscopy techniques. Teeth of 10 species of Delphinida were analyzed by WDX, EDX and Raman spectroscopy. For most of the species sampled, the mineral content was higher in enamel than in dentine, increasing from inner towards outer enamel. The transition from dentine to enamel was marked by an increase in concentration of the major components Ca and P, but also in Na and Cl. Mg decreased from dentine to enamel. Concentrations of Sr and F were often low and below detection limits, but F peaked at the outer enamel region for some species. Raman spectroscopy analyzes showed characteristics similar to carbonated hydroxyapatite, with the strongest peak for the phosphate PO4(3-) stretching mode at 960-961cm(-1). Dentine samples revealed a higher diversity of peaks representative of organic components and proteins than enamel. The similar distribution pattern and small variation in average concentration of major and minor elements in dentine and enamel of dolphins suggest that they are subject to strong physiological control. A clear trend of the elemental variations for all dolphin species sampled suggests that the general pattern of tooth chemistry is conserved among the Mammalia. Copyright © 2013 Elsevier Inc. All rights reserved.
A Novel Role of Periostin in Postnatal Tooth Formation and Mineralization*
Ma, Dedong; Zhang, Rong; Sun, Yao; Rios, Hector F.; Haruyama, Naoto; Han, Xianglong; Kulkarni, Ashok B.; Qin, Chunlin; Feng, Jian Q.
2011-01-01
Periostin plays multiple functions during development. Our previous work showed a critical role of this disulfide-linked cell adhesion protein in maintenance of periodontium integrity in response to occlusal load. In this study, we attempted to address whether this mechanical response molecule played a direct role in postnatal tooth development. Our key findings are 1) periostin is expressed in preodontoblasts, and odontoblasts; and the periostin-null incisor displayed a massive increase in dentin formation after mastication; 2) periostin is also expressed in the ameloblast cells, and an enamel defect is identified in both the adult-null incisor and molar; 3) deletion of periostin leads to changes in expression profiles of many non-collagenous protein such as DSPP, DMP1, BSP, and OPN in incisor dentin; 4) the removal of a biting force leads to reduction of mineralization, which is partially prevented in periostin-null mice; and 6) both in vitro and in vivo data revealed a direct regulation of periostin by TGF-β1 in dentin formation. In conclusion, periostin plays a novel direct role in controlling postnatal tooth formation, which is required for the integrity of both enamel and dentin. PMID:21131362
The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertassoni, Luiz E; Orgel, Joseph P.R.; Antipova, Olga
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understatingmore » the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.« less
Kishen, Anil; Shrestha, Annie; Rafique, Adeela
2008-01-01
In this study, a Fiber Optic Backscatter Spectroscopic Sensor (FOBSS) is used to monitor demineralization and remineralization induced changes in the enamel. A bifurcated fiber optic backscatter probe connected to a visible light source and a high resolution spectrophotometer was used to acquire the backscatter light spectrum from the tooth surface. The experiments were conducted in two parts. In Part 1, experiments were carried out using fiber optic backscatter spectroscopy on (1) sound enamel and dentine sections and (2) sound tooth specimens subjected to demineralization and remineralization. In Part 2, polarization microscopy was conducted to examine the depth of demineralization in tooth specimens. The enamel and dentine specimens from the Part-1 experiments showed distinct backscatter spectra. The spectrum obtained from the enamel-dentine combination and the spectrum generated from the average of the enamel and dentine spectral values were closely similar and showed characteristics of dentine. The experiments in Part 2 showed that demineralization and remineralization processes induced a linear decrease and linear increase in the backscatter light intensity respectively. A negative correlation between the decrease in the backscatter light intensity during demineralization and the depth of demineralization determined using the polarization microscopy was calculated to be p = -0.994. This in vitro experiment highlights the potential benefit of using FOBSS to detect demineralization and remineralization of enamel. PMID:20142887
Muthukumar, B; Kumar, M Vasantha
2015-01-01
Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique showed the least amount of microleakage when compared with group A and group C. Group C (Dental Varnish) specimen showed comparatively more amount of microleakage than that of group B. Group A (control group) specimens showed the maximum amount of microleakage. Conclusion The application of a single layer of Dental varnish appears to be of no significant benefit when compared to crowns cemented with the application of Dentin bonding agent on the tooth surface. The application of a single layer of Dentin bonding agent (Solobond M) and temporary crowns fabricated with direct technique may be of some benefit for crown preparations as an interim measure prior to the luting of final crown. PMID:26266219
Joiner, Andrew; Thakker, Gopal; Cooper, Yvonne
2004-01-01
The aims of this study were to evaluate the effects of a novel 6% hydrogen peroxide containing tooth whitener, Xtra White (XW), on enamel and dentine microhardness in vitro. Polished human enamel and dentine specimens were prepared and baseline microhardness determined. In study 1, enamel specimens were exposed to 20 min cycles of either water, XW or Sprite Light for up to 28 cycles. In studies 2 and 3, enamel specimens were treated with 20 min cycles of either XW or water and exposed to whole saliva at all other times. In study 3, an additional exposure to a fluoride containing toothpaste was conducted. In total, 28 treatments were conducted in order to simulate a 2 weeks product use. In study 4, dentine specimens were treated as per study 3. Final microhardness measurements were taken and for studies 3 and 4 colour measurements were additionally taken. XW and water gave no statistically significant (p>0.05) changes in enamel and dentine microhardness after 28 treatments. Sprite Light gave a significant (p<0.00002) reduction in enamel microhardness after one 20 min treatment. XW showed significant bleaching of enamel and dentine specimens as compared to the water control. XW does not have any significant effect on enamel and dentine microhardness.
An evaluation of smear layer with various desensitizing agents after tooth preparation.
Zaimoglu, A; Aydin, A K
1992-09-01
According to hydrodynamics, any agent blocking the dentinal tubules reduces the flow of fluids and diminishes hypersensitivity. The properties of the desensitizing agents that sponsor tubular occlusion and the barrier efficiency resulting from the interaction of the smear layer with test materials were examined with the scanning electron microscope and energy-dispersive x-ray microanalysis. Selected dentinal desensitizing was accomplished with burnishing procedures, cavity varnish, calcium hydroxide, and topical fluoride. Subjective evaluations were also recorded clinically after tooth preparation. This investigation indicated that the smear layer did not protect against zinc phosphate cement, and that cavity varnish prevented the formation of the smear plugs. The smear layer and plugs were basically composed of calcium and phosphorus, the major ingredients of dentin.
Zuo, Zhi-Gang; Hu, Min; Jiang, Huan; Tian, Li
2011-06-01
To investigate the relationship of expression of dentin sialoph-osphoprotein (DSPP) and dentin sialoprotein (DSP) in gingival crevicular fluid (GCF) with root resorption following experimental tooth movement in rats. 36 Wistar rats were divided into 3 groups on average randomly: Control group, light force group and heavy force group. The experimental teeth were drawn-off mesially by the force of 0.392 N in light force group and 0.98 N in heavy force group, with both of the maxillary central incisors as the tooth of anchorage. At the 7th day, the gingival crevicular fluid of rats were collected; the histological slices were made, including the experimental tooth and periodontal tissue; the tissues was stained with hematoxylin-eosin (HE) staining and tartrate resistant acid phosphatase (TRAP) staining to observe the histological changes of the root resorption of rats. Then the expression of DSPP and DSP were assayed by using biochemistry techniques of Western blot. Histological observation: There was not root resorption in control group. Neither root resorption nor cementoclast was observed in light force group. And in heavy force group visible root resorption came out in pressure zone. Western blot results: There was expression of DSPP and no DSP in control group, and there was the expression of DSPP and DSP in both light force group and heavy force group. The result of statistical analysis showed that there were significant differences in the expression of DSPP and DSP among three groups. The highest one was heavy force group, followed by the light force group and control group with the least amount of proteins. There is the expression of DSPP and DSP in gingival crevicular fluid following experimental tooth movement with root resorption.
Tooth surface treatment strategies for adhesive cementation
2017-01-01
PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616
First-time isolation of Candida dubliniensis from plaque and carious dentine of primary teeth.
Kneist, S; Borutta, A; Sigusch, B W; Nietzsche, S; Küpper, H; Kostrzewa, M; Callaway, A
2015-08-01
To determine those organisms of the genus Candida associated with dental caries by investigating samples from active carious lesions. Within the genus Candida, the species Candida albicans and Candida dubliniensis are capable of forming chlamydospores and germ tubes. Until it became possible in 1995 to differentiate between the two species taxonomically, C. dubliniensis was falsely identified as C. albicans. Whilst the importance of C. albicans for rapidly progressing early childhood caries (ECC) has been recognised, so far there have been only reports about C. dubliniensis in connection with children/mothers who have been infected with HIV or already developed AIDS. In the present study, C. dubliniensis was for the first time isolated from plaque and carious dentine of a healthy five-year-old boy. As part of the investigation, a number of samples were collected from individual children affected by active dental caries. Amongst the samples, one in particular indicated that Candida species might be involved. The patient was a five-year-old boy with ECC of the primary dentition, scheduled for restorative treatment under general anaesthesia. Before treatment, a salivary, plaque (region of 54/55) and soft carious dentine sample from the tooth 51 was taken before extraction. The counts of yeasts, lactobacilli (LB) and mutans streptococci were determined in the samples. The boy's dmft was 11, which was dominated by the d component. In the saliva of the boy, LB and mutans streptococci (MS) were detected. In plaque and carious dentine, MS and most interestingly C. dubliniensis were present. The yeasts were visualised in carious dentine by means of scanning electron micrographs. Plaque and carious dentine may be a further habitat of C. dubliniensis.
Ozer, Alkan; Yuan, Guohua; Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C; Donly, Kevin J; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application.
Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C.; Donly, Kevin J.; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application. PMID:24400037
Tirali, Resmiye-Ebru; Bodur, Haluk; Ece, Gülden
2012-05-01
The aim of this study was to evaluate the effectiveness of different irrigation solutions at different time intervals for the elimination of E. faecalis and C. albicans penetrated into the dentine tubules of primary and permanent teeth in vitro. The 4 mm primary and permanent teeth sections were sterilized and contaminated with a mixture of E. faecalis and C. albicans strains. After the application of different irrigation solutions (Sodium hypochlorite, Chlorhexidine gluconate, Octenidine Dihydrochloride, saline) to the contaminated tooth sections according to study groups, neutralizers were applied for inactivation of the solutions after 30 sec, 1 min and 5 min. Dentine shavings were placed into TSB and 10 µL from each tube was inoculated on agar plates, followed by an incubation period of 24 h at 37°C. The colonies were counted macroscopically. The results were compared by using Kruskal-Wallis and Mann Whitney U tests, with a significance level at p<0.05. Among the irrigation solutions that were tested against E. faecalis on primary and permanent teeth, the most effective one was found as 5-minute application of 0.1% Octenidine Dihydrochloride. The antibacterial effects of the tested solutions on the same time periods against C. albicans revealed no significant difference. There were no statistically significant differences between primary and permanent teeth with respect to the antimicrobial activity of the tested solutions. Moreover, Octenidine Dihydrochloride may be used as an alternative endodontic irrigant.
Montgomery, Janet
2016-01-01
The major components of human diet both past and present may be estimated by measuring the carbon and nitrogen isotope ratios (δ13C and δ15N) of the collagenous proteins in bone and tooth dentine. However, the results from these two tissues differ substantially: bone collagen records a multi-year average whilst primary dentine records and retains time-bound isotope ratios deriving from the period of tooth development. Recent studies harnessing a sub-annual temporal sampling resolution have shed new light on the individual dietary histories of our ancestors by identifying unexpected radical short-term dietary changes, the duration of breastfeeding and migration where dietary change occurs, and by raising questions regarding factors other than diet that may impact on δ13C and δ15N values. Here we show that the dentine δ13C and δ15N profiles of workhouse inmates dating from the Great Irish Famine of the 19th century not only record the expected dietary change from C3 potatoes to C4 maize, but when used together they also document prolonged nutritional and other physiological stress resulting from insufficient sustenance. In the adults, the influence of the maize-based diet is seen in the δ13C difference between dentine (formed in childhood) and rib (representing an average from the last few years of life). The demonstrated effects of stress on the δ13C and δ15N values will have an impact on the interpretations of diet in past populations even in slow-turnover tissues such as compact bone. This technique also has applicability in the investigation of modern children subject to nutritional distress where hair and nails are unavailable or do not record an adequate period of time. PMID:27508412
Characterization of crocodile teeth: correlation of composition, microstructure, and hardness.
Enax, Joachim; Fabritius, Helge-Otto; Rack, Alexander; Prymak, Oleg; Raabe, Dierk; Epple, Matthias
2013-11-01
Structure and composition of teeth of the saltwater crocodile Crocodylus porosus were characterized by several high-resolution analytical techniques. X-ray diffraction in combination with elemental analysis and infrared spectroscopy showed that the mineral phase of the teeth is a carbonated calcium-deficient nanocrystalline hydroxyapatite in all three tooth-constituting tissues: Dentin, enamel, and cementum. The fluoride content in the three tissues is very low (<0.1 wt.%) and comparable to that in human teeth. The mineral content of dentin, enamel, and cementum as determined by thermogravimetry is 71.3, 80.5, and 66.8 wt.%, respectively. Synchrotron X-ray microtomography showed the internal structure and allowed to visualize the degree of mineralization in dentin, enamel, and cementum. Virtual sections through the tooth and scanning electron micrographs showed that the enamel layer is comparably thin (100-200 μm). The crystallites in the enamel are oriented perpendicularly to the tooth surface. At the dentin-enamel-junction, the packing density of crystallites decreases, and the crystallites do not display an ordered structure as in the enamel. The microhardness was 0.60±0.05 GPa for dentin, 3.15±0.15 GPa for enamel, 0.26±0.08 GPa for cementum close to the crown, and 0.31±0.04 GPa for cementum close to the root margin. This can be explained with the different degree of mineralization of the different tissue types and is comparable with human teeth. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
This month's issue has the following articles: (1) The Edward Teller Centennial--Commentary by George H. Miller; (2) Edward Teller's Century: Celebrating the Man and His Vision--Colleagues at the Laboratory remember Edward Teller, cofounder of Lawrence Livermore, adviser to U.S. presidents, and physicist extraordinaire, on the 100th anniversary of his birth; (3) Quark Theory and Today's Supercomputers: It's a Match--Thanks to the power of BlueGene/L, Livermore has become an epicenter for theoretical advances in particle physics; and (4) The Role of Dentin in Tooth Fracture--Studies on tooth dentin show that its mechanical properties degrade with age.
de Almeida, Sandro Marco Steanini; Franca, Fabiana Mantovani Gomes; Florio, Flavia Martao; Ambrosano, Glaucia Maria Bovi; Basting, Roberta Tarkany
2013-07-01
Chemomechanical caries removal, when compared with removal using conventional rotary instruments, seems to preserve healthy tooth structure with less trauma to the patient. This study performed in vivo analysis of the total number of microorganisms in dentin after the use of conventional or chemomechanical (papain gel) caries removal methods. Analyses were performed before caries removal (baseline), immediately after caries removal, and 45 days after caries removal and temporary cavity sealing. Sixty patients were selected for this study, each with two mandibular molars (one on each side) with occlusal caries of moderate depth, for a total of 120 teeth. For each patient, the carious lesion of one tooth was removed by conventional methods using low speed drills (Group 1). For the other tooth, a chemomechanical method was used (Group 2). Dentin samples were collected at the three intervals and subjected to microbiological culture in blood agar. For the total number of microorganisms in both groups, ANOVA and Tukey tests (which considered the baseline values as a covariable) showed a higher microbial count immediately after the preparation of the cavity compared to the count at 45 days (P < 0.05). For both groups, the total count of microorganisms in dentin decreased 45 days after placing the temporary cavity sealing.
The compression dome concept: the restorative implications.
Milicich, Graeme
2017-01-01
Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.
Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg
2015-01-19
We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. Themore » quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.« less
Evolution of high tooth replacement rates in sauropod dinosaurs.
D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A
2013-01-01
Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.
Evolution of High Tooth Replacement Rates in Sauropod Dinosaurs
Smith, Kathlyn M.; Fisher, Daniel C.; Wilson, Jeffrey A.
2013-01-01
Background Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. Methodology/Principal Findings We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Conclusions/Significance Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs. PMID:23874921
Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei
2015-10-01
Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almer, J. D.; Stock, S. R.; Northeastern Univ.
2010-08-26
High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients weremore » observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.« less
Mechanical behavior of CAD/CAM occlusal ceramic reconstruction assessed by digital color holography.
Xia, H; Picart, P; Montresor, S; Guo, R; Li, J C; Yusuf Solieman, O; Durand, J-C; Fages, M
2018-05-21
CAD/CAM ceramic occlusal veneers are increasingly used as therapeutic options. However, little is known about their mechanical behavior under stress, as the response of the prepared tooth that supports it. The aim of this article is to use for the first time 3D color holography to evaluate the behavior of a molar occlusal veneer under stress and the response of the prepared tooth. The occlusal surface of a lower molar is prepared to receive a specific monolithic ceramic reconstruction manufactured with a chairside CAD/CAM system. Longitudinally cut samples are used to get a planar object observation and to "look inside" the tooth. A digital holographic set-up permits to obtain the contact-less and one-shot measurement of the three-dimensional displacement field at the surface of the tooth sample; stain fields are evaluated with low noise-sensitive computation. Figures show the strain fields with micro-strain units and highlight the behavior of the ROI (region of interest) in the three directions of space. The ROI are: the ceramic, the glue junction, the dentin enamel junction, dentin and enamel. The results show an excellent behavior of the restored tooth without areas of excessive stress concentrations, but also a significant involvement of the dentin enamel junction. The ceramic occlusal veneer seems to behave in accordance with the biomechanical concepts ensuring the longevity of the reconstituted tooth. 3D holography is a highly recommended method for studying dental biomechanics. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Tatara, Marcin R; Szabelska, Anna; Krupski, Witold; Tymczyna, Barbara; Łuszczewska-Sierakowska, Iwona; Bieniaś, Jarosław; Ostapiuk, Monika
2018-06-01
Interrelationships between morphological, densitometric, and mechanical properties of deciduous mandibular teeth (incisors, canine, second premolar) were investigated. To perform morphometric, densitometric, and mechanical analyses, teeth were obtained from 5-month-old sheep. Measurements of mean volumetric tooth mineral density and total tooth volume were performed using quantitative computed tomography. Microcomputed tomography was used to measure total enamel volume, volumetric enamel mineral density, total dentin volume, and volumetric dentin mineral density. Maximum elastic strength and ultimate force of teeth were determined using 3-point bending and compression tests. Pearson correlation coefficients were determined between all investigated variables. Mutual dependence was observed between morphological and mechanical properties of the investigated teeth. The highest number of positive correlations of the investigated parameters was stated in first incisor indicating its superior predictive value of tooth quality and masticatory organ function in sheep. Positive correlations of the volumetric dentin mineral density in second premolar with final body weight may indicate predictive value of this parameter in relation with growth rate in sheep. Evaluation of deciduous tooth properties may prove helpful for breeding selection and further reproduction of sheep possessing favorable traits of teeth and better masticatory organ function, leading to improved performance and economic efficiency of the flock.
Zhang, Ying; Wang, Yong
2012-01-01
Objective To investigate the influence of application mode on the interfacial morphology and chemistry between dentin and self-etch adhesives with different aggressiveness. Methods The occlusal one-third of the crown was removed from un-erupted human third molars, followed by abrading with 600 grit SiC under water. Rectangular dentin slabs were prepared by sectioning the tooth specimens perpendicular to the abraded surfaces. The obtained dentin slabs were treated with one of the two one-step self-etch adhesives: Adper Easy Bond (AEB, PH~2.5) and Adper Prompt L-Pop (APLP, PH~0.8) with (15s, active application) or without (15s, inactive application) agitation. The dentin slabs were fractured and the exposed adhesive/dentin (A/D) interfaces were examined with micro-Raman spectroscopy and scanning electron microscopy (SEM). Results The interfacial morphology, degree of dentin demineralization (DD) and degree of conversion (DC) of the strong self-etch adhesive APLP showed more significant dependence on the application mode than the mild AEB. APLP exhibited inferior bonding at the A/D interface if applied without agitation, evidenced by debonding from the dentin substrate. The DDs and DCs of the APLP with agitation were higher than those of without agitation in the interface, in contrast to the comparable DD and DC values of two AEB specimen groups with different application modes. Raman spectral analysis revealed the important role of chemical interaction between acid monomers of self-etch adhesives and dentin in the above observations. Conclusion The chemical interaction with dentin is especially important for improving the DC of the strong self-etching adhesive at the A/D interface. Agitation could benefit polymerization efficacy of the strong self-etch adhesive through enhancing the chemical interaction with tooth substrate. PMID:23153573
Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan
2012-01-01
Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro–computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI. © 2012 American Society for Bone and Mineral Research. PMID:22508542
Dental Pulp Defence and Repair Mechanisms in Dental Caries
Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.
2015-01-01
Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo. PMID:26538821
Dental Pulp Defence and Repair Mechanisms in Dental Caries.
Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R
2015-01-01
Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.
NASA Astrophysics Data System (ADS)
Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.
2018-01-01
Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.
Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.
Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba
2017-06-01
With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.
Kwon, S R; Wertz, P W; Li, Y; Chan, D C N
2012-02-01
Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.
Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul
2017-04-01
In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.
Ergücü, Z; Celik, E U; Unlü, N; Türkün, M; Ozer, F
2009-01-01
This study examined the effect of Er,Cr:YSGG laser irradiation on the microtensile bond strength (microTBS) of a three-step etch-and-rinse and a two-step self-etch adhesive to sound and caries-affected dentin. Sixteen freshly extracted human molars with occlusal dentin caries were used. The caries lesion was removed by one of the following methods: conventional treatment with burs or Er,Cr:YSGG laser (Waterlase MD, Biolase). The adhesive systems (AdheSE, Ivoclar Vivadent and Scotchbond Multi Purpose, 3M ESPE) were applied to the entire tooth surface according to the manufacturers' instructions. Resin composites were applied to the adhesive-treated dentin surfaces and light-cured. Each tooth was sectioned into multiple beams with the "non-trimming" version of the microtensile test. The specimens were subjected to microtensile forces (BISCO Microtensile Tester, BISCO). The data was analyzed by three-way ANOVA and independent t-tests (p=0.05). Er,Cr:YSGG laser irradiation exhibited similar microTBS values compared to that of conventional bur treatment, regardless of the adhesive system and type of treated dentin. The self-etch system revealed lower microTBS values, both with conventional and laser treatment techniques, compared to the etch-and-rinse adhesive in sound and caries-affected dentin (p<0.05). Er,Cr:YSGG laser irradiation did not negatively affect the bonding performance of adhesive systems to sound and caries-affected dentin.
Franzen, Rene; Kianimanesh, Nasrin; Marx, Rudolf; Ahmed, Asma; Gutknecht, Norbert
2016-01-01
Dental tooth restorative procedures may weaken the structural integrity of the tooth, with the possibility of leading to fracture. In this study we present findings of coronal dentin strength after different techniques of surface modification. The fracture strength of dentin beams after superficial material removal with a fine diamond bur high speed drill hand piece, Er:YAG (2.94 μm, 8 J/cm2), and Er,Cr:YSGG (2.78 μm, 7.8 J/cm2) laser irradiation slightly above the ablation threshold was measured by a four-point bending apparatus. Untreated dentin beams served as a control. A total of 58 dentin beams were manufactured from sterilized human extracted molars using the coronal part of the available dentin. Mean values of fracture strength were calculated as 82.0 ± 27.3 MPa for the control group (n = 10), 104.5 ± 26.3 MPa for high speed drill treatment (n = 10), 96.1 ± 28.1 MPa for Er,Cr:YSGG laser irradiation (n = 20), and 89.1 ± 36.3 MPa for Er:YAG laser irradiation (n = 18). Independent Student's t-tests showed no significant difference between each two groups (p > 0.05). Within the parameter settings and the limits of the experimental setup used in this study, both lasers systems as well as the high speed drill do not significantly weaken coronal dentin after surface treatment. PMID:26962473
Ximenes, Marcos; Cavalcanti Taguchi, Carolina Mayumi; Triches, Thaisa Cezaria; Sartori, Neimar; Pereira Dias, Luis Alberto; de Araujo, Elaine Bortoleti; Cardoso, Mariane
2016-01-01
Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).
NASA Astrophysics Data System (ADS)
Zabler, S.; Riesemeier, H.; Fratzl, P.; Zaslansky, P.
2006-09-01
Recent methods of phase imaging in x-ray tomography allow the visualization of features that are not resolved in conventional absorption microtomography. Of these, the relatively simple setup needed to produce Fresnel-propagated tomograms appears to be well suited to probe tooth-dentin where composition as well as microstructure vary in a graded manner. By adapting analytical propagation approximations we provide predictions of the form of the interference patterns in the 3D images, which we compare to numerical simulations as well as data obtained from measurements of water immersed samples. Our observations reveal details of the tubular structure of dentin, and may be evaluated similarly to conventional absorption tomograms. We believe this exemplifies the power of Fresnel-propagated imaging as a form of 3D microscopy, well suited to quantify gradual microstructural-variations in teeth and similar tissues.
Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.
Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla
2009-01-01
There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.
Mahoney, Patrick
2013-08-01
The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel thickness along the entire human deciduous tooth row. Average enamel thickness (AET), the area and proportion of crown enamel and dentin, and a crown size proxy are calculated for incisors, canines, and molars. Allometric scaling relationships are assessed within each tooth class, and then comparisons are undertaken along the row. Generally, AET was correlated with crown size and scaled with isometry, except for second molars which scaled with positive allometry. Mean AET increased along the row and was greater on molars, where bite forces are reported to be higher. Second molars combined the largest crown size with the thickest enamel and the smallest proportion of dentin, which is consistent with a reduction in the potential for cusp fracture under high bite forces. Resistance to wear may also account for some enamel thickness variation between tooth classes. Dental reduction did not explain the trend in AET from central to lateral incisors, or from first to second molars. The gradient in AET along the deciduous tooth row is partly consistent with a functional interpretation of enamel thickness. Copyright © 2013 Wiley Periodicals, Inc.
A Computer Assisted Program for the Management of Acute Dental Pain. User’s Manual
1989-07-28
tooth , unfavorable prognosis Neurologic injury Endo/perio combined problem Osseous sequestrum Enamel fracture Occlusal trauma Food impaction...of Tooth , Guarded Prognosis Enamel Fracture Endodontic/Periodontic Combined Problem Food Impaction Fractured Alveolar Bone Fractured Crown, Large...sensitivity of dentin, which is the light yellowish calcific tissue underlying the cementum or enamel that forms the body of a tooth . Clinically
Lab-based x-ray nanoCT imaging
NASA Astrophysics Data System (ADS)
Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz
2017-03-01
Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.
Effects of acidification on the isotopic ratios of Neotropical otter tooth dentin.
Carrasco, Thayara S; Botta, Silvina; Machado, Rodrigo; Colares, Elton P; Secchi, Eduardo R
2018-05-30
Stable carbon and nitrogen isotope ratios are widely used in ecological studies providing important information on the trophic ecology and habitat use of consumers. However, some factors may lead to isotopic variability, which makes difficult the interpretation of data, such as the presence of inorganic carbon in mineralized tissues. In order to remove the inorganic carbon, acidification is a commonly used treatment. The effects of two methods of acidification were tested: (i) dentin acidification with 10% HCl using the 'drop-by-drop' technique, and (ii) dentin acidification in an 'HCl atmosphere', by exposing the dentin to vaporous 30% hydrochloric acid. Results were compared with untreated subsamples. The stable carbon and nitrogen ratios of untreated and acidified subsamples were measured using an elemental analyzer coupled to an isotope ratio mass spectrometer. The nitrogen isotopic ratios were statistically different between the two acidification treatments, but no significant changes in carbon isotopic ratios were found in acidified and untreated samples. The results indicated that acidification had no effect on carbon isotopic ratios of Neotropical otter tooth dentin, while introducing a source of error in nitrogen isotopic ratios. Therefore, we conclude that acidification is an unnecessary step for C and N stable isotope analysis. Copyright © 2018 John Wiley & Sons, Ltd.
Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne
2013-01-01
Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787
Trial shows partial caries removal is an effective technique in primary molars.
Santamaria, Ruth; Innes, Nicola
2014-09-01
Randomised controlled trial in a university setting. Children aged three to eight years, with at least one molar with an acute, deep carious lesion into the dentine were recruited. Treatment took place under rubber dam with decayed dentine being removed completely from the lateral walls of cavities in both groups using round burs operated at low speed. TCR or PCR was then performed in the pulpal wall of each tooth. After caries removal teeth were restored with calcium hydroxide cement and composite resin. Teeth with pulpal exposure were pulpotomised using ferric sulphate. The presence of a fistula, swelling, spontaneous pain and mobility not compatible with root resorption were considered to be clinical signs of failure. Radiolucency at the furcation or in the periapical region and internal or external pathological resorption were considered to be radiographic signs of failure. One hundred and twenty-four teeth in 51 patients were randomised. In the TCR group there were 57 teeth and 38 patients, with 41 patients and 67 teeth in the PCR group. Three patients (four teeth; one PCR and three TCR) dropped out leaving 120 teeth (PCR: n = 66; TCR: n = 54) for analysis. In the TCR group 27.5% (15) teeth in 13 children had pulp exposure compared with one tooth in one child in the PCR group (2%). The mean operative time was significantly higher for TCR (28.1 min; 95% CI: 23.6-32.6 min) than for PCR (17.9 min; 95% CI: 16.3-19.5 min). There was no statistical difference in success rates at 24 months between the groups. The success rate in the TCR group was 96%; (95% CI: 85-99%) compared with 92%; (95% CI: 81-96%) in the PCR group. The clinical and radiographic success rates of PCR and TCR in primary teeth with deep carious lesions were high and did not differ significantly, indicating that PCR is a reliable minimally invasive approach in primary teeth and that the retention of carious dentine does not interfere with pulp vitality. Moreover, PCR provided other clinically relevant advantages over TCR, especially lower incidence of pulp exposure and lower operative time.
Dusevich, Vladimir; Xu, Changqi; Wang, Yong; Walker, Mary P.; Gorski, Jeff P.
2012-01-01
Objective To investigate the ultrastructure and chemical composition of the dentin-enamel junction and adjacent enamel of minimally processed third molar tooth sections. Design Undecalcified human third molar erupted teeth were sectioned and etched with 4% EDTA or 37% phosphoric acid prior to visualization by scanning electron microscopy. Confocal Raman spectroscopy was carried out at 50 μm and more than 400 μm away from the dentin-enamel junction before and after mild etching. Results A novel organic protein-containing enamel matrix layer was identified for the first time using scanning electron microscopy of etched bucco-lingual sections of crowns. This layer resembles a three-dimensional fibrous meshwork that is visually distinct from enamel “tufts”. Previous studies have generally used harsher solvent conditions which likely removed this layer and precluded its prior characterization. The shape of the organic enamel layer generally reflected that of sheath regions of enamel rods and extended from the dentin-enamel junction about 100–400 μm into the cuspal enamel. This layer exhibited a Raman C—H stretching peak at ~2931 cm−1 characteristic of proteins and this signal correlated directly with the presence and location of the matrix layer as identified by scanning electron microscopy. Conclusions The enamel protein layer was most prominent close to the dentin-enamel junction and was largely absent in cuspal enamel >400 μm away from the dentin enamel junction. We hypothesize that this protein containing matrix layer could provide an important biomechanical linkage between the enamel and the dentin-enamel junction and by extension, with the dentin, of the adult tooth. PMID:22609172
Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J
2018-02-01
The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.
Alamoudi, N
1999-01-01
The aim of the present study is to evaluate the prevalence of crowding, attrition, midline discrepancies and premature loss of primary molars in primary dentition of children resident in Jeddah, Saudi Arabia. Five hundred and two (502) children aged 4-6 years old residing in the city of Jeddah, Saudi Arabia provide the data for the analysis. Crowding was found in 14.7% of the subjects crowding in the maxilla occurred in 27 (5.4%) of the children, and 67 (13.4%) in the mandible. Simultaneous crowding in maxilla and mandible was present in 20 (3.98%) of the subject. The prevalence of crowding was significantly higher in the mandible than the maxilla (P > 0.01) and higher in male (P < 0.05). Midline shift was present in 10% of the children with females showing a significantly higher prevalence than the males (P < 0.001). Attrition was present in 167 (33.3%) of the children. One hundred and sixty children (31.9%) had attrition in enamel, and only 7(1.4%) had attrition, which exposed the dentin. Thirty-one (6.2%) out of 502 children had 51 (0.5%) missing teeth out of total number of 10,040 teeth. Tooth #84 was most commonly lost tooth (P < .025). Overall premature loss of 1st primary molars was found to be significantly higher than 2nd primary molars (P < .001).
Evaluation of Dental Status of Adolescents at Kuwait University Dental Clinic.
Ali, Dena A
2016-01-01
This study was designed to evaluate the dental status of adolescents initially presenting at Kuwait University Dental Clinic (KUDC). The purpose of this cross-sectional study was to evaluate (a) the prevalence of unrestored caries dentin among 12- to 16-year-old Kuwaiti residents, (b) the frequency of restorations extending into the inner half of the dentin, and (c) tooth loss pattern among this age group. Twelve- to 16-year-old patients who attended KUDC during the period January 2009 to December 2012 were included in this study. The total number of patients included in the study was 486; however, only 409 panoramic radiographs were available for evaluation. The Student t-test and one-way ANOVA were used for statistical analysis. The prevalence of unrestored dentin caries among 12- to 16-year-old patients was 52%. The frequency of deep restorations extending into the inner half of the dentin was 33%. Tooth loss was found in 8.0% of the sampled population. The most common missing tooth was the mandibular first molar followed by the mandibular second premolar and the maxillary first molar. There were no statistical differences between Kuwaiti and non-Kuwaiti residents regardless of gender; however, males had a slightly higher DMFT. The DMFT and DMFS values in this study were higher than in other studies. Despite the tremendous effort by the Kuwaiti government to improve oral health, comprehensive preventive strategies, dental treatment and maintenance of oral health are still necessary and must be reinforced in this age group.
Investigation of biomineralization by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Fatscher, Robert William
Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental implants. These implants are designed to osteointegrate with the native healthy tissues in order to create a functionally stable and structural interface. Biomaterials such as hydroxyapatite and titania are known to increase the rate of bone regeneration in vivo.1 By accelerating the early response of bone forming cells to these implants, better fixation is achieved between the implant and the bone, shortening recovery times and increasing the viability of these implants. In the last part of this research an investigation of osteoblasts cultured at 14 days on five different heat-treated titania substrates was investigated by Raman spectroscopy, in order to observe the initial cellular response to the titania substrates. The heat-treatment of titania changes the amount of oxygen on it's surface which in turn effects the surface energy. A change in the surface energy of a material will affect the cellular response, by culturing cells on various heat-treated titania substrates a relationship between the surface energy and cellular response can be investigated. A faster cellular response would lead to an increased rate of bone regeneration shortening healing times and allowing for better fixation of the implant.
Preventive effects of different protective agents on dentin erosion: An in vitro investigation
Gulino, Chiara; Mirando, Maria; Colombo, Marco; Pietrocola, Giampiero
2017-01-01
Background The purpose of this in vitro study was to evaluate the preventive effects of different protective agents on dentine erosion, measuring mean percentage weight loss. Dissolution of dentine under erosive challenges caused by soft drinks was analyzed: specimens were weighed following each immersion period, with mean percent weight losses calculated. Material and Methods Extracted teeth were sectioned into uniform slabs. Seventy permanent enamel specimens were randomly distributed to seven groups. Initial weights of all dentin specimens were performed. The fluoride pastes Remin Pro, MI Paste Plus, Tooth Mousse, Biorepair, Biorepair Plus and Regenerate were used in this study. A control group was treated just with tap water. The specimens then were immersed in Coca-Cola for a total of 32 min at room temperature. Finally each specimen was dry and weighed. The mass loss was calculated as a percentage of that observed prior the fluoride pastes application. Weight loss data were subjected to Analysis of Variance (One-way ANOVA) followed by Bonferroni’s post hoc tests. Results Percent weight loss of specimens exposed to early stages in Coca-Cola showed linear progression with time. Specimen’s application of fluoridated varnishes such as Biorepair or Regenerate, prior immersion in Coca-Cola, significantly protect dentin from demineralization. Otherwise, application of Tooth Mousse or Biorepair Plus increased dentin demineralization starting from 24 min of immersion in Coca-Cola. Conclusions Despite the limitations of this study, the protective pastes that showed the less weight loss due to the acidic challenge are Biorepair and Regenerate. Key words:Dentine, erosion, protective agents, soft drinks, toothpastes. PMID:28149456
Preventive effects of different protective agents on dentin erosion: An in vitro investigation.
Poggio, Claudio; Gulino, Chiara; Mirando, Maria; Colombo, Marco; Pietrocola, Giampiero
2017-01-01
The purpose of this in vitro study was to evaluate the preventive effects of different protective agents on dentine erosion, measuring mean percentage weight loss. Dissolution of dentine under erosive challenges caused by soft drinks was analyzed: specimens were weighed following each immersion period, with mean percent weight losses calculated. Extracted teeth were sectioned into uniform slabs. Seventy permanent enamel specimens were randomly distributed to seven groups. Initial weights of all dentin specimens were performed. The fluoride pastes Remin Pro, MI Paste Plus, Tooth Mousse, Biorepair, Biorepair Plus and Regenerate were used in this study. A control group was treated just with tap water. The specimens then were immersed in Coca-Cola for a total of 32 min at room temperature. Finally each specimen was dry and weighed. The mass loss was calculated as a percentage of that observed prior the fluoride pastes application. Weight loss data were subjected to Analysis of Variance (One-way ANOVA) followed by Bonferroni's post hoc tests. Percent weight loss of specimens exposed to early stages in Coca-Cola showed linear progression with time. Specimen's application of fluoridated varnishes such as Biorepair or Regenerate, prior immersion in Coca-Cola, significantly protect dentin from demineralization. Otherwise, application of Tooth Mousse or Biorepair Plus increased dentin demineralization starting from 24 min of immersion in Coca-Cola. Despite the limitations of this study, the protective pastes that showed the less weight loss due to the acidic challenge are Biorepair and Regenerate. Key words: Dentine, erosion, protective agents, soft drinks, toothpastes.
Polymerization contraction stress in dentin adhesives bonded to dentin and enamel.
Hashimoto, Masanori; de Gee, Anton J; Feilzer, Albert J
2008-10-01
In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water and/or solvents, left in the impregnated dentin surface after drying and/or evaporation in the application procedure. The purpose of the present study was to test the hypothesis that the contraction stress of adhesives bonded to enamel will not decline after light-curing, based on the assumption that water and/or solvents are more efficiently removed from impregnated enamel surfaces in the drying and/or evaporation step. Contraction stress was determined in a tensilometer for three total-etching adhesives Scotchbond multi-purpose, Single bond and One-step plus and four self-etching adhesives Clearfil SE Bond, Clearfil Protect Bond, AdheSE, and Xeno III. The adhesives were placed in a thin layer between a glass plate and a flat dentin or enamel surface pre-treated with phosphoric acid or self-etching primer and light-cured under constrained conditions. All adhesives bonded to enamel showed a stress decline, but significantly less than for dentin with the exception of two self-etching adhesives. The greatest decline was found for the total-etching adhesive systems bonded to dentin. The presence of hydrophobic monomers in the adhesives had a significant influence on the decline. The experiments indicate that fluids are withdrawn from the resin impregnated tooth structures, which may result in small defects in the tooth-resin interfaces.
Oral Rehabilitation of a Patient with Amelogenesis Imperfecta
Cogulu, Dilsah; Becerik, Sema; Emingil, Gülnur; Hart, P. Suzanne; Hart, Thomas C.
2014-01-01
Amelogenesis imperfecta is a hereditary disorder that causes defective enamel development in the primary and permanent teeth. Clinical treatment is important to address the esthetic appearance of affected teeth, reduce dentinal sensitivity, preserve tooth structure, and optimize masticatory function. The purpose of this case report was to describe the diagnosis, treatment planning, and dental rehabilitation of a patient with autosomal recessive amelogenesis imperfecta. The patient was followed for 5 years, and evaluation 3 years after restorations revealed no pathology associated with the rehabilitation. The patient’s esthetic and functional expectations were satisfied. PMID:20108745
Contemporary research findings on dentine remineralization.
Zhong, Bo; Peng, Ce; Wang, Guanhong; Tian, Lili; Cai, Qiang; Cui, Fuzhai
2015-09-01
Dentine remineralization is important for the treatment of dentine caries and the bonding durability of dentine and resin materials in clinical practice. Early studies of dentine remineralization were mostly based on the classical pathway of crystallization, which involves large-scale deposition of calcium phosphate crystals on collagen and is achieved in a liquid environment containing mineral ions. Results from these studies were unsatisfactory and not suitable for clinical application because they did not simulate the ordering of hydroxyapatite in the collagen fibres of natural teeth. As studies on collagen type I and non-collagenous proteins have advanced, dentine biomimetic remineralization has become a popular research topic and has shifted to processes involving intrafibrillar remineralization, which is more similar to natural tooth formation. The objective of this review was to summarize current theory and research progress as it relates to dentine remineralization. Copyright © 2013 John Wiley & Sons, Ltd.
Photoacoustic imaging of teeth for dentine imaging and enamel characterization
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit
2018-02-01
Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.
Yang, Kai-Chiang; Wang, Chun-Hao; Chang, Hao-Hueng; Chan, Wing P; Chi, Chau-Hwa; Kuo, Tzong-Fu
2012-11-01
Odontogenesis is a complex process with a series of epithelial-mesenchymal interactions and odontogenic molecular cascades. In tissue engineering of teeth from stem cells, platelet-rich fibrin (PRF), which is rich in growth factors and cytokines, may improve regeneration. Accordingly, PRF was added into fibrin glue to enrich the microenvironment with growth factors. Unerupted second molar tooth buds were harvested from miniature swine and cultured in vitro for 3 weeks to obtain dental bud cells (DBCs). Whole blood was collected for the preparation of PRF and fibrin glue before surgery. DBCs were suspended in fibrin glue and then enclosed with PRF, and the DBC-fibrin glue-PRF composite was autografted back into the original alveolar sockets. Radiographic and histological examinations were used to identify the regenerated tooth structure 36 weeks after implantation. Immunohistochemical staining was used to detect proteins specific to tooth regeneration. One pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessels, and periodontal ligaments in indiscriminate shape. Another animal had an unerupted tooth that expressed cytokeratin 14, dentin matrix protein-1, vascular endothelial growth factor, and osteopontin. This study demonstrated, using autogenic cell transplantation in a porcine model, that DBCs seeded into fibrin glue-PRF could regenerate a complete tooth. Copyright © 2011 John Wiley & Sons, Ltd.
From stem to roots: Tissue engineering in endodontics
Kala, M.; Banthia, Priyank; Banthia, Ruchi
2012-01-01
The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528
Gibson, Monica Prasad; Zhu, Qinglin; Wang, Suzhen; Liu, Qilin; Liu, Ying; Wang, Xiaofang; Yuan, Baozhi; Ruest, L Bruno; Feng, Jian Q; D'Souza, Rena N; Qin, Chunlin; Lu, Yongbo
2013-03-08
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.
Mazaheri, Romina; Pishevar, Leila; Shichani, Ava Vali; Geravandi, Sanas
2015-01-01
Background: Glass ionomer cement is a common material used in pediatric dentistry. The aim of this study was to evaluate the microleakage of high-viscosity glass ionomer restorations in deciduous teeth after conditioning with four different conditioners. Materials and Methods: Fifty intact primary canines were collected. Standard Class V cavities (2 mm × 1.5 mm × 3 mm) were prepared by one operator on all buccal tooth surfaces, including both enamel and dentin. The samples were divided into five groups with different conditioners (no conditioner, 20% acrylic acid, 35% phosphoric acid, 12% citric acid, and 17% ethylenediaminetetraacetic acid [EDTA]). Two-way — ANOVA, Kruskal–Wallis and Mann–Whitney tests were used to compare the means of microleakage between the five groups. The significance level was set at P < 0.05. Results: There was no significant difference between the means of microleakage in incisal (enamel) and gingival (dentin) margins (P = 0.34). Furthermore, there was no significant difference between the means of microleakage in enamel and dentin margins (P = 0.4). There was a significant difference between the means of microleakage in different groups (P = 0.03). Conclusion: Within the limitations of this study, it is suggested that 20% acrylic acid and 17% EDTA be used for cavity conditioning which can result in better chemical and micromechanical adhesion. PMID:26288623
Shark teeth as edged weapons: serrated teeth of three species of selachians.
Moyer, Joshua K; Bemis, William E
2017-02-01
Prior to European contact, South Pacific islanders used serrated shark teeth as components of tools and weapons. They did this because serrated shark teeth are remarkably effective at slicing through soft tissues. To understand more about the forms and functions of serrated shark teeth, we examined the morphology and histology of tooth serrations in three species: the Tiger Shark (Galeocerdo cuvier), Blue Shark (Prionace glauca), and White Shark (Carcharodon carcharias). We show that there are two basic types of serrations. A primary serration consists of three layers of enameloid with underlying dentine filling the serration's base. All three species studied have primary serrations, although the dentine component differs (orthodentine in Tiger and Blue Sharks; osteodentine in the White Shark). Smaller secondary serrations are found in the Tiger Shark, formed solely by enameloid with no contribution from underlying dentine. Secondary serrations are effectively "serrations within serrations" that allow teeth to cut at different scales. We propose that the cutting edges of Tiger Shark teeth, equipped with serrations at different scales, are linked to a diet that includes large, hard-shelled prey (e.g., sea turtles) as well as smaller, softer prey such as fishes. We discuss other aspects of serration form and function by making analogies to man-made cutting implements, such as knives and saws. Copyright © 2016 Elsevier GmbH. All rights reserved.
Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics.
Dos Santos, Serge; Prevorovsky, Zdenek
2011-08-01
Human tooth imaging sonography is investigated experimentally with an acousto-optic noncoupling set-up based on the chirp-coded nonlinear time reversal acoustic concept. The complexity of the tooth internal structure (enamel-dentine interface, cracks between internal tubules) is analyzed by adapting the nonlinear elastic wave spectroscopy (NEWS) with the objective of the tomography of damage. Optimization of excitations using intrinsic symmetries, such as time reversal (TR) invariance, reciprocity, correlation properties are then proposed and implemented experimentally. The proposed medical application of this TR-NEWS approach is implemented on a third molar human tooth and constitutes an alternative of noncoupling echodentography techniques. A 10 MHz bandwidth ultrasonic instrumentation has been developed including a laser vibrometer and a 20 MHz contact piezoelectric transducer. The calibrated chirp-coded TR-NEWS imaging of the tooth is obtained using symmetrized excitations, pre- and post-signal processing, and the highly sensitive 14 bit resolution TR-NEWS instrumentation previously calibrated. Nonlinear signature coming from the symmetry properties is observed experimentally in the tooth using this bi-modal TR-NEWS imaging after and before the focusing induced by the time-compression process. The TR-NEWS polar B-scan of the tooth is described and suggested as a potential application for modern echodentography. It constitutes the basis of the self-consistent harmonic imaging sonography for monitoring cracks propagation in the dentine, responsible of human tooth structural health. Copyright © 2011 Elsevier B.V. All rights reserved.
Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.
Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta
2007-01-01
The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.
Remarkable resilience of teeth.
Chai, Herzl; Lee, James J-W; Constantino, Paul J; Lucas, Peter W; Lawn, Brian R
2009-05-05
Tooth enamel is inherently weak, with fracture toughness comparable with glass, yet it is remarkably resilient, surviving millions of functional contacts over a lifetime. We propose a microstructural mechanism of damage resistance, based on observations from ex situ loading of human and sea otter molars (teeth with strikingly similar structural features). Section views of the enamel implicate tufts, hypomineralized crack-like defects at the enamel-dentin junction, as primary fracture sources. We report a stabilization in the evolution of these defects, by "stress shielding" from neighbors, by inhibition of ensuing crack extension from prism interweaving (decussation), and by self-healing. These factors, coupled with the capacity of the tooth configuration to limit the generation of tensile stresses in largely compressive biting, explain how teeth may absorb considerable damage over time without catastrophic failure, an outcome with strong implications concerning the adaptation of animal species to diet.
Irie, M; Suzuki, K; Watts, D C
2004-11-01
The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.
Stress analysis of irradiated human tooth enamel using finite element methods
Thiagarajan, Ganesh; Vizcarra, Bruno; Bodapudi, Venkata; Reed, Rachel; Seyedmahmoud, Rasoul; Wang, Yong; Gorski, Jeffrey P.; Walker, Mary P.
2017-01-01
The objectives of this project were to use finite element methods to determine how changes in the elastic modulus due to oral cancer therapeutic radiation alter the distribution of mechanical stresses in teeth and to determine if observed failures in irradiated teeth correlate with changes in mechanical stresses. A thin slice section finite element (FE) model was constructed from micro CT sections of a molar tooth using MIMICS and 3-Matic software. This model divides the tooth into three enamel regions, the dentin-enamel junction (DEJ) and dentin. The enamel elastic modulus was determined in each region using nano indentation for three experimental groups namely – control (non-radiated), in vitro irradiated (simulated radiotherapy following tooth extraction) and in vivo irradiated (extracted subsequent to oral cancer patient radiotherapy) teeth. Physiological loads were applied to the tooth models at the buccal and lingual cusp regions for all three groups (control, in vitro and in vivo). The principal tensile stress and the maximum shear stress were used to compare the results from different groups since it has been observed in previous studies that delamination of enamel from the underlying dentin was one of the major reasons for the failure of teeth following therapeutic radiation. From the FE data, we observed an increase in the principal tensile stress within the inner enamel region of in vivo irradiated teeth (9.97 ± 1.32 MPa) as compared to control/non-irradiated teeth (8.44 ± 1.57 MPa). Our model predicts that failure occurs at the inner enamel/DEJ interface due to extremely high tensile and maximum shear stresses in in vivo irradiated teeth which could be a cause of enamel delamination due to radiotherapy. PMID:29063816
Stress analysis of irradiated human tooth enamel using finite element methods.
Thiagarajan, Ganesh; Vizcarra, Bruno; Bodapudi, Venkata; Reed, Rachel; Seyedmahmoud, Rasoul; Wang, Yong; Gorski, Jeffrey P; Walker, Mary P
2017-11-01
The objectives of this project were to use finite element methods to determine how changes in the elastic modulus due to oral cancer therapeutic radiation alter the distribution of mechanical stresses in teeth and to determine if observed failures in irradiated teeth correlate with changes in mechanical stresses. A thin slice section finite element (FE) model was constructed from micro CT sections of a molar tooth using MIMICS and 3-Matic software. This model divides the tooth into three enamel regions, the dentin-enamel junction (DEJ) and dentin. The enamel elastic modulus was determined in each region using nano indentation for three experimental groups namely - control (non-radiated), in vitro irradiated (simulated radiotherapy following tooth extraction) and in vivo irradiated (extracted subsequent to oral cancer patient radiotherapy) teeth. Physiological loads were applied to the tooth models at the buccal and lingual cusp regions for all three groups (control, in vitro and in vivo). The principal tensile stress and the maximum shear stress were used to compare the results from different groups since it has been observed in previous studies that delamination of enamel from the underlying dentin was one of the major reasons for the failure of teeth following therapeutic radiation. From the FE data, we observed an increase in the principal tensile stress within the inner enamel region of in vivo irradiated teeth (9.97 ± 1.32 MPa) as compared to control/non-irradiated teeth (8.44 ± 1.57 MPa). Our model predicts that failure occurs at the inner enamel/DEJ interface due to extremely high tensile and maximum shear stresses in in vivo irradiated teeth which could be a cause of enamel delamination due to radiotherapy.
Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles
Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Hsia, Ru-ching; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.
2013-01-01
Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1wt%. The adhesive contained 0.1% NAg and 10% QADM, and 0-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p>0.1). SEM showed numerous resin tags, and TEM revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p<0.05). In conclusion, novel dental bonding agents containing NAg, QADM and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition. PMID:23281264
Milosevic, A; Bardsley, P F; Taylor, S
2004-10-23
To determine the strength of association (expressed as Odds Ratios) of potential risk factors with erosion and tooth wear in 14-year-old schoolchildren. A random sample of 2,385 children were selected by a stratified two-stage technique based on schools and children. Schools in NW England. Tooth wear was assessed by one examiner on three surfaces of all 12 anterior teeth (labial, incisal and palatal) and the occlusal surface of all four first molars using a four-point scale. Enamel wear was scored 0, dentine exposure <1/3 scored 1, >1/3 scored 2 and secondary dentine or pulpal exposure, scored 3. A questionnaire enquired about general health, dental health, habits and the frequency of intake of a wide range of foods and drinks. The Odds Ratios for tooth wear on any surface for habits, reflux and certain foods were: bruxism, 1.10; stomach upset, 1.45; pickles 1.86; vinegar 1.36; salt and vinegar crisps 1.33; brown/other sauces 1.57. Similarly, the odds ratios for potentially erosive drinks were: fizzy drinks 1.32; sport drinks 1.58; herbal/lemon tea 3.97. The frequency of intake was bi-modal with 397 children drinking a can per day and 207 drinking two cans per day. A significant number drank acidic beverages at bedtime but this was not associated with dental erosion. Although odds ratios greater than unity indicate an association, this was not high for carbonated beverages and many other acidic foods or drinks. Examining at fourteen years may not be ideal, as the determinants of erosion/tooth wear have not acted for long, the indices do not discriminate sufficiently and proportionately few subjects have dentine exposed on smooth surfaces.
NASA Astrophysics Data System (ADS)
Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako
2016-01-01
In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.
Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge
Huang, George T.-J.
2012-01-01
Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351
Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.
de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri
2015-07-01
The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.
Alteration of Dentin-Enamel Mechanical Properties Due to Dental Whitening Treatments
Zimmerman, B.; Datko, L.; Cupelli, M.; Alapati, S.; Dean, D.; Kennedy, M.
2010-01-01
The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0GPa versus 113.4GPa), while smaller increases were observed in the dentin (17.9GPa versus 27.9GPa). Likewise, there was an increase in the hardness of enamel (2.0GPa versus 4.3GPa) and dentin (0.5GPa versus 0.7GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips™, Opalescence™ or UltraEtch™ caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips™ showed a reduction in the elastic modulus of enamel (55.3GPa to 32.7GPa) and increase in the elastic modulus of dentin (17.2GPa to 24.3GPa). Opalescence™ treatments did not significantly affect the enamel properties, but did result in a decrease in modulus of dentin (18.5GPa to 15.1GPa). Additionally, as expected, UltraEtch™ treatment decreased the modulus and hardness of enamel (48.7GPa to 38.0GPa and 1.9GPa to 1.5GPa, respectively) and dentin (21.4GPa to 15.0GPa and 1.9GPa to 1.5GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. PMID:20346902
NASA Astrophysics Data System (ADS)
Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert
2009-08-01
Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.
A Comparison of Coronal Tooth Discoloration Elicited by Various Endodontic Reparative Materials
2015-06-17
operating microscope at 12.8x magnification to be completely intact and free of restorations, cracks , and/or defects. Each tooth was stored separately in...microscope. The buccal enamel -dentin thickness was standardized to 3mm using spring calipers. Teeth were irrigated with 6% NaOCl and dried. All
Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation
NASA Astrophysics Data System (ADS)
Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.
2017-02-01
Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.
Effect of thermal stresses on the mechanism of tooth pain.
Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid
2014-11-01
Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
"MI" caries management--an overview.
Banerjee, Avijit
2012-04-01
Minimum intervention dentistry, with its non-operative prevention and control of disease, underpins the basis of a patient-centred, team-based approach to managing dental caries in patients, who must take an active responsibility in maintaining their personal oral health. In patients where cavities are present causing pain, poor aesthetics and/or functional problems, restorations will need to be placed. Minimally invasive caries excavation strategies can be deployed depending on the patient's caries risk, lesion-pulp proximity and vitality, the extent of remaining supra-gingival tooth structure and clinical factors (e.g., moisture control, access) present in each case treated. Excavation instruments, including burs/handpieces, hand excavators, chemo-mechanical agents and/or air-abrasives which limit caries removal selectively to the more superficial caries-infected dentine and partial removal of caries-affected dentine when required, help create smaller cavities with healthy enamel/dentine margins. Using adhesive restorative materials, the operator can, if handling with care, optimize the histological substrate coupled with the applied chemistry of the material so helping to form a durable peripheral seal and bond to aid retention of the restoration as well as arresting the carious process within the remaining tooth structure. Achieving a smooth tooth-restoration interface clinically to aid the co-operative, motivated patient in biofilm removal, is an essential pre-requisite to prevent further secondary caries.
Mini-interfacial Fracture Toughness of a Multimode Adhesive Bonded to Plasma-treated Dentin.
Ayres, Ana Paula Almeida; Pongprueksa, Pong; De Munck, Jan; Gré, Cristina Parise; Nascimento, Fábio Dupart; Giannini, Marcelo; Van Meerbeek, Bart
2017-01-01
To investigate the bonding efficacy of a multimode adhesive to plasma-treated and -untreated (control) dentin using a mini-interfacial fracture toughness (mini-iFT) test. Twenty human molars were used in a split-tooth design (n = 10). The adhesive Scotchbond Universal (SBU; 3M ESPE) was applied in etch-and-rinse (E&R) and self-etch (SE) modes. Mid-coronal dentin was exposed and covered with a standardized smear layer ground to 320 grit. One half of each dentin surface received 15 s of non-thermal atmospheric plasma (NTAP), while the other half was covered with a metallic barrier and kept untreated. Following the E&R mode, dentin was plasma treated immediately after phosphoric acid etching. SBU and a resin-based composite were applied to dentin following the manufacturer's instructions. Six mini-iFT specimens were prepared per tooth (1.5 x 2.0 x 16 to 18 mm), and a single notch was prepared at the adhesive-dentin interface using a 150-μm diamond blade under water cooling. Half of the mini-iFT specimens were immediately loaded until failure in a 4-point bending test, while the other half were first stored in distilled water for 6 months. After testing, the exact dimensions of the notch were measured with a measuring optical microscope, from which ΚIc was determined. Three-way ANOVA revealed higher mini-iFT for SBU applied in E&R than SE mode for both storage times, irrespective of NTAP treatment. Overall, mini-iFT did not decrease for any of the experimental groups upon 6-month aging, while plasma treatment did not show a direct beneficial effect on mini-iFT of SBU applied in either E&R or SE mode.
Surface modulation of dental hard tissues
NASA Astrophysics Data System (ADS)
Tantbirojn, Daranee
Tooth surfaces play a central role in the equilibrium of dental hard tissues, in which contrasting processes lead to loss or deposition of materials. The central interest of this Thesis was the modulation of tooth surfaces to control such equilibrium. Four specific studies were carried out to investigate different classes of surface modulating agents. These are: (1) Ionic modulation of the enamel surface to enhance stain removal . Dental stain is the most apparent form of tooth surface deposit. The nature of extrinsic stain in terms of spatial chemical composition was studied by using electron probe microanalysis. An ionic surface modulating agent, sodium tripolyphosphate (STPP), was evaluated. Image analysis methodologies were developed and the ability of STPP in stain removal was proved. (2) Thin film modulation with substantive polymeric coating and the effect on in vitro enamel de/re-mineralization . A novel polymeric coating that formed a thin film on the tooth surface was investigated for its inhibitory effect on artificial enamel caries, without interfering with the remineralization process. The preventive effect was distinct, but the mineral redeposition was questionable. (3) Thick film modulation with fluoride containing sealants and the effect on in vitro enamel and root caries development. Fluoride incorporated into resin material is an example of combining different classes of surface modulating agents to achieve an optimal outcome. A proper combination, such as in resin modified glass ionomer, showed in vitro caries inhibitory effect beyond the material boundary in both enamel and dentin. (4) Thick film modulation with dental adhesives and the determination of adhesion to dentin. Dentin adhesives modulate intracoronal tooth surfaces by enhancing adhesion to restorative materials. Conventional nominal bond tests were inadequate to determine the performance of current high strength adhesives. It was shown that interfacial fracture toughness test was more appropriate. In general, this Thesis evaluates diverse tooth surface modulations, for which several experimental methodologies had to be developed. These will be invaluable for the development of succeeding generations of surface modulating agents.
Mechanical properties of dental tissues in dolphins (Cetacea: Delphinoidea and Inioidea).
Loch, Carolina; Swain, Michael V; van Vuuren, Ludwig Jansen; Kieser, Jules A; Fordyce, R Ewan
2013-07-01
(1) Mammalian teeth play a major role in food acquisition and processing. While most mammals are heterodont and masticate their food, dolphins are homodont with simplified tooth morphology and negligible mastication. Understanding mechanical properties of dental tissues in dolphins is fundamental to elucidate the functional morphology and biomechanics of their feeding apparatus. This paper aims to study the hardness and elastic modulus of enamel and dentine in dolphins. (2) Teeth of 10 extant species (Inioidea and Delphinoidea) were longitudinally sectioned, polished and mounted in a UMIS nanoindenter. Indentations were performed from dentine to outer enamel. Hardness and elastic modulus were calculated using the Oliver-Pharr method. (3) Mean values of hardness and elastic modulus were similar on buccal and lingual surfaces. While dentine hardness was statistically similar among species, enamel hardness varied from 3.86GPa (±0.4) in Steno bredanensis (rough-toothed dolphin) to 2.36GPa (±0.38) in Pontoporia blainvillei (franciscana). For most species, there was a gradational increase in hardness values from inner to outer enamel. Enamel and dentine elastic modulus values clearly differed among species. In enamel, it ranged from 69.32GPa (±4.08) in the rough-toothed dolphin to 13.51GPa (±2.80) in Stenella coeruleoalba (striped dolphin). For most species, elastic modulus values were highest at inner and outer enamel. (4) Differences in mechanical properties between species, and within the enamel of each species, suggest functional implications and influence of ultrastructural arrangement and chemical composition. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marques, Barbara A.; Navarro, Ricardo S.; Silvestre, Fellipe D.; Pinheiro, Sergio L.; Freitas, Patricia M.; Imparato, Jose Carlos P.; Oda, Margareth
2005-03-01
The aim of this study was to evaluate the tensile strength of different adhesive systems to primary tooth dentin prepared by high-speed drill and Er:YAG laser (2.94μm). Buccal surfaces of 38 primary canines were ground and flattened with sand paper disks (#120-600 grit) and distributed into five groups (n=15): G1: diamond bur in high-speed drill (HD)+ 35% phosphoric acid (PA)+Single Bond (SB); G2: HD+self-etching One Up Bond F (OUB);G3: Er:YAG laser (KaVo 3- LELO-FOUSP)(4Hz, 80mJ, 25,72J/cm2) (L)+PA+SB, G4: L+SB, G5: L+OUB. The inverted truncated cone samples built with Z-100 composite resin after storage in water (37°C/24h) were submitted to tensile bond strength test on Mini Instron 4442 (0.5mm/min, 500N). The data were analyzed with ANOVA and Tukey Test (p<0.05). The mean (MPa) were: G1-3.18(+/-1.24) G2-1.79(+/-0.73) G3-3.17(+/-0.44) G4-8.29(+/-1.86) G5-7.11(+/-2.07). The data analyzed with ANOVA and Tukey Test showed that Laser associated with PA+SB, SB or OUB lead to increased bonding values when compared to HD+PA+SB and HD+OUB (p=0.000), L+SB showed higher values than L+PA+SB and L+OUB (p=0.0311). Er:YAG laser radiation promoted significant increase of bond strength of different adhesive systems evaluated in the dentin of primary teeth.
Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan
2016-10-01
Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.
Tonmukayakul, Utsana; Martin, Rachel; Clark, Richard; Brownbill, John; Manton, David; Hall, Martin; Armfield, Jason; Smith, Michael; Shankumar, Ramini; Sivasithamparam, Kavitha; Martin-Kerry, Jacqueline; Calache, Hanny
2015-09-01
The Hall Technique (HT) is a carious primary molar treatment that does not require local analgesia, carious tissue removal or tooth preparation. The carious lesions in carefully selected teeth are sealed with a stainless steel crown (preformed metal crown). The study aims are to determine the clinical effectiveness, acceptability and cost-effectiveness of the HT for management of carious lesions in young dental patients. Children, aged 3-7years, with a primary molar tooth with a carious lesion extending no further than the middle third of dentine, with no signs or symptoms of pulp inflammation or infection, and attending one of three community agencies are recruited. Target sample size is 220. A control tooth with an intra-coronal restoration is sourced from the same mouth. The primary outcome is the period of time free from further treatment. The assessments are scheduled at 6, 12 and 24months. In addition to the clinical assessment, acceptability of the HT will be assessed via questionnaires among patients and their primary carers at baseline, 6, 12 and 24months. Cost-outcome description and cost-effectiveness analysis from healthcare provider and societal perspective will be conducted. The clinical effectiveness, acceptability and cost-effectiveness of the HT in the community dental setting will be evaluated. The results of this study will determine the implementation of HT in the management of dental caries in young children. Copyright © 2015 Elsevier Inc. All rights reserved.
Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes
2013-08-01
This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. Copyright © 2013 Wiley Periodicals, Inc.
Impact of dentifrice abrasivity and remineralization time on erosive tooth wear in vitro.
Buedel, Sarah; Lippert, Frank; Zero, Domenick T; Eckert, George J; Hara, Anderson T
2018-02-01
To investigate the in vitro effects of simulated dentifrice slurry abrasivity (L-low, M-medium and H-high) and remineralization time (0, 30, 60 and 120 minutes) on erosive tooth wear. Enamel and root dentin specimens were prepared from bovine incisors (n= 8) and submitted to a cycling protocol including erosion, remineralization at the test times, and brushing with each of the tested slurries, for 5 days. Dental surface loss (SL) was determined by optical profilometry. Data was analyzed using mixed-model ANOVA and Fisher's PLSD tests (alpha= 0.05). SL generally increased along with the increase in slurry abrasive level, with significance dependent upon the specific substrate and remineralization times. H showed the highest SL on both enamel and dentin; remineralization for 30 minutes reduced SL significantly (P< 0.05), but only for enamel. M showed intermediate SL values, with remineralization benefit clearly seen only after 120 minutes of remineralization (P< 0.05). L caused the least SL for both enamel and dentin, which was further reduced after remineralization for 120 and 30 minutes, respectively (both P< 0.05). Overall, root dentin had significantly higher SL than enamel. Less abrasive dentifrice slurries were able to reduce toothbrushing abrasion on both enamel and root dentin. This protection was enhanced by remineralization for all abrasive levels on enamel, but only for L on root dentin. High-risk erosion patients should avoid highly abrasive toothpastes, as remineralization can only partially compensate for their deleterious effects on eroded dental surfaces. Lower abrasive toothpastes are recommended. Copyright©American Journal of Dentistry.
Viability of imaging structures inside human dentin using dental transillumination
NASA Astrophysics Data System (ADS)
Grandisoli, C. L.; Alves-de-Souza, F. D.; Costa, M. M.; Castro, L.; Ana, P. A.; Zezell, D. M.; Lins, E. C.
2014-02-01
Dental Transillumination (DT) is a technique for imaging internal structures of teeth by detecting infrared radiation transmitted throughout the specimens. It was successfully used to detect caries even considering dental enamel and dentin scatter infrared radiation strongly. Literature reports enamel's scattering coefficient is 10 to 30 times lower than dentin; this explain why DT is useful for imaging pathologies in dental enamel, but does not disable its using for imaging dental structures or pathologies inside the dentin. There was no conclusive data in the literature about the limitations of using DT to access biomedical information of dentin. The goal in this study was to present an application of DT to imaging internal structures of dentin. Slices of tooth were confectioned varying the thickness of groups from 0.5 mm up to 2,5 mm. For imaging a FPA InGaAs camera Xeva 1.7- 320 (900-1700 nm; Xenics, Inc., Belgium) and a 3W lamp-based broadband light source (Ocean Optics, Inc., USA) was used; bandpass optical filters at 1000+/-10 nm, 1100+/-10 nm, 1200+/-10 nm and 1300+/-50 nm spectral region were also applied to spectral selection. Images were captured for different camera exposure times and finally a computational processing was applied. The best results revealed the viability to imaging dent in tissue with thickness up to 2,5 mm without a filter (900-1700nm spectral range). After these results a pilot experiment of using DT to detect the pulp chamber of an incisive human tooth was made. New data showed the viability to imaging the pulp chamber of specimen.
Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.
Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M
2015-01-01
The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (p<0.05) SBS and SFL with pre-etching than it did without pre-etching. The SBS and SFL of dentin bonds decreased with phosphoric acid pre-etching. The SBS and SFL of bonds using phosphoric acid prior to application of self-etching adhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was dependent on the adhesive material and tooth substrate and should be carefully considered in clinical situations.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
Is diagnosing exposed dentine a suitable tool for grading erosive loss?
Ganss, Carolina
2008-01-01
Quantifying tooth wear in general and erosion in particular mostly is made by distinguishing between lesions restricted to enamel and lesions reaching the underlying dentine. Various scores for grading have been used, but in all systems, higher scores are given in cases of exposed dentine, thus, indicating a more severe stage of the condition. Clinical diagnosis of exposed dentine is made by assessing changes in colour or optical properties of the hard tissues. This paper aims to review the literature and discuss critically problems arising form this approach. It appears that classifying the severity of erosion by the area or depth of exposed dentine is difficult and poorly reproducible, and taking into account the variation of enamel thickness, the amount of tissue lost often is not related simply to the area of exposed dentine. There has still been very little longitudinal investigation of the significance of exposed dentine as a prognostic indicator. Further work and discussion is needed to reevaluate the explanative power of current grading procedures. PMID:18228063
Salmela, Eija; Sahlberg, Carin; Alaluusua, Satu; Lukinmaa, Pirjo-Liisa
2008-11-01
Tributyltin (TBT), earlier used as an antifouling agent in marine paints, causes damage to the aquatic ecosystem, for example, impaired shell calcification in oysters. TBT affects hard tissue mineralization even in mammals: delayed bone mineralization has been observed in rodents exposed to TBT in utero. To see if TBT interferes with tooth development, especially dental hard tissue formation, we exposed mouse E18 mandibular first and second molars to 0.1, 0.5, 1.0, and 2.0 microM TBT chloride in organ culture for 7-12 days. The amount of enamel was assessed and the sizes of the first molars were measured from photographs taken after the culture. TBT concentration dependently impaired enamel formation (p < 0.001) and reduced tooth size (p < 0.001). Histological analysis showed slight arrest of dentin mineralization and enamel formation in first molars exposed to 0.1 microM TBT. At the concentration of 1.0 microM the effect was overt. The differentiation of ameloblasts in the mesial cusps was retarded but TBT had no effect on odontoblast morphology. The dental epithelium showed enhanced apoptosis. The failure of ameloblasts to form enamel was likely to be secondary to the effect of TBT on dentin mineralization. In the second molars, where predentin deposition had not started, ameloblasts and odontoblasts were nonpolarized and proliferative. The results showed that TBT concentration dependently impairs dental hard tissue formation and reduces tooth size in cultured mouse embryonic molars. The effects depend on the stage of tooth development at the start of exposure and may involve epithelial-mesenchymal interactions.
Relationships between age and dental attrition in Australian aboriginals.
Richards, L C; Miller, S L
1991-02-01
Tooth wear scores (ratios of exposed dentin to total crown area) were calculated from dental casts of Australian Aboriginal subjects of known age from three populations. Linear regression equations relating attrition scores to age were derived. The slope of the regression line reflects the rate of tooth wear, and the intercept is related to the timing of first exposure of dentin. Differences in morphology between anterior and posterior teeth are reflected in a linear relationship between attrition scores and age for anterior teeth but a logarithmic relationship for posterior teeth. Correlations between age and attrition range from less than 0.40 for third molars (where differences in the eruption and occlusion of the teeth resulted in different patterns of wear) to greater than 0.80 for the premolars and first molars. Because of the generally high correlations between age and attrition, it is possible to estimate age from the extent of tooth wear with confidence limits of the order of +/- 10 years.
Walker, Mary P; Wang, Yong; Spencer, Paulette
2002-01-01
The purpose of this study was to analyze a resin cement/dentin interface by comparing the diffusion of a resin cement into dentin surfaces pretreated with a self-etching primer with or without pretreatment by conventional acid etching. Dentin surfaces of 8 unerupted human third molars were treated with a self-etch primer (Panavia 21) with or without conventional phosphoric acid pretreatment. Panavia 21 resin cement was applied according to manufacturer's instructions. Dentin/resin cement interface sections from each tooth were examined with scanning electron microscopy and micro-Raman spectroscopy. When the self-etch primer was used following conventional acid pretreatment, the resin cement did not penetrate to the depth of the zone of demineralized dentin, leaving a substantial area of exposed dentin matrix at the dentin/cement interface. In contrast, there was substantial resin cement diffusion throughout the demineralized dentin when the self-etch primer was used without acid etching pretreatment. The in vitro evaluation of resin cement penetration throughout the zone of demineralized dentin is an important step in identifying sites of exposed dentin matrix that may promote postoperative sensitivity and may leave the dentin/resin cement interface vulnerable to premature degradation under clinical conditions. In this study, the self-etch primer used alone produced substantial resin cement penetration and left no exposed dentin matrix at the dentin/resin cement interface.
Fractography and fracture toughness of human dentin.
Yan, J; Taskonak, B; Mecholsky, J J
2009-10-01
Dentin, the mineralized tissue forming the bulk of the tooth, serves as an energy-absorbing cushion for the hard, wear-resistant enamel and protects the inner soft tissues. Several studies used fracture mechanics methods to study the fracture toughness of dentin. However, all of them utilized precracks and cannot be used to estimate the intrinsic critical flaw size of dentin. We applied quantitative fractography to study the fracture pattern and fracture toughness of human dentin. Sixteen specimens were prepared from the coronal dentin and fractured in three-point flexure. Fracture surfaces were examined using a scanning electron microscope and the fracture toughness was calculated using a fracture mechanics equation. It was found that human dentin has a fracture surface similar to those of brittle materials. Twist hackle markings were observed and were used to identify the fracture origins. Average fracture toughness of all specimens was found to be 2.3 MPa m(1/2) and the average critical flaw size was estimated to 120 mum. It is suggested that fractography is a promising technique in analyzing the fracture of dentin under catastrophic failure.
Zhang, Jing; Du, Yangge; Wei, Zhao; Tai, Baojun; Jiang, Han; Du, Minquan
2015-10-09
Tooth wear has been investigated in numerous countries, and the prevalence has varied. However, the data on tooth wear in China are scarce. The aim of this study was to describe the prevalence of tooth wear and to investigate the relative indicators associated with tooth wear in 12- and 15-year-old adolescents in Wuhan City, Hubei Province, Central China. A cross-sectional descriptive study was undertaken among 720 adolescents in Hubei Province, Central China. The age groups in this study were 12- and 15-year-old, and each group consisted of 360 participants in which females and males represented 50 % each. A modified version of the Basic Erosive Wear Examination (BEWE) tooth wear index was used for the buccal, cervical, occlusal/incisal and lingual surfaces of all of the teeth in the 720 adolescents. All of the participants were asked to answer a questionnaire consisting of questions about their current and historical dietary habits and oral hygiene. The prevalence of tooth wear was 18.6 and 89.4 % in 12- and 15-year-old adolescents, respectively. The prevalence rates of dentin exposure were 1.9 and 5.6 %, respectively. A significantly higher prevalence of tooth wear and dentin exposure in 15-year-old adolescents was found than in 12-year-old adolescents (p < 0.001 and p = 0.011). Several factors such as drinking soft drinks and fruit juices immediately after sports, taking aspirin, reflux, unilateral chewing, tooth brushing once daily or less often, duration of brushing less than 2 min and swimming in the summer were found to be associated with tooth wear. Tooth wear in 12- and 15-year-old adolescents in Central China is a significant problem and should receive greater attention. The prevalence of tooth wear increases with age and associated with socio-behavioral risk factors.
Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions.
Weir, Michael D; Ruan, Jianping; Zhang, Ning; Chow, Laurence C; Zhang, Ke; Chang, Xiaofeng; Bai, Yuxing; Xu, Hockin H K
2017-09-01
Secondary caries is a primary reason for dental restoration failures. The objective of this study was to investigate the remineralization of human dentin lesions in vitro via restorations using nanocomposites containing nanoparticles of amorphous calcium phosphate (NACP) or NACP and tetracalcium phosphate (TTCP) for the first time. NACP was synthesized by a spray-drying technique and incorporated into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). After restoring the dentin lesions with nanocomposites as well as a non-releasing commercial composite control, the specimens were treated with cyclic demineralization (pH 4, 1h per day) and remineralization (pH 7, 23h per day) for 4 or 8 weeks. Calcium (Ca) and phosphate (P) ion releases from composites were measured. Dentin lesion remineralization was measured at 4 and 8 weeks by transverse microradiography (TMR). Lowering the pH increased ion release of NACP and NACP-TTCP composites. At 56 days, the released Ca concentration in mmol/L (mean±SD; n=3) was (13.39±0.72) at pH 4, much higher than (1.19±0.06) at pH 7 (p<0.05). At 56 days, P ion concentration was (5.59±0.28) at pH 4, much higher than (0.26±0.01) at pH 7 (p<0.05). Quantitative microradiography showed typical subsurface dentin lesions prior to the cyclic demineralization/remineralization treatment, and dentin remineralization via NACP and NACP-TTCP composites after 4 and 8 weeks of treatment. At 8 weeks, NACP nanocomposite achieved dentin lesion remineralization (mean±SD; n=15) of (48.2±11.0)%, much higher than (5.0±7.2)% for dentin in commercial composite group after the same cyclic demineralization/remineralization regimen (p<0.05). Novel NACP-based nanocomposites were demonstrated to achieve dentin lesion remineralization for the first time. These results, coupled with acid-neutralization and good mechanical properties shown previously, indicate that the NACP-based nanocomposites are promising for restorations to inhibit caries and protect tooth structures. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation.
Gullard, Angela; Gluhak-Heinrich, Jelica; Papagerakis, Silvana; Sohn, Philip; Unterbrink, Aaron; Chen, Shuo; MacDougall, Mary
2016-04-01
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe(-/-) molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opnby RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix. © 2016 The Histochemical Society.
Tissue mimicking materials for dental ultrasound
Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.; White, Shane N.
2008-01-01
While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth. PMID:18396919
Second-harmonic generation microscopy of tooth
NASA Astrophysics Data System (ADS)
Kao, Fu-Jen; Wang, Yung-Shun; Huang, Mao-Kuo; Huang, Sheng-Lung; Cheng, Ping C.
2000-07-01
In this study, we have developed a high performance microscopic system to perform second-harmonic (SH)imaging on a tooth. The high sensitivity of the system allows an acquisition rate of 300 seconds/frame with a resolution at 512x512 pixels. The surface SH signal generated from the tooth is also carefully verified through micro-spectroscopy, polarization rotation, and wavelength tuning. In this way, we can ensure the authenticity of the signal. The enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotrophy of the structure is revealed in the microscopic SH images of the tooth sample.
Effect of Photo-Fenton Bleaching on Tetracycline-stained Dentin in vitro.
Bennett, Zackary Yale; Walsh, Laurence James
2015-02-01
Tetracycline-stained tooth structure is difficult to bleach using nightguard tray methods. The possible benefits of in-office light-accelerated bleaching systems based on the photo-Fenton reaction are of interest as possible adjunctive treatments. This study was a proof of concept for possible benefits of this approach, using dentine slabs from human tooth roots stained in a reproducible manner with the tetracycline antibiotic demeclocycline hydrochloride. Color changes overtime in tetra-cycline stained roots from single rooted teeth treated using gel (Zoom! WhiteSpeed(®)) alone, blue LED light alone, or gel plus light in combination were tracked using standardized digital photography. Controls received no treatment. Changes in color channel data were tracked overtime, for each treatment group (N = 20 per group). Dentin was lighter after bleaching, with significant improvements in the dentin color for the blue channel (yellow shade) followed by the green channel and luminosity. The greatest changes occurred with gel activated by light (p < 0.0001), which was superior to effects seen with gel alone. Use of the light alone did not significantly alter shade. This proof of concept study demonstrates that bleaching using the photo-Fenton chemistry is capable of lightening tetracycline-stained dentine. Further investigation of the use of this method for treating tetracycline-stained teeth in clinical settings appears warranted. Because tetracycline staining may respond to bleaching treatments based on the photo-Fenton reaction, systems, such as Zoom! WhiteSpeed, may have benefits as adjuncts to home bleaching for patients with tetracycline-staining.
Effect of NaF, SnF(2), and TiF(4) Toothpastes on Bovine Enamel and Dentin Erosion-Abrasion In Vitro.
Comar, Lívia Picchi; Gomes, Marina Franciscon; Ito, Naiana; Salomão, Priscila Aranda; Grizzo, Larissa Tercília; Magalhães, Ana Carolina
2012-01-01
The aim of this study was to compare the effect of toothpastes containing TiF(4), NaF, and SnF(2) on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n = 12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF(4) (1450 ppm F); SnF(2) (1450 ppm F); SnF(2) (1100 ppm F) + NaF (350 ppm F); TiF(4) (1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF(2)-1100 ppm F + NaF-350 ppm F, Oral B); commercial toothpaste Crest (NaF-1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes' slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (μm). The experimental toothpastes with NaF, TiF(4), SnF(2), and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF(2)/NaF and TiF(4)/NaF showed the best results in the reduction of enamel wear (62-70%) as well as TiF(4), SnF(2), SnF(2)/NaF, and TiF(4)/NaF for dentin wear (64-79%) (P < 0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.
RADIOPACITY OF RESTORATIVE MATERIALS USING DIGITAL IMAGES
Salzedas, Leda Maria Pescinini; Louzada, Mário Jefferson Quirino; de Oliveira, Antonio Braz
2006-01-01
The radiopacity of esthetic restorative materials has been established as an important requirement, improving the radiographic diagnosis. The aim of this study was to evaluate the radiopacity of six restorative materials using a direct digital image system, comparing them to the dental tissues (enamel-dentin), expressed as equivalent thickness of aluminum (millimeters of aluminum). Five specimens of each material were made. Three 2-mm thick longitudinal sections were cut from an intact extracted permanent molar tooth (including enamel and dentin). An aluminum step wedge with 9 steps was used. The samples of different materials were placed on a phosphor plate together with a tooth section, aluminum step wedge and metal code letter, and were exposed using a dental x-ray unit. Five measurements of radiographic density were obtained from each image of each item assessed (restorative material, enamel, dentin, each step of the aluminum step wedge) and the mean of these values was calculated. Radiopacity values were subsequently calculated as equivalents of aluminum thickness. Analysis of variance (ANOVA) indicated significant differences in radiopacity values among the materials (P<0.0001). The radiopacity values of the restorative materials evaluated were, in decreasing order: TPH, F2000, Synergy, Prisma Flow, Degufill, Luxat. Only Luxat had significantly lower radiopacity values than dentin. One material (Degufill) had similar radiopacity values to enamel and four (TPH, F2000, Synergy and Prisma Flow) had significantly higher radiopacity values than enamel. In conclusion, to assess the adequacy of posterior composite restorations it is important that the restorative material to be used has enough radiopacity, in order to be easily distinguished from the tooth structure in the radiographic image. Knowledge on the radiopacity of different materials helps professionals to select the most suitable material, along with other properties such as biocompatibility, adhesion and esthetic. PMID:19089047
Li, Tian Xia; Yuan, Jie; Chen, Yan; Pan, Li Jie; Song, Chun; Bi, Liang Jia; Jiao, Xiao Hui
2013-01-01
The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research. PMID:23762828
Association of dentine hypersensitivity with different risk factors - a cross sectional study.
Vijaya, V; Sanjay, Venkataraam; Varghese, Rana K; Ravuri, Rajyalakshmi; Agarwal, Anil
2013-12-01
This study was done to assess the prevalence of Dentine hypersensitivity (DH) and its associated risk factors. This epidemiological study was done among patients coming to dental college regarding prevalence of DH. A self structured questionnaire along with clinical examination was done for assessment. Descriptive statistics were obtained and frequency distribution was calculated using Chi square test at p value <0.05. Stepwise multiple linear regression was also done to access frequency of DH with different factors. The study population was comprised of 655 participants with different age groups. Our study showed prevalence as 55% and it was more common among males. Similarly smokers and those who use hard tooth brush had more cases of DH. Step wise multiple linear regression showed that best predictor for DH was age followed by habit of smoking and type of tooth brush. Most aggravating factors were cold water (15.4%) and sweet foods (14.7%), whereas only 5% of the patients had it while brushing. A high level of dental hypersensitivity has been in this study and more common among males. A linear finding was shown with age, smoking and type of tooth brush. How to cite this article: Vijaya V, Sanjay V, Varghese RK, Ravuri R, Agarwal A. Association of Dentine Hypersensitivity with Different Risk Factors - A Cross Sectional Study. J Int Oral Health 2013;5(6):88-92 .
Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos; Bresciani, Eduardo
2015-10-01
The aim of this study was to evaluate the effect of hydrogen peroxide whitening on fluorescence and color of bovine enamel and dentin. Twenty five dentin discs and 25 enamel discs, with 6 mm diameter and 1 mm thick, were obtained. Direct fluorescence (spectrofluorophotometry) and color (spectrophotometry) were assessed. After fluorescence and color baseline measurements, specimens were immersed in a 35% hydrogen peroxide (HP) solution for 1 h. This procedure was repeated after 7 days. Final fluorescence and color measurements were performed after the second immersion. Chemical characterization of 5 additional specimens was also performed. Data were submitted to repeated analysis of variance and Tukey's test for fluorescence and unpaired t-test for color and chemical components (p<0.05). Fluorescence decreased significantly in dentin specimens after whitening. Enamel presented lower fluorescence than dentin at baseline, but this parameter did not decrease after whitening. Color changes were observed for both substrates, with significantly greater whitening effect in dentin (ΔE=10.37) (p<0.001). Whitening by hydrogen peroxide induced significant decrease in fluorescence of tooth dentin and promoted significant color changes in dentin and enamel with more accentuated outcomes in dentin.
Tooth dentin defects reflect genetic disorders affecting bone mineralization
Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.
2012-01-01
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718
Alteration of dentin-enamel mechanical properties due to dental whitening treatments.
Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M
2010-05-01
The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhou, L. P.; McDermott, F.; Rhodes, E. J.; Marseglia, E. A.; Mellars, P. A.
The age of the Channel Deposits at Stanton Harcourt, Oxfordshire, England, has been a topic of debate with important implications for British Pleistocene stratigraphy. Recent excavations led by K. Scott reveal ample evidence for ancient environmental conditions characteristic of an interglacial. However, the question remains on the assignment of its age. At present it is thought to represent an interglacial corresponding to either marine OI Stage 7 or 5e. In an attempt to constrain the chronology of the site, and to assess the techniques' reliability, we have made electron spin resonance (ESR) measurements on enamel and mass-spectrometric U-series measurements on both enamel and dentine from a mammoth tooth buried in the Channel Deposits at Stanton Harcourt. Four dentine samples gave U-series dates between 65.4±0.4 and 146.5±1.0 ka and two enamel samples between these dentine layers were dated to 53.3±0.2 and 61.1±0.6 ka. The corresponding ESR age estimates for the enamel samples are 59±6 and 62±4 ka (early U-uptake, EU) and 95±11 and 98±7 ka (linear U-uptake, LU). The recent U-uptake (RU) dates are 245±38 and 238±31 ka, but in light of the U-series data we would not expect these to represent realistic age estimates. Similar ESR results were obtained from two other adjacent enamel samples. The effect of the large size of the mammoth tooth on the external gamma dose, and the internal gamma contribution from the high U content of the dentine, are considered. While the recent uptake ESR dates appear to coincide with OI Stage 7, all the early and linear uptake ESR and mass-spectrometric U-series dates are younger than the expected age estimation based on recent geological interpretation and amino acid racemisation measurements (>200 ka) and optical dating studies (200-450 ka). Possible causes of the unexpected dating results are discussed. We conclude that our mass-spectrometric U-series and EU and LU ESR measurements represent minimum age estimates for the tooth analysed. Our results seem to suggest that the tooth and hence the Channel Deposits are at least 147 ka in age. i.e. predating the last interglacial.
Structure-property relations and crack resistance at the bovine dentin-enamel junction.
Lin, C P; Douglas, W H
1994-05-01
The present report is a study of the fracture behavior of the dentin-enamel complex, involving enamel, dentin, and the dentin-enamel junction (DEJ), that combines experimental design, computational finite element analysis, and fractography. Seven chevron-notched short-bar bovine DEJ specimens were utilized in this study. The general plane of the DEJ was approximately perpendicular to the fracture plane. All specimens were stored at 37 degrees C and 100% relative humidity for 24 h prior to being tested. A fracture test set-up was designed for application of tensile load on the DEJ specimens to initiate a crack at the vertex of the chevron in the enamel, across the DEJ zone and into the bulk dentin. During fracture testing, a water chamber was used to avoid dehydration of the specimen. The results showed that the lower boundary value of the fracture toughness of the DEJ perpendicular to its own plane was 3.38 +/- 0.40 MN/m1.5 and 988.42 +/- 231.39 J/m2, in terms of KIC and GKC, respectively. In addition, there was an extensive plastic deformation (83 +/- 12%) collateral to the fracture process at the DEJ zone. The fractography revealed that the deviation of the crak path involved an area which was approximately 50-100 microns deep. The parallel-oriented coarse collagen bundles with diameters of 1-5 microns at the DEJ zone may play a significant role in resisting the enamel crack. This reflects the fact, that in the intact tooth, the multiple full thickness cracks commonly found in enamel do not typically cause total failure of the tooth by crack extension into the dentin.
Development of a multifunctional adhesive system for prevention of root caries and secondary caries
Zhang, Ning; Melo, Mary A. S.; Chen, Chen; Liu, Jason; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.
2015-01-01
Objectives The objectives of this study were to: (1) develop a novel adhesive for prevention of tooth root caries and secondary caries by possessing a combination of protein-repellent, antibacterial, and remineralization capabilities for the first time; and (2) investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM), and nanoparticles of amorphous calcium phosphate (NACP) on dentine bond strength, protein-repellent properties, and dental plaque microcosm biofilm response. Methods MPC, DMAHDM and NACP were added into Scotchbond Multi-Purpose primer and adhesive. Dentine shear bond strengths were measured. Adhesive coating thickness, surface texture and dentine-adhesive interfacial structure were examined. Protein adsorption onto adhesive resin surface was determined by the micro bicinchoninic acid method. A human saliva microcosm biofilm model was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, and lactic acid production. Results The resin with 7.5% MPC + 5% DMAHDM + 30% NACP did not adversely affect dentine shear bond strength (p > 0.1). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP produced a coating on root dentine with a thickness of approximately 70 μm and completely sealed all the dentinal tubules. The resin with 7.5% MPC + 5% DMAHDM + 30% NACP had 95% reduction in protein adsorption, compared to SBMP control (p < 0.05). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP was strongly antibacterial, with biofilm CFU being four orders of magnitude lower than that of SBMP control. Significance The novel multifunctional adhesive with strong protein-repellent, antibacterial and remineralization properties is promising to coat tooth roots to prevent root caries and secondary caries. The combined use of MPC, DMAHDM and NACP may have wide applicability to bonding agents, cements, sealants and composites to inhibit caries. PMID:26187532
Austin, R S; Rodriguez, J M; Dunne, S; Moazzez, R; Bartlett, D W
2010-10-01
To investigate the effect of an aqueous sodium fluoride solution of increasing concentration on erosion and attrition of enamel and dentine in vitro. Enamel and dentine sections from caries-free human third molars were polished flat and taped (exposing a 3 mm x 3 mm area) before being randomly allocated to 1 of 5 groups per substrate (n=10/gp): G1 (distilled water control); G2 (225 ppm NaF); G3 (1450 ppm NaF); G4 (5000 ppm NaF); G5 (19,000 ppm NaF). All specimens were subjected to 5, 10 and 15 cycles of experimental wear [1 cycle=artificial saliva (2h, pH 7.0)+erosion (0.3% citric acid, pH 3.2, 5 min)+fluoride/control (5 min)+attrition (60 linear strokes in artificial saliva from enamel antagonists loaded to 300 g)]. Following tape removal, step height (SH) in mum was measured using optical profilometry. When the number of cycles increased the amount of tooth surface loss increased significantly in enamel and dentine after attrition and erosion and for dentine after attrition. Attrition and erosion resulted in greater surface loss than attrition alone after 15 cycles of experimental wear of enamel. 5000 ppm and 19,000 ppm sodium fluoride solutions had a protective effect on erosive and attritional enamel tooth wear in vitro, however no other groups showed significant differences. The more intensive the fluoride regime the more protection was afforded to enamel from attrition and erosion. However, in this study no such protective effect was demonstrated for dentine. Copyright 2010 Elsevier Ltd. All rights reserved.
Color management of porcelain veneers: influence of dentin and resin cement colors.
Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa
2010-01-01
Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.
[Adhesion of sealer cements to dentin with and without smear layer].
Gettleman, B H; Messer, H H; ElDeeb, M E
1991-01-01
The influence of a smear layer on the adhesion of sealer cements to dentin was assessed in recently extracted human anterior teeth. A total of 120 samples was tested, 40 per sealer; 20 each with and without the smear layer. The teeth were split longitudinally, and the internal surfaces were ground flat. One-half of each tooth was left with the smear layer intact, while the other half had the smear removed by washing for 3 min with 17% EDTA followed by 5.25% NaOCI. Evidence of the ability to remove the smear layer was verified by scanning electron microscopy. Using a specially designed jig, the sealer was placed into a 4-mm wide x 4 mm deep well which was then set onto the tooth.
Age estimation by pulp/tooth ratio in lower premolars by orthopantomography.
Cameriere, Roberto; De Luca, Stefano; Alemán, Inmaculada; Ferrante, Luigi; Cingolani, Mariano
2012-01-10
Accurate age estimation has always been a problem for forensic scientists, and apposition of secondary dentine is often used as an indicator of age. Since 2004, in order to examine patterns of secondary dentine apposition, Cameriere et al. have been extensively studying the pulp/tooth area ratio of the canines by panoramic and peri-apical X-ray images. The main aim of this paper is to examine the relationship between age and age-related changes in the pulp/tooth area ratio in monoradicular teeth, with the exception of canines, by orthopantomography. A total of 606 orthopantomograms of Spanish white Caucasian patients (289 women and 317 men), aged between 18 and 75 years and coming from Bilbao and Granada (Spain), was analysed. Regression analysis of age of monoradicular teeth indicated that the lower premolars were the most closely correlated with age. An ANCOVA did not show significant differences between men and women. Multiple regression analysis, with age as dependent variable and pulp/tooth area ratio as predictor, yielded several formulae. R(2) ranged from 0.69 to 0.75 for a single lower premolar tooth and from 0.79 to 0.86 for multiple lower premolar teeth. Depending on the available number of premolar teeth, the mean of the absolute values of residual standard error, at 95% confidence interval, ranged between 4.34 and 6.02 years, showing that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Adhesion of Dental Materials to Tooth Structure
NASA Astrophysics Data System (ADS)
Mitra, Sumita B.
2000-03-01
The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.
Comparison of removed dentin thickness with hand and rotary instruments
Shahriari, Shahriar; Abedi, Hasan; Hashemi, Mahdi; Jalalzadeh, Seyed Mohsen
2009-01-01
INTRODUCTION: The aim of this study was to evaluate the amount of dentine removed after canal preparation using stainless steel (SS) hand instruments or rotary ProFile instruments. MATERIALS AND METHODS: Thirty-six extracted human teeth with root canal curvatures less than 30º were embedded in clear polyester resin. The roots were cut horizontally at apical 2, 4 and 7 mm. Dentin thickness was measured at each section and the sections were accurately reassembled using a muffle. Root canals were randomly prepared by SS hand instruments or rotary ProFile instruments. Root sections were again separated, and the remaining dentin thickness was measured. Mann-Whitney U and t tests were performed for analytic comparison of the results. RESULTS: The thickness of removed dentin was significantly different between the two used methods (P<0.05). Significantly greater amounts of dentin was removed mesially in all sections in hand instrumentation group (P<0.001). CONCLUSION: ProFile rotary instrumentation prepares root canals with a greater conservation of tooth structure. PMID:23940489
2012-01-13
abalone shell (Figures 3, 4). Here, we can see that the damage is significantly mitigated in the nacreous regions while cracks formed in the Calcitic...properties. Page 5 / 11 Identifying the crack propagation mechanisms helps to identify new designs for impact resistant materials, so the...human tooth from dentin – dentin/ enamel junction – enamel . It is clear that higher resolution scans are necessary to interrogate local structure
Indentation damage and mechanical properties of human enamel and dentin.
Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D
1998-03-01
Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.
Kahle, Patricia; Witzel, Carsten; Kierdorf, Uwe; Frölich, Kai; Kierdorf, Horst
2018-05-01
We studied the spatio-temporal variation of mineral apposition rate (MAR) in postnatally formed coronal dentine of mandibular first molars from Soay sheep repeatedly injected with different fluorochromes. MAR declined along the cuspal to cervical crown axis, and from early to late formed dentine, that is, from the dentine at the enamel-dentine-junction (EDJ) to the dentine adjacent to the dentine-pulp-interface (DPI). Highest mean MARs (about 21 µm/day) were recorded in cuspal dentine formed in the period of 28-42 days after birth. Lowest values (<2 µm/day) were recorded in late-formed (secondary) dentine close to the DPI. The high MARs recorded in the dentine of the cuspal crown portions enable the formation of a large tooth crown within a relatively short period of less than one year. The established MARs in the dentine of the different crown portions of sheep molars will allow a precise determination of the timing of stress events affecting dentine formation. They are also helpful for devising sampling protocols in studies of trace element or stable isotope distributions in sheep dentine aimed at assessing temporal variation of incorporation into forming dentine. Such data are useful in a variety of contexts, including, for example, the exposure to pollutants and the reconstruction of husbandry practices or feeding regimes. Anat Rec, 301:902-912, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tawde, Shweta
Statement of Problem: Clinicians are inclined towards more aggressive teeth preparations to accommodate the thickness of the veneering material. The principle of conservative tooth preparation is compromised. Purpose: By using a conservative approach to treatment with porcelain veneers, long-lasting, esthetic and functional results may be achieved. Sacrificing as little tooth structure as possible and conserving the supporting tissues will facilitate prospective patients. Materials and Methods: Forty extracted human maxillary and mandibular canines were selected. The teeth were divided into one of two groups (pressable and stackable) and further subdivided according to tooth substrate (all-enamel or mixed enamel-dentin exposure). Twenty canine teeth were allotted to the pressable veneer group and 20 were allotted to the stackable veneer group. Of the 20 teeth in the pressable group, all were pressed with a lithium disilicate ceramic system (IPS e.max Press), 10 with labial tooth reduction of 0.3-0.5 mm maintaining superficial enamel (PEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (PDN). Of the 20 teeth in the stackable group, all were stacked/ layered with conventional feldspathic porcelain (Fortune; Williams/ Ivoclar); with labial veneer reduction of 0.3-0.5 mm maintaining superficial enamel (SEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (SDN). Silicon putty matrix was fabricated prior to teeth preparation to estimate the teeth reduction. The prepared facial reduction was limited to the incisal edge. No incisal or palatal/lingual reduction was performed. Impressions of the prepared teeth were taken in medium/light-bodied PVS. Master casts were made in Resin Rock. The stackable group specimens were made with fabricating refractory dies and after following the recommended steps of laboratory procedure, stackable veneers were processed. The pressable group specimens were fabricated with making a wax-up of the required dimensions and pressing them in the Programmat 5000 system after sprueing and investing them. After all the 40 veneers were checked for internal fit and margins/edges, they were cemented with Variolink Veneer luting cement. Prior to that, the veneers and teeth were prepared for cementation with IPS Ceramic Etching gel and Monobond S and teeth were prepared with Total Etch and ExciTE bond. A thin coat of Rubber separating medium was applied on the root surface of the teeth to simulate the periodontal ligament. Teeth were mounted in Resin rock at 45°. Cyclic loading on an Instron 5848 testing machine was performed. Compressive loading was applied in a cyclical manner using a ramp waveform at a rate of 50N/s. Failure was defined as a crack in the veneer, a crack in the tooth of the veneer, delamination or fracture lines on the veneer/tooth surface. For the first 1000 cycles, the maximum amplitude of the loading was 50N.If the construct survived, another 1000 cycles of loading were applied, using maximum amplitude of 100N. Energy to Failure evaluation was conducted to evaluate the amount of energy the construct absorbed before it failed. All specimens were classified as to whether they survived 2000 cycles of loading, failed during the 100N cyclic loading, or failed during the 50 N cyclic loading. Results: A total of 33 specimens were included in the study. 7 specimens showed catastrophic failure in the initial phases of setting-up the testing parameters on the Instron machine. Mean survivability was higher for the stackable material than the pressed material, and for the veneers attached to enamel than to dentin. When only the material was considered, there was a statistically significant difference between the two groups (p=0.032) in terms of overall survivability with more of the stackable veneers surviving the testing. When the element of veneer thickness is added to the data analysis, failure mode analysis demonstrated a significant difference between the veneer material groups for the veneers in superficial enamel subset (p=0.035) but not the veneers in exposed dentin subset (p=0.225). Thus, for the veneers fabricated on superficial enamel the stackable material construct failed significantly less than the pressable material. Conclusions: Veneers that were stacked on superficial enamel showed high energy to failure compared to the veneers stacked on exposed dentin. Veneers pressed on superficial enamel were stronger than veneers pressed on exposed dentin. Veneers that stacked on superficial and exposed dentin survived cyclic loading longer than the veneers pressed on superficial enamel and exposed dentin. Four Pressed veneers were found to be broken after the 1000 cycles of 100N were complete.
Properties of tooth enamel in great apes.
Lee, James J-W; Morris, Dylan; Constantino, Paul J; Lucas, Peter W; Smith, Tanya M; Lawn, Brian R
2010-12-01
A comparative study has been made of human and great ape molar tooth enamel. Nanoindentation techniques are used to map profiles of elastic modulus and hardness across sections from the enamel-dentin junction to the outer tooth surface. The measured data profiles overlap between species, suggesting a degree of commonality in material properties. Using established deformation and fracture relations, critical loads to produce function-threatening damage in the enamel of each species are calculated for characteristic tooth sizes and enamel thicknesses. The results suggest that differences in load-bearing capacity of molar teeth in primates are less a function of underlying material properties than of morphology. Published by Elsevier Ltd.
An experiment on the attrition of acid demineralized dentine in vitro.
Li, H; Liu, M C; Deng, M; Moazzez, R; Bartlett, D W
2011-03-01
A laboratory investigation was designed to test the hypothesis that acids increase the rate of wear caused by attrition on dentine. Dentine sections from 10 teeth were polished, cleaned in an ultrasonic bath and divided into 8 equally sized areas. The occlusal tip of a tooth, placed vertically in a wear machine and loaded at 150 N, was moved against each dentine section for 5000 return strokes with artificial saliva acting as a lubricant. Each dentine section was divided into 8 sections and half randomly immersed in a 1% citric acid solution (pH 2.3) for 20 minutes. The wear regime produced 8 wear scars in total per dentine sample. The volume of each wear scar was measured using a contacting digitizing profilometer. A total of 80 wear scars were produced with 40 treated with acid and 40 acting as controls. The mean for wear volume of the dentine scars with acid was 4.84 μm(3) (1.38) and for the non-acid surface 2.95 μm(3) (0.86). This difference was statistically significant (p < 0.05). These results support the hypothesis that acids increase the rate of wear caused by attrition on dentine. © 2011 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Puspitarini, A.; Suprastiwi, E.; Usman, M.
2017-08-01
Ceramic optimized polymer (ceromer) bonds to the tooth substrate through resin cements. The bond strength between dentin, resin cement, and ceromer depends on the applied surface treatment. To analyze the effects of dentin and intaglio ceromer surface treatment on the shear bond strength self-adhesive resin cement. Forty-five dentin premolar and ceromer specimens were bonded with resin cement and divided into three groups as follows: in group 1, no treatment was applied; in group 2, dentin surface treatment was carried out with acid etching and a bonding agent; and in group 3, dentin surface treatment was carried out with acid etching, a bonding agent, and intaglio ceromer surface treatment with etching and silane. All specimens were incubated at 37 °C for 24 hours, and the shear bond strength was measured using a universal testing machine. Group 3 showed the highest shear bond strength, followed by group 2. The surface treatment of dentin and intaglio ceromer showed significantly improved shear bond strength in the group comparison. Dentin and intaglio ceromer surface treatment can improved the shear bond strength self-adhesive resin cement.
Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin.
Kubo, Shisei; Li, Heping; Burrow, Michael F; Tyas, Martin J
2002-01-01
The hybrid layer created in caries-affected dentin has not been fully elucidated and may influence bond durability. This study investigated the nanoleakage patterns of caries-affected dentin after excavation with Carisolv or conventional instruments treated with one of three adhesive systems. Flat occlusal dentin surfaces, including carious lesions, were prepared from extracted human molars and finished with wet 600-grit silicon carbide paper. Carious dentin was removed with Carisolv or round steel burs in conjunction with Caries Detector. PermaQuik, Single Bond or One-Up Bond F was bonded to the excavated dentin surfaces and adjacent flat occlusal surfaces and it was covered with Silux Plus resin-based composite. After 24-hour storage in 37 degrees C water, the bonded interfaces were polished to remove flash, and the surrounding tooth surfaces were coated with nail varnish. Specimens were immersed in 50% (w/v) silver nitrate solution for 24 hours, exposed to photo developing solution for eight hours, then sectioned longitudinally through the bonded, excavated dentin or "normal" dentin surfaces. The sectioned surfaces were polished, carbon coated and observed in a Field Emission-SEM using back scattered electrons. Silver deposition occurred along the base of the hybrid layer for all specimens. However, Single Bond showed a greater density of silver deposition in the caries-affected dentin compared with normal dentin. PermaQuik had a thicker hybrid layer in caries-affected dentin than normal dentin. One-Up Bond F exhibited a thin hybrid layer in normal dentin, but the hybrid layer was often difficult to detect in caries-affected dentin.
Zimmerli, Melanie; Filippi, Andreas
2010-01-01
After tooth loss dental implants or fixed prosthetic restorations are not indicated in children and adolescents due to incomplete maxillary and mandibular development. Cryopreservation is a method for long-term storage of healthy teeth which were removed for orthodontic reasons or due to traumatic origin. These preserved teeth can be used as autogenous replants or transplants after tooth loss. During transport to and from the freezing facilities prior to freezing the teeth are stored in a cell culture medium. The tooth is transferred into a freezing tube containing cell culture medium and cryoprotectant DMSO. Teeth autotransplanted after cryopreservation show vitality of the PDL cells. Usually no enamel and/or dentinal cracks can be observed. After tooth loss transplantation of cryopreserved teeth could be an effective and biological therapy for tooth replacement.
Association of Dentine Hypersensitivity with Different Risk Factors – A Cross Sectional Study
Vijaya, V; Sanjay, Venkataraam; Varghese, Rana K; Ravuri, Rajyalakshmi; Agarwal, Anil
2013-01-01
Background: This study was done to assess the prevalence of Dentine hypersensitivity (DH) and its associated risk factors. Materials & Methods: This epidemiological study was done among patients coming to dental college regarding prevalence of DH. A self structured questionnaire along with clinical examination was done for assessment. Descriptive statistics were obtained and frequency distribution was calculated using Chi square test at p value <0.05. Stepwise multiple linear regression was also done to access frequency of DH with different factors. Results: The study population was comprised of 655 participants with different age groups. Our study showed prevalence as 55% and it was more common among males. Similarly smokers and those who use hard tooth brush had more cases of DH. Step wise multiple linear regression showed that best predictor for DH was age followed by habit of smoking and type of tooth brush. Most aggravating factors were cold water (15.4%) and sweet foods (14.7%), whereas only 5% of the patients had it while brushing. Conclusion: A high level of dental hypersensitivity has been in this study and more common among males. A linear finding was shown with age, smoking and type of tooth brush. How to cite this article: Vijaya V, Sanjay V, Varghese RK, Ravuri R, Agarwal A. Association of Dentine Hypersensitivity with Different Risk Factors – A Cross Sectional Study. J Int Oral Health 2013;5(6):88-92 . PMID:24453451
Biomaterial Selection for Tooth Regeneration
Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong
2011-01-01
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433
An approach to biomimetics: the natural CAD/CAM restoration: a clinical report.
Schlichting, Luís Henrique; Schlichting, Kathryn Klemz; Stanley, Kyle; Magne, Michel; Magne, Pascal
2014-02-01
Those in the dental field have always pursued the perfect dental material for the treatment of compromised teeth. Gold, amalgam, composite resin, glass ionomer, and porcelain have been used. Tooth-like restorative materials (composite resin and porcelain) combined with an effective hard tissue bond have met the growing demand for esthetic or metal-free restorations in the past 15 to 20 years. However, none of those materials can fully mimic the unique properties of dentin (compliance and crack-stopping behavior) and enamel (wear resistance, function). The aim of this article is to report the restoration of an extensively damaged tooth with a natural restoration obtained by milling an extracted third molar tooth with a computer-aided design and computer-aided manufacturing (CAD/CAM) system. The main benefit of this novel technique is the replacement of lost tissues by actual enamel and dentin, with the potential to recover mechanical, esthetic, and biologic properties. The indication for extracting third molars and premolars because of impaction or for orthodontic reasons makes these posterior teeth readily available. The innovation of the method presented here is the optimal use of the extracted tooth substrate thanks to its positioning technique in the CAD/CAM milling chamber. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Grosgogeat, Brigitte; Seux, Dominique; Farge, Pierre
2013-01-01
The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont) and a glass ionomer cement (Fuji IX extra, GC Corp.) restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth. PMID:24303363
Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization
Xiao, Shimeng; Liang, Kunneng; Weir, Michael D.; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H. K.
2017-01-01
Objectives. The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods. Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results. Mechanical properties of BMC were similar to commercial control composites (p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin (p = 0.521). Significance. The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures. PMID:28772450
Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization.
Xiao, Shimeng; Liang, Kunneng; Weir, Michael D; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H K
2017-01-22
Objectives . The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods . Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results . Mechanical properties of BMC were similar to commercial control composites ( p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin ( p = 0.521). Significance . The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures.
Thomas, Bijimol
2012-01-01
ABSTRACT Preventive measures have helped to minimize the occurrence of dental caries. However, premature loss of primary teeth on account of dental caries still remains a common problem among children. The pulpotomy technique has been the choice for treating vital primary and young permanent teeth with carious, mechanical and traumatic pulp exposures. The ideal pulpotomy medicament should be bioinductive or at least biocompatible, bactericidal and harmless to the pulp and surrounding structures. It should also promote healing of the radicular pulp and prevent bacterial microleakage with the least interference in the physiological process of root resorption. Since the best criteria for judging the effectiveness of a medicament when used for vital pulp therapy is the response that it produces in the pulp. The purpose of the present study was to evaluate and compare the response of human pulp tissue to recently developed Indian material, Sree Chitra-Calcium Phosphate Cement (Chitra-CPC) and formocresol, used as pulpotomy agent in deciduous teeth. Chitra-CPC has been compared with formocresol, taking into account that formocresol is still considered the gold standard in primary tooth pulpotomy. The study was conducted among 10 children in the age group of 8 to 12 years focusing on 20 noncarious primary canines indicated for serial extraction. Each patient received two different pulpotomy procedures—one in each of the primary canines using formocresol and the other with Chitra-CPC as pulpotomy agents. After 70 days, the teeth were extracted and subjected to histological examination. The results did not reveal statistically significant difference between the two groups. But Chitra-CPC gave more favorable results, in respect of pulpal inflammation, dentin bridge formation, quality of dentin bridge and connective tissue in dentin bridge. How to cite this article: Ratnakumari N, Thomas B. A Histopathological Comparison of Pulpal Response to Chitra- CPC and Formocresol used as Pulpotomy Agents in Primary Teeth: A Clinical Trial. Int J Clin Pediatr Dent 2012;5(1):6-13. PMID:25206127
Tooth fragment reattachment techniques-A systematic review.
Garcia, Fernanda Cristina P; Poubel, Déborah L N; Almeida, Júlio César F; Toledo, Isabela P; Poi, Wilson R; Guerra, Eliete N S; Rezende, Liliana V M L
2018-03-07
Several strategies have been developed for tooth fragment reattachment following fracture. Although many techniques have been reported, there is no consensus on which one has the best results in terms of the bond strength between the fragment and the dentin over time. The aim of this study was to assess the currently reported tooth fragment reattachment techniques for fractured crowns of anterior teeth. The PubMed, LILACS, Web of Science, Cochrane, and Scopus databases were searched in October 2016, and the search was updated in February 2017. A search of the gray literature was performed in Google Scholar and OpenGrey. Reference lists of eligible studies were cross-checked to identify additional studies; gray literature and ongoing trials were investigated. Two authors assessed studies to determine inclusion and undertook data extraction. Case reports/series of three or more cases, cross-sectional studies, cohort studies, and in vivo clinical trials in all languages were included. Five articles remained after screening. These studies predominantly reported on fragment reattachment with composite resin and resin cement. There was little consistency among the studies in regard to the technique used for tooth fragment reattachment and length of the follow-up period. According to the evidence found in the studies included in this review, simple tooth fragment reattachment was the preferred reattachment technique. An increase in the bond strength between tooth fragment and dentin was observed when an intermediate material was used. Further investigation is needed, using standard follow-up periods and larger samples. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.
Swift, E J; Triolo, P T
1992-12-01
This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.
Meta-analysis of the prevalence of tooth wear in primary dentition.
Corica, A; Caprioglio, A
2014-12-01
To conduct a meta-analysis of all the studies published in literature over the past three decades on the prevalence of dental erosion in preschool children. The Pubmed data base revealed only one systematic review on the prevalence of tooth wear in children up to 5 years old. The search included works published from January 1982 to September 2012, using the following combinations of keywords: 1) "dental erosion" AND "children"; 2) "dental erosion in primary dentition"; 3) "dental" AND "attrition" AND "prevalence". The inclusion criteria for papers on tooth wear were the deciduous dentition observed only on the palatal and buccal sides with the distinction of erosion, attrition and abrasion. We took into consideration only randomized control trials. We excluded articles not written in English, case reports, historical and forensic studies, in vitro and in vivo studies. In case of doubt and/or when an abstract was not available, the full text copy of the article was examined. The first search on Pubmed revealed 29 articles, the same found in the study of Kreulen [2010], however we selected only multicentric studies focused on children of age below 5 years old, in which only the primary dentition (D) and only anterior teeth (incisors) were considered. Both forest plot and scatter plot showed the prevalence of dental erosion in primary dentition, and that older children had a more severe dental erosion. Dental erosion should be considered a paediatric dentistry pathological entity as well as dental caries, and it can be related to more severe systemic diseases such as Gastroesophageal reflux disease. In addition, taking care of these little patients is important because they might suffer persentiveness, and also pulpal pathology caused by the typical structure of deciduous teeth, where the pulp cavity is wide and close to the dentine and the enamel.
Eap, Sandy; Bécavin, Thibault; Keller, Laetitia; Kökten, Tunay; Fioretti, Florence; Weickert, Jean-Luc; Deveaux, Etienne; Benkirane-Jessel, Nadia; Kuchler-Bopp, Sabine
2014-03-01
Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Risk Assessment for Tooth Wear.
Kontaxopoulou, Isavella; Alam, Sonia
2015-08-01
Tooth wear has an increasing prevalence in the UK population. The aetiology is commonly multifactorial, and the aetiopathology is through a combination of erosion, attrition, abrasion and abfraction. Erosion is associated with intrinsic or extrinsic acids, and therefore subjects with reflux disease and eating disorders are at increased risk. Fruit juice, fruits and carbonated drink consumption, frequency of consumption and specific habits are also risk factors. Attrition is more prevalent in bruxists. Other habits need to be considered when defining the risk of tooth wear. Abrasion is usually associated with toothbrushing and toothpastes, especially in an already acidic environment. Patients with extensive lesions that affect dentin may be at higher risk, as well as those presenting with unstained lesions. Monitoring of the progress of tooth wear is recommended to identify those with active tooth wear. Indices for tooth wear are a helpful aid.
Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.
Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K
2016-11-01
The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Accelerated fatigue of dentin with exposure to lactic acid.
Do, D; Orrego, S; Majd, H; Ryou, H; Mutluay, M M; Xu, Hockin H K; Arola, D
2013-11-01
Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods. © 2013 Elsevier Ltd. All rights reserved.
Root dentine and endodontic instrumentation: cutting edge microscopic imaging
2016-01-01
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation—by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments. PMID:27274802
Root dentine and endodontic instrumentation: cutting edge microscopic imaging.
Atmeh, Amre R; Watson, Timothy F
2016-06-06
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments.
Deformation behavior of human enamel and dentin-enamel junction under compression.
Zaytsev, Dmitry; Panfilov, Peter
2014-01-01
Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.
The effect of fluoride on enamel and dentin formation in the uremic rat incisor.
Lyaruu, Donacian M; Bronckers, Antonius L J J; Santos, Fernando; Mathias, Robert; DenBesten, Pamela
2008-11-01
Renal impairment in children is associated with tooth defects that include enamel pitting and hypoplasia. However, the specific effects of uremia on tooth formation are not known. In this study, we used rat mandibular incisors, which continuously erupt and contain all stages of tooth formation, to characterize the effects of uremia on tooth formation. We also tested the hypothesis that uremia aggravates the fluoride (F)-induced changes in developing teeth. Rats were subjected to a two-stage 5/6 nephrectomy or sham operation and then exposed to 0 (control) or 50 ppm NaF in drinking water for 14 days. The effects of these treatments on food intake, body growth rate, and biochemical serum parameters for renal function and calcium metabolism were monitored. Nephrectomy reduced food intake and weight gain. Intake of F by nephrectomized rats increased plasma F levels twofold and further decreased food intake and body weight gain. Uremia affected formation of dentin and enamel and was more extensive than the effect of F alone. Uremia also significantly increased predentin width and induced deposition of large amounts of osteodentin-like matrix-containing cells in the pulp chamber. In enamel formation, the cells most sensitive to uremia were the transitional-stage ameloblasts. These data demonstrate that intake of F by rats with reduced renal function impairs F clearance from the plasma and aggravates the already negative effects of uremia on incisor tooth development.
Clinical Performance of a New Biomimetic Double Network Material
Dirxen, Christine; Blunck, Uwe; Preissner, Saskia
2013-01-01
Background: The development of ceramics during the last years was overwhelming. However, the focus was laid on the hardness and the strength of the restorative materials, resulting in high antagonistic tooth wear. This is critical for patients with bruxism. Objectives: The purpose of this study was to evaluate the clinical performance of the new double hybrid material for non-invasive treatment approaches. Material and Methods: The new approach of the material tested, was to modify ceramics to create a biomimetic material that has similar physical properties like dentin and enamel and is still as strong as conventional ceramics. Results: The produced crowns had a thickness ranging from 0.5 to 1.5 mm. To evaluate the clinical performance and durability of the crowns, the patient was examined half a year later. The crowns were still intact and soft tissues appeared healthy and this was achieved without any loss of tooth structure. Conclusions: The material can be milled to thin layers, but is still strong enough to prevent cracks which are stopped by the interpenetrating polymer within the network. Depending on the clinical situation, minimally- up to non-invasive restorations can be milled. Clinical Relevance: Dentistry aims in preservation of tooth structure. Patients suffering from loss of tooth structure (dental erosion, Amelogenesis imperfecta) or even young patients could benefit from minimally-invasive crowns. Due to a Vickers hardness between dentin and enamel, antagonistic tooth wear is very low. This might be interesting for treating patients with bruxism. PMID:24167534
Nociti, Francisco H.; Somerman, Martha J.
2014-01-01
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820
Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C
2008-11-01
Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.
A hypothetical role for vitamin K2 in the endocrine and exocrine aspects of dental caries.
Southward, Ken
2015-03-01
The growing interest in oral/systemic links demand new paradigms to understand disease processes. New opportunities for dental research, particularly in the fields of neuroscience and endocrinology will emerge. The role of the hypothalamus portion of the brain cannot be underestimated. Under the influence of nutrition, it plays a significant role in the systemic model of dental caries. Currently, the traditional theory of dental caries considers only the oral environment and does not recognize any significant role for the brain. The healthy tooth, however, has a centrifugal fluid flow to nourish and cleanse it. This is moderated by the hypothalamus/parotid axis which signals the endocrine portion of the parotid glands. High sugar intake creates an increase in reactive oxygen species and oxidative stress in the hypothalamus. When this signaling mechanism halts or reverses the dentinal fluid flow, it renders the tooth vulnerable to oral bacteria, which can now attach to the tooth's surface. Acid produced by oral bacteria such as Strep Mutans and lactobacillus can now de-mineralize the enamel and irritate the dentin. The acid attack stimulates an inflammatory response which results in dentin breakdown from the body's own matrix metalloproteinases. Vitamin K2 (K2) has been shown to have an antioxidant potential in the brain and may prove to be a potent way to preserve the endocrine controlled centrifugal dentinal fluid flow. Stress, including oxidative stress, magnifies the body's inflammatory response. Sugar can not only increase oral bacterial acid production but it can concurrently reduce the tooth's defenses through endocrine signaling. Saliva production is the exocrine function of the salivary glands. The buffering capacity of saliva is critical to neutralizing the oral environment. This minimizes the de-mineralization of enamel and enhances its re-mineralization. K2, such as that found in fermented cheese, improves salivary buffering through its influence on calcium and inorganic phosphates secreted. Data collected from several selected primitive cultures on the cusp of civilization demonstrated the difference in dental health due to diet. The primitive diet group had few carious lesions compared to the group which consumed a civilized diet high in sugar and refined carbohydrates. The primitives were able to include the fat soluble vitamins, specifically K2, in their diet. More endocrine and neuroscience research is necessary to better understand how nutrition influences the tooth's defenses through the hypothalamus/parotid axis. It will also link dental caries to other inflammation related degenerative diseases such as diabetes. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Kitamura, Chiaki; Nishihara, Tatsuji; Terashita, Masamichi; Tabata, Yasuhiko; Washio, Ayako
2012-01-01
Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp. PMID:22174717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf
2013-06-21
The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all themore » different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.« less
Effect of Dentin Wetness on the Bond Strength of Universal Adhesives.
Choi, An-Na; Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon; Park, Jeong-Kil
2017-10-25
The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey's post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed ( p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.
Effect of Dentin Wetness on the Bond Strength of Universal Adhesives
Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon
2017-01-01
The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives. PMID:29068404
The measurement of enamel and dentine abrasion by tooth whitening products using an in situ model.
Joiner, A; Collins, L Z; Cox, T F; Pickles, M J; Weader, E; Liscombe, C; Holt, J S
2005-01-01
To determine the enamel and dentine wear of two whitening toothpastes using an in situ model with ex vivo brushing. Human enamel/dentine (approximately 50:50) blocks (approximately 4 x 4mm) were placed in the upper buccal aspects of full or partial dentures of a group of 25 subjects. Subjects brushed the specimens ex vivo with either a calcium carbonate/perlite or silica containing whitening toothpaste under exaggerated conditions as compared to normal for 30 s, twice per day. Specimens were removed after 4, 8 and 12 weeks and the wear to the enamel and dentine was determined. Enamel wear was determined by change in Knoop indent length and dentine wear was determined from the enamel-dentine step height, measured using optical profilometry. The mean wear after 12 weeks was for enamel 0.27 and 0.19 microns, and for dentine 34.3 and 61.1 microns, for the calcium carbonate/perlite and silica toothpastes respectively. There were no significant differences between products after 12 weeks. The rate of wear was found to decrease throughout the duration of the study. There were no significant differences between the two whitening toothpastes in terms of enamel and dentine wear after 12 weeks brushing.
[Evaluation of the thermal effects of the plasma microtorch by infrared thermography].
Lhuisset, F; Zeboulon, S; Bouchier, G
1991-01-01
This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.
Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin
NASA Astrophysics Data System (ADS)
Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel
1994-12-01
This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.
Hybridization quality and bond strength of adhesive systems according to interaction with dentin
Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando
2013-01-01
Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212
Hybridization quality and bond strength of adhesive systems according to interaction with dentin.
Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando
2013-07-01
To evaluate the hybridization quality and bond strength of adhesives to dentin. Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives - Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems - Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system - Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm(2) in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin.
Falony, Gwen; Honkala, Sisko; Runnel, Riina; Olak, Jana; Nõmmela, Rita; Russak, Silvia; Saag, Mare; Mäkinen, Pirkko-Liisa; Mäkinen, Kauko; Vahlberg, Tero; Honkala, Eino
2016-01-01
To assess the effect of daily consumption of erythritol, xylitol, and sorbitol candies on caries development in mixed dentition during a 3-year intervention and 3 years after the intervention. 485 Estonian first- and second-grade primary school children participated. Children were randomly allocated to an erythritol, xylitol, or sorbitol (control) group. Polyol-containing candies were administered on school days with a daily polyol consumption of 3 × 2.5 g. Yearly, caries development was assessed by calibrated dentists using the ICDAS criteria. Six years after initiation of the study and 3 years after cessation of daily polyol consumption, 420 participants were re-examined to identify potential long-term effects of polyol consumption. Survival curves were generated at the end of the intervention period and 3 years after intervention. The model included age of the subjects, schools, tooth surface ages and years of surface exposure to intervention. ICDAS scoring system-based events included enamel/dentin caries development, dentin caries development, increase in caries score, and dentist intervention. At the end of the intervention, time to enamel/dentin caries development, dentin caries development, increase in caries score, and dentist intervention were significantly longer in the erythritol group as compared to the sorbitol group. Except for increase in caries score, all effects persisted 3 years after cessation of daily polyol consumption. A caries-preventive effect of 3-year erythritol consumption as compared to sorbitol was established in children with mixed dentition. The effect persisted up to 3 years after the end of the intervention. © 2016 S. Karger AG, Basel.
Time-course diffusion of hydrogen peroxide using modern technologies
NASA Astrophysics Data System (ADS)
Florez, F. L. E.; Vollet-Filho, J. D.; Oliveira-Junior, O. B.; Bagnato, V. S.
2009-02-01
The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.
Rastogi, Manu; Logani, Ajay; Shah, Naseem; Kumar, Abhishek; Arora, Saurabh
2017-01-01
Background: Age estimation in living individuals is imperative to amicably settle civil and criminal disputes. A biochemical method based on amino acid racemization was evaluated for age estimation of living Indian individuals. Design: Caries-free maxillary/mandibular premolar teeth (n = 90) were collected from participants with age proof documents and divided into predefined nine age groups. Materials and Methods: Dentine biopsy from the labial aspect of the tooth crown was taken with an indigenously developed microtrephine. The samples were processed and subjected to gas chromatography. Dextrorotatory:levorotatory ratios were calculated, and a regression equation was formulated. Results: Across all age groups, an error of 0 ± 4 years between protein racemization age and chronological age was observed. Conclusion: Aspartic acid racemization from dentine biopsy samples could be a viable and accurate technique for age estimation of living individuals who have attained a state of skeletal maturity. PMID:29263613
Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel
2017-12-01
Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ihsani, V.; Nursasongko, B.; Djauharie, N.
2017-08-01
The concept of conserving healthy tooth structures during cavity preparation has gained popularity with chemo-mechanical caries removal. This study compared three methods of caries removal using: a chemo-mechanical caries removal papain gel; Papacarie® (these contain natural ingredients, mainly papain enzyme); and mechanical preparation with a bur rotary instrument. The purpose of this study was to compare affected dentin micro-hardness after removal of infected dentin with mechanical and chemo-mechanical techniques. Twenty-seven permanent molar teeth were randomly divided into three groups receiving removal of infected dentin. These were: Group 1: chemo-mechanical technique using papain gel; Group 2: chemo-mechanical technique using Papacarie® Group 3: mechanical technique using a bur rotary instrument. Each group was tested using Knoop Micro-hardness tester, and the data were submitted to one way ANOVA and Post-hoc Tukey test. There is a significant difference between Groups 1 and 3, and Groups 2 and 3, p = 0.000. However, there is no significant difference between Groups 1 and 2, p = 1.000. Affected dentin micro-hardness after removal of infected dentin with a bur rotary tool is higher than after use of the papain gel or Papacarie®. Affected dentin micro-hardness after removal of infected dentin with Papacarie® and papain gel give almost the same result.
Self-etch and etch-and-rinse adhesive systems in clinical dentistry.
Ozer, Fusun; Blatz, Markus B
2013-01-01
Current adhesive systems follow either an "etch-and-rinse" or "self-etch" approach, which differ in how they interact with natural tooth structures. Etch-and-rinse systems comprise phosphoric acid to pretreat the dental hard tissues before rinsing and subsequent application of an adhesive. Self-etch adhesives contain acidic monomers, which etch and prime the tooth simultaneously. Etch-and-rinse adhesives are offered as two- or three-step systems, depending on whether primer and bonding are separate or combined in a single bottle. Similarly, self-etch adhesives are available as one- or two-step systems. Both etch-and-rinse and self-etch systems form a hybrid layer as a result of resins impregnating the porous enamel or dentin. Despite current trends toward fewer and simpler clinical application steps, one-step dentin bonding systems exhibit bonding agent lower bond strengths and seem less predictable than multi-step etch-and-rinse and self-etch systems. The varying evidence available today suggests that the choice between etch-and-rinse and self-etch systems is often a matter of personal preference. In general, however, phosphoric acid creates a more pronounced and retentive etching pattern in enamel. Therefore, etch-and-rinse bonding systems are often preferred for indirect restorations and when large areas of enamel are still present. Conversely, self-etch adhesives provide superior and more predictable bond strength to dentin and are, consequently, recommended for direct composite resin restorations, especially when predominantly supported by dentin.
Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H
1994-07-01
The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.
Radiodensity evaluation of dental impression materials in comparison to tooth structures.
Fonseca, Rodrigo Borges; Branco, Carolina Assaf; Haiter-Neto, Francisco; Gonçalves, Luciano de Souza; Soares, Carlos José; Carlo, Hugo Lemes; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço
2010-01-01
In the most recent decades, several developments have been made on impression materials' composition, but there are very few radiodensity studies in the literature. It is expected that an acceptable degree of radiodensity would enable the detection of small fragments left inside gingival sulcus or root canals. The aim of this study was to determine the radiodensity of different impression materials, and to compare them to human and bovine enamel and dentin. Twenty-five impression materials, from 5 classes, were studied: addition and condensation silicones, polyether, polysulfides and alginates. Five 1-mm-thick samples of each material and tooth structure were produced. Each sample was evaluated 3 times (N=15), being exposed to x-ray over a phosphor plate of Digora digital system, and radiodensity was obtained by the software Digora for Windows 2.5 Rev 0. An aluminum stepwedge served as a control. Data were subjected to Kruskal-Wallis and Dunn's method (α=0.05). Different materials and respective classes had a different behavior with respect to radiodensity. Polysulfides showed high values of radiodensity, comparable to human enamel (p>0.05), but not to bovine enamel (p<0.05). Human dentin was similar only to a heavy-body addition silicon material, but bovine dentin was similar to several materials. Generally, heavy-body materials showed higher radiodensity than light-body ones (p<0.05). Impression materials' radiodensity are influenced by composition, and almost all of them would present a difficult detection against enamel or dentin background in radiographic examinations.
Pratebha, B; Jaikumar, N D; Sudhakar, R
2014-01-01
The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.
Fatigue failure of dentin-composite disks subjected to cyclic diametral compression
Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex
2015-01-01
Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269
Turner's hypoplasia and non-vitality: A case report of sequelae in permanent tooth
Geetha Priya, P. R.; John, John B.; Elango, Indumathi
2010-01-01
Hypoplasia is the result of disruption in the process of enamel matrix formation, which in turn causes defect in quality and thickness of enamel. Four cases of Turner's hypoplastic teeth with a previous history of trauma/infection in their primary predecessors at the age of 2-3 years have been reported. These hypoplastic teeth had turned non-vital without any carious insult, cavitation or further trauma. This article thereby stresses the importance of early detection of enamel hypoplasia and proper management at the earliest possible stage to enable an efficient prevention from clinically non-evident microbial invasion in the dentinal tubules and concomitant pulp pathosis. PMID:22114432
Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta.
Smith, Claire El; Whitehouse, Laura LE; Poulter, James A; Brookes, Steven J; Day, Peter F; Soldani, Francesca; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J
2017-08-01
We identified two homozygous missense variants (c.428C>T, p.(T143M) and c.746C>T, p.(P249L)) in ACPT, the gene encoding acid phosphatase, testicular, which segregates with hypoplastic amelogenesis imperfecta in two unrelated families. ACPT is reported to play a role in odontoblast differentiation and mineralisation by supplying phosphate during dentine formation. Analysis by computerised tomography and scanning electron microscopy of a primary molar tooth from an individual homozygous for the c.746C>T variant revealed an enamel layer that was hypoplastic, but mineralised with prismatic architecture. These findings implicate variants in ACPT as a cause of early failure of amelogenesis during the secretory phase.
Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao
2010-01-01
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072
Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R
2016-07-01
Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ji, Baohui; Sheng, Lei; Chen, Gang; Guo, Shujuan; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong
2015-01-01
Endogenous regeneration through cell homing provides an alternative approach for tissue regeneration, except cell transplantation, especially considering clinical translation. However, tooth root regeneration through cell homing remains a provocative approach in need of intensive study. Both platelet-rich fibrin (PRF) and treated dentin matrix (TDM) are warehouses of various growth factors, which can promote cell homing. We hypothesized that endogenous stem cells are able to sense biological cues from PRF membrane and TDM, and contribute to the regeneration of tooth root, including soft and hard periodontal tissues. Therefore, the biological effects of canine PRF and TDM on periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) were evaluated respectively in vitro. Beagle dogs were used as orthotopic transplantation model. It was found that PRF significantly recruited and stimulated the proliferation of PDLSCs and BMSCs in vitro. Together, PRF and TDM induced cell differentiation by upregulating the mineralization-related gene expression of bone sialoprotein (BSP) and osteopotin (OPN) after 7 days coculture. In vivo, transplantation of autologous PRF and allogeneic TDM into fresh tooth extraction socket achieved successful root regeneration 3 months postsurgery, characterized by the regeneration of cementum and periodontal ligament (PDL)-like tissues with orientated fibers, indicative of functional restoration. The results suggest that tooth root connected to the alveolar bone by cementum-PDL complex can be regenerated through the implantation of PRF and TDM in a tooth socket microenvironment, probably by homing of BMSCs and PDLSCs. Furthermore, bioactive cues and inductive microenvironment are key factors for endogenous regeneration. This approach provides a tangible pathway toward clinical translation.
Real-time caries diagnostics by optical PNC method
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-11-01
The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC-method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be sued as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.
Express diagnostics of intact and pathological dental hard tissues by optical PNC method
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-03-01
The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1 mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC- method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be used as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.
Naumann, Michael; Sterzenbach, Guido; Dietrich, Thomas; Bitter, Kerstin; Frankenberger, Roland; von Stein-Lausnitz, Manja
2017-11-01
This is the first long-term randomized controlled trial to evaluate dentin-like glass fiber posts (GFPs) compared with rather rigid titanium posts (TPs) for post-endodontic restoration of severely damaged endodontically treated teeth with 2 or fewer remaining cavity walls. Ninety-one subjects in need of post-endodontic restorations were randomly assigned to receive either a tapered GFP (n = 45) or TP (n = 46). Posts were adhesively luted by using self-adhesive resin cement, followed by composite core build-up and preparation of 2-mm ferrule design. Primary end point was loss of restoration for any reason. Kaplan-Meier curves were constructed, and log-rank test was calculated (P < .05). After a follow-up of 132 months, 17 GFP and 20 TP restorations survived, and 19 failed (12 GFP, 7 TP). Failure modes for GFP were root fracture (n = 4), core fracture (n = 1), secondary caries (n = 1), endodontic failure (n = 2), extraction because of tooth mobility grade III associated with insufficient design of removable partial denture (n = 1), tooth fracture (n = 1), and changes in treatment plan (n = 2); failure modes for TP were endodontic failure (n = 5), root fracture (n = 1), and 1 extraction for other reasons. Cumulative survival probability was 58.7% for GFP and 74.2% for TP. When using self-adhesively luted prefabricated posts, resin composite core build-up, and 2-mm ferrule to reconstruct severely damaged endodontically treated teeth, tooth survival is not influenced by post rigidity. Survival decreased rapidly after 8 years of observation in both groups. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Helal, Mohammed Abu; Wang, Zhigang
2017-10-25
To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2017-02-01
Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.
Hemmings, K W; Darbar, U R; Vaughan, S
2000-03-01
Severe tooth wear localized to the anterior maxillary or mandibular teeth with loss of interocclusal space is difficult to manage. This study evaluated the outcome of composite restorations placed at an increased vertical dimension of occlusion in such patients. Sixteen patients were restored with 104 restorations in 2 groups. In group A, Durafill composite and Scotchbond Multipurpose dentine adhesive system were used to place direct anterior restorations (N = 52). In group B, Herculite XRV composite and Optibond dentine bonding agent was used (N = 52). The restorations were placed at an increased vertical dimension of occlusion creating a posterior disclusion of 1 to 4 mm. Clinical follow-up showed that the posterior occlusion remained satisfactorily restored after a mean duration of 4.6 months (range 1 to 11 months). Mean follow-up of 30 months has shown a combined success rate of 89.4% for both groups with 93 of the restorations remaining in service. Maintenance in group A was high with 33 failures, but low in group B with 6 failures. Patient satisfaction was reported as good. Direct composite restorations may be a treatment option for localized anterior tooth wear.
[The management of 126 cases of posterior cracked crown of tooth and its effective observation].
Chen, L L
2000-06-01
To detect the treatment and effect of posterior cracked tooth. 162 posterior cracked teeth of 158 cases, including enamel fissure and dentin fissure, all there cases undergone the synthetical treatment and follow up in different period, the longest observation period was 2.5 years. The healing and improved rate of 162 cracked teeth 90.74%. Among cases of failure, we have founded 6 cases of acute pulpitis (3.7%), 3 cases of alveodental abscess (1.85%), 2 cases of chronic apical periodontitis (1.24%), 4 cases of tooth fracture (2.4%). Cracked tooth was caused by multiple factors. Early diagnosis, synthetical treatment, and follow up in different period are 3 main factors in treatment.
Li, Yuncong; Hu, Xiaoyi; Xia, Yang; Ji, Yadong; Ruan, Jianping; Weir, Michael D; Lin, Xiaoying; Nie, Zhihong; Gu, Ning; Masri, Radi; Chang, Xiaofeng; Xu, Hockin H K
2018-06-20
A nanoparticle-doped adhesive that can be controlled with magnetic forces was recently developed to deliver drugs to the pulp and improve adhesive penetration into dentin. However, it did not have bactericidal and remineralization abilities. The objectives of this study were to: (1) develop a magnetic nanoparticle-containing adhesive with dimethylaminohexadecyl methacrylate (DMAHDM), amorphous calcium phosphate nanoparticles (NACP) and magnetic nanoparticles (MNP); and (2) investigate the effects on dentin bond strength, calcium (Ca) and phosphate (P) ion release and anti-biofilm properties. MNP, DMAHDM and NACP were mixed into Scotchbond SBMP at 2%, 5% and 20% by mass, respectively. Two types of magnetic nanoparticles were used: acrylate-functionalized iron nanoparticles (AINPs); and iron oxide nanoparticles (IONPs). Each type was added into the resin at 1% by mass. Dentin bonding was performed with a magnetic force application for 3min, provided by a commercial cube-shaped magnet. Dentin shear bond strengths were measured. Streptococcus mutans biofilms were grown on resins, and metabolic activity, lactic acid and colony-forming units (CFU) were determined. Ca and P ion concentrations in, and pH of biofilm culture medium were measured. Magnetic nanoparticle-containing adhesive using magnetic force increased the dentin shear bond strength by 59% over SBMP Control (p<0.05). Adding DMAHDM and NACP did not adversely affect the dentin bond strength (p>0.05). The adhesive with MNP+DMAHDM+NACP reduced the S. mutans biofilm CFU by 4 logs. For the adhesive with NACP, the biofilm medium became a Ca and P ion reservoir. The biofilm culture medium of the magnetic nanoparticle-containing adhesive with NACP had a safe pH of 6.9, while the biofilm medium of commercial adhesive had a cariogenic pH of 4.5. Magnetic nanoparticle-containing adhesive with DMAHDM and NACP under a magnetic force yielded much greater dentin bond strength than commercial control. The novel adhesive reduced biofilm CFU by 4 logs and increased the biofilm pH from a cariogenic pH 4.5-6.9, and therefore is promising to enhance the resin-tooth bond, strengthen tooth structures, and suppress secondary caries at the restoration margins. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
[The dentinal smear layer. Characteristics and interactions. 2].
Negri, P L; Eramo, S; Lotito, M; De Pino, C
1991-03-15
The Authors, after the presentation (in the first part of the Dossier) of a large literature review about the physical, chemical and clinical characteristics of formation, interaction, remotion of "smear layer" during cavity preparation in hard tooth tissue, describe the results of a scanning microelectronic research about the action as cleanser (for the dentinal cavity wall) of the CK101 (Caridex) versus wather, Tubulicid and phosphoric acid. The experimental results obtained "in vitro" show that the substance has relative action, without removing the tubular portion of "smear layer".
Manauta, J; Salat, A; Putignano, A; Devoto, W; Paolone, G; Hardan, L S
2014-06-01
Restoring an anterior tooth has always been a challenge, regarding the shade matching, the choice of colors, opacities, translucencies of our composites and the final anatomical outcome. This article proposes a new method for color matching and a clinical stratification using a simple and reproducible procedure for anterior restorations. The physical and optical characteristics of enamel and dentine will be studied and applied to our dental materials that we are using to restore anterior teeth.
Bartlett, D
2016-08-26
The management challenge with erosive tooth wear is that the condition involves erosion and contributions from attrition and abrasion, both of which impact on the longevity of restorations. Severe erosive tooth wear results in visibly shorter teeth, exposure of dentine and adaptive changes which complicate restorative management. There is increasing evidence to suggest if the risk factors, such as reducing the frequency of acidic foods and drinks, are reduced the progression of tooth wear slows and follows a normal pattern of wear. But once teeth become shorter patients often seek advice from dentists on restorative intervention. Composite restorations are successful in some patients but they often involve regular maintenance with repairs and rebuilds, which for some patients is unacceptable. Full coverage crowns, although destructive of tooth tissue, remain an option for restorations.
Villat, Cyril; Attal, Jean-Pierre; Brulat, Nathalie; Decup, Franck; Doméjean, Sophie; Dursun, Elisabeth; Fron-Chabouis, Hélène; Jacquot, Bruno; Muller Bolla, Michèle; Plasse-Pradelle, Nelly; Roche, Laurent; Maucort-Boulch, Delphine; Nony, Patrice; Gritsch, Kerstin; Millet, Pierre; Gueyffier, François; Grosgogeat, Brigitte
2016-08-15
Current concepts in conservative dentistry advocate minimally invasive dentistry and pulp vitality preservation. Moreover, complete removal of carious dentin in deep carious lesions often leads to pulp exposure and root canal treatment, despite the absence of irreversible pulp inflammation. For years, partial caries removal has been performed on primary teeth, but little evidence supports its effectiveness for permanent teeth. Furthermore, the recent development of new antibacterial adhesive systems could be interesting in the treatment of such lesions. The objectives of this study are to compare the effectiveness of partial versus complete carious dentin removal in deep lesions (primary objective) and the use of an antibacterial versus a traditional two-step self-etch adhesive system (main secondary objective). The DEep CAries Treatment (DECAT) study protocol is a multicenter, randomized, controlled superiority trial comparing partial versus complete caries removal followed by adhesive restoration. The minimum sample size required is 464 patients. Two successive randomizations will be performed (allocation ratio 1:1): the first for the type of excavation (partial versus complete) and the second (if no root canal treatment is required) for the type of adhesive (antibacterial versus traditional). For the two objectives, the outcome is the success of the treatment after 1 year, measured according to a composite outcome of five FDI criteria: material fracture and retention, marginal adaptation, radiographic examination (including apical pathologies), postoperative sensitivity and tooth vitality, and carious lesion recurrence. The study will investigate the interest of a conservative approach for the management of deep carious lesions in terms of dentin excavation and bioactive adhesive systems. The results may help practitioners achieve the most efficient restorative procedure to maintain pulp vitality and increase the restoration longevity. ClinicalTrials.gov Identifier NCT02286388 . Registered in November 2014.
Effect of Minocycline on the Durability of Dentin Bonding Produced with Etch-and-Rinse Adhesives.
Loguercio, A D; Stanislawczuk, R; Malaquias, P; Gutierrez, M F; Bauer, J; Reis, A
2016-01-01
To evaluate the effect of minocycline and chlorhexidine pretreatment of acid-etched dentin on the longevity of resin-dentin bond strength (μTBS) and nanoleakage of two-step etch-and-rinse adhesives. Before application of Prime & Bond NT and Adper Single Bond 2 in occlusal dentin, the dentin surfaces were treated with 37% phosphoric acid, rinsed, air-dried, and rewetted with water (control group), 2% minocycline, or 2% chlorexidine digluconate. Composite buildups were constructed incrementally, and specimens were longitudinally sectioned to obtain bonded sticks (0.8 mm 2 ) to be tested in tension (0.5 mm/min) immediately or after 24 months of water storage. For nanoleakage, two specimens of each tooth/period were immersed in the silver nitrate solution, photo-developed, and polished with SiC paper for analysis under energy-dispersive X-ray spectroscopy/scanning electron microscopy. Reductions of the μTBS and increases in the nanoleakage were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were observed for the 2% minocycline and 2% chlorexidine digluconate groups after 24 months. The use of 2% minocycline as pretreatment of acid-etched dentin is one alternative to retard the degradation of resin-dentin interfaces over a 24-month period as well as 2% chlorexidine digluconate.
Polydopamine-induced tooth remineralization.
Zhou, Yun-Zhi; Cao, Ying; Liu, Wei; Chu, Chun Hung; Li, Quan-Li
2012-12-01
Inspired by mussel bioadhesion in nature, dopamine is extensively used for biomaterial surface modification. In this study, we coated dopamine on demineralized enamel and dentin surfaces to evaluate the effect of polydopamine coating on dental remineralization. Dental slices containing enamel and dentin were first etched with 37% phosphoric acid for 2 min, followed by immersion in a 2 mg/mL freshly prepared solution of dopamine (10 mM Tris buffer, pH 8.5) for approximately 24 h at room temperature in the dark to obtain polydopamine coating. Then, the dental slices with and without polydopamine coating were immersed in the supersaturated solution of calcium and phosphate at 37 °C for 2 and 7 days. The supersaturated solution of calcium and phosphate was refreshed each day. The precipitates were characterized by SEM, XRD, FTIR, microhardness, and nanoscratch analyses. No significant difference was observed in the remineralization of enamel whether it was coated with polydopamine or not. However, a significant difference was found in dentin remineralization between dentin with and without polydopamine coating. Polydopamine coating remarkably promoted demineralized dentin remineralization, and all dentin tubules were occluded by densely packed hydroxyapatite crystals. Thus, coating polydopamine on dental tissue surface may be a simple universal technique to induce enamel and dentin remineralization simultaneously.
Use of an ultrasonic device for the determination of elastic modulus of dentin.
Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo
2002-03-01
The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.
Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo
2016-04-20
Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tissue engineering: Dentin - pulp complex regeneration approaches (A review).
Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali
2017-10-01
Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Redwan, H; Bardwell, D N; Ali, A; Finkelman, M; Khayat, S; Weber, H-P
2016-01-01
The aim of this study was to evaluate the microleakage of the composite restorations when bonded to tooth structure previously restored with amalgam material compared with that of freshly cut dentin. Thirty intact, extracted intact human molars were mounted in autopolymerizing acrylic resin. Class II box preparations were prepared on the occluso-proximal surfaces of each tooth (4-mm bucco-lingual width and 2-mm mesio-distal depth) with the gingival cavosurface margin 1 mm above the CEJ. Each cavity was then restored using high copper amalgam restoration (Disperalloy, Dentsply) and then thermocycled for 10,000 thermal cycles. Twenty-five of the amalgam restorations were then carefully removed and replaced with Filtek Supreme Ultra Universal (3M ESPE); the remaining five were used for scanning electron microscopy and energy dispersive x-ray spectroscopy analysis. A preparation of the same dimensions was performed on the opposite surface of the tooth and restored with composite resin and thermocycled for 5000 thermal cycles. Twenty samples were randomly selected for dye penetration testing using silver nitrate staining to detect the microleakage. The specimens were analyzed with a stereomicroscope at a magnification of 20×. All of the measurements were done in micrometers; two readings were taken for each cavity at the occlusal and proximal margins. Two measurements were taken using a 0-3 scale and the percentage measurements. Corrosion products were not detected in either group (fresh cut dentin and teeth previously restored with amalgam). No statistically significant difference was found between the microleakage of the two groups using a 0-3 scale at the occlusal margins (McNemar test, p=0.727) or proximal margins (Wilcoxon signed-rank test, p=0.174). No significance difference was found between the two groups using the percentage measurements and a Wilcoxon signed-rank test at either the occlusal (p=0.675) or proximal (p=0.513) margins. However, marginal microleakage was statistically significant between the proximal and occlusal margins (p<0.001). Within the limitations of this in vitro study, no significant difference was found between the microleakage of nondiscolored dentin in teeth that were previously restored with amalgam compared with freshly cut dentin. However, marginal microleakage in the proximal surface was higher than that in the occlusal surface.
Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun
2015-02-01
The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Melatonin effects on hard tissues: bone and tooth.
Liu, Jie; Huang, Fang; He, Hong-Wen
2013-05-10
Melatonin is an endogenous hormone rhythmically produced in the pineal gland under the control of the suprachiasmatic nucleus (SCN) and the light/dark cycle. This indole plays an important role in many physiological processes including circadian entrainment, blood pressure regulation, seasonal reproduction, ovarian physiology, immune function, etc. Recently, the investigation and applications of melatonin in the hard tissues bone and tooth have received great attention. Melatonin has been investigated relative to bone remolding, osteoporosis, osseointegration of dental implants and dentine formation. In the present review, we discuss the large body of published evidence and review data of melatonin effects on hard tissues, specifically, bone and tooth.
Mineral features of connective dental hard tissues in hypoplastic amelogenesis imperfecta.
Kammoun, R; Behets, C; Mansour, L; Ghoul-Mazgar, S
2018-04-01
To explore the mineral features of dentin and cementum in hypoplastic Amelogenesis imperfecta AI teeth. Forty-four (44) teeth cleaned and free of caries were used: 20 control and 24 affected by hypoplastic amelogenesis imperfecta. Thirty-two teeth were studied by pQCT, cut in sections, and analyzed under microradiography, polarized light microscopy, and confocal Raman spectroscopy. Eight teeth were observed under scanning electron microscope. Four teeth were used for an X-ray diffraction. The mineral density data were analyzed statistically with the Mann-Whitney U test, using GraphPad InStat software. Both coronal dentin and radicular dentin were less mineralized in AI teeth when compared to control (respectively 6.2% and 6.8%; p < .001). Root dentinal walls were thin and irregular, while the cellular cementum layers were thick, reaching sometimes the cervical region of the tooth. Regular dentinal tubules and sclerotic dentin areas were noticed. Partially tubular or cellular dysplastic dentin and hyper-, normo-, or hypomineralized areas were noticed in the inter-radicular areas of hypoplastic AI teeth. The main mineral component was carbonate hydroxyapatite as explored by Raman spectroscopy and X-ray diffraction. Dentin and cementum in hypoplastic AI teeth are (i) hypomineralized, (ii) constituted of carbonate hydroxyapatite, and (iii) of non-homogenous structure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Toothbrushing before or after an acidic challenge to minimize tooth wear? An in situ/ex vivo study.
Wiegand, Annette; Egert, Sebastian; Attin, Thomas
2008-02-01
To evaluate whether patients should be advised to perform toothbrushing before or after an acidic challenge to minimize enamel and dentin wear by brushing abrasion. The study was a two-period crossover design (A and B, each 14 days) in which three enamel and dentin specimens were fixed in intraoral appliances of 10 volunteers. The following regimens were performed three times a day with at least 4 hours in between: A: 20-second brushing treatment in an automatic brushing machine, 5 minutes intraoral exposure of the specimens, extraoral erosion of enamel and dentin specimens for 40 seconds or B: Extraoral erosion for 40 seconds, 5 minutes intraoral exposure of the specimens, 20-second brushing treatment in an automatic brushing machine. Enamel and dentin loss at the end of each 14-day regimen was assessed by profilometry and statistically analyzed by t-test. For all volunteers, mean enamel and dentin wear was significantly lower when brushing treatment was performed before erosion (A: enamel: 2.3 +/- 1.0 microm, dentin: 4.1 +/- 1.6 microm) than when brushing was applied after erosion (B: enamel: 6.4 +/- 3.0 microm, dentin: 15.3 +/- 6.8 microm). It was concluded that patients awaiting an erosive attack should perform toothbrushing prior to rather than after an acidic challenge to minimize enamel and dentin wear.
Exceptionally prolonged tooth formation in elasmosaurid plesiosaurians
Kear, Benjamin P.; Larsson, Dennis; Lindgren, Johan; Kundrát, Martin
2017-01-01
Elasmosaurid plesiosaurians were globally prolific marine reptiles that dominated the Mesozoic seas for over 70 million years. Their iconic body-plan incorporated an exceedingly long neck and small skull equipped with prominent intermeshing ‘fangs’. How this bizarre dental apparatus was employed in feeding is uncertain, but fossilized gut contents indicate a diverse diet of small pelagic vertebrates, cephalopods and epifaunal benthos. Here we report the first plesiosaurian tooth formation rates as a mechanism for servicing the functional dentition. Multiple dentine thin sections were taken through isolated elasmosaurid teeth from the Upper Cretaceous of Sweden. These specimens revealed an average of 950 daily incremental lines of von Ebner, and infer a remarkably protracted tooth formation cycle of about 2–3 years–other polyphyodont amniotes normally take ~1–2 years to form their teeth. Such delayed odontogenesis might reflect differences in crown length and function within an originally uneven tooth array. Indeed, slower replacement periodicity has been found to distinguish larger caniniform teeth in macrophagous pliosaurid plesiosaurians. However, the archetypal sauropterygian dental replacement system likely also imposed constraints via segregation of the developing tooth germs within discrete bony crypts; these partly resorbed to allow maturation of the replacement teeth within the primary alveoli after displacement of the functional crowns. Prolonged dental formation has otherwise been linked to tooth robustness and adaption for vigorous food processing. Conversely, elasmosaurids possessed narrow crowns with an elongate profile that denotes structural fragility. Their apparent predilection for easily subdued prey could thus have minimized this potential for damage, and was perhaps coupled with selective feeding strategies that ecologically optimized elasmosaurids towards more delicate middle trophic level aquatic predation. PMID:28241059
Characterization of transparent dentin in attrited teeth using optical coherence tomography.
Mandurah, Mona M; Sadr, Alireza; Bakhsh, Turki A; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji
2015-05-01
Attrition and wear of tooth surface occur with aging and result in loss of enamel, with exposure and histological changes in dentin. Dealing with attrited teeth and restoration of the lost tissue are clinically challenging. The main objective of this study is to characterize the exposed transparent dentin in the occlusal surface of attrited teeth by optical coherence tomography (OCT). Naturally attrited, extracted human teeth with occlusal-transparent dentin were investigated in comparison to sound and carious teeth. The teeth were subjected to OCT imaging and then cross-sectioned and polished. OCT B-scans were compared to light microscopy images of the same cross section. In OCT images, some changes were evident at the transparent dentin in attrited teeth. An OCT attenuation coefficient parameter (μ t) was derived based on the Beer-Lambert law as a function of backscatter signal slope. The mean values of μ t were 1.05 ± 0.3, 2.23 ± 0.4, and 0.61 ± 0.27 mm(-1) for sound, carious, and transparent dentins, respectively. One-way ANOVA with Tukey's post-hoc showed a significant difference between groups (p < 0.05). Physiological changes in transparent dentin that involve deposition of mineral casts in the dentinal tubules lead to lower attenuation of OCT signal. OCT has a potential role to detect transparent dentin on the surface of attrited teeth and can be used in the future as a clinical adjunct tool.
Analysis of the dentin-pulp complex in teeth submitted to orthodontic movement in rats
MASSARO, Camila da Siveira; CONSOLARO, Renata Bianco; SANTAMARIA, Milton; CONSOLARO, Maria Fernanda Martins-Ortiz; CONSOLARO, Alberto
2009-01-01
ABSTRACT In order to microscopically analyze the pulpal effects of orthodontic movement, 49 maxillary first molars of rats were submitted to orthodontic appliance composed of a closed coil spring anchored to the maxillary incisors, placed for the achievement of mesial movement. Material and Methods: Ten animals were used as the control group and were not submitted to orthodontic force; the other animals were divided into groups according to the study period of tooth movement, namely 1, 2, 3, 4, 5, 6 and 7 days. The investigation of pulp and periodontal changes included hyalinization, fibrosis, reactive dentin and vascular congestion. Statistical evaluation was performed between control and experimental groups and between periods of observation using non-parametric chi-square, Kruskal-Wallis and Dunn tests. Results: There was no statistically significant difference concerning pulpal changes between control and experimental groups nor between periods of observation. The control group, at 3 and 5 days, revealed greater hyalinization of the periodontal ligament (p<0.05), whereas root resorption was significantly greater at 5 and 7 days (p<0.05). Conclusion: No morphological change from the effect of induced tooth movement could be found in the dentin-pulp complex. In addition, no inflammatory or pulp degeneration, detectable in optical microscopy, was found in experimental groups. PMID:21499653
Dean, M Christopher; Elamin, Fadil
2014-01-01
Parturition lines have been described in the teeth of a number of animals, including primates, but never in modern humans. These accentuated lines in dentine are comprised of characteristic dark and light component zones. The aim of this study was to review the physiology underlying these lines and to ask if parturition lines exist in the third molar tooth roots of mothers known to have had one or more children during their teenage years. Brief retrospective oral medical obstetric histories were taken from four mothers and compared with histological estimates for the timing of accentuated markings visible in longitudinal ground sections of their wisdom teeth. Evidence of accentuated markings in M3 root dentine matched the age of the mother at the time their first child was born reasonably well. However, the dates calculated for inter-birth intervals did not match well. Parturition lines corresponding to childbirth during the teenage years can exist in human M3 roots, but may not always do so. Without a written medical history it would not be possible to say with confidence that an accentuated line in M3 root dentine was caused by stress, illness or was a parturition line.
The dentin-enamel junction and the fracture of human teeth.
Imbeni, V; Kruzic, J J; Marshall, G W; Marshall, S J; Ritchie, R O
2005-03-01
The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness ( approximately 5 to 10 times higher than enamel but approximately 75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.
The dentin-enamel junction and the fracture of human teeth
NASA Astrophysics Data System (ADS)
Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.
2005-03-01
The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.
Chen, Lei; Lei, Hui-yun; Xu, Guo-fu; Liang, Xiao-peng; Li, Ji-jia
2010-04-01
To compare the bonding properties of three kinds of cements by observing the bonding inteffaces of cements and root canal dentin. 15 extracted mandibular premolars were divided into 3 groups, and were cemented by Rely X luting, Panavia F and Paracore 5 mL, respectively. Each tooth was sectioned into two parts and the dentin-cement interfaces at the coronal, middle and apical parts of the fiber post were oberved by scanning electron microscope (SEM). The length of hybrid layer was also recorded. Hybrid layer was not clearly found in group one, which could be seen on the dentin-cement interfaces of group two and three. Resin tags and lateral adhesives were also observed in group three. From the apical to the coronal part, microgaps seemed gradually smaller in group one, while the hybrid layer became thicker in both group two and three. The total-etch resin cement bounds tightly with dentin, and owns a more superior bonding property than self-etch resin cement and resin modified glass ionomer cement.
Scheffel, Débora Lopes Salles; Ricci, Hérica Adad; de Souza Costa, Carlos Alberto; Pashley, David Henry; Hebling, Josimeri
2013-01-01
The purpose was to evaluate the effect of acid etching time on the bond strength of a simplified etch-and-rinse adhesive system to noncarious and caries-affected dentin of primary and permanent teeth. Twenty-four extracted primary and permanent teeth were divided into three groups, according to the acid etching time. Four teeth from each group were exposed to a microbiological caries-inducing protocol. After caries removal, noncarious and caries-affected dentin surfaces were etched with 37 percent phosphoric acid for five, 10, or 15 seconds prior to the application of Prime & Bond NT adhesive. Crowns were restored with resin composite and prepared for microtensile testing. Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α=0.05). Higher bond strengths were obtained for noncarious dentin vs. caries-affected dentin for both primary and permanent teeth. Reducing the acid etching time from 15 to five seconds did not affect the bond strength to caries-affected or noncarious dentin in primary teeth. For permanent teeth, lower bond strength values were observed when the noncarious dentin was etched for five seconds, while no difference was seen between 10 and 15 seconds. For Prime & Bond NT, the etching of dentin for five seconds could be recommended for primary teeth, while 10 seconds would be the minimum time for permanent teeth.
A tissue-dependent hypothesis of dental caries.
Simón-Soro, A; Belda-Ferre, P; Cabrera-Rubio, R; Alcaraz, L D; Mira, A
2013-01-01
Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity. © 2013 S. Karger AG, Basel.
Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.
Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas
2013-04-01
This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.
Tang, Xu-na; Zhu, Ya-qin; Marcelo, Cynthia L.; Ritchie, Helena H.
2012-01-01
Background Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. Objective In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. Methods Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. Results We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. Conclusion We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development. PMID:21908176
Tang, Xu-na; Zhu, Ya-qin; Marcelo, Cynthia L; Ritchie, Helena H
2011-11-01
Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Joyce Y.; Fan, Kenneth; Fried, Daniel
2006-02-01
One perceived disadvantage of caries removal using lasers is the loss of the tactile feedback associated with the handpiece. However, alternative methods of acoustic and optical feedback become available with the laser that can be exploited to provide information about the chemical composition of the material ablated, the ablation efficiency and rate, the depth of the incision, and the surface and plume temperature during ablation. Such information can be used to increase the selectivity of ablation, avoid peripheral thermal damage and excessive heat deposition in the tooth, and provide a mechanism of robotic automation. The objective of this study was to test the hypothesis that a compact fiberoptic spectrometer could be used to differentiate between the ablation of sound and carious enamel and dentin and between dental hard tissues and composite. Sound and carious tooth surfaces along with composite restorative materials were scanned with λ=0.355, 2.79 and 9.3 μm laser pulses at irradiation intensities ranging from 0.5-100 J/cm2 and spectra were acquired from λ=250-900-nm using a compact fiber-optic spectrometer. Emission spectra varied markedly with the laser wavelength and pulse duration. Optical feedback was not successful in differentiating between sound and carious enamel and dentin even with the addition of various chromophores to carious lesion areas. However, the spectral feedback was successfully used to differentiate between composites and sound enamel and dentin enabling the selective removal of composite from tooth surfaces using a computer controlled λ=9.3-μm pulsed CO II laser and scanning system.
FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization?
Lignon, Guilhem; Beres, Fleur; Quentric, Mickael; Rouzière, Stephan; Weil, Raphael; De La Dure-Molla, Muriel; Naveau, Adrien; Kozyraki, Renata; Dessombz, Arnaud; Berdal, Ariane
2017-01-01
Background and objective: FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.
The effect of three variables on shear bond strength when luting a resin inlay to dentin.
Lee, Jae-Ik; Park, Sung-Ho H
2009-01-01
The current study evaluated the effects of three variables on the shear bond strength of indirect composite restorations to human dentin. The three variables examined included immediate dentin sealing (IDS), the thinning of dentin adhesives by air-blowing before cementation and light-curing the dentin adhesive before cementation. One-hundred and eighty cylinder composite inlays, 2 mm in diameter and 3 mm in length, were made using a Tescera ATL system (BISCO Inc). Tooth disks 2-mm thick were obtained from 90 freshly-extracted human premolars. Two indirect composite cylinders were assigned to a single tooth disk. The discs were randomly divided into six groups according to the luting methods. AdheSE (Ivoclar Vivadent) was used as the dentin-bonding agent (DBA) for all groups. In Groups 1, 2 and 3, the dentin was sealed with AdheSE before taking the impression. After priming, the adhesive was lightly air-blown, then light-cured. On the other hand, the dentin was not sealed before taking the impression in Groups 4, 5 and 6. Regarding the application of DBA before cementation, it was gently air-blown and light-cured before cementation in Groups 1 and 4; whereas, it was heavily air-blown and light-cured in Groups 2 and 5 and gently air-blown but not light-cured in Groups 3 and 6. Z-250 and Duo-Link were used as luting materials. After 24-hours of storage, the bonded inlays were subjected to a shear bond test. For each luting material, one-way ANOVA and Duncan's Multiple Range Test were used to compare the shear bond strength. Paired t-tests were also performed to compare the shear strength between the two luting materials. All the statistical tests were carried out at the 95% confidence level. In Z-250, the results of the shear bond strength were as follows: Group 1(14.90MPa) > Group 2(12.22MPa), Group 4(12.16MPa) Group 5(9.61MPa), Group 3(9.60MPa) Group 6(3.54MPa)(p<0.05). In Duo-Link, the following shear bond strengths were obtained: Group 1(14.65MPa) > Group 2(13.04MPa), Group 4(12.66MPa) > Group 5(10.10MPa) > Group 3(8.40MPa) > Group 6(2.88MPa) (p<0.05). The mean shear bond strength of Z-250 and Duo-Link were not statistically different with the exception of Group 5. In conclusion, the shear bond strength of the indirect composite restoration to dentin can be improved by dentin sealing with DBA before taking an impression, gently air drying and light curing the DBA before the luting procedure.
Liang, Kunneng; Zhou, Han; Weir, Michael D; Bao, Chongyun; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K
2017-07-01
Patients with dry mouth often have an acidic oral environment lacking saliva that provides calcium (Ca) and phosphate (P) ions. However, there has been no study on dentin remineralization by placing samples in an acidic solution without Ca and P ions. Previous studies used saliva-like solutions with neutral pH and Ca and P ions. Therefore, the objective of this study was to investigate a novel method of combining poly(amido amine) (PAMAM) with a composite of nanoparticles of amorphous calcium phosphate (NACP) on dentin remineralization in an acidic solution without Ca and P ions for the first time. Demineralized dentin specimens were tested into four groups: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP nanocomposite, (4) dentin with PAMAM plus NACP composite. Specimens were treated with lactic acid at pH 4 without initial Ca and P ions for 21 days. Acid neutralization and Ca and P ion concentrations were measured. Dentin specimens were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and hardness testing vs. remineralization efficacy. NACP composite had mechanical properties similar to commercial control composites (p>0.1). NACP composite neutralized acid and released Ca and P ions. PAMAM alone failed to induce dentin remineralization. NACP alone achieved mild remineralization and slightly increased dentin hardness at 21days (p>0.1). In contrast, the PAMAM+NACP nanocomposite method in acid solution without initial Ca and P ions greatly remineralized the pre-demineralized dentin, restoring its hardness to approach that of healthy dentin (p>0.1). Dentin remineralization via PAMAM+NACP in pH 4 acid without initial Ca and P ions was demonstrated for the first time, when conventional methods such as PAMAM did not work. The novel PAMAM+NACP nanocomposite method is promising to protect tooth structures, especially for patients with reduced saliva to inhibit caries. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Coupling image processing and stress analysis for damage identification in a human premolar tooth.
Andreaus, U; Colloca, M; Iacoviello, D
2011-08-01
Non-carious cervical lesions are characterized by the loss of dental hard tissue at the cement-enamel junction (CEJ). Exceeding stresses are therefore generated in the cervical region of the tooth that cause disruption of the bonds between the hydroxyapatite crystals, leading to crack formation and eventual loss of enamel and the underlying dentine. Damage identification was performed by image analysis techniques and allowed to quantitatively assess changes in teeth. A computerized two-step procedure was generated and applied to the first left maxillary human premolar. In the first step, dental images were digitally processed by a segmentation method in order to identify the damage. The considered morphological properties were the enamel thickness and total area, the number of fragments in which the enamel is chipped. The information retrieved by the data processing of the section images allowed to orient the stress investigation toward selected portions of the tooth. In the second step, a three-dimensional finite element model based on CT images of both the tooth and the periodontal ligament was employed to compare the changes occurring in the stress distributions in normal occlusion and malocclusion. The stress states were analyzed exclusively in the critical zones designated in the first step. The risk of failure at the CEJ and of crack initiation at the dentin-enamel junction through the quantification of first and third principal stresses, von Mises stress, and normal and tangential stresses, were also estimated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration
Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.
2014-01-01
Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919
A method of lead determination in human teeth by energy dispersive X-ray fluorescence (EDXRF).
Sargentini-Maier, M L; Frank, R M; Leroy, M J; Turlot, J C
1988-12-01
A systematic sampling procedure was combined with a method of energy dispersive X-ray fluorescence (EDXRF) to study lead content and its variations in human teeth. On serial ground sections made on unembedded permanent teeth of inhabitants of Strasbourg with a special diamond rotating disk, 2 series of 500 microns large punch biopsies were made systematically in 5 directions from the tooth surface to the inner pulpal dentine with a micro-punching unit. In addition, pooled fragments of enamel and dentine were made for each tooth. On each punched fragment or pooled sample, lead content was determined after dissolution in ultrapure nitric acid, on a 4 microns thick polypropylene film, and irradiation with a Siemens EDXRF prototype with direct sample excitation by a high power X-ray tube with a molybdenum anode. Fluorescence was detected by a Si(Li) detector and calcium was used as an internal standard. This technique allowed a rapid, automatic, multielementary and non-destructive analysis of microsamples with good detection limits.
Erosion and abrasion on dental structures undergoing at-home bleaching
Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves
2011-01-01
This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914
Ultrasonographic Detection of Tooth Flaws
NASA Astrophysics Data System (ADS)
Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.
2010-02-01
The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.
Shigetani, Yoshimi; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki
2002-03-01
The purpose of this study was to observe and measure the morphological changes that occur in the hard tissue after the application of Er:YAG laser. Another objective was to evaluate and compare the duration of application of both the laser apparatus and a conventional cutting device. In this study, sound and newly extracted carious tissues were used. The morphological changes in hard tooth structures produced by Er:YAG laser irradiation were examined by using a laser scanning microscope. Results showed that appropriate laser irradiation was 100 mJ/pulse for dentin, and 200 mJ/pulse for enamel. Also, the laser scanning microscope images were less damaged than the SEM images due to pretreatment of the specimens. The time taken to remove carious enamel by laser irradiation was slightly longer than the compared rotary cutting device; however, no differences between the two methods were observed in case of carious dentin removal.
Estimation of age from teeth by amino acid racemization: influence of fixative.
Ohtani, S; Ohhira, H; Watanabe, A; Ogasawara, A; Sugimoto, H
1997-01-01
To determine the age of a subject from teeth accurately utilizing the racemization rates of amino acids, standard samples of the same tooth species from the same jaw are necessary as controls, as well as data for identification. However, standard teeth are generally stored in fixatives such as ethanol and formalin. We investigated and compared the degree of progression of racemization of dentinal aspartic acid in teeth stored in 95% ethanol, 10% formalin, or 10% neutral formalin fixatives. The racemization rate of dentinal aspartic acid in teeth stored in 10% neutral formalin was the highest, followed by that for teeth stored in 10% formalin then that for teeth stored in 95% ethanol. Teeth stored in these fixatives at 15 degrees C showed almost no progression of racemization. The racemization ratio (D/L ratio) in teeth extracted 10 years previously was almost unchanged from that at the time of extraction, and allowed an accurate evaluation of the subjects age at tooth extraction.
Partial-coverage posterior ceramic restorations. Part 1: a return to diligence.
Liebenberg, W H
2001-01-01
The application of multisurfaced tooth-colored restorations in the posterior dentition is an exercise in risk tolerance when dentin occupies the bulk of the tooth substrate. Not only is interfacial integrity capricious, but also a recent in vivo study has confirmed that dentin bond strengths deteriorate with time. Although the literature is replete with esthetic guidelines for posterior restitution, most practicing clinicians appreciate the prime tenet that clinical success involves more than esthetic realism in the posterior dentition. Success with indirect ceramic restorations is dependent on interfacial integrity, which, although multitudinous, is contingently related to operative competence. Innovative clinical techniques are described in this two-part article, along with a discussion of the probationary status of current adhesive options and the need for excellence in all phases of this demanding restorative sequence. Restorative success in the posterior dentition is profoundly influenced by the variability of operative competence and diligence. This article discusses the precincts of posterior indirect ceramic restorations and submits a number of innovative solutions to the clinical challenge.
A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex
Oh, Dongyeop X.; Prajatelistia, Ekavianty; Ju, Sung-Won; Jeong Kim, Hyo; Baek, Soo-Jin; Joon Cha, Hyung; Ho Jun, Sang; Ahn, Jin-Soo; Soo Hwang, Dong
2015-01-01
Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in “at home” solutions remineralize the tubules inside by concentrating saliva ingredients. An “in-office” option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid–iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity. PMID:26039461
A rapid, efficient, and facile solution for dental hypersensitivity: The tannin-iron complex.
Oh, Dongyeop X; Prajatelistia, Ekavianty; Ju, Sung-Won; Jeong Kim, Hyo; Baek, Soo-Jin; Joon Cha, Hyung; Ho Jun, Sang; Ahn, Jin-Soo; Soo Hwang, Dong
2015-06-03
Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.
Ptychographic X-ray nanotomography quantifies mineral distributions in human dentine
NASA Astrophysics Data System (ADS)
Zanette, I.; Enders, B.; Dierolf, M.; Thibault, P.; Gradl, R.; Diaz, A.; Guizar-Sicairos, M.; Menzel, A.; Pfeiffer, F.; Zaslansky, P.
2015-03-01
Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture, mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying mineralization density. Such information is essential for understanding a variety of natural and therapeutic effects for example in bone tissue healing and ageing.
Cigarette smoke affects bonding to dentin.
Almeida e Silva, Junio S; de Araujo, Edson Medeiro; Araujo, Elito
2010-01-01
This in vitro study evaluated the microtensile bond strength (muTBS) of composite resin bonded to dentin that had been contaminated by cigarette smoke. Ten extracted unerupted human third molars were used: Six molars were prepared for muTBS testing, while the other four molars were assigned to pre- and post-etching scanning electronic microscopy (SEM) analysis. The 20 specimens obtained from the 10 coronal portions were distributed into two experimental groups so that each tooth served as its own control. Group 1 underwent a daily toothbrushing simulation and exposure to a smoking simulation chamber, while Group 2 received only a daily simulated toothbrushing. Student's t-test demonstrated that Group 1 samples demonstrated significantly lower bond strength (49.58 MPa) than Group 2 samples (58.48 MPa). Pre and postetching SEM analysis revealed the presence of contaminants on the dentinal surfaces of the Group 1 specimens. It was concluded that contamination by cigarette smoke decreases the bond strength between dentin and composite resin.
Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta.
Syriac, Gibi; Joseph, Elizabeth; Rupesh, Suresh; Mathew, Josey
2017-01-01
Dentinogenesis imperfecta (DI) is a hereditary condition that may affect both primary and permanent dentition and is characterized by abnormal dentin formation. The teeth may be discolored with chipping of enamel and, in untreated cases, the entire dentition may wear off to the gingiva. This may lead to the formation of abscesses, tooth mobility, and early loss of teeth. In the Indian population, DI is found to have an incidence of 0.09%. Treatment of DI should aim to remove infection, if any, from the oral cavity; restore form, function, and esthetics; and protect posterior teeth from wear for maintaining the occlusal vertical dimension. Treatment strategies should be selected based on the presenting complaint of the patient, patient's age, and severity of the problem. This case report presents the management of severe DI with tooth worn off until gingival level in a very young patient using complete overlay denture, which has not been reported earlier. How to cite this article: Syriac G, Joseph E, Rupesh S, Mathew J. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta. Int J Clin Pediatr Dent 2017;10(4):394-398.
Cracked tooth syndrome: A report of three cases.
Sadasiva, Kadandale; Ramalingam, Sathishmuthukumar; Rajaram, Krishnaraj; Meiyappan, Alagappan
2015-08-01
Cracked tooth syndrome (CTS), the term was coined by Cameron in 1964, which refers to an incomplete fracture of a vital posterior tooth extending to the dentin and occasionally into the pulp. CTS has always been a nightmare to the patient because of its unpredictable symptoms and a diagnostic dilemma for the dental practitioner due to its variable, bizarre clinical presentation. The treatment planning and management of CTS has also given problems and challenges the dentist as there is no specific treatment option. The management of CTS varies from one case to another or from one tooth to another in the same individual based on the severity of the symptoms and depth of tooth structure involved. After all, the prognosis of such tooth is still questionable and requires continuous evaluation. This article aims at presenting a series three cases of CTS with an overview on the clinical presentation, diagnosis and the different treatment options that varies from one case to another.
Cracked tooth syndrome: A report of three cases
Sadasiva, Kadandale; Ramalingam, Sathishmuthukumar; Rajaram, Krishnaraj; Meiyappan, Alagappan
2015-01-01
Cracked tooth syndrome (CTS), the term was coined by Cameron in 1964, which refers to an incomplete fracture of a vital posterior tooth extending to the dentin and occasionally into the pulp. CTS has always been a nightmare to the patient because of its unpredictable symptoms and a diagnostic dilemma for the dental practitioner due to its variable, bizarre clinical presentation. The treatment planning and management of CTS has also given problems and challenges the dentist as there is no specific treatment option. The management of CTS varies from one case to another or from one tooth to another in the same individual based on the severity of the symptoms and depth of tooth structure involved. After all, the prognosis of such tooth is still questionable and requires continuous evaluation. This article aims at presenting a series three cases of CTS with an overview on the clinical presentation, diagnosis and the different treatment options that varies from one case to another. PMID:26538947
NASA Astrophysics Data System (ADS)
Ragain, James Carlton, Jr.
One of the goals of the restorative dentist is to restore the appearance of the natural dentition. Clinical matching of teeth and restorative materials are seldom accurate and shade selection techniques are subjective. The first specific aim of this research was to characterize the optical absorption and scattering that occurs within enamel, dentin, and composite resin and compomer restorative materials and to relate those phenomena to translucency and color. The second aim was to evaluate small color differences among composite restorative materials which would be detectable by humans. The last aim was to lay the foundation for developing an improved model of specifying layers of dental restorative materials in order to match the translucency and color to those of human enamel. The Kubelka-Munk theory was validated for enamel, dentin, and the restorative materials. These tissues and materials were then characterized in terms of their color parameters. Tooth cores were also characterized in terms of color space parameters. Human subjects were evaluated for their abilities to discriminate small color differences in the dental composite resin materials. The following conclusions were derived from this study: (1) Kubelka-Munk theory accurately predicts the diffuse reflectance spectra of enamel, dentin, and the direct esthetic dental restorative materials studied. (2) Scattering and absorption coefficients of the dental tissues and esthetic restorative materials can be directly calculated from diffuse reflectance measurements of a uniformly thick slab of tissue/material using black and white backings and the appropriate refractive index. (3) For tooth cores, there is a positive correlation between L* and b* and a negative correlation between L* and a*. (4) The range of translucency parameters for the restorative materials studied does not match those of enamel and dentin. (5) None of the shades of the dental composite resin restorative materials studied fit into the dentin color space. (6) For the materials studied, the CMC (1:1) color difference formula gives a better receiver operating characteristic than the CIELAB or CMC (2:1) formulas for acceptance.
Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin
2009-02-01
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.
THE IMPORTANCE OF MICROSTRUCTURAL VARIATIONS ON THE FRACTURE TOUGHNESS OF HUMAN DENTIN
Ivancik, J.; Arola, D.
2012-01-01
The crack growth resistance of human dentin was characterized as a function of relative distance from the DEJ and the corresponding microstructure. Compact tension specimens were prepared from the coronal dentin of caries-free 3rd molars. The specimens were sectioned from either the outer, middle or inner dentin. Stable crack extension was achieved under Mode I quasi-static loading, with the crack oriented in-plane with the tubules, and the crack growth resistance was characterized in terms of the initiation (Ko), growth (Kg) and plateau (Kp) toughness. A hybrid approach was also used to quantify the contribution of dominant mechanisms to the overall toughness. Results showed that human dentin exhibits increasing crack growth resistance with crack extension in all regions, and that the fracture toughness of inner dentin (2.2±0.5 MPa•m0.5) was significantly lower than that of middle (2.7±0.2 MPa•m0.5) and outer regions (3.4±0.3 MPa•m0.5). Extrinsic toughening, composed mostly of crack bridging, was estimated to cause an average increase in the fracture energy of 26% in all three regions. Based on these findings, dental restorations extended into deep dentin are much more likely to cause tooth fracture due to the greater potential for introduction of flaws and decrease in fracture toughness with depth. PMID:23131531
Ueno, Tomoka; Shimada, Yasushi; Matin, Khairul; Zhou, Yuan; Wada, Ikumi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji
2016-01-01
Abstract. The aim of this study was to evaluate the signal intensity and signal attenuation of swept source optical coherence tomography (SS-OCT) for dental caries in relation to the variation of mineral density. SS-OCT observation was performed on the enamel and dentin artificial demineralization and on natural caries. The artificial caries model on enamel and dentin surfaces was created using Streptococcus mutans biofilms incubated in an oral biofilm reactor. The lesions were centrally cross sectioned and SS-OCT scans were obtained in two directions to construct a three-dimensional data set, from the lesion surface (sagittal scan) and parallel to the lesion surface (horizontal scan). The integrated signal up to 200 μm in depth (IS200) and the attenuation coefficient (μ) of the enamel and dentin lesions were calculated from the SS-OCT signal in horizontal scans at five locations of lesion depth. The values were compared with the mineral density obtained from transverse microradiography. Both enamel and dentin demineralization showed significantly higher IS200 and μ than the sound tooth substrate from the sagittal scan. Enamel demineralization showed significantly higher IS200 than sound enamel, even with low levels of demineralization. In demineralized dentin, the μ from the horizontal scan consistently trended downward compared to the sound dentin. PMID:27704033
Risnes, S; Septier, D; Goldberg, M
1995-01-01
The present investigation studies the effects of persistently cutting one lower rat incisor out of occlusion. Within four days, the rate of eruption of the cut (unimpeded) incisor increased to 216% and that of the uncut (impeded) contralateral to 136% of the baseline rate. While the former remained high, the latter decreased gradually to about 90% within three weeks. The rate of attrition of the impeded incisor increased to 233% of the baseline rate within two days, then fell abruptly, and remained at a slightly lower level than the rate of eruption. Accordingly, the length of the erupted part of the impeded incisor decreased initially, but increased gradually after about four days. Measurements made on SEM micrographs of the series of transverse tooth segments obtained when cutting the incisor out of occlusion, showed that growth-related increase in mesiodistal tooth width was arrested from the 10th segment, dentin thickness decreased gradually to about 50% in the 12th segment, and enamel thickness, after an initial increase, decreased to about 80% in the 11th segment. The present study provides experimental evidence that accelerated eruption affects morphogenesis and histogenesis of the rat lower incisor. An impeded incisor, especially the contralateral, may not serve as an ideal control.
Liang, Kunneng; Xiao, Shimeng; Wu, Junling; Li, Jiyao; Weir, Michael D; Cheng, Lei; Reynolds, Mark A; Zhou, Xuedong; Xu, Hockin H K
2018-04-01
Previous studies investigated short-term dentin remineralization; studies on long-term dentin remineralization after fluid challenges mimicking fluids in oral environment are lacking. The objective of this study was to develop a long-term remineralization method to via poly(amido amine) (PAMAM) and rechargeable composite containing nanoparticles of amorphous calcium phosphate (NACP) after fluid challenges for the first time. NACP composite was immersed at pH 4 to exhaust its calcium (Ca) and phosphate (P) ions, and then recharged with Ca and P ions, to test the remineralization of the exhausted and recharged NACP composite. Dentin was acid-etched with 37% phosphoric acid. Four groups were prepared: (1) dentin control, (2) dentin with PAMAM, (3) dentin with the recharged NACP composite, and (4) dentin with PAMAM plus recharged NACP composite. PAMAM-coated dentin was immersed in phosphate-buffered saline with shaking for 72 days, because there is fluid flow in the mouth which could potentially detach the PAMAM from dentin. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 35 days. After 72days of immersion plus shaking, the PAMAM still successfully fulfilled its mineralization nucleation. The recharged NACP composite still provided acid-neutralization and ion re-release, which did not decrease with increasing the number of recharge cycles. The immersed-PAMAM plus NACP achieved complete dentin remineralization and restored the hardness to that of healthy dentin. In conclusion, superior long-term remineralization of the PAMAM plus NACP method was demonstrated for the first time. The immersed-PAMAM plus recharged NACP completely remineralized the pre-demineralized dentin, even after prolonged fluid-challenge similar to that in oral environment. The novel PAMAM plus NACP composite method is promising to provide long-term tooth protection and caries inhibition. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zhang, Ke; Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.
2012-01-01
Objectives Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Methods Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Results Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35 MPa (p > 0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p < 0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Significance Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. PMID:22592165
Zhang, Ke; Melo, Mary Anne S; Cheng, Lei; Weir, Michael D; Bai, Yuxing; Xu, Hockin H K
2012-08-01
Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
The effect of tooth age on colour adjustment potential of resin composite restorations.
Tanaka, A; Nakajima, M; Seki, N; Foxton, R M; Tagami, J
2015-02-01
The purpose of this study was to investigate the effect of tooth age on colour adjustment potential of resin composite restorations in human teeth. Twenty extracted human premolars with an A2 shade, extracted for orthodontic reasons from younger patients (20-28yrs) (younger teeth) and periodontal reasons from older patients (45-69yrs) (older teeth), were used in this study. Cylindrical shaped cavities (3.0mm depth; 2.0mm diameter) were prepared in the centre of the crowns on the buccal surface. One of four resin composites of A2 shade (Kalore, KA; Solare, SO; Clearfil Majesty, MJ; Beautifil II, BF) was placed in the cavity, and the colour was measured at four areas (0.4mm×0.4mm) on the restored teeth (area 1; tooth area 1.0mm away from the border of resin composite restoration: area 2; tooth border area 0.3mm away from margin of resin composite restoration: area 3; resin composite border area 0.3mm away from margin of resin composite restoration: area 4; resin composite area at the centre of resin composite restoration) using a spectrophotometer (Crystaleye). The colour of each area was determined according to the CIELAB colour scale. Colour differences (ΔE*) between the areas of 1 and 2, 2 and 3, 3 and 4 and 1 and 4 were calculated, and also the ratio of ΔE*area2-3 to ΔE*area1-4 (ΔE*area2-3/1-4), ΔE*area3-4 to ΔE*area1-4 (ΔE*area3-4/1-4) and ΔE*area1-2 to ΔE*area1-4 (ΔE*area1-2/1-4) as a parameter of the colour shift in resin composite restoration, were determined. Moreover, the light transmission characteristics of the resin materials and dentine discs from the younger and older teeth were measured using a goniophotometer. The data were statistically analyzed using two-way ANOVA, and Dunnett's T3 and t-test for the post hoc test. ΔE*area2-3 (colour difference between resin composite and tooth at the border) and ΔE*area1-4 (colour difference between resin composite and tooth) of the older teeth groups were significantly larger than those of younger teeth groups (p<0.05). The ΔE*area2-3/1-4 (mis-match rate in colour shifting at the border) of the older teeth groups was larger than that of the younger teeth groups (p<0.05). ΔE*area3-4/1-4 (colour shifting rate of resin composite side) was significantly larger in older teeth than younger teeth (p<0.05), while ΔE*area1-2/1-4 (colour shifting rate of tooth side), was significantly smaller in older teeth than younger teeth (p<0.05). In each tooth group, there were no significant differences in ΔE*area2-3, ΔE*area1-4, ΔE*area2-3/1-4, ΔE*area3-4/1-4 and ΔE*area1-2/1-4 between the materials (p>0.05). Analysis of the light transmission properties indicated that older dentine transmitted more light, while younger dentine exhibited greater light diffusion and transmitted less light. The colour shifting effects at the border of the resin composite restorations were influenced by the age of the tooth. This behaviour might be influenced by the light transmission characteristics of dentine in restored teeth. The potential for colour adjustment of resin composite restorations may be less in older teeth than younger teeth. Copyright © 2014 Elsevier Ltd. All rights reserved.
A review of heat transfer in human tooth--experimental characterization and mathematical modeling.
Lin, Min; Xu, Feng; Lu, Tian Jian; Bai, Bo Feng
2010-06-01
With rapid advances in modern dentistry, high-energy output instruments (e.g., dental lasers and light polymerizing units) are increasingly employed in dental surgery for applications such as laser assisted tooth ablation, bleaching, hypersensitivity treatment and polymerization of dental restorative materials. Extreme high temperature occurs within the tooth during these treatments, which may induce tooth thermal pain (TTP) sensation. Despite the wide application of these dental treatments, the underlying mechanisms are far from clear. Therefore, there is an urgent need to better understand heat transfer (HT) process in tooth, thermally induced damage of tooth, and the corresponding TTP. This will enhance the design and optimization of clinical treatment strategies. This paper presents the state-of-the-art of the current understanding on HT in tooth, with both experimental study and mathematical modeling reviewed. Limitations of the current experimental and mathematical methodologies are discussed and potential solutions are suggested. Interpretation of TTP in terms of thermally stimulated dentinal fluid flow is also discussed. Copyright (c) 2010 Academy of Dental Materials. All rights reserved.
NASA Astrophysics Data System (ADS)
Pineda-Vargas, C. A.; Eisa, M. E.; Chikte, U. M. E.; Conradie, J. L.
2004-10-01
The process of demineralisation in tooth erosion due to exposure to acidic media was investigated in a group of test and control healthy human molar teeth. Analysis by micro-PIXE and proton-backscattering showed that the levels of trace elements were enriched and/or depleted according to experimental treatment. The atomic ratios of major constituents in the matrix were characteristic of test or controls with typical ratios: O 5P 1Ca 3F 1 for tests and O 6P 0.5Ca 3F 0.5 for controls. The correlation between maps of Ca and Zn in and around the interface between dentine and enamel in control samples showed two kinds of correlation strengths (for enamel and dentine). The strongest correlation was related to the enamel area.
Zurabashvili, D; Chanturia, I; Kapanadze, L; Danelia, G
2010-02-01
The composition of cigarette-smoke is relatively well known in spite of its tremendous complexity. But the analysis of cigarette smoke toxicological influence on biochemical components of tooth enamel, dentine and pulpe is not completely study. The present study was designed to characterize the pulpe biochemical component (alpha-ketopropionic acide) by acute serous pulpit. The total number of 140 patients, age 35-40 (Tobacco-smokers 80, non-smokers - 60) have been investigated. The results suggested, that tobacco-smokers chisel tooth and molars contains less alpha-ketopropionic acide than non-smokers individuals. These studies support the hypothesis of cigarette smoke important role in the tooth support mechanisms. The biochemical activity and function of tooth proteins and amino acids composition must by compared to concentration of tobacco-smoke components.
Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.
Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A
2016-01-01
Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.
Optical X-ray density of composite resin luting agents.
Carracho, Helena G; da Silveira, Ivori D; Soares, Clarissa G; Paranhos, Maria Paula G; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria
2011-01-01
This study verified the optical density of four composite resin luting agents - RelyX ARC (RY), Enforce (E), C&B Cement (CB) and Flow it (FI), at thicknesses of 2, 3, and 4 mm. The optical density of the luting agents was compared with that of enamel and dentin at the same thicknesses. Fifteen tooth crowns were embedded in PVC cylinders with self-cured acrylic resin. In addition, acrylic resin was poured into 5 PVC cylinders and four equidistant 5 mm diameter holes were prepared, with one luting material inserted in each. A laboratory cutting machine was used to prepare 4-, 3- and 2-mm thick slices of the tooth crowns and materials. Digital images were obtained with a Digora system. Three radiographs of each thickness were obtained, totalizing 135 radiographs of the crowns and 45 of the materials. Three readings were carried out on each radiograph: three in enamel, three in dentin and three in each material, totalizing 1350. According to Students t-test (p
Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J
2014-02-01
Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto
2014-02-01
To assess the whitening effectiveness and the trans-enamel/trans-dentinal toxicity of experimental tooth-bleaching protocols on pulp cells. Enamel/dentine discs individually adapted to trans-well devices were placed on cultured odontoblast-like cells (MDPC-23) or human dental pulp cells (HDPCs). The following groups were formed: G1 - no treatment (control); G2 to G4 - 35% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively; and G5 to G7 - 17.5% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively. Cell viability and morphology were evaluated immediately after bleaching (T1) and 72 h thereafter (T2). Oxidative stress and cell membrane damage were also assessed (T1). The amount of H2O2 in culture medium was quantified (Mann-Whitney; α=5%) and colour change (ΔE) of enamel was analysed after 3 sessions (Tukey's test; α=5%). Cell viability reduction, H2O2 diffusion, cell morphology alteration, oxidative stress, and cell membrane damage occurred in a concentration-/time-dependent fashion. The cell viability reduction was significant in all groups for HDPCs and only for G2, G3, and G5 in MDPC-23 cells compared with G1. Significant cell viability and morphology recovery were observed in all groups at T2, except for G2 in HDPCs. The highest ΔE value was found in G2. However, all groups presented significant ΔE increases compared with G1. Shortening the contact time of a 35%-H2O2 gel for 5 min, or reducing its concentration to 17.5% and applying it for 45, 15, or 5 min produce gradual tooth colour change associated with reduced trans-enamel and trans-dentinal cytotoxicity to pulp cells. The experimental protocols tested in the present study provided significant tooth-bleaching improvement associated with decreased toxicity to pulp cells, which may be an interesting alternative to be tested in clinical situations intended to reduce tooth sensitivity and pulp damage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kieser, J A; He, L-H; Dean, M C; Jones, M E H; Duncan, W J; Swain, M V; Nelson, N J
2011-06-01
The evolution of dental tissues in relation to tooth function is poorly understood in non-mammalian vertebrates. We studied the dentition of Sphenodon punctatus, the sole remaining member of the order Rhynchocephalia in this light. We examined 6 anterior maxillary caniniform teeth from adult Sphenodon by scanning electron microscopy, nano-indentation and Raman spectroscopy. The elastic modulus (E) for tuatara enamel was 73.17 (sd, 3.25) GPa and 19.52 +/- 0.76 Gpa for dentine. Hardness (H) values for enamel and dentine were 4.00 (sd, 0.22) and 0.63 +/- 0.02 Gpa respectively. The enamel was thin (100 gm or less), prismless and consisted of grouped parallel crystallites. Incremental lines occurred at intervals of about 0.5 to 1 rm. There were tubular structures along the enamel dentine junction running from the dentine into the inner enamel, at different angles. These were widened at their base with a smooth, possibly inorganic lining. Enamel elastic modulus and hardness were lower than those for mammals. The presence of enamel tubules in the basal part of the enamel along the EDJ remains speculative, with possible functions being added enamel/dentinal adhesion or a role in mechanosensation.
Shear test of composite bonded to dentin: Er:YAG laser versus dental handpiece preparations
NASA Astrophysics Data System (ADS)
Visuri, Steven R.; Gilbert, Jeremy L.; Walsh, Joseph T., Jr.; Wigdor, Harvey A.
1995-05-01
The erbium:YAG laser coupled with a cooling stream of water appears to be an effective means of removing dental hard tissues. However, before the procedure is deemed clinically viable, there are several important issues of safety and efficacy that need to be explored. In this study we investigated the surface that remains following laser ablation of dentin and compared the results to the use of a dental handpiece. Specifically, we studied the effect the laser radiation had on the bonding of composite to dentin. The crowns of extracted human molars were removed revealing the underlying dentin. An additional thickness of material was removed with either a dental handpiece or an Er:YAG laser by raster scanning the samples under a fixed handpiece or laser. Comparable surface roughnesses were achieved. A cylinder of composite was bonded onto the prepared surfaces following the manufacturer's directions. The dentin-composite bond was then shear stressed to failure on a universal testing apparatus and the maximum load recorded. Preliminary results indicated that laser irradiated samples had improved bond strengths. SEM photographs of the surfaces were also taken to compare the two methods of tooth preparation.
Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos
2015-07-01
To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.
NASA Astrophysics Data System (ADS)
Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.
2012-03-01
In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.
Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model
Li, Fang; Wang, Ping; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H. K.
2014-01-01
Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: Control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30 days (d), rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, NACP group and DMADDM+NACP group showed lower scores (better biocompatibility) than control group (p = 0.014 for 8 d, p = 0.018 for 30 d). For tissue disorganization, NACP and DMADDM+NACP had better scores than control (p = 0.027) at 30 d. At 8 d, restorations containing NACP had tertiary dentin thickness (TDT) that was 5-6 fold that of control. At 30 d, restorations containing NACP had TDT that was 4-6 fold that of control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation, than control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320
Kar, Sudipta; Kundu, Goutam; Maiti, Shyamal Kumar; Ghosh, Chiranjit; Bazmi, Badruddin Ahamed; Mukhopadhyay, Santanu
2016-01-01
Dental caries is one of the major modern-day diseases of dental hard tissue. It may affect both normal and hearing-impaired children. This study is aimed to evaluate and compare the prevalence of dental caries in hearing-impaired and normal children of Malda, West Bengal, utilizing the Caries Assessment Spectrum and Treatment (CAST). In a cross-sectional, case-control study of dental caries status of 6-12-year-old children was assessed. Statistically significant difference was found in studied (hearing-impaired) and control group (normal children). In the present study, caries affected hearing-impaired children found to be about 30.51% compared to 15.81% in normal children, and the result was statistically significant. Regarding individual caries assessment criteria, nearly all subgroups reflect statistically significant difference except sealed tooth structure group, internal caries-related discoloration in dentin, and distinct cavitation into dentine group, and the result is significant at P < 0.05. Statistical analysis was carried out utilizing Z-test. Statistically significant difference was found in studied (hearing-impaired) and control group (normal children). In the present study, caries effected hearing-impaired children found about 30.51% instead of 15.81% in normal children, and the result was statistically significant (P < 0.05). Regarding individual caries assessment criteria, nearly all subgroups reflect statistically significant difference except sealed tooth structure group, internal caries-related discoloration in dentin, and distinct cavitation into dentine group. Dental health of hearing-impaired children was found unsatisfactory than normal children when studied in relation to dental caries status evaluated with CAST.
Rangiani, Afsaneh; Cao, Zheng-Guo; Liu, Ying; Voisey Rodgers, Anika; Jiang, Yong; Qin, Chun-Lin; Feng, Jian-Quan
2012-01-01
Deletion or mutation of dentin matrix protein 1 (DMP1) leads to hypophosphatemic rickets and defects within the dentin. However, it is largely unknown if this pathological change is a direct role of DMP1 or an indirect role of phosphate (Pi) or both. It has also been previously shown that Klotho-deficient mice, which displayed a high Pi level due to a failure of Pi excretion, causes mild defects in the dentinal structure. This study was to address the distinct roles of DMP1 and Pi homeostasis in cell differentiation, apoptosis and mineralization of dentin and enamel. Our working hypothesis was that a stable Pi homeostasis is critical for postnatal tooth formation, and that DMP1 has an antiapoptotic role in both amelogenesis and dentinogenesis. To test this hypothesis, Dmp1-null (Dmp1−/−), Klotho-deficient (kl/kl), Dmp1/Klotho-double-deficient (Dmp1−/−/kl/kl) and wild-type (WT) mice were killed at the age of 6 weeks. Combinations of X-ray, microcomputed tomography (μCT), scanning electron microscopy (SEM), histology, apoptosis and immunohistochemical methods were used for characterization of dentin, enamel and pulp structures in these mutant mice. Our results showed that Dmp1−/− (a low Pi level) or kl/kl (a high Pi level) mice displayed mild dentin defects such as thin dentin and a reduction of dentin tubules. Neither deficient mouse line exhibited any apparent changes in enamel or pulp structure. However, the double-deficient mice (a high Pi level) displayed severe defects in dentin and enamel structures, including loss of dentinal tubules and enamel prisms, as well as unexpected ectopic ossification within the pulp root canal. TUNEL assay showed a sharp increase in apoptotic cells in ameloblasts and odontoblasts. Based on the above findings, we conclude that DMP1 has a protective role for odontoblasts and ameloblasts in a pro-apoptotic environment (a high Pi level). PMID:23258378
12-month color stability of enamel, dentine, and enamel-dentine samples after bleaching.
Wiegand, Annette; Drebenstedt, Steffi; Roos, Malgorzata; Magalhães, Ana Carolina; Attin, Thomas
2008-12-01
The study aimed to quantify the color regression of enamel (E), dentine (D), and combined enamel-dentine (ED) of differently bleached ED specimens over a period of 12 months in vitro. Two ED samples were obtained from the labial surfaces of bovine teeth and prepared to a standardized thickness with the enamel and dentine layer each 1 mm. The ED samples were distributed on four groups (each n = 80), in which the different bleaching products were applied on enamel (1, Whitestrips; 2, Illuminé 15%; 3, Opalescence Xtra Boost) or dentine surfaces (4, mixture of sodium perborate/distilled water). Eighty ED samples were not bleached (control). Color (L*a*b*) of ED was assessed at baseline, subsequently after bleaching and at 3, 6, and 12 months of storage after bleaching (each 20 samples/group). E and D samples were prepared by removing the dentine or enamel layer of ED samples to allow for separate color analysis. Bleaching resulted in a significant color change (Delta E) of ED specimens. Within the observation period, Delta L but not Delta b declined to baseline. L* values of E and D samples also declined and were not significantly different from control samples after 12 months, while b* values did not decrease to baseline. Generally, no differences between the bleaching agents could be observed. Color change of enamel, dentine, and combined ED of in vitro bleached tooth samples is not stable over time with regard to lightness. However, yellowness did not return to baseline within 1 year.
NASA Astrophysics Data System (ADS)
Borges, F. M. C.; de-Melo, M. A. S.; Lima, J. M. P.; Zanin, I. C. J.; Rodrigues, L. K. A.; Nobre-dos-Santos, M.
2010-02-01
In vitro and in situ studies have demonstrated that the photodynamic antimicrobial therapy (PACT) is effective in reducing Streptococcus mutans population in artificially carious dentin. This pilot in vivo study evaluated the antimicrobial effect of PACT using toluidine blue O (TBO) and a light-emitting diode (LED) in carious dentin lesions. Five healthy adult volunteers (19-36 yr), with at least 4 active carious cavities each, participated in this study. Teeth of each volunteer were randomly divided into four groups: (1) without TBO and without light (Control); (2) with TBO alone (TBO); (3) with LED at 94/J cm2 alone (LED); and (4) with TBO plus LED at 94 J/cm2 (PACT). Each cavity was divided into two halves. The baseline carious dentin sample was collected from half of each cavity. Following, the treatments were performed using a random distribution of tooth into treatments. Then, the second collection of carious dentin samples was performed. Before and after treatments, dentin samples were analyzed with regard to the counts of total viable microorganisms, total streptococci, mutans streptococci, and lactobacilli. The data were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests (α=5%). Log reductions ranged from -0.12 to 2.68 and significant reductions were observed for PACT (group 4) when compared to the other groups (1, 2, and 3) for total streptococci and mutans streptococci. Concluding, PACT was effective in killing oral microorganisms present in in vivo carious dentin lesions and may be a promising technique for eliminating bacteria from dentin before restoration.
Accelerated enamel mineralization in Dspp mutant mice
Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia
2016-01-01
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724
Influence of Different Dentin Substrate (Caries-Affected, Caries-Infected, Sound) on Long-Term μTBS.
Costa, Ana Rosa; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço; Naves, Lucas Zago; Raposo, Luís Henrique Araújo; Carvalho, Fabíola Galbiatti de; Sinhoreti, Mário Alexandre Coelho; Puppin-Rontani, Regina Maria
2017-01-01
The aim of this study was to evaluate the μTBS in different dentin substrates and water-storage periods. Twenty-four dentin blocks obtained from sound third molars were randomly divided into 3 groups: Sound dentin (Sd), Caries-affected dentin (Ca) and Caries-infected dentin (Ci). Dentin blocks from Ca and Ci groups were subjected to artificial caries development (S. mutans biofilm). The softest carious tissue was removed using spherical drills under visual inspection with Caries Detector solution (Ca group). It was considered as Ci (softer and deeply red stained dentin) and Ca (harder and slightly red stained dentin). The Adper Single Bond 2 adhesive system was applied and Z350 composite blocks were built in all groups. Teeth were stored in deionized water for 24 h at 37 ºC and sectioned into beams (1.0 mm2 section area). The beams from each tooth were randomly divided into three storages periods: 24 h, 6 months or 1 year. Specimens were submitted to µTBS using EZ test machine at a crosshead speed of 1.0 mm/min. Failure mode was examined by SEM. Data from µTBS were submitted to split plot two-way ANOVA and Tukey's HSD tests (a=0.05). The µTBS (MPa) of Sd (41.2) was significantly higher than Ca (32.4) and Ci (27.2), regardless of storage. Ca and Ci after 6 months and 1 year, presented similar µTBS. Mixed and adhesive failures predominated in all groups. The highest µTBS values (48.1±9.1) were found for Sd at 24 h storage. Storage of specimens decreased the µTBS values for all conditions.
Watson, T F; Pagliari, D; Sidhu, S K; Naasan, M A
1998-03-01
This study aimed to develop techniques to allow dynamic imaging of a cavity before, during and after placement of glass-ionomer restorative materials. Cavities were cut in recently extracted third molars and the teeth longitudinally sectioned. Each hemisected tooth surface was placed in green modelling compound at 90 to the optical axis of the microscope. The cavity surface was imaged using a video rate confocal microscope in conjunction with an internally focusable microscope objective. The sample on the stage was pushed up to the objective lens which 'clamped' the cover glass onto it. Water, glycerine or oil was placed below the coverglass, with oil above. Internal tooth structures were imaged by changing the internal focus of the objective. The restorative material was then placed into the cavity. Video images were stored either onto video tape or digitally, using a frame grabber, computer and mass memory storage. Software controls produced time-lapse recordings of the interface over time. Preliminary experiments have examined the placement and early maturation of conventional glass-ionomer cements and a syringeable resin-modified glass-ionomer cement. Initial contact of the cement matrix and glass particles was visible as the plastic material rolled past the enamel and dentine, before making a bond. Evidence for water movement from the dentine into the cement has also been seen. After curing, the early dimensional changes in the cements due to water flux were apparent using the time-lapse facility. This new technique enables examination of developing tooth/restoration interfaces and the tracking of movement in materials.
Developmentally regulated changes in phospholipid composition in murine molar tooth.
Dunglas, C; Septier, D; Carreau, J P; Goldberg, M
1999-08-01
In order to explore the possibility that phospholipids are differently expressed during the cascade of events leading to tooth formation, we decided to carry out simultaneous biochemical, histological and electron histochemical studies. High performance thin-layer chromatography and gas-liquid chromatography were used to compare the composition of embryonic mouse first molar tooth germs at day 18 of gestation (E18) and at birth (D1), erupting teeth at day 7 (D7) and erupted molars at day 21 (D21). For the latter, non-demineralized and EDTA-demineralized lipid extracts were analysed separately. Moreover, an ultrahistochemical study was carried out using the iodoplatinate reaction which retains and visualizes phospholipids. Developmentally regulated changes occurred and were closely correlated with an increase in cell membrane phospholipids. Gradual accumulation of phospholipids was identified in the extracellular matrix, at an early stage of tooth germ development within the basement membrane and later, as predentine/dentine and enamel components participating in mineralization processes. Matrix vesicles transiently present in dentine were partly responsible for the lipids that were detected. A first group of phospholipids including phosphatidylcholine as the major membrane-associated phospholipid and phosphatidylinositol as the intracellular second messenger increased by a factor of 2.3 between E18 and D21. This increase is probably associated with cell lengthening and was relatively modest compared with the higher increase detected for a second group of phospholipids, namely phosphatidylethanolamine (x4.8), phosphatidylserine (x 5.9) and sphingomyelin (x5.4). This second group of extracellular matrix-associated phospholipids constituted 68% of the demineralized lipid extract and, therefore, contributes to the mineralization of dental tissues.
Kim, Jongryul; Vaughn, Ryan M.; Gu, Lisha; Rockman, Roy A.; Arola, Dwayne D.; Schafer, Tara E.; Choi, Kyungkyu; Pashley, David H.; Tay, Franklin R.
2009-01-01
Degradation of hybrid layers created in primary dentin occurs as early as 6 months in vivo. Biomimetic remineralization utilizes “bottom-up” nanotechnology principles for interfibrillar and intrafibrillar remineralization of collagen matrices. This study examined whether imperfect hybrid layers created in primary dentin can be remineralized. Coronal dentin surfaces were prepared from extracted primary molars and bonded using Adper Prompt L-Pop and a composite. One millimeter-thick specimen slabs of the resin-dentin interface were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs to mimic the sequestration and templating functions of dentin noncollagenous proteins. Specimens were retrieved after 1–6 months. Confocal laser scanning microscopy was employed for evaluating the permeability of hybrid layers to Rhodamine B. Transmission electron microscopy was used to examine the status of remineralization within hybrid layers. Remineralization at different locations of the hybrid layers corresponded with quenching of fluorescence within similar locations of those hybrid layers. Remineralization was predominantly intrafibrillar in nature as interfibrillar spaces were filled with adhesive resin. Biomimetic remineralization of imperfect hybrid layers in primary human dentin is a potential means for preserving bond integrity. The success of the current proof-of-concept, laterally-diffusing remineralization protocol warrants development of a clinically-applicable biomimetic remineralization delivery system. PMID:19768792
Neves, Aline Almeida; Vargas, Daniel Otero Amaral; Santos, Thais Maria Pires; Lopes, Ricardo Tadeu; Sousa, Frederico Barbosa
2016-12-01
To investigate the relationship between degree of dentin demineralization with both lesion activity and morphology of the occlusal carious cavity. Occlusal sites (n=138) were identified by visual examination (Nyvad's scores 0-6) in 67 extracted teeth which were scanned in a high energy micro-CT. After 3D reconstruction, each stack was resliced in the mesio-distal direction and tooth mineral density (MD) was measured along a path from enamel to the deepest part of dentin in the slice showing the most severe carious involvement. Each site was classified in "open" or "closed" (if cavitated) depending on the morphology of the surrounding enamel walls as measured using micro-CT and as active or inactive in enamel or dentin by a clinical scoring system. Lesions showing dentin cavitation presented higher demineralization degree compared to non-cavitated, or enamel cavitated lesions. Inactive lesions presented lower demineralization degree compared to active lesions, although with a low effect size. According to the morphological aspect of the carious cavity, open enamel lesions showed lower dentin demineralization degree than closed lesion environments. Active lesions showed higher dentin demineralization degree than inactive ones, while lesions showing closed cavitation resulted in higher dentin demineralization degree only for enamel lesions. Including those parameters in treatment decisions may help to improve prognosis and increase effectiveness of the caries diagnostic systems in the clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa
2016-01-01
To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption
Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.
2016-01-01
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region. PMID:26780723
Cheng, Lei; Zhang, Ke; Weir, Michael D.; Liu, Huaibing; Zhou, Xuedong; Xu, Hockin H. K.
2013-01-01
Objectives Recent studies developed antibacterial bonding agents and composites containing a quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg). The objectives of this study were to investigate: (1) the effect of antibacterial primers containing QADM and NAg on the inhibition of Streptococcus mutans (S. mutans) impregnated into dentin blocks for the first time, and (2) the effect of QADM or NAg alone or in combination, and the effect of NAg mass fraction, on S. mutans viability in dentin. Methods Scotchbond Multi-Purpose (SBMP) bonding agent was used. QADM and NAg were incorporated into SBMP primer. Six primers were tested: SBMP primer control, control + 10% QADM (mass %), control + 0.05% NAg, control + 10% QADM + 0.05% NAg, control + 0.1% NAg, and control + 10% QADM + 0.1% NAg. S. mutans were impregnated into dentin blocks, then a primer was applied. The viable colony-forming units (CFU) were then measured by harvesting the bacteria in dentin using a sonication method. Results Control + 10% QADM + 0.1% NAg had bacteria inhibition zone 8-fold that of control (p < 0.05). The sonication method successfully harvested bacteria from dentin blocks. Control + 10% QADM + 0.1% NAg inhibited S. mutans in dentin blocks, reducing the viable CFU in dentin by three orders of magnitude, compared to control dentin without primer. Using QADM+NAg was more effective than QADM alone. Higher NAg content increased the potency. Dentin shear bond strength was similar for all groups (p > 0.1). Significance Antibacterial primer with QADM and NAg were shown to inhibit the S. mutans impregnated into dentin blocks for the first time. Bonding agent containing QADM and NAg is promising to eradicate bacteria in tooth cavity and inhibit caries. The QADM and NAg may have applicability to other adhesives, cements, sealants and composites. PMID:23422420
NASA Astrophysics Data System (ADS)
Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth
2012-01-01
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.
Removing or Controlling? How Caries Management Impacts on the Lifetime of Teeth.
Schwendicke, Falk; Lamont, Thomas; Innes, Nicola
2018-05-24
Historically, traditional carious lesion management focused on the importance of removal of all carious tissue, with little thought to the lesion origins. The surgical removal of any sign of a carious lesion was prioritised with little, or no, consideration to pulp vitality, loss of tooth structure, or caries disease management. This symptomatic approach concentrating on lesions rather than on the cause of the disease, focused on preventing secondary carious lesion development. Early detection and improved understanding of the caries process - that lesion progress can be arrested or slowed - has led to preventive measures and less destructive management as a focus. The choice of lesion management depends on: whether a primary or permanent tooth is involved; which tooth surface(s) is/are involved; whether the lesion is confined to enamel or extends into dentine; the lesion depth, and lesion cleansability. Use of preventive and minimally invasive operative strategies is complicated by the lack of predictable ways of recording lesions' status to allow early detection of failed strategies and early intervention. Because re-restoration usually makes the cavity larger and, consequently, the tooth weaker, the clinician should be certain about initiating the repeat restoration cycle, delaying the first restoration as much as possible. The 3 main principles that support preventing or slowing the repeat restoration cycle are: (1) avoid restoration placement until there is no other option; (2) place them for maximum longevity; (3) if re-restoration is necessary, repair or refurbishment is preferable to replacement of a defective restoration. © 2018 S. Karger AG, Basel.
Tenorio, D; Reid, A R; Katchburian, E
1990-01-01
The ultrastructural distribution and localisation of proteoglycans (PGs) of early developing rat dentine were examined using cuprolinic blue in a critical electrolyte concentration procedure. Results show that the cuprolinic blue method produces images of higher morphological quality than other cationic dyes. PGs appeared as ribbon-like electron-opaque precipitates of various sizes, ranging between 1.4 and 0.2 microns in length, distributed throughout the matrix and in close association with well preserved matrix vesicles and collagen fibrils. Matrix vesicles revealed tightly packed PG filaments which appeared to be attached to their membrane. It is possible that the close association of PG filaments with matrix vesicles and collagen indicates that PGs are related to the process of mineralisation of dentine. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2384338
Gastro-oesophageal reflux disease symptoms and tooth wear in patients with Sjögren's syndrome.
Wan Nik, W N N; Banerjee, A; Moazzez, R
2011-01-01
The aim of this study was to assess the prevalence of gastro-oesophageal reflux disease (GORD) symptoms and tooth wear in patients with Sjögren's syndrome (SS) compared with matched controls. GORD symptoms were assessed for 33 SS patients and 20 age- and sex-matched controls. Tooth wear was assessed in all patients and controls. The results were further analysed in two subgroups of SS patients and controls with and without GORD symptoms (SS patients without GORD symptoms: n = 11, controls without GORD symptoms: n = 18). A higher proportion of SS patients reported suffering from heartburn and regurgitation than controls (p < 0.001 and p = 0.02, respectively). SS patients without GORD symptoms had a statistically significantly higher percentage of surfaces with tooth wear affecting dentine than controls (p < 0.001). Copyright © 2011 S. Karger AG, Basel.
McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.
2015-01-01
Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177
Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics.
Yan, Jiahau; Taskonak, Burak; Platt, Jeffrey A; Mecholsky, John J
2008-01-01
Dentin, the mineralized tissue forming the bulk of the tooth, lies between the enamel and the pulp chamber. It is a rich source of inspiration for designing novel synthetic materials due to its unique microstructure. Most of the previous studies investigating the fracture toughness of dentin have used linear-elastic fracture mechanics (LEFM) that ignores plastic deformation and could underestimate the toughness of dentin. With the presence of collagen (approximately 30% by volume) aiding the toughening mechanisms in dentin, we hypothesize that there is a significant difference between the fracture toughness estimated using LEFM (Kc) and elastic-plastic fracture mechanics (EPFM) (KJc). Single-edge notched beam specimens with in-plane (n=10) and anti-plane (n=10) parallel fractures were prepared following ASTM standard E1820 and tested in three-point flexure. KJc of the in-plane parallel and anti-plane parallel specimens were found to be 3.1 and 3.4 MPa m 1/2 and Kc were 2.4 and 2.5 MPa m 1/2, respectively. The fracture toughness estimated based on KJc is significantly greater than that estimated based on Kc (32.5% on average; p<0.001). In addition, KJc of anti-plane parallel specimens is significantly greater than that of in-plane parallel specimens. We suggest that, in order to critically evaluate the fracture toughness of human dentin, EPFM should be employed.
Antimicrobial effect of chlorhexidine digluconate in dentin: In vitro and in situ study.
Borges, Fátima Maria Cavalcante; de Melo, Mary Anne Sampaio; Lima, Juliana Paiva Marques; Zanin, Iriana Carla Junqueria; Rodrigues, Lidiany Karla Azevedo
2012-01-01
The aim of this study was to evaluate a very short-term in vitro and in situ effect of 2% chlorhexidine-digluconate-based (CHX) cavity cleanser on the disinfection of dentin demineralized by cariogenic bacteria. Human dentin slabs were randomly allocated and used in 2 distinct phases, in vitro and in situ, for obtaining demineralized dentin. In vitro, the slabs (n=15) were immersed for 5 days in BHI broth inoculated with Streptococcus mutans CTT 3440. In situ, a double-blind design was conducted in one phase of 14 days, during which 20 volunteers wore palatal devices containing two human dental dentin slabs. On 5(th) day in vitro and 14(th) day in situ, the slabs were allocated to the two groups: Control group (5 μl of 0.9% NaCl solution) and CHX group (5 μl of 2% chlorhexidine digluconate solution, Cavity Cleanser™ BISCO, Schaumburg, IL, EUA), for 5 minutes. The microbiological analyses were performed immediately before and after the treatments. The log reductions means found for CHX treatment on tested micro organisms were higher when compared to Control group either in vitro or in situ conditions. Our results showed that CHX was effective in reducing the cultivable microbiota in contaminated dentin. Furthermore, although the use of chlorhexidine-digluconate-based cavity disinfectant did not completely eliminate the viable microorganisms, it served as a suitable agent to disinfect tooth preparations.
Sushynski, John M; Zealand, Cameron M; Botero, Tatiana M; Boynton, James R; Majewski, Robert F; Shelburne, Charles E; Hu, Jan Chingchun
2012-01-01
The purpose of this multisite, multioperator, prospective, randomized, controlled clinical trial was to evaluate 2-year outcomes of diluted formocresol (DFC) compared to gray mineral trioxide aggregate (GMTA) as pulpotomy medicaments. Following the standard pulpotomy procedure, the pulp stumps of 252 primary molars in 168 healthy children were randomly covered with GMTA or DFC. Pulp chambers were filled with Intermediate Restorative Material (IRM(®)) and teeth were restored with stainless steel crowns. At each follow-up appointment, the clinical status of the treated tooth was assessed and radiographs were taken. A total of 694 clinical and radiographic evaluations were analyzed. Gender, study site, arch type, and tooth type did not influence treatment outcome. At the combined 6- to 24-month follow-up, clinical success in the DFC group was no different than for the GMTA group. Radiographically, a significantly lower success rate was found in the DFC group vs the MTA group at all time points (P<.01). Dentin bridge formation was observed at a significantly higher frequency among the GMTA group (P<.01), while internal root resorption was observed at a higher frequency in the DFC group (P<.01). At the combined 6- to 24-month follow-up, gray mineral trioxide aggregate demonstrated significantly better radiographic outcomes vs diluted formocresol as pulpotomy medicaments.
Becerra, Patricia; Ricucci, Domenico; Loghin, Simona; Gibbs, Jennifer L; Lin, Louis M
2014-01-01
Histologic studies of teeth from animal models of revascularization/revitalization are available; however, specimens from human studies are lacking. The nature of tissues formed in the canal of human revascularized/revitalized teeth was not well established. An immature mandibular premolar with infected necrotic pulp and a chronic apical abscess was treated with revascularization/revitalization procedures. At both the 18-month and 2-year follow-up visits, radiographic examination showed complete resolution of the periapical lesion, narrowing of the root apex without root lengthening, and minimal thickening of the canal walls. The revascularized/revitalized tooth was removed because of orthodontic treatment and processed for histologic examination. The large canal space of revascularized/revitalized tooth was not empty and filled with fibrous connective tissue. The apical closure was caused by cementum deposition without dentin. Some cementum-like tissue was formed on the canal dentin walls. Inflammatory cells were observed in the coronal and middle third of revascularized/revitalized tissue. In the present case, the tissue formed in the canal of a human revascularized/revitalized tooth was soft connective tissue similar to that in the periodontal ligament and cementum-like or bone-like hard tissue, which is comparable with the histology observed in the canals of teeth from animal models of revascularization/revitalization. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.
Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C
2011-05-01
In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli
2016-01-01
Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138
Enzyme Replacement Therapy Prevents Dental Defects in a Model of Hypophosphatasia
McKee, M.D.; Nakano, Y.; Masica, D.L.; Gray, J.J.; Lemire, I.; Heft, R.; Whyte, M.P.; Crine, P.; Millán, J.L.
2011-01-01
Hypophosphatasia (HPP) occurs from loss-of-function mutation in the tissue-non-specific alkaline phosphatase (TNALP) gene, resulting in extracellular pyrophosphate accumulation that inhibits skeletal and dental mineralization. TNALP-null mice (Akp2-/-) phenocopy human infantile hypophosphatasia; they develop rickets at 1 week of age, and die before being weaned, having severe skeletal and dental hypomineralization and episodes of apnea and vitamin B6-responsive seizures. Delay and defects in dentin mineralization, together with a deficiency in acellular cementum, are characteristic. We report the prevention of these dental abnormalities in Akp2-/- mice receiving treatment from birth with daily injections of a mineral-targeting, human TNALP (sALP-FcD10). sALP-FcD10 prevented hypomineralization of alveolar bone, dentin, and cementum as assessed by micro-computed tomography and histology. Osteopontin – a marker of acellular cementum – was immuno-localized along root surfaces, confirming that acellular cementum, typically missing or reduced in Akp2-/- mice, formed normally. Our findings provide insight concerning how acellular cementum is formed on tooth surfaces to effect periodontal ligament attachment to retain teeth in their osseous alveolar sockets. Furthermore, they provide evidence that this enzyme-replacement therapy, applied early in post-natal life – where the majority of tooth root development occurs, including acellular cementum formation – could prevent the accelerated tooth loss seen in individuals with HPP. PMID:21212313
Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia.
McKee, M D; Nakano, Y; Masica, D L; Gray, J J; Lemire, I; Heft, R; Whyte, M P; Crine, P; Millán, J L
2011-04-01
Hypophosphatasia (HPP) occurs from loss-of-function mutation in the tissue-non-specific alkaline phosphatase (TNALP) gene, resulting in extracellular pyrophosphate accumulation that inhibits skeletal and dental mineralization. TNALP-null mice (Akp2(-/-)) phenocopy human infantile hypophosphatasia; they develop rickets at 1 week of age, and die before being weaned, having severe skeletal and dental hypomineralization and episodes of apnea and vitamin B(6)-responsive seizures. Delay and defects in dentin mineralization, together with a deficiency in acellular cementum, are characteristic. We report the prevention of these dental abnormalities in Akp2(-/-) mice receiving treatment from birth with daily injections of a mineral-targeting, human TNALP (sALP-FcD(10)). sALP-FcD(10) prevented hypomineralization of alveolar bone, dentin, and cementum as assessed by micro-computed tomography and histology. Osteopontin--a marker of acellular cementum--was immuno-localized along root surfaces, confirming that acellular cementum, typically missing or reduced in Akp2(-/-) mice, formed normally. Our findings provide insight concerning how acellular cementum is formed on tooth surfaces to effect periodontal ligament attachment to retain teeth in their osseous alveolar sockets. Furthermore, they provide evidence that this enzyme-replacement therapy, applied early in post-natal life--where the majority of tooth root development occurs, including acellular cementum formation--could prevent the accelerated tooth loss seen in individuals with HPP.
Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.
Enax, Joachim; Epple, Matthias
Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.
Liu, Lipei; Chen, Weiting; Li, Lefeng; Xu, Fangfang; Jiang, Beizhan
2017-12-01
Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.
Amariti, M L; Restori, M; De Ferrari, F; Paganelli, C; Faglia, R; Legnani, G
1999-06-01
Age determination by teeth examination is one of the main means of determining personal identification. Current studies have suggested different techniques for determining the age of a subject by means of the analysis of microscopic and macroscopic structural modifications of the tooth with ageing. The histological approach is useful among the various methodologies utilized for this purpose. It is still unclear as to what is the best technique, as almost all the authors suggest the use of the approach they themselves have tested. In the present study, age determination by means of microscopic techniques has been based on the quantitative analysis of three parameters, all well recognized in specialized literature: 1. dentinal tubules density/sclerosis 2. tooth translucency 3. analysis of the cementum thickness. After a description of the three methodologies (with automatic image processing of the dentinal sclerosis utilizing an appropriate computer program developed by the authors) the results obtained on cases using the three different approaches are presented, and the merits and failings of each technique are identified with the intention of identifying the one offering the least degree of error in age determination.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
NASA Astrophysics Data System (ADS)
Grün, Rainer; Aubert, Maxime; Joannes-Boyau, Renaud; Moncel, Marie-Hélène
2008-11-01
We have mapped U ( 238U) and Th ( 232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found. The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.
Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V
2011-12-01
To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.
Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro.
Haeri, Morteza; Sagomonyants, Karen; Mina, Mina; Kuhn, Liisa T; Goldberg, A Jon
2017-06-01
Dental caries (tooth decay) is the most common chronic disease. Dental tissue engineering is a promising alternative approach to alleviate the shortcomings of the currently available restorative materials. Mimicking the natural extracellular matrix (ECM) could enhance the performance of tissue engineering scaffolds. In this study, we developed microtubular (~20 μm diameter) polymethyl methacrylate (PMMA) scaffolds resembling the tubular (~2.5 μm diameter) structure of dentin, the collagen-based mineralized tissue that forms the major portion of teeth, to study the effect of scaffold architecture on differentiation of mouse dental pulp cells in vitro . Flat (control), plasma-treated solid and microtubular PMMA scaffolds with densities of 240±15, 459±51 and 480±116 tubules/mm 2 were first characterized using scanning electron microscopy and contact angle measurements. Dental pulp cells were cultured on the surface of the scaffolds for up to 21 days and examined using various assays. Cell proliferation and mineralization were examined using Alamar Blue and Xylenol Orange (XO) staining assays, respectively. The differentiation of pulp cells into odontoblasts was examined by immunostaining for Nestin and by quantitative PCR analysis for dentin matrix protein 1 ( Dmp1 ), dentin sialophosphoprotein ( Dspp ) and osteocalcin ( Ocn ). Our results showed that the highest tubular density scaffolds significantly (p<0.05) enhanced differentiation of pulp cells into odontoblasts as compared to control flat scaffolds, as evidenced by increased expression of Nestin (5.4x). However, mineralization was suppressed on all surfaces, possibly due to low cell density. These results suggest that the microtubular architecture may be a desirable feature of scaffolds developed for clinical applications. Regenerative engineering of diseased or traumatized tooth structure could avoid the deficiencies of traditional dental restorative (filling) materials. Cells in the dental pulp have the potential to differentiate to dentin-producing odontoblast cells. Furthermore, cell-supporting scaffolds that mimic a natural extracellular matrix (ECM) are known to influence behavior of progenitor cells. Accordingly, we hypothesized that a dentin-like microtubular scaffold would enhance differentiation of dental pulp cells. The hypothesis was proven true and differentiation to odontoblasts increased with increasing density of the microtubules. However, mineralization was suppressed, possibly due to a low density of cells. The results demonstrate the potential benefits of a microtubular scaffold design to promote odontoblast cells for regeneration of dentin.
Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation
Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.
2016-01-01
Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169
Root length in the permanent teeth of women with an additional X chromosome (47,XXX females).
Lähdesmäki, Raija E; Alvesalo, Lassi J
2010-07-01
Previous studies have demonstrated differential effects of the X and Y chromosomes on dental development. The expression of sexual dimorphism in terms of tooth size, shape, number and developmental timing has been explained especially by Y chromosome influence. The Y chromosome promotes enamel, crown and root dentin development. The X chromosome has an effect on enamel deposition. The aim of this research is to study the influence of the extra X chromosome on the development of permanent tooth root length. The study subjects (all of whom were from the Kvantti Dental Research Project) were seven 47,XXX females, five female relatives and 51 and 52 population control men and women, respectively. Measurements were made from panoramic radiographs on available permanent teeth by a digital calliper according to established procedures. The results showed that the maxillary root lengths of the 47,XXX females were of the same magnitude as those in normal women, but the mandibular root lengths were longer in 47,XXX females than in normal men or women. Increased enamel thickness in the teeth of 47,XXX females is apparently caused by the active enamel gene in all X chromosomes having no increased influence on crown dentin formation. These results in 47,XXX females indicate an increase in root dentin development, at least in the mandible, which together with the data on crown formation reflects a continuous long-lasting effect of the X chromosome on dental development.
Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.
Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J
2018-02-01
The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.
Histological Effects of Enamel Matrix Derivative on Exposed Dental Pulp.
Bajić, Marijana Popović; Danilović, Vesna; Prokić, Branislav; Prokić, Bogomir Bolka; Manojlović, Milica; Živković, Slavoljub
2015-01-01
Direct pulp capping procedure is a therapeutic application of a drug on exposed tooth pulp in order to ensure the closure of the pulp chamber and to allow the healing process to take place. The aim of this study was to examine the histological effects of Emdogain® on exposed tooth pulp of a Vietnamese pig (Sus scrofa verus). The study comprised 20 teeth of a Vietnamese pig. After class V preparation on the buccal surfaces of incisors, canines and first premolars, pulp was exposed. In the experimental group, the perforations were capped with Emdogain® (Straumann, Basel, Switzerland), while in the control group pulp capping was performed with MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA). All cavities were restored with glass-ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). The observational period was 28 days, after which the animal was sacrificed and histological preparations were made. A light microscope was used to analyze dentin bridge formation, tissue reorganization and inflammation, and the presence of bacteria in the pulp. The formation of dentin bridge was observed in the experimental and control groups. Inflammation of the pulp was mild to moderate in both groups. Angiogenesis and many odontoblast-like cells, responsible for dentin bridge formation, were observed. Necrosis was not observed in any case, nor were bacteria present in the pulp. Histological analysis indicated a favorable therapeutic effect of Emdogain® Gel in direct pulp capping of Vietnamese pigs. Pulp reaction was similar to that of MTA®.
Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite.
Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette
2015-12-01
The aim of this research was to analyse the dental discolouration caused by mineral trioxide aggregate (MTA) induced by bismuth oxide and also assess the colour stability of other dental cements. Bismuth oxide, calcium tungstate and zirconium oxide were placed in contact with sodium hypochlorite for 24 h after which they were dried and photographed. Phase analyses were performed by X-ray diffraction (XRD) of radiopacifiers before and after immersion in sodium hypochlorite. Furthermore, teeth previously immersed in water or sodium hypochlorite were filled with MTA Angelus, Portland cement (PC), PC with 20 % zirconium oxide, PC with 20 % calcium tungstate and Biodentine. Teeth were immersed for 28 days in Hank's balanced salt solution after which they were sectioned and characterized using scanning electron microscopy (SEM) with energy-dispersive mapping and stereomicroscopy. Bismuth oxide in contact with sodium hypochlorite exhibited a change in colour from light yellow to dark brown. XRD analysis demonstrated peaks for radiopacifier and sodium chloride in samples immersed in sodium hypochlorite. The SEM images of the dentine to material interface showed alteration in material microstructure for MTA Angelus and Biodentine with depletion in calcium content in the material. The energy-dispersive maps showed migration of radiopacifier and silicon in dentine. MTA Angelus in contact with a tooth previously immersed in sodium hypochlorite resulted in colour alteration at the cement/dentine interface. MTA Angelus should not be used after irrigation with sodium hypochlorite as this will result in tooth discoloration.
Claus Henn, Birgit; Austin, Christine; Coull, Brent A; Schnaas, Lourdes; Gennings, Chris; Horton, Megan K; Hernández-Ávila, Mauricio; Hu, Howard; Téllez-Rojo, Martha Maria; Wright, Robert O; Arora, Manish
2018-02-01
Associations between manganese (Mn) and neurodevelopment may depend on dose and exposure timing, but most studies cannot measure exposure variability over time well. We apply temporally informative tooth-matrix biomarkers to uncover windows of susceptibility in early life when Mn is associated with visual motor ability in childhood. We also explore effect modification by lead (Pb) and child sex. Participants were drawn from the ELEMENT (Early Life Exposures in MExico and NeuroToxicology) longitudinal birth cohort studies. We reconstructed dose and timing of prenatal and early postnatal Mn and Pb exposures for 138 children by analyzing deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry. Neurodevelopment was assessed between 6 and 16 years of age using the Wide Range Assessment of Visual Motor Abilities (WRAVMA). Mn associations with total WRAVMA scores and subscales were estimated with multivariable generalized additive mixed models. We examined Mn interactions with Pb and child sex in stratified models. Levels of dentine Mn were highest in the second trimester and declined steeply over the prenatal period, with a slower rate of decline after birth. Mn was positively associated with visual spatial and total WRAVMA scores in the second trimester, among children with lower (< median) tooth Pb levels: one standard deviation (SD) increase in ln-transformed dentine Mn at 150 days before birth was associated with a 0.15 [95% CI: 0.04, 0.26] SD increase in total score. This positive association was not observed at high Pb levels. In contrast to the prenatal period, significant negative associations were found in the postnatal period from ~ 6 to 12 months of age, among boys only: one SD increase in ln-transformed dentine Mn was associated with a 0.11 [95% CI: - 0.001, - 0.22] to 0.16 [95% CI: - 0.04, - 0.28] SD decrease in visual spatial score. Using tooth-matrix biomarkers with fine scale temporal profiles of exposure, we found discrete developmental windows in which Mn was associated with visual-spatial abilities. Our results suggest that Mn associations are driven in large part by exposure timing, with beneficial effects found for prenatal levels and toxic effects found for postnatal levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Adhesive/Dentin Interface: The Weak Link in the Composite Restoration
Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence
2010-01-01
Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761
Radiopacity of Methacrylate and Silorane Composite Resins Using a Digital Radiographic System.
Firoozmand, Leily Macedo; Cordeiro, Mariana Gonçalves; Da Silva, Marcos André Dos Santos; De Jesus Tavarez, Rudys Rodolfo; Matos Maia Filho, Etevaldo
The aim of this study was to evaluate the radiopacity of silorane and methacrylate resin composites, comparing them to the enamel, dentin, and aluminum penetrometer using a digital image. From six resin composites (Filtek ™ P90, Filtek Z350, Filtek Z350 XT flow, Tetric Ceram, TPH Spectrum, and SureFil SDR flow) cylindrical disks (5 × 1 mm) were made and radiographed by a digital method, together with a 15-step aluminum step-wedge and a 1 mm slice of human tooth. The degree of radiopacity of each image was quantified using digital image processing. The mean values of the shades of gray of the tested materials were measured and the equivalent width of aluminum was calculated for each resin. The results of our work yielded the following radiopacity values, given here in descending order: Tetric Ceram > TPH > SDR > Z350 > Z350 flow > P90 > enamel > dentin. The radiopacity of the materials was different both for the enamel and for the dentin, except for resin P90, which was no different than enamel. In conclusion, silorane-based resin exhibited a radiopacity higher than dentin and closest to the enamel; a large portion of the methacrylate-based flow and conventional resins demonstrated greater radiopacity in comparison to dentin and enamel.
Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid
2012-01-01
In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471
The self-adjusting file (SAF) system: An evidence-based update.
Metzger, Zvi
2014-09-01
Current rotary file systems are effective tools. Nevertheless, they have two main shortcomings: They are unable to effectively clean and shape oval canals and depend too much on the irrigant to do the cleaning, which is an unrealistic illusionThey may jeopardize the long-term survival of the tooth via unnecessary, excessive removal of sound dentin and creation of micro-cracks in the remaining root dentin. The new Self-adjusting File (SAF) technology uses a hollow, compressible NiTi file, with no central metal core, through which a continuous flow of irrigant is provided throughout the procedure. The SAF technology allows for effective cleaning of all root canals including oval canals, thus allowing for the effective disinfection and obturation of all canal morphologies. This technology uses a new concept of cleaning and shaping in which a uniform layer of dentin is removed from around the entire perimeter of the root canal, thus avoiding unnecessary excessive removal of sound dentin. Furthermore, the mode of action used by this file system does not apply the machining of all root canals to a circular bore, as do all other rotary file systems, and does not cause micro-cracks in the remaining root dentin. The new SAF technology allows for a new concept in cleaning and shaping root canals: Minimally Invasive 3D Endodontics.
Chaussain, Catherine; Eapen, Asha Sarah; Huet, Eric; Floris, Caroline; Ravindran, Sriram; Hao, Jianjun; Menashi, Suzanne; George, Anne
2009-11-12
Dentin Matrix Protein 1 (DMP1) plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2) is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain) domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP) and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury.
Adhesion of multimode adhesives to enamel and dentin after one year of water storage.
Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo
2017-06-01
This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.
Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.
Miho, Otoaki; Sato, Toru; Matsukubo, Takashi
2015-01-01
The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.
TEM characterization of a silorane composite bonded to enamel/dentin.
Mine, Atsushi; De Munck, Jan; Van Ende, Annelies; Cardoso, Marcio Vivan; Kuboki, Takuo; Yoshida, Yasuhiro; Van Meerbeek, Bart
2010-06-01
The low-shrinking composite composed of combined siloxane-oxirane technology (Filtek Silorane, 3M ESPE, Seefeld, Germany) required the development of a specific adhesive (Silorane System Adhesive, 3M ESPE), in particular because of the high hydrophobicity of the silorane composite. The purpose of this study was to characterize the interfacial ultra-structure at enamel and dentin using transmission electron microscopy (TEM). Non-demineralized/demineralized 70-90 nm sections were prepared following common TEM specimen processing procedures. TEM revealed a typical twofold build-up of the adhesive resin, resulting in a total adhesive layer thickness of 10-20 microm. At bur-cut enamel, a tight interface without distinct dissolution of hydroxyapatite was observed. At bur-cut dentin, a relatively thin hybrid layer of maximum a few hundreds of nanometer was formed without clear surface demineralization. No clear resin tags were formed. At fractured dentin, the interaction appeared very superficial (100-200 nm). Distinct resin tags were formed due to the absence of smear plugs. Silver-nitrate infiltration showed a varying pattern of both spot- and cluster-like appearance of nano-leakage. Traces of Ag were typically detected along some part of the enamel-adhesive interface and/or between the two adhesive resin layers. Substantially more Ag-infiltration was observed along the dentin-adhesive interface of bur-cut dentin, as compared to that of fractured dentin. The nano-interaction of Silorane System Adhesive should be attributed to its relatively high pH of 2.7. The obtained tight interface at both enamel and dentin indicates that the two-step self-etch adhesive effectively bridged the hydrophilic tooth substrate with the hydrophobic silorane composite. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta
Joseph, Elizabeth; Rupesh, Suresh; Mathew, Josey
2017-01-01
Dentinogenesis imperfecta (DI) is a hereditary condition that may affect both primary and permanent dentition and is characterized by abnormal dentin formation. The teeth may be discolored with chipping of enamel and, in untreated cases, the entire dentition may wear off to the gingiva. This may lead to the formation of abscesses, tooth mobility, and early loss of teeth. In the Indian population, DI is found to have an incidence of 0.09%. Treatment of DI should aim to remove infection, if any, from the oral cavity; restore form, function, and esthetics; and protect posterior teeth from wear for maintaining the occlusal vertical dimension. Treatment strategies should be selected based on the presenting complaint of the patient, patient’s age, and severity of the problem. This case report presents the management of severe DI with tooth worn off until gingival level in a very young patient using complete overlay denture, which has not been reported earlier. How to cite this article: Syriac G, Joseph E, Rupesh S, Mathew J. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta. Int J Clin Pediatr Dent 2017;10(4):394-398. PMID:29403236
de Oliveira Duque, C C; Soares, D G; Basso, F G; Hebling, J; de Souza Costa, C A
2017-11-01
This paper aims to assess the whitening effectiveness and toxicity of tooth-bleaching protocols applied to enamel/dentin disks simulating mandibular incisors (ICs) and premolars (PMs). A 10% hydrogen peroxide (H 2 O 2 ) gel was applied for 3 × 15, 1 × 15, or 1 × 5 min to enamel/dentin disks simulating mandibular ICs and PMs, and the trans-enamel and trans-dentinal diffusion products were applied to human dental pulp cells (1 h). Professional therapy (35% H 2 O 2 -3 × 15 min) was used as positive control, and non-bleached samples were used as negative control. Cell viability and morphology, oxidative stress generation, and odontoblastic marker expression were assessed. The H 2 O 2 diffusion and enamel color change (ΔE) were also analyzed. The 10% H 2 O 2 gel induced significant cell viability reduction only when applied 3 × 15 min, with the intensity of oxidative stress and down-regulation of odontoblastic markers being higher in the IC group. The other experimental bleaching protocols caused slight alterations regarding the cell parameters evaluated, with intensity being related to enamel/dentin thickness. These effects were also correlated with higher H 2 O 2 diffusion in the IC group. ΔE values similar as positive control were found for the 10% 3 × 15 and 1 × 15 protocols on IC group, after 4 and 6 sessions. Application of a 10% H 2 O 2 bleaching gel for 15 or 45 min to thin dental substrate significantly minimizes cell toxicity in comparison with highly concentrated gels associated with similar esthetic outcomes by increasing the number of bleaching sessions. Bleaching gels with 10% H 2 O 2 applied in small teeth for short periods may be an interesting alternative to obtain whitening effectiveness without causing toxicity to pulp cells, which may be able to reduce the tooth hypersensitivity claimed by patients.
In vitro microleakage of luting cements and crown foundation material.
Lindquist, T J; Connolly, J
2001-03-01
Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was demonstrated on the experimental side between cements and the foundations (P=.0001). Within the experimental conditions of this study, less microleakage was recorded with resin-reinforced glass ionomer cement (ideal or contaminated) than with zinc phosphate cement (ideal or contaminated). There also was less microleakage evident with a foundation of silver amalgam or composite when a dentinal bonding agent was used under ideal conditions.
Influence of Various Acidic Beverages on Tooth Erosion. Evaluation by a New Method
Zimmer, Stefan; Kirchner, Georg; Bizhang, Mozhgan; Benedix, Mathias
2015-01-01
Material & Methods We have analyzed the loss of enamel and dentine after exposure to different non-alcoholic drinks with a simple new method using bovine teeth. 100 enamel and 100 dentine specimens from freshly extracted bovine incisors were randomly attributed to 10 groups (n=10 for enamel and dentine each). Prior to the start of the experiment all specimens were weighed using a precision balance. The mean initial masses (SD) were 35.8 mg (7.2) for enamel and 24.7 mg (7.0) for dentine. No statistically significant differences were found between groups for initial masses (p>0.05, ANOVA with Bonferroni post hoc test). Thereafter, all specimens of one group were simultaneously placed in 200 ml of the following fluids: Coca-Cola, Coca-Cola light, Sprite, apple juice, Red Bull, orange juice, Bonaqua Fruits (Mango-Acai), tap water, chlorinated swimming pool water, and lemon juice. Fluids were continuously ventilated at 37° C for 7 days. Thereafter the specimens were weighed again and the mean mass loss was calculated. Results The values were (enamel/dentine): Coca-Cola 7.5 mg/6.6 mg; Coca-Cola light 5.2 mg/3.5 mg, Sprite 26.1 mg/17.7 mg, apple juice 27.1 mg/15.2 mg, Red Bull 16.6 mg/17.0 mg, orange juice 24.3 mg/20.2 mg, Bonaqua Fruits (Mango-Acai) 17.8 mg/16.2 mg, tap water -0.2 mg/-0.3 mg, swimming pool water -0.3 mg/-0.2 mg, and lemon juice 32.0 mg/28.3 mg. From all drinks, Cola and Cola light showed the least erosivity (p<0.001, ANOVA with Bonferroni post hoc test) whereas lemon juice showed statistically significant higher erosivity than all other drinks except Sprite and apple juice (p<0.01, ANOVA with Bonferroni post hoc test). Conclusions In conclusion, erosivity of common non-alcoholic drinks varies widely. For example, Sprite, apple juice, and orange juice are about five times more erosive than Coca-Cola light. The findings from the present study should be taken into account in choosing a diet that provides satisfactory nutrition while minimizing tooth erosion. PMID:26035729
Influence of various acidic beverages on tooth erosion. Evaluation by a new method.
Zimmer, Stefan; Kirchner, Georg; Bizhang, Mozhgan; Benedix, Mathias
2015-01-01
We have analyzed the loss of enamel and dentine after exposure to different non-alcoholic drinks with a simple new method using bovine teeth. 100 enamel and 100 dentine specimens from freshly extracted bovine incisors were randomly attributed to 10 groups (n=10 for enamel and dentine each). Prior to the start of the experiment all specimens were weighed using a precision balance. The mean initial masses (SD) were 35.8 mg (7.2) for enamel and 24.7 mg (7.0) for dentine. No statistically significant differences were found between groups for initial masses (p>0.05, ANOVA with Bonferroni post hoc test). Thereafter, all specimens of one group were simultaneously placed in 200 ml of the following fluids: Coca-Cola, Coca-Cola light, Sprite, apple juice, Red Bull, orange juice, Bonaqua Fruits (Mango-Acai), tap water, chlorinated swimming pool water, and lemon juice. Fluids were continuously ventilated at 37° C for 7 days. Thereafter the specimens were weighed again and the mean mass loss was calculated. The values were (enamel/dentine): Coca-Cola 7.5 mg/6.6 mg; Coca-Cola light 5.2 mg/3.5 mg, Sprite 26.1 mg/17.7 mg, apple juice 27.1 mg/15.2 mg, Red Bull 16.6 mg/17.0 mg, orange juice 24.3 mg/20.2 mg, Bonaqua Fruits (Mango-Acai) 17.8 mg/16.2 mg, tap water -0.2 mg/-0.3 mg, swimming pool water -0.3 mg/-0.2 mg, and lemon juice 32.0 mg/28.3 mg. From all drinks, Cola and Cola light showed the least erosivity (p<0.001, ANOVA with Bonferroni post hoc test) whereas lemon juice showed statistically significant higher erosivity than all other drinks except Sprite and apple juice (p<0.01, ANOVA with Bonferroni post hoc test). In conclusion, erosivity of common non-alcoholic drinks varies widely. For example, Sprite, apple juice, and orange juice are about five times more erosive than Coca-Cola light. The findings from the present study should be taken into account in choosing a diet that provides satisfactory nutrition while minimizing tooth erosion.
Borges, A B; Santos, L F T F; Augusto, M G; Bonfiette, D; Hara, A T; Torres, C R G
2016-06-01
The objective of this study was to evaluate enamel and dentin susceptibility to toothbrushing abrasion, after bleaching with 7.5% hydrogen peroxide (HP) gel supplemented or not with 0.5% calcium gluconate (Ca). Toothbrushing was performed immediately and 1h after bleaching, with two suspensions (high and low abrasivity). Bovine enamel and dentin specimens were divided into 12 groups (n=10) according to the bleaching gel (with and without Ca), slurry abrasivity (high or low) and elapsed time after bleaching (immediately and after 1h). As control, a group was not bleached, but abraded. The treatment cycle (7 d) consisted of bleaching (1h) and toothbrushing (135 strokes/day) immediatelly or after 1h of artificial saliva exposure. Surface roughness and surface loss (μm) were measured by profilometry and analysed by three-way ANOVA (5%). Surface roughness means were significantly influenced by slurry abrasivity (p<0.0001). For enamel loss, significant triple interaction was observed (p<0.0001). HP-bleached groups and immediately brushed with high-abrasive slurry exhibited increased loss (1.41±0.14) compared to other groups (μm). Control and HP+Ca-bleached groups brushed after 1h with low abrasive slurry presented the lowest loss (0.21±0.03/0.27±0.02). For dentin loss, significant interaction was observed for bleaching and interval factors (p<0.001). 7.5%HP-bleached groups and immediately brushed showed significantly higher loss (8.71±2.45) than the other groups. It was concluded that surface roughness increased when high abrasive was used, independently of bleaching. 7.5%HP increased enamel and dentin loss, mainly with high abrasive slurries. Calcium supplementation of bleaching gel reduced surface loss. Additionally, in order to minimize tooth wear susceptibility, it is recommended to delay brushing after bleaching. After bleaching gel application, postponing toothbrushing is recommended, as well as brushing with low abrasive dentifrices. Additionally, supplementation of hydrogen peroxide gel with calcium-based remineralizing agent potentially reduces tooth loss after abrasion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sulieman, M; Addy, M; Macdonald, E; Rees, J S
2004-09-01
The aim of this study was to investigate safety concerns with bleaching procedures by studying the effects of a high concentration hydrogen peroxide (HP) in-surgery bleaching product on enamel and dentine. Flat enamel and dentine samples embedded in epoxy resin were prepared from human third molar teeth. Erosion of enamel: groups of enamel samples were treated with 35% HP then citric acid (CA) or brushing with toothpaste or CA alone and water alone. Enamel Loss was measured using a profilometer. Abrasion/erosion of dentine: groups of dentine specimens were treated as follows: Group 1--brushed with water for 30 min. Group 2--brushed with 35% HP for 30 min. Group 3--power bleached for 30 min and then Group 4--brushed with toothpaste for 1 minute. Group 5--water soaked for 30 min followed by brushing with toothpaste for 1 min. Group 6--orange juice soaked for 30 min followed by brushing with toothpaste for 1 min. Treatment effects were measured using a profilometer. Hardness tests: enamel and dentine specimens were hardness tested using a Wallace indenter prior to and post bleaching. Scanning Electron Microscopy: enamel and dentine specimens were taped and the exposed tissue treated with 35% HP and then studied under scanning electronmicroscopy (SEM). Enamel erosion: bleaching enamel samples had no measurable effect on enamel. Pre-bleaching had no significant effect on subsequent CA erosion or brushing. Abrasion/erosion of dentine: no significant differences were found between treatments 1-5 with little change from baseline detected. Orange juice (Group 6) produced considerable and significantly more erosion than other treatments. Hardness tests: there were no significant changes in hardness values for enamel and dentine. SEM: there was no evidence of any topographical changes to either enamel or dentine. Using one of the highest concentrations of HP for tooth bleaching procedures and maximum likely peroxide exposure, there was no evidence of deleterious effects on enamel or dentine. It must be assumed that studies which reported adverse effects on enamel and or dentine of bleaches reflect not the bleach itself but the pH of the formulation used.
Ghassemi, A; Hooper, W; Winston, A E; Sowinski, J; Bowman, J; Sharma, N
2009-01-01
The purpose of this controlled clinical trial was to determine the effectiveness and safety of a single-phase dentifrice that delivers calcium, phosphate, and fluoride to the tooth surface (Arm & Hammer Enamel Care for Sensitive Teeth toothpaste, United Kingdom) in reducing dentinal hypersensitivity. Two-hundred and eight qualifying subjects were randomly assigned to either the Enamel Care dentifrice group or a control dentifrice group, and brushed twice daily with their assigned dentifrice for eight weeks. Pain/discomfort in response to a thermal stimulus was assessed at baseline, week 4, and week 8 using a Visual Analogue Scale (VAS; primary outcome variable) and the Schiff Thermal Sensitivity Scale (STSS; secondary outcome variable). After eight weeks, volunteers from the Enamel Care group were switched to the control dentifrice and participated in a second eight-week study to determine the degree of persistence of pain reduction. Both groups had statistically significant VAS score reductions from baseline at weeks 4 and 8, with mean VAS scores in the Enamel Care group decreasing by 45.6% at week 4 and 61.1% at week 8 (p < 0.0001). Enamel Care was statistically significantly more effective than the control at weeks 4 and 8, with respective mean VAS reductions of 63% (p < 0.0001) and 33% (p = 0.0004) greater than the control. Consistent with the VAS score results, the Enamel Care group had respective statistically significant STSS score reductions of 77% and 58% greater than the control group (p < 0.0001). The reductions in dentinal hypersensitivity seen in the Enamel Care group at week 8 persisted for an additional eight weeks, during which the subjects discontinued use of Enamel Care and brushed with the control dentifrice. Enamel Care for Sensitive Teeth toothpaste (United Kingdom) is an effective dentifrice for the management of dentinal hypersensitivity, and its efficacy persists for a least eight weeks following discontinued product use.
Richter, Heiko; Kierdorf, Uwe; Richards, Alan; Melcher, Frank; Kierdorf, Horst
2011-08-01
Fluoride concentration in dentine has been recommended as the best marker for the level of chronic fluoride intake and the most suitable indicator of an individual's total body burden of fluoride. We analysed fluoride concentrations in the dentine of cheek teeth of European roe deer from fluoride-polluted habitats to retrospectively assess the level of fluoride uptake into the tissue. Thereby, we tested the hypothesis of the existence of mechanisms that limit fluoride intake of individuals and fluoride exposure of forming dental hard tissues during the late foetal and early postnatal periods in the species. Using electron-microprobe analysis, fluoride profiles were obtained on sectioned P(4)s, M(1)s, and M(3)s from individuals exhibiting pronounced dental fluorosis. Fluoride concentrations were compared between early formed (peripheral) and late-formed (juxtapulpal) dentine both within single teeth and amongst the three different teeth studied. Peripheral dentine of the M(1), which is formed during the late foetal and early postnatal periods, exhibited markedly lower fluoride concentrations than juxtapulpal dentine of the same tooth and both, peripheral and juxtapulpal dentine of P(4) and M(3) that are formed post-weaning. Our study provides strong support for the hypothesis that in the European roe deer the prenatal and early postnatal (pre-weaning) stages of dental development are (largely) protected against exposure to excess fluoride. This is attributed to the operation of certain protective mechanisms during these periods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.
Dong, X D; Ruse, N D
2003-07-01
The human tooth structures should be understood clearly to improve clinically used restorative materials. The dentinoenamel junction (DEJ) plays a key role in resisting crack propagation in teeth. The aim of this study was to determine the fracture toughness of the enamel-DEJ-dentin complex and to investigate the influence of the DEJ on the fatigue crack propagation path across it by characterizing fatigue-fractured enamel-DEJ-dentin complexes using optical and scanning electron microscopy. The results of this study showed that the fracture toughness of the enamel-DEJ-dentin complex was 1.50 +/- 0.28 Mpa x m(1/2). Based on the results of this investigation, it was concluded that the DEJ complex played a critical role in resisting crack propagation from enamel into dentin. The DEJ complex is, approximately, a 100 to 150 microm broad region at the interface between enamel and dentin. The toughening mechanism of the DEJ complex may be explained by the fact that crack paths were deflected as cracks propagated across it. Understanding the mechanism of crack deflection could help in improving dentin-composite as well as ceramic-cement interfacial qualities with the aim to decrease the risk of clinical failure of restorations. Both can be viewed as being composed from a layer of material of high strength and hardness bonded to a softer but tougher substratum (dentin). The bonding agent or the luting cement layer may play the critical role of the DEJ in improving the strength of these restorations in clinical situations. Copyright 2003 Wiley Periodicals, Inc.
Determination of ABO blood grouping and Rhesus factor from tooth material.
Kumar, Pooja Vijay; Vanishree, M; Anila, K; Hunasgi, Santosh; Suryadevra, Sri Sujan; Kardalkar, Swetha
2016-01-01
The aim of the study was to determine blood groups and Rhesus factor from dentin and pulp using absorption-elution (AE) technique in different time periods at 0, 3, 6, 9 and 12 months, respectively. A total of 150 cases, 30 patients each at 0, 3, 6, 9 and 12 months were included in the study. The samples consisted of males and females with age ranging 13-60 years. Patient's blood group was checked and was considered as "control." The dentin and pulp of extracted teeth were tested for the presence of ABO/Rh antigen, at respective time periods by AE technique. Data were analyzed in proportion. For comparison, Chi-square test or Fisher's exact test was used for the small sample. Blood group antigens of ABO and Rh factor were detected in dentin and pulp up to 12 months. For both ABO and Rh factor, dentin and pulp showed 100% sensitivity for the samples tested at 0 month and showed a gradual decrease in the sensitivity as time period increased. The sensitivity of pulp was better than dentin for both the blood grouping systems and ABO blood group antigens were better detected than Rh antigens. In dentin and pulp, the antigens of ABO and Rh factor were detected up to 12 months but showed a progressive decrease in the antigenicity as the time period increased. When compared the results obtained of dentin and pulp in ABO and Rh factor grouping showed similar results with no statistical significance. The sensitivity of ABO blood grouping was better than Rh factor blood grouping and showed a statistically significant result.
External apical root resorption diagnosis by using FII human dentine fraction and salivary IGg.
Da-Costa, Tânia Maris Pedrini Soares; Hidalgo, Mirian Marubayashi; Consolaro, Alberto; Lima, Carlos Eduardo de Oliveira; Tanaka, Evelise Ono; Itano, Eiko Nakagawa
2018-06-01
External apical root resorption as a consequence of orthodontic treatment is an inflammatory pathological process that results in permanent loss of tooth structure from the root apex. This study aimed to investigate the diagnostic potential of human dentine fractions and salivary IgG in external apical root resorption. Saliva samples were collected from 10 patients before (T0) and after 3 (T3), 6 (T6) and 12 (T12) months of orthodontic treatment. The total dentinal extract, obtained from human third molars, was fractioned by gel filtration chromatography in three fractions denominated FI, FII and FIII. The root resorption analysis of the upper central incisors was performed by digital image subtraction method. Reactivity of salivary IgG to antigenic fractions of dentine was determined by enzyme-linked immunosorbent assay (Elisa). Regardless of treatment, FI dentin fraction with high MM (<300kDa) was the one that presented highest reactivity with salivary IgG. However, it was found higher salivary IgG reactivity for FII (69 to 45 kilodalton [kDa]) as compared to FIII (<45kDa) at (T6) and (T12), (P<0.05), the same periods in that the root resorptions were detected. Our results suggest that FII human dentine fraction and salivary IgG have potential to be used in diagnosis and monitoring of external apical root resorption. The development of a practical and accessible biochemical test using saliva and FII dentine fraction may help in the prevention of severe root resorption. Copyright © 2018. Published by Elsevier Masson SAS.
Biomimetic mineralization: long-term observations in patients with dentin sensitivity.
Guentsch, Arndt; Seidler, Karin; Nietzsche, Sandor; Hefti, Arthur F; Preshaw, Philip M; Watts, David C; Jandt, Klaus D; Sigusch, Bernd W
2012-04-01
Cervical tooth erosion is increasingly observed among adults and frequently associated with dentin sensitivity (DS). This study evaluated the effectiveness on DS of a biomimetic mineralization system (BIMIN) in comparison to the current standard treatment (Gluma(®) Desensitizer, Gluma). In this single-blind, 2-arm study, 40 patients with confirmed cervical DS were randomized to either the test group or the positive control group. A Visual-Analog-Scale (VAS) was used to assess DS following stimulation of the exposed dentin with a 2-s air blast. Assessments were made at baseline (pre-treatment), 2 days, 4, 8 and 12 weeks, and 12 months after treatment. Two-stage replicas were obtained from the treated teeth and gold sputtered at baseline, and 2 days, 3 and 12 months after treatment. Surface topography of the treated cervical lesions and occlusion of dentinal tubules were investigated using scanning electron microscopy (SEM). Both treatments led to a statistically significant reduction (P<0.0001) in DS that persisted over the entire 12-month observation period. Differences in DS between the treatments were not statistically significant. SEM photomicrographs demonstrated that a mineral layer concealed the dentinal tubules in the test group. In contrast, numerous dentinal tubules remained visible in cervical defects that were treated with Gluma. A biomimetic mineralization kit was successfully used to treat patients exhibiting DS. The effect was similar to using Gluma, and was likely the result of the deposition of an enamel-like layer on the exposed cervical dentin. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Neanderthal and Denisova tooth protein variants in present-day humans
Zanolli, Clément; Hourset, Mathilde; Esclassan, Rémi
2017-01-01
Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein). Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes) and one is the derived enamelin major variant, T648I (rs7671281), associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or disease susceptibility in these populations. This modern regional distribution of archaic dental polymorphisms may reflect persistence of archaic variants in some populations and may contribute in part to the geographic dental variations described in modern humans. PMID:28902892
2014-01-01
Background Caries, enamel hypoplasia, molar incisor hipomineralization, amylogenesis imperfecta, dentine dysplasia, hypophosphatasia and other dental disorders lead to tooth mineralization disturbances and structural abnormalities, decreasing masticatory organ functions. Dental disorders in sheep can lead to premature slaughter before they have attained final stage of their reproductive life and induce economic loss due to high flock replacement costs. Growth rate, health status and meat quality of sheep depends on tooth properties and quality determining in large extent efficiency of the masticatory apparatus and initial food break up. Considering lack of basic anatomical and physiological data on teeth properties in sheep, the aim of the study was to evaluate morphometric, densitometric and mechanical traits of deciduous mandibular incisor, canine and the second premolar obtained at the slaughter age of 5 months of life. Results The obtained results have shown the highest values of weight, total tooth volume, enamel volume and dentine volume in second premolar. Morphometric and mechanical parameters of incisors reached the highest values in first incisor and decreased gradually in second and third incisor, and in canine. Densitometric measurements have not revealed significant differences of the volumetric tooth mineral density in hard dental tissues between the investigated teeth. Conclusions In conclusion, proposed methodological approach is noninvasive since the deciduous teeth undergo physiological replacement with permanent teeth. Deciduous teeth can be easy collected for analyses from large animal population and may reflect mineral status and metabolism resulting from postnatal growth and development of the whole flock. In individual cases, evaluation of properties of deciduous teeth may serve for breeding selection and further reproduction of sheep possessing favorable traits of teeth and better masticatory system functions. PMID:24548814
Radiopacity of 28 Composite Resins for Teeth Restorations.
Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene
2016-02-01
Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p < 0.05). All the specimens were more radiopaque than dentin, except for P90 (which was equally radiopaque) and Durafill (which was less radiopaque). The thickness of the specimens may influence the similarity to the enamel's radiopacity. All of the composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p < 0.05). With these composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.
Chokechanachaisakul, Uraiwan; Kaneko, Tomoatsu; Yamanaka, Yusuke; Okiji, Takashi; Suda, Hideaki
2012-10-01
In conventional whole-tooth culture systems, limitation exists regarding maintenance of the vitality of the dental pulp, because this tissue is encased in rigid dentin walls that hinder nutrition supply. We here report a whole tooth-in-jaw-bone culture system of rat mandibular first molars, where transcardiac perfusion with culture medium was carried out before placement of the jaw bone into culture medium, aiming to facilitate longer time preservation of the dental pulp tissue. Following 7 days of culture, the pulp tissues were analyzed by histology and immunohistochemistry to ED2 (antiresident macrophage). ED2-positive macrophages were also analyzed for their Class II MHC, interleukin-6 (IL-6), and p53 mRNA expression levels by means of immune-laser capture microdissection (immune-LCM). Dentin sialophosphoprotein (DSPP) mRNA expression in odontobalstic layer was also examined by LCM. Teeth cultured following saline-perfusion and nonperfusion served as cultured controls. Normal teeth also served as noncultured controls. Histological examination demonstrated that the structure of the pulp tissue was well preserved in the medium-perfused explants in contrast to the cultured control groups. The Class II MHC, IL-6, and p53 mRNA expression levels of ED2-positive cells and DSPP expression levels of odontoblastic layer tissues in the pulp of medium-perfused explants were not significantly different from those in the noncultured normal teeth. In conclusion, the structural integrity and mRNA expression in the pulp were maintained at the in vivo level in the ex vivo whole tooth-in-jaw-bone culture system. The system may lay the foundation for studies aiming at defining further histological and molecular mechanism of the pulp. Copyright © 2012 Wiley Periodicals, Inc.
Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V
2001-09-01
A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.
Separate whitening effects on enamel and dentin after fourteen days.
Kugel, Gerard; Petkevis, Jason; Gurgan, Sevil; Doherty, Eileen
2007-01-01
The purpose of this study was to investigate the mechanism of action of a bleaching agent, as it relates to enamel and dentin. Twenty-six extracted human molar teeth were sectioned at the cemento-enamel junction and were randomly assigned to two groups. L*a*b* readings were taken with a spectrophotometer: on buccal surfaces of the crown, at enamel and dentin. The teeth were exposed to carbamide peroxide or placebo gel and L*a*b* scores were again recorded to determine color changes. Treatments were compared using ancova test with baseline color as the covariate. Relative to placebo, buccal surfaces exhibited the greatest Deltab* and DeltaL* color change. On buccal surfaces, the adjusted mean (SE) treatment differences were -7.8 (1.00) for Deltab* and 5.7 (0.97) for DeltaL, with groups differing significantly (p < 0.0001). On enamel surfaces, treatment differences were -3.6 (0.61) for Deltab* and 4.6 (0.80) for DeltaL* (p < 0.0001). Dentin exhibited the least color improvement. Adjusted mean (SE) treatment differences were -1.9 (0.87) for Deltab* and 2.4 (1.10) for DeltaL*, with groups differing significantly (p < 0.02) on dentin color change. The majority of color change seen on the buccal surface of tooth crowns exposed to carbamide peroxide 15% was because of the color change in enamel. As compared to enamel, dentin was less affected after 14 days.
Degradation in the fatigue crack growth resistance of human dentin by lactic acid
Orrego, Santiago; Xu, Huakun; Arola, Dwayne
2017-01-01
The oral cavity frequently undergoes localized changes in chemistry and level of acidity, which threatens the integrity of the restorative material and supporting hard tissue. The focus of this study was to evaluate the changes in fatigue crack growth resistance of dentin and toughening mechanisms caused by lactic acid exposure. Compact tension specimens of human dentin were prepared from unrestored molars and subjected to Mode I opening mode cyclic loads. Fatigue crack growth was achieved in samples from mid- and outer-coronal dentin immersed in either a lactic acid solution or neutral conditions. An additional evaluation of the influence of sealing the lumens by dental adhesive was also conducted. A hybrid analysis combining experimental results and finite element modeling quantified the contribution of the toughening mechanisms for both environments. The fatigue crack growth responses showed that exposure to lactic acid caused a significant reduction (p≤0.05) of the stress intensity threshold for cyclic crack extension, and a significant increase (p≤0.05) in the incremental fatigue crack growth rate for both regions of coronal dentin. Sealing the lumens had negligible influence on the fatigue resistance. The hybrid analysis showed that the acidic solution was most detrimental to the extrinsic toughening mechanisms, and the magnitude of crack closure stresses operating in the crack wake. Exposing dentin to acidic environments contributes to the development of caries, but it also increases the chance of tooth fractures via fatigue-related failure and at lower mastication forces. PMID:28183665
Freitas, Anderson Z.; Bachmann, Luciano; Benetti, Carolina; Ana, Patricia A.
2018-01-01
This in vitro study evaluated the compositional, crystalline, and morphological effects promoted by Nd:YAG laser on root dentin, and verified the effects of laser and topical acidulated phosphate fluoride application (APF-gel) on dentin erosion. 180 bovine dentin slabs were randomized into 4 groups (n = 45): G1–untreated, G2–APF-gel (1.23% F−, 4 min), G3–Nd:YAG (1064 nm, 84.9 J/cm2, 10 Hz), and G4–APF-gel application followed by Nd:YAG laser irradiation. The compositional, crystalline, and morphological effects promoted by treatments were investigated on five samples of each experimental group. The other samples were submitted to a 5-day, 10-day, or 15-day erosive and abrasive demineralization and remineralization cycling in order to create erosion lesions. The area and depth of lesions, as well as the optical attenuation coefficient, were assessed, and all data were statistically analysed (p < 0.05). Nd:YAG laser promoted the reduction of carbonate, the formation of tetracalcium phosphate, as well as the melting and recrystallization of the dentin surface. Laser significantly decreased the area and depth of erosion lesions and altered the optical attenuation coefficient when compared to untreated and APF-gel groups, but the association of APF-gel and laser did not promote an additional effect. Nd:YAG laser irradiation can be a promissory treatment to prevent dentin erosion and the abrasion process. PMID:29389868
Bressani, Ana Eliza Lemes; Mariath, Adriela Azevedo Souza; Haas, Alex Nogueira; Garcia-Godoy, Franklin; de Araujo, Fernando Borba
2013-08-01
To compare the effect of incomplete caries removal (ICR) and indirect pulp capping (IPC) with calcium hydroxide (CH) or an inert material (wax) on color, consistency and contamination of the remaining dentin of primary molars. This double-blind, parallel-design, randomized controlled trial included 30 children presenting one primary molar with deep caries lesion. Children were randomly assigned after ICR to receive IPC with CH or wax. All teeth were then restored with resin composite. Baseline dentin color and consistency were evaluated after ICR, and dentin samples were collected for contamination analyses using scanning electron microscopy. After 3 months, restorations were removed and the three parameters were re-evaluated. In both groups, dentin became significantly darker after 3 months. No cases of yellow dentin were observed after 3 months with CH compared to 33.3% of the wax cases (P < 0.05). A statistically significant difference over time was observed only for CH regarding consistency. CH stimulated a dentin hardening process in a statistically higher number of cases than wax (86.7% vs. 33.3%; P = 0.008). Contamination changed significantly over time in CH and wax without significant difference between groups. It was concluded that CH and wax arrested the carious process of the remaining carious dentin after indirect pulp capping, but CH showed superior dentin color and consistency after 3 months.
Saoud, Tarek Mohamed A.; Ricucci, Domenico; Lin, Louis M.; Gaengler, Peter
2016-01-01
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of ‘regenerative endodontics’ emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists’ Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis. PMID:29563445
Saoud, Tarek Mohamed A; Ricucci, Domenico; Lin, Louis M; Gaengler, Peter
2016-02-27
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of 'regenerative endodontics' emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists' Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis.
The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study.
Rodrigues, Raphaela F; Ramos, Carla M; Francisconi, Paulo A S; Borges, Ana Flávia S
2015-03-01
Clinicians continue to search for ways to simplify bonding procedures without compromising clinical efficacy. The purpose of this study was to evaluate the shear strength of self-adhesive cements RelyX U100 and RelyX U200, and conventional resin cement RelyX ARC to enamel and dentin after different surface treatments. The crowns of 120 bovine incisor teeth were separated from the roots and embedded in epoxy resin in polyvinyl chloride tubes. In each tooth, the area to be cemented was delimited with central holed adhesive tape. The teeth were distributed into 12 groups (n=10) according to the substrate; etched or not with 37% phosphoric acid; and cement type of enamel-U100, enamel-phosphoric acid-U100, enamel-U200, enamel-phosphoric acid-U200, enamel-ARC, enamel-phosphoric acid-ARC, dentin-U100, dentin-phosphoric acid-U100, dentin-U200, dentin-phosphoric acid-U200, dentin-ARC, and dentin-phosphoric acid-ARC. After 7 days of storage in artificial saliva, shear strength tests were performed by using a universal testing machine (0.5 mm/min). The data were analyzed with 3-way ANOVA and the Tukey test (α=.05). Fracture analysis was performed with a light microscope. Two specimens from each group were analyzed with a scanning electron microscope. In enamel, ARC (9.96 MPa) had higher shear strength (P=.038) than U100 (5.14 MPa); however, after surface etching, U100 (17.81 MPa) and U200 (17.52 MPa) had higher shear strength (P<.001). With dentin, no significant differences were observed (P=.999), except for dentin-ARC (0.34 MPa) (P=.001). Most fractures were of the adhesive type. U200 self-adhesive cement had similar bond strength to the ARC in enamel, but the combination with phosphoric acid had the best bond strength. For dentin, self-adhesive resin cements are equally effective alternatives to conventional resin cement. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Chen, Shisheng; Lv, Yanyi; Wang, Dian; Yu, Xiaojun
2016-09-01
Aspartic acid racemization in teeth has been increasingly used to estimate chronological age with a considerably high accuracy in forensic practice. The Chaoshan population in South China is relatively isolated in geography, and has specific lifestyle and dietary inhibits. It is still unknown whether this method is suitable for this population. The aim of this study was to analyze the relationship between chronological age and the d/l aspartic acid ratio in dentin in the third molar tooth of the Chaoshan population. Fifty-eight non-carious third molar teeth (31 mandibles and 27 maxillae), from 58 living individuals of known age (24 males and 34 females), were retrieved. Dentin was extracted from these teeth. The d- and l-aspartic acids in dentins were separated and detected by high performance liquid chromatography (HPLC). Linear regression was performed between the d/l aspartic acid ratio of dentins and chronological age. Results showed that the correlation coefficient (r) was 0.969, and the mean absolute error (MAE) was 2.19 years, its standard deviation (SD) was ±1.53 years, indicating excellent correlation. There was no significant difference in racemization rates of dentin between sexes (P=0.113, F=2.6), or between mandibles and maxillae (P=0.964, F=0.000). Results indicate that the ratio of the d and l forms of aspartic acid of dentins, in the third molar, is closely correlated with chronological age, special lifestyle do no obviously affect the accuracy of the age estimations by aspartic acid racemization of the dentin in the third molar and that aspartic acid racemization in the third molar dentin can be used as an accurate method to estimate chronological age in the Chaoshan population in South China. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Grover, Harpreet Singh; Choudhary, Pankaj
2016-01-01
Introduction Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. Aim To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Materials and Methods Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey’s post hoc multiple comparison test. Results All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Conclusion Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser. PMID:27630957
Saluja, Mini; Grover, Harpreet Singh; Choudhary, Pankaj
2016-07-01
Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey's post hoc multiple comparison test. All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser.
Model-based vision system for automatic recognition of structures in dental radiographs
NASA Astrophysics Data System (ADS)
Acharya, Raj S.; Samarabandu, Jagath K.; Hausmann, E.; Allen, K. A.
1991-07-01
X-ray diagnosis of destructive periodontal disease requires assessing serial radiographs by an expert to determine the change in the distance between cemento-enamel junction (CEJ) and the bone crest. To achieve this without the subjectivity of a human expert, a knowledge based system is proposed to automatically locate the two landmarks which are the CEJ and the level of alveolar crest at its junction with the periodontal ligament space. This work is a part of an ongoing project to automatically measure the distance between CEJ and the bone crest along a line parallel to the axis of the tooth. The approach presented in this paper is based on identifying a prominent feature such as the tooth boundary using local edge detection and edge thresholding to establish a reference and then using model knowledge to process sub-regions in locating the landmarks. Segmentation techniques invoked around these regions consists of a neural-network like hierarchical refinement scheme together with local gradient extraction, multilevel thresholding and ridge tracking. Recognition accuracy is further improved by first locating the easily identifiable parts of the bone surface and the interface between the enamel and the dentine and then extending these boundaries towards the periodontal ligament space and the tooth boundary respectively. The system is realized as a collection of tools (or knowledge sources) for pre-processing, segmentation, primary and secondary feature detection and a control structure based on the blackboard model to coordinate the activities of these tools.
Solomon, Raji Viola; Faizuddin, Umrana; Guniganti, Sushma Shravani; Waghray, Shefali
2015-01-01
Regenerative endodontic procedures are biologically based procedures which deal with the regeneration of pulp-like tissue, more idealistically the pulp-dentin complex. The regeneration of this pulp-dentin complex in an infected necrotic tooth with an open apex is possible only when the canal is effectively disinfected. Though there are various procedures for treating open apex ranging from Ca(OH) 2 apexification, mineral trioxide aggregate apexification and surgical approach, regeneration of tissues has always taken superior hand over the repair of tissues. The mechanics behind the regenerative endodontic procedures is that despite the tooth being necrotic, some pulp tissue can survive apically which under favorable conditions proliferate to aid in the process of regeneration. In the past 2 decades, an increased understanding of the physiological roles of platelets in wound healing and after tissue injury has led to the idea of using platelets as therapeutic tools in the field regenerative endodontics. In the present case report with an open apex, high sterilization protocol is followed using triple antibiotic paste as intra-canal medicament, followed which platelet rich fibrin is used as the regenerative material of choice. Over an 18-month follow-up period, clinically patient is asymptomatic and radiographically there is complete regression of the periapical lesion and initiation of the root end closure.
Reis-Filho, Cláudio R; Silva, Elisângela R; Martins, Adalberto B; Pessoa, Fernanda F; Gomes, Paula V N; de Araújo, Mariana S C; Miziara, Melissa N; Alves, José B
2012-05-01
In this study we investigated the possible use of human demineralised dentine matrix (DHDM), obtained from the extracted teeth, as bone graft material and evaluated the expression of vascular endothelial growth factor (VEGF) induced by this material in the healing process of tooth sockets of rats. To evaluate bone regeneration and expression of VEGF induced by DHDM, thirty-two male Wistar rats weighing approximately 200 g were used. After maxillary second molar extraction, the left sockets were filled with DHDM and the right sockets were naturally filled by blood clot (control). The animals were sacrificed at 3, 7, 14 and 21 days after surgery and upper maxillaries were processed for histological, morphometric and immunohistochemical analyses. DHDM was used to evaluate the mechanical effect of bone graft material into sockets. Expression of VEGF was determined by immunohistochemistry in all groups. Our results demonstrated a significant increase in the newly formed bone tissue in sockets of 7, 14 and 21 days and a significant increase in VEGF expression at days 7 and 14 on treated sockets. Our results showed that DHDM increases the expression of VEGF and accelerates the healing process in rats tooth sockets, by stimulating bone deposition and also vessels formation. These results suggest that DHDM has osteoinductive/osteoconductive potential and may represent an efficient grafting material on guided bone regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.
Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H
2017-11-01
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.
Gelskey, S C; White, J M; Gelskey, D E; Kremers, W
1998-11-01
The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.
Divya, Gaddam; Prasad, Madhu Ghanashyam; Vasa, Aron Arun Kumar; Vasanthi, Done; Ramanarayana, Boyapati; Mynampati, Praffulla
2015-07-01
Dental caries continues to affect a significant portion of the world population and treatment of the decay is associated with pain by many patients. Intervention and application of rotary instruments for treatment of carious lesions has often resulted in considerable removal of tooth structure. Chemo-mechanical method, a minimal invasive technique for caries removal was developed to overcome these shortcomings. This innovative method seems to be efficient in removing infected dentine without altering the healthy dental tissue or harming the adjacent oral mucosa. To evaluate the efficacy and efficiency of Caries removal Using Polymer Bur, Stainless Steel Bur, Carisolv and Papacarie. A total of 120 sectioned specimens were obtained from 60 extracted teeth. Each tooth was sectioned mesiodistally in the center of the carious lesion so that two halves (buccal and lingual or palatal) having equal sized carious lesions are compared. The sectioned specimens were subdivided into four groups (Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie) allotting 30 specimens to each for caries excavation. One-way ANOVA, Chi-square test analysis was done for comparison between groups which showed significant results with Stainless Steel Bur excavation taking less mean time when compared to other agents and Polymer Bur showed more amount of bacterial remnants after excavation whereas Carisolv and Papacarie were efficient with less dentinal tubule destruction and bacterial remnants after excavation. Further inter comparison between groups was done using Paired t-test and Fischer's Exact-test. The Mean time taken by Stainless Steel Bur excavation was found to be less and caused more amount of dentinal tubule destruction when compared to Polymer Bur, Carisolv and Papacarie. Chemo-mechanical methods found to be more efficient with lesser amount of bacterial remnants and dentinal tubule destruction after caries excavation when compared to conventional methods.
Prasad, Madhu Ghanashyam; Vasa, Aron Arun Kumar; Vasanthi, Done; Ramanarayana, Boyapati; Mynampati, Praffulla
2015-01-01
Context Dental caries continues to affect a significant portion of the world population and treatment of the decay is associated with pain by many patients. Intervention and application of rotary instruments for treatment of carious lesions has often resulted in considerable removal of tooth structure. Chemo-mechanical method, a minimal invasive technique for caries removal was developed to overcome these shortcomings. This innovative method seems to be efficient in removing infected dentine without altering the healthy dental tissue or harming the adjacent oral mucosa. Aim To evaluate the efficacy and efficiency of Caries removal Using Polymer Bur, Stainless Steel Bur, Carisolv and Papacarie. Materials and Methods A total of 120 sectioned specimens were obtained from 60 extracted teeth. Each tooth was sectioned mesiodistally in the center of the carious lesion so that two halves (buccal and lingual or palatal) having equal sized carious lesions are compared. The sectioned specimens were subdivided into four groups (Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie) allotting 30 specimens to each for caries excavation. Results One-way ANOVA, Chi-square test analysis was done for comparison between groups which showed significant results with Stainless Steel Bur excavation taking less mean time when compared to other agents and Polymer Bur showed more amount of bacterial remnants after excavation whereas Carisolv and Papacarie were efficient with less dentinal tubule destruction and bacterial remnants after excavation. Further inter comparison between groups was done using Paired t-test and Fischer’s Exact-test. Conclusion The Mean time taken by Stainless Steel Bur excavation was found to be less and caused more amount of dentinal tubule destruction when compared to Polymer Bur, Carisolv and Papacarie. Chemo-mechanical methods found to be more efficient with lesser amount of bacterial remnants and dentinal tubule destruction after caries excavation when compared to conventional methods. PMID:26393204
Gala-Garcia, Alfonso; Teixeira, Karina Imaculada Rosa; Wykrota, Francisco Henrique Lana; Sinisterra, Rubén Dario; Cortés, Maria Esperanza
2010-01-01
The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC) and poly (glycolic)-poly (lactic acid) (PLGA) material or a calcium hydroxide [Ca(OH)2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH)2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH)2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.
Temperature rises during application of Er:YAG laser under different primary dentin thicknesses.
Hubbezoglu, Ihsan; Unal, Murat; Zan, Recai; Hurmuzlu, Feridun
2013-05-01
The present study investigated the effects of the Er:YAG laser's different pulse repetition rates on temperature rise under various primary dentin thicknesses. The Er:YAG laser can be used for restorative approaches in clinics and is used to treat dental caries. There are some reports that explain the temperature rise effect of the Er:YAG laser. Recently, the Er:YAG laser has been found to play an important role in temperature rises during the application on dentin. Caries-free primary mandibular molars were prepared to obtain dentin discs with 0.5, 1, 1.5, and 2 mm thicknesses (n=10). These discs were placed between the Teflon mold cylinders of a temperature test apparatus. We preferred three pulse repetition rates of 10, 15, and 20 Hz with an energy density of 12.7 J/cm2 and a 230 μs pulse duration. All dentin discs were irradiated for 30 sec by the Er:YAG laser. Temperature rises were recorded using an L-type thermocouple and universal data loggers/scanners (E-680, Elimko Co., Turkey). Data were analyzed by two-way ANOVA and Tukey tests. Whereas the lowest temperature rise (0.44±0.09 °C) was measured from a 10 Hz pulse repetition rate at a dentin thickness of 2 mm, the highest temperature rise (3.86±0.43 °C) was measured from a 20 Hz pulse repetition rate at a 0.5 mm dentin thickness. Temperature rise did not reach critical value for pulpal injury in any primary dentin thicknesses irradiated by a high repetition rate of the Er:YAG laser.
Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G
2015-07-01
The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wistuba, J; Völker, W; Ehmcke, J; Clemen, G
2003-10-01
Glycosaminoglycans (GAGs) involved in the formation of the teeth of Ambystoma mexicanum were located and characterized with the cuprolinic blue (CB) staining method and transmission electron microscopy (TEM). Glycosaminoglycan-cuprolinic blue precipitates (GAGCB) were found in different compartments of the mineralizing tissue. Various populations of elongated GAGCB could be discriminated both according to their size and their preferential distribution in the extracellular matrix (ECM). GAGCB populations that differ in their composition could be attributed not only to the compartments of the ECM but also to different zones and to different tooth types (early-larval and transformed). Larger precipitates were only observed within the dentine matrix of the shaft of the early-larval tooth. The composition of the populations differed significantly between the regions of the transformed tooth: pedicel, shaft and dividing zone. In later stages of tooth formation, small-sized GAGCBs were seen as intracellular deposits in the ameloblasts. It is concluded that the composition of GAGCB populations seems to play a role in the mineralization processes during tooth development in A. mexicanum and influence qualitative characteristics of the mineral in different tooth types and zones, and it is suggested that GAGs might be resorbed by the enamel epithelium during the late phase of enamel formation.
NASA Astrophysics Data System (ADS)
Kang, Hobin; Darling, Cynthia L.; Fried, Daniel
2016-08-01
The purpose of this study is to show that optical clearing agents can be used to increase the visibility of deeply penetrating occlusal lesions that have reached the underlying dentin and spread laterally under the enamel. Previous studies have shown that high refractive index fluids can increase the contrast of caries lesions. Extracted teeth with natural occlusal lesions were imaged with optical coherence tomography (OCT) with and without the addition of a transparent vinyl polysiloxane impression material (VPS) currently used in vivo. The relative intensity of the reflectivity from the underlying lesion area for each sample was measured before and after application of the VPS. Lesion presence was confirmed with polarized light microscopy and microradiography. Application of VPS significantly increased (P<0.0001) the integrated reflectivity of subsurface dentinal lesions. This study shows that optical clearing agents can be used to increase the optical penetration and the visibility of subsurface lesions and the dentinal-enamel junction under sound and demineralized enamel in OCT images.
NASA Astrophysics Data System (ADS)
Lizarelli, Rosane F. Z.; Mazzetto, Marcello O.; Bagnato, Vanderlei S.
2001-04-01
Dentin hypersensitivity is the most common patient's complain related to pain. In fact, this is a challenge to treat specially if conventional techniques are used. The possibility to treat pain through a low intensity laser gives us an opportunity to solve this important clinical problem without promote a discomfort to patient. The main point here is not if this kind of treatment is anti- inflammatory to pulp and/or biostimulatory to production of irregular secondary dentin. The most important point here is to understand how much energy is necessary to reach conditions where to tooth become insensible to external stimulus. Our double-blinded study compared a group without laser (Placebo) with five other groups where different doses at 660 nm low intensity laser were employed. The final conclusion is that for 660 nm laser therapy, the doses from 0.13 to 2.0 J/cm2 were more efficiency than the others. The follow up care in this study was of 45 days.
Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo
2015-11-01
Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. © 2015 Wiley Periodicals, Inc.
Dentistry investigations of teeth and dental prostheses using OCT
NASA Astrophysics Data System (ADS)
Sinescu, C.; Duma, V.-F.; Canjau, S.; Dobre, G.; Demian, D.; Cernat, R.; Negrutiu, M. L.; Todea, C.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.
2016-04-01
We present some of our recent investigations in Dental Medicine using Optical Coherence Tomography (OCT). Time Domain (TD), Spectral Domain (SD), and Swept Source (SS) OCT in-house developed systems are being used, for both ex vivo and in vivo investigations in the oral cavity. We study ex vivo the interface between the tooth and the dental sealant and demonstrate the limitations of the X-rays investigations that are now the gold standard for such procedures. Using OCT, defects in the interface that cannot be identified in radiographs can be determined both as position and magnitude. The drilling process of teeth can also be characterized in real time using OCT, to monitor the remaining dentin thickness (RDT) in order to avoid opening the pulp chamber. We demonstrate in this respect that an RDT of 0.5 mm is the minimum value to assure the integrity of the dentin wall between the drilled cavity and the pulp chamber; at an RDT of 0.3 mm or less a fracture is initiated, the dentin is punctured and endodontic treatment must follow. In vivo OCT investigations in the oral cavity were also performed (i.e., for metalloceramic prostheses and for ceramic inlay tooth interfaces), with the low cost, light weight and versatile handheld probes with 1D galvoscanners that we have developed and applied for a range of in-house developed OCT systems, in various clinical applications. They are briefly discussed, as well as some of our current and future work in the field, including for studies of soft tissue in the mouth.
Pulpal reaction to a dental adhesive in deep human cavities.
Torstenson, B
1995-08-01
In the last years several dental adhesives have been developed. They are supposed to chemically adhere to dentin and a liner to protect the pulp is not used. The aim of this study was to compare the short-term pulpal reaction, in an intra-toothpair study, between a dental adhesive, Scotchbond 2, and a lining system, Tubulitec, in combination with P-50 in surface-sealed cavities. Deep buccal cavities in 16 human pairs of premolars, 32 teeth, were restored in vivo with a light cured composite resin, P-50. To minimize bacterial contamination all cavities were treated with a cleanser, Tubulicid, and the cavities were surface-sealed with temporary cement, Coltosol. One tooth in each pair, the test, was treated with Scotchprep Dentin Primer and Scotchbond 2 Light Cure Dental Adhesive. In the other tooth in the pair, the control, Tubulitec Primer and Liner were used. The teeth were extracted after 6-14 days. The sections were evaluated for degree of inflammation and the presence of bacteria. Irrespective of treatment of dentin the majority of teeth, 23, including one pulpal exposure, revealed no inflammation or a few inflammatory cells. In four test teeth, including one pulpal exposure, and two controls, growth of bacteria was found on the cavity walls and slight or moderate inflammation was seen in the corresponding pulps. In one test and two control teeth slight inflammation was seen but no bacteria could be detected. In the absence of bacteria Scotchbond 2 did not seem to irritate the pulp.(ABSTRACT TRUNCATED AT 250 WORDS)
Composite resins in the 21st century.
Willems, G; Lambrechts, P; Braem, M; Vanherle, G
1993-09-01
Human enamel and dentin should be used as the physiologic standards with which to compare composite resins, especially in the posterior region. The intrinsic surface roughness of composite resins must be equal to or lower than the surface roughness of human enamel on enamel-to-enamel occlusal contact areas (Ra = 0.64 microns). Roughness determines the biologic strength of composite resins. The nanoindentation hardness value of the filler particles (2.91 to 8.84 GPa) must not be higher than that of the hydroxyapatite crystals of human enamel (3.39 GPa). Composite resins intended for posterior use should have a Young's modulus at least equal to, and preferably higher than, that of dentin (18.500 MPa). The compressive strength of enamel (384 MPa) and dentin (297 MPa) and the fracture strength of a natural tooth (molar = 305 MPa; premolar = 248 MPa) offer excellent mechanical standards to select the optimal strength for posterior composite resins. The in vivo occlusal contact area wear rate of composite resins must be comparable to the attritional enamel wear rate (about 39 microns/y) in molars. Differential wear between enamel and composite resin on the same tooth is a new criterion for visualizing and quantifying the wear resistance of composite resins in a biologic way. Posterior resins must have a radiographic opacity that is slightly in excess of that of human enamel (198% Al). Based on these standard criteria, it can be concluded that in the 21st century the ultrafine compact-filled composite resins may be the materials of choice for restoring posterior cavities.
The self-adjusting file (SAF) system: An evidence-based update
Metzger, Zvi
2014-01-01
Current rotary file systems are effective tools. Nevertheless, they have two main shortcomings: They are unable to effectively clean and shape oval canals and depend too much on the irrigant to do the cleaning, which is an unrealistic illusionThey may jeopardize the long-term survival of the tooth via unnecessary, excessive removal of sound dentin and creation of micro-cracks in the remaining root dentin. The new Self-adjusting File (SAF) technology uses a hollow, compressible NiTi file, with no central metal core, through which a continuous flow of irrigant is provided throughout the procedure. The SAF technology allows for effective cleaning of all root canals including oval canals, thus allowing for the effective disinfection and obturation of all canal morphologies. This technology uses a new concept of cleaning and shaping in which a uniform layer of dentin is removed from around the entire perimeter of the root canal, thus avoiding unnecessary excessive removal of sound dentin. Furthermore, the mode of action used by this file system does not apply the machining of all root canals to a circular bore, as do all other rotary file systems, and does not cause micro-cracks in the remaining root dentin. The new SAF technology allows for a new concept in cleaning and shaping root canals: Minimally Invasive 3D Endodontics. PMID:25298639
COMPARATIVE SEM EVALUATION OF THREE SOLVENTS USED IN ENDODONTIC RETREATMENT: AN EX VIVO STUDY
Scelza, Miriam F. Zaccaro; Coil, Jeffrey M.; Maciel, Ana Carolina de Carvalho; Oliveira, Lílian Rachel L.; Scelza, Pantaleo
2008-01-01
This study compared, by scanning electron microscopy (SEM), the efficacy of three solvents on the removal of filling materials from dentinal tubules during endodontic retreatment. Forty human maxillary canines with straight canals were prepared according to a crown-down technique and enlarged to a#30 apical file size, before obturation with gutta-percha and a zinc-oxide-eugenol based sealer. The samples were stored for 3 months before being randomly assigned to four groups: chloroform (n=10), orange oil (n=10), eucalyptol (n=10) and control (n=10). Solvents were applied to a reservoir created on the coronal root third using Gates Glidden drills. The total time for retreatment using the solvents was 5 minutes per tooth. Following retreatment the roots were split longitudinally for SEM evaluation. SEM images were digitized, analyzed using Image ProPlus 4.5 software, and the number of dentinal tubules free of filling material from the middle and apical thirds was recorded. No significant difference was found among the solvent groups regarding the number of dentinal tubules free of root filling remnants in the middle and apical root thirds (p>0.05). However, the control group had fewer dentinal tubules free of filling material (p<0.05). Under the tested conditions, it may be concluded that there was no significant difference among the solvents used to obtain dentinal tubules free of filling material remnants. PMID:19089285
Effects of self-adjusting file, Mtwo, and ProTaper on the root canal wall.
Hin, Ellemieke S; Wu, Min-Kai; Wesselink, Paul R; Shemesh, Hagay
2013-02-01
The purpose of this ex vivo study was to observe the incidence of cracks in root dentin after root canal preparation with hand files, self-adjusting file (SAF), ProTaper, and Mtwo. One hundred extracted mandibular premolars with single canals were randomly selected. Two angulated radiographs were taken for each tooth, and the width of the canal was measured at 9 mm from the apex. Five groups of 20 teeth each were comparable in canal width. The control group was left unprepared. Four experimental groups were instrumented with hand files, ProTaper, Mtwo, and SAF. Roots were then sectioned horizontally and observed under a microscope. The presence of dentinal cracks and their location were noted. The difference between the experimental groups was analyzed with a χ(2) test. No cracks were observed in the control group. In the experimental groups, ProTaper, Mtwo, and SAF caused cracks in 35%, 25%, and 10% of teeth, respectively. The hand-file group did not show any dentinal cracks (P < .0001). ProTaper and Mtwo caused more cracks than hand files (P < .05), but SAF did not (P > .05). Instrumentation of root canals with SAF, Mtwo, and ProTaper could cause damage to root canal dentin. SAF has a tendency to cause less dentinal cracks as compared with ProTaper or Mtwo. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Shankarappa, Pushpa; Misra, Abhinav; Sawhney, Asheesh; Sridevi, Nandamuri; Singh, Anu
2016-01-01
Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF), short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p < 0.05). Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects. PMID:27446636
Loguercio, Alessandro D; Stanislawczuk, Rodrigo; Polli, Luceli G; Costa, Jully A; Michel, Milton D; Reis, Alessandra
2009-10-01
Although it is known that chlorhexidine application may preserve resin-dentin bonds from degradation, the lowest optimal concentration and application time have yet to be established. This study evaluated the effects of different concentrations of chlorhexidine digluconate and different application times on the preservation of resin-dentin bonds formed using two etch-and-rinse adhesives. In experiment 1, after acid etching, the occlusal demineralized dentin was rewetted either with water or with 0.002, 0.02, 0.2, 2, or 4% chlorhexidine for 60 s. In experiment 2, the surfaces were rewetted with water, or with 0.002% or 2% chlorhexidine for 15 or 60 s. After this, both adhesives and composite resin were applied and light-cured. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm min(-1)) immediately or after 6 months of storage in water. Two bonded sticks from each tooth were immersed in silver nitrate and analyzed quantitatively using scanning electron microscopy. Reductions in microtensile bond strengths and higher silver nitrate uptake were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were maintained for up to 6 months under all chlorhexidine conditions tested, irrespective of the chlorhexidine concentration and application time. The use of 0.002% chlorhexidine for 15 s seems to be sufficient to preserve resin-dentin interfaces over a 6-month period.
Gene evolution and functions of extracellular matrix proteins in teeth
Yoshizaki, Keigo; Yamada, Yoshihiko
2013-01-01
The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiukkonen, Anu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa
2006-11-01
Previous studies show that the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), interferes with mineralization of the dental matrices in developing mouse and rat teeth. Culture of mouse embryonic molar teeth with TCDD leads to the failure of enamel to be deposited and dentin to undergo mineralization. Lactationally exposed rats show defectively matured enamel and retardation of dentin mineralization. To see if the impaired mineralization is associated with changes in the expression of dentin sialophosphoprotein (Dspp), Bono1 and/or matrix metalloproteinase-20 (MMP-20), thought to be involved in mineralization of the dental hard tissues, we cultured mouse (NMRI) E18 mandibular molars for 3,more » 5 or 7 days and exposed them to 1 {mu}M TCDD after 2 days of culture. As detected by in situ hybridization of tissue sections, localization and intensity of Bono1 and MMP-20 expression showed no definite difference between the control and exposed tooth explants, suggesting that TCDD does not affect their expression. On the contrary, TCDD reduced or prevented the expression of Dspp in secretory odontoblasts and decreased it in presecretory ameloblasts. The results suggest that the retardation of dentin mineralization by TCDD in mouse molar teeth involves specific interference with Dspp expression.« less
Liu, Rui; Kaiwar, Anjali; Shemesh, Hagay; Wesselink, Paul R; Hou, Benxiang; Wu, Min-Kai
2013-01-01
The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Two hundred forty mandibular incisors were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. The root canals were instrumented with rotary and hand files, namely K3, ProTaper, and nickel-titanium Flex K files to the major apical foramen (AF), short AF, or beyond AF. Digital images of the apical surface of every tooth were taken during the apical enlargement at each file change. Development of dentinal defects was determined by comparing these images with the baseline image. Multinomial logistic regression test was performed to identify influencing factors. Apical crack developed in 1 of 80 teeth (1.3%) with hand files and 31 of 160 teeth (19.4%) with rotary files. Apical dentinal detachment developed in 2 of 80 teeth (2.5%) with hand files and 35 of 160 teeth (21.9%) with rotary files. Instrumentation with rotary files terminated 2 mm short of AF and did not cause any cracks. Significantly less cracks and detachments occurred when instrumentation with rotary files was terminated short of AF, as compared with that terminated at or beyond AF (P < .05). The AF deviated from the anatomic apex in 128 of 240 teeth (53%). Significantly more apical dentinal detachments appeared in teeth with a deviated AF (P = .033). Rotary instruments caused more dentinal defects than hand instruments; instrumentation short of AF reduced the risk of dentinal defects. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.
Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P
2014-08-01
In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. © IMechE 2014.
Determination of ABO blood grouping and Rhesus factor from tooth material
Kumar, Pooja Vijay; Vanishree, M; Anila, K; Hunasgi, Santosh; Suryadevra, Sri Sujan; Kardalkar, Swetha
2016-01-01
Objective: The aim of the study was to determine blood groups and Rhesus factor from dentin and pulp using absorption-elution (AE) technique in different time periods at 0, 3, 6, 9 and 12 months, respectively. Materials and Methods: A total of 150 cases, 30 patients each at 0, 3, 6, 9 and 12 months were included in the study. The samples consisted of males and females with age ranging 13–60 years. Patient's blood group was checked and was considered as “control.” The dentin and pulp of extracted teeth were tested for the presence of ABO/Rh antigen, at respective time periods by AE technique. Statistical Analysis: Data were analyzed in proportion. For comparison, Chi-square test or Fisher's exact test was used for the small sample. Results: Blood group antigens of ABO and Rh factor were detected in dentin and pulp up to 12 months. For both ABO and Rh factor, dentin and pulp showed 100% sensitivity for the samples tested at 0 month and showed a gradual decrease in the sensitivity as time period increased. The sensitivity of pulp was better than dentin for both the blood grouping systems and ABO blood group antigens were better detected than Rh antigens. Conclusion: In dentin and pulp, the antigens of ABO and Rh factor were detected up to 12 months but showed a progressive decrease in the antigenicity as the time period increased. When compared the results obtained of dentin and pulp in ABO and Rh factor grouping showed similar results with no statistical significance. The sensitivity of ABO blood grouping was better than Rh factor blood grouping and showed a statistically significant result. PMID:27721625
Ikeda, Hideharu; Suda, Hideaki
2013-04-01
The objectives of the present study were to quantitatively evaluate chemical permeability through human enamel/dentine using conductometry and to clarify if alternating current (AC) iontophoresis facilitates such permeability. Electrical impedance of different concentrations of lidocaine hydrochloride was measured using a bipolar platinum impedance probe. A quadratic curve closely fitted to the response functions between conductance and lidocaine hydrochloride. For analysis of the passage of lidocaine hydrochloride through human enamel/dentine, eight premolars that were extracted for orthodontic treatment were sectioned at the cemento-enamel junction. The tooth crowns were held between two chambers with a double O-ring. The enamel-side chamber was filled with lidocaine hydrochloride, and the pulp-side chamber was filled with extrapure water. Two platinum plate electrodes were set at the end of each chamber to pass alternating current. A simulated interstitial pulp pressure was applied to the pulp-side chamber. The change in the concentration of lidocaine hydrochloride in the pulp-side chamber was measured every 2min using a platinum recording probe positioned at the centre of the pulp-side chamber. Passive entry without iontophoresis was used as a control. The level of lidocaine hydrochloride that passed through enamel/dentine against the dentinal fluid flow increased with time. Electrical conductance (G, mho) correlated closely to the concentration (x, mmol/L) of lidocaine hydrochloride (G=2.16x(2)+0.0289x+0.000376, r(2)=0.999). Lidocaine hydrochloride can pass through enamel/dentine. Conductometry showed that the level of lidocaine hydrochloride that passed through enamel/dentine was increased by AC iontophoresis. Copyright © 2012 Elsevier Ltd. All rights reserved.
ClC-7 Deficiency Impairs Tooth Development and Eruption
Wang, He; Pan, Meng; Ni, Jinwen; Zhang, Yanli; Zhang, Yutao; Gao, Shan; Liu, Jin; Wang, Zhe; Zhang, Rong; He, Huiming; Wu, Buling; Duan, Xiaohong
2016-01-01
CLCN7 gene encodes the voltage gated chloride channel 7 (ClC-7) in humans. The mutations in CLCN7 have been associated with osteopetrosis in connection to the abnormal osteoclasts functions. Previously, we found that some osteopetrosis patients with CLCN7 mutations suffered from impacted teeth and root dysplasia. Here we set up two in vivo models under a normal or an osteoclast-poor environment to investigate how ClC-7 affects tooth development and tooth eruption. Firstly, chitosan-Clcn7-siRNA nanoparticles were injected around the first maxillary molar germ of newborn mice and caused the delay of tooth eruption and deformed tooth with root dysplasia. Secondly, E13.5 molar germs infected with Clcn7 shRNA lentivirus were transplanted under the kidney capsule and presented the abnormal changes in dentin structure, periodontal tissue and cementum. All these teeth changes have been reported in the patients with CLCN7 mutation. In vitro studies of ameloblasts, odontoblasts and dental follicle cells (DFCs) were conducted to explore the involved mechanism. We found that Clcn7 deficiency affect the differentiation of these cells, as well as the interaction between DFCs and osteoclasts through RANKL/OPG pathway. We conclude that ClC-7 may affect tooth development by directly targeting tooth cells, and regulate tooth eruption through DFC mediated osteoclast pathway. PMID:26829236
NASA Astrophysics Data System (ADS)
Wiedemann-Bidlack, F. B.; Colman, A. S.; Fogel, M. L.
2003-12-01
Oxygen isotope analyses in bone and teeth of living and fossil animals are widely used for testing hypotheses about variability of diet and habitat. For the analysis of environmental or dietary changes in the past, tooth enamel has become the preferred study material, because its mineral content is higher than bone and dentine, and the relatively large size of the carbonato-apatite crystals of enamel make it more stable against post mortem diagenetic alteration than dentine or bone. Intra-tooth sampling of dental enamel is increasingly used for the investigation of seasonal climate variability, taking advantage of both the high correlation between an animal's drinking water and the δ 18O in its mineralized tissues and the incremental growth pattern of tooth enamel. The different oxygen-containing ions of bioapatite (phosphate, carbonate, and hydroxyl group) incorporate into the mineral lattice at different rates during enamel mineralization, and differ in their susceptibility against post mortem diagenetic alteration. In addition, it is difficult to account for the different reaction chemistries of phosphate, carbonate, and hydroxyl group using isotope analysis techniques that include all oxygen contained in the enamel (e.g., laser ablation). These problems can be addressed analyzing phosphate oxygen only. However, two major factors limit the potential of δ 18O analyses in dental enamel: A) the starting sample size for isotope analyzes often precludes the use of small teeth or the intra-tooth sampling of a given tooth; B) Small amounts of biogenic organic material in tooth enamel (less than 1% by wt) can reduce the precision and lead to anomalous analytical results in δ 18O measurements on Ag3PO4 produced from tooth enamel. A new procedure was developed for the pre-treatment and δ 18O analysis of phosphate from small samples (500 μ g) of tooth enamel containing organic matter. Ag3PO{4} was precipitated quantitatively for analysis of δ 18Ophosphate using a Thermoquest-Finnigan TC/EA coupled to Delta Plus XL. A sodium hypochlorite sample pre-treatment step was determined to remove organic matter quantitatively without altering the isotopic composition of the phosphate oxygen. The reproducibility of δ 18O values for pretreated samples (0.2-0.3 ‰ , 1σ ) is much better than for samples without pre-treatment (1.2 ‰ , 1σ ). Phosphate oxygen isotope standards processed using this technique gave measured values indistinguishable from the standard composition, demonstrating the accuracy of the new technique.
Alraies, Amr; Cole, David K; S Rees, Jeremy; Glasse, Carl; Young, Nigel; Waddington, Rachel J; Sloan, Alastair J
2018-06-09
Dietary stains can be adsorbed into the dentin of teeth. Using Orange II as a model dietary stain, this study investigated the strength of its interaction with the mineral and protein components of dentin matrix and how hydrogen peroxide (H 2 O 2 ) treatment influences this interaction. Dentin slices were prepared from human teeth and were either deproteinized (5.6% sodium hypochlorite, 12 days), demineralised (0.5 M EDTA, 3 days) or left as intact control samples. Samples were stained with Orange II for 1-168 h, during which staining intensity was quantified by image analysis. Similarly, uptake of stain by deproteinized / demineralized samples treated with 10 or 30% H 2 O 2 was investigated. Using surface plasmon resonance technology, real-time binding kinetics were determined assessing the interaction of orange II with the dentin matrix protein constituents, collagen type I, biglycan, decorin, dentin sialoprotein and osteopontin. Deproteinization of dentin matrix reduced the uptake of the orange II compared to the intact control. Conversely, demineralization of dentin samples increased the uptake of the dye. Treatment of samples for 48 h with H 2 O 2 reduced subsequent uptake of the orange II. Real-time kinetic analysis indicated moderate strength of binding for Orange II with collagen type I, weak binding with decorin and biglycan and negligible binding with dentine sialoprotein and osteopontin. These results indicate a predominant role for collagen type I, which accounts for 90% of the organic protein matrix of teeth, for attracting dietary stains. Binding analyses indicate that the interaction is highly dissociable, and further binding is reduced following H 2 O 2 treatment. This study provides new information regarding adsorption of dietary stains into tooth dentin, suggesting that they are attracted and moderately bound to the collagen type I matrix. This study also contributes valuable information for discussion for considering the effect of H 2 O 2 on bleaching teeth and its influence on subsequent uptake of dietary stains following whitening treatments. Copyright © 2018. Published by Elsevier Ltd.
Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José
2014-11-01
The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.
A method for rapid measurement of laser ablation rate of hard dental tissue
NASA Astrophysics Data System (ADS)
Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.
2009-06-01
The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to use and allows quite rapid measurements it may become a valuable tool to study the influence of various laser parameters on the outcome of laser ablation of dental tissues.
Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan
2016-03-01
Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.
Singer, Steven R; Mupparapu, Muralidhar; Milles, Maano; Rinaggio, Joseph; Pisano, Dominic; Quaranta, Patrick
2007-01-01
An unusual case of a large complex odontoma with an associated impacted tooth is presented. Odontomas are hamartomatous growths of enamel, dentin, cementum and pulp tissue. Although they are usually tooth-sized or smaller, occasionally, the complex variant can exhibit considerable growth, as was seen in the case presented here. It occupied most of the maxillary sinus and displaced the floor of the orbit and the medial and posterior walls of the left maxillary sinus. Panoramic radiographs, as well as axial and coronal CT studies, showed the extent of the lesion in various dimensions. A differential diagnosis of various calcifying tumors was formulated on the basis of these findings. The lesion was surgically excised, and histologic analysis confirmed the radiographic impression. Although odontomas of this magnitude are rare, this case demonstrates the value of imaging, radiographic histopathologic diagnosis and surgical treatment planning prior to any definitive treatment.
Outside-the-(Cavity-prep)-Box Thinking
Thompson, V.P.; Watson, T.F.; Marshall, G.W.; Blackman, B.R.K.; Stansbury, J.W.; Schadler, L.S.; Pearson, R.A.; Libanori, R.
2013-01-01
Direct placement restorative materials must interface with tooth structures that are often compromised by caries or trauma. The material must seal the interface while providing sufficient strength and wear resistance to assure function of the tooth for, ideally, the lifetime of the patient. Needed are direct restorative materials that are less technique-sensitive than current resin-based composite systems while having improved properties. The ideal material could be successfully used in areas of the world with limited infrastructure. Advances in our understanding of the interface between the restoration adhesive system and the stages of carious dentin can be used to promote remineralization. Application of fracture mechanics to adhesion at the tooth-restoration interface can provide insights for improvement. Research in polymer systems suggests alternatives to current composite resin matrix systems to overcome technique sensitivity, while advances in nano- and mesoparticle reinforcement and alignment in composite systems can increase material strength, toughness, and wear resistance, foreshadowing dental application. PMID:24129814
Bartlett, D
2016-08-12
Tooth wear has been recognised as an increasing problem over the past 10 years. Recent data from epidemiological studies indicate that the condition is common with prevalence of dentine exposure in adults ranging between 2% and 10% and visible surface changes on teeth observed up to 30% of European adults. The Basic Erosive Wear Examination (BEWE) was designed for general practitioners to score the severity using similar protocols as the Basic Periodontal Examination (BPE). The role of the BEWE is partly to increase awareness, but also a means to record the severity in the clinical notes. Over the past 10 years toothpaste manufacturers have launched products to prevent progression of erosive tooth wear using specially formulated fluorides or calcium based products. Probably the most important preventive advice is to reduce the frequency of acidic foods and drinks, particularly outside meal times.
NASA Astrophysics Data System (ADS)
Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.
2006-09-01
We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of oceanic water. Our approach demonstrates that when appropriate knowledge of tissue formation is available, isotopic differences between altered and unaltered tissue holds promise of distinguishing between marine and freshwater origin of the tissues.
Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering
Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.
2013-01-01
Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883
Optical coherence tomography for diagnosing periodontal disease
NASA Astrophysics Data System (ADS)
Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard
1997-05-01
We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.
Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.
Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E
2017-10-01
No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
Dental Treatment Needs among Children and Adolescents Residing in an Ugandan Orphanage.
Rubin, Pessia Friedman; Winocur, Ephraim; Erez, Assaf; Birenboim-Wilensky, Ravit; Peretz, Benjamin
Previous studies focused on the dental caries status of East African children and not on their overall dental needs. Urban children consume more sugar-rich foods. To assess overall dental treatment needs of children living in an orphanage in Uganda. Teeth were diagnosed as needing treatment by obvious frank carious lesions (WHO criteria), temporary fillings, staining, or very deep pit and/or fissures possibly requiring sealants. Calculus or crowding in the mandibular anterior region and evidence of tooth fractures were recorded, as were signs of wear on the mandibular molars and canines and the maxillary incisors. Most of the primary teeth (64%) required no dental treatment, but almost all (98%) of the permanent teeth did. A mean (±standard deviation) of 4.81±1.92 permanent teeth required treatment. The mean number of missing teeth was 0.47. Thirty-one children (20.2%) had crowding, 52 (34%) had calculus, and 49 (32%) had signs of attrition on primary and permanent molar teeth (45 enamel only and 4 enamel and dentin). Most of the primary teeth required no dental treatment, while the vast majority of permanent teeth did, possibly in association with high sugar cane consumption and poor brushing habits among older children.
Micro-PIXE study of metal loss from dental amalgam
NASA Astrophysics Data System (ADS)
Meesat, Ridthee; Sudprasert, Wanwisa; Guibert, Edouard; Wang, Liping; Chappuis, Thibault; Whitlow, Harry J.
2017-08-01
Mercury amalgams have been a topic of controversy ever since their introduction over 150 years ago as a dental material. An interesting question is if metals are released from the amalgam into the enamel and dentine tissue. To elucidate this PIXE mapping was used to investigate metal redistribution in an extracted molar tooth with a ∼30 year old high-Cu content amalgam filling. The tooth was sectioned and polished, and elemental mapping carried out on the amalgam/enamel, bulk amalgam and the wear surface of the amalgam. As expected, the amalgam was multiphase amalgam comprising of Cu-rich and Ag-rich grains with non-uniform distribution of Hg. The amalgam/dentine interface was clearly defined with amalgam elements on one side and C and P from hydroxyapatite on the other side with evidence of only slight interface corrosion. The peaks for Cu Hg and Zn were isolated from interfering signals with concentrations in the enamel tissue, observed to be at, or below the method detection limit. The proximity in energy of the Sn L α and Ca K α , peaks and the background on the Hg M α gave signal overlap which increased the MDL for these elements. Remarkably, a course grain texture in the amalgam was observed just below the biting surface of the amalgam which might be associated with tribochemical processes from mastication. This coupled with the clear absence of the amalgam metals from tooth tissue, even in close proximity to the interface, suggests that for this sample, release of Hg occurred via erosion or dissolution in saliva.
Saunders, J G C; McIntyre, J M
2005-12-01
Endogenous dental erosion is that produced by contact of gastric acids with tooth structure. It may affect exposed root cementum/dentine as well as coronal enamel, causing marked loss of mineral. The aim of this study was to determine whether 1.23 per cent acidulated phosphate fluoride gel, if applied to the surface cementum at certain intervals during an erosive acid challenge, could provide any protection against demineralization. Roots of preserved extracted human teeth were painted with a water and acid resistant varnish, leaving two windows (3x1mm) of exposed dentine. These were placed in a solution containing 0.06MHCl and 2.2mMCaHPO4, which has been shown to simulate gastric acid when it meets the tooth surface. The roots were placed in the erosive solution unprotected (controls), or subject to APF application for four minutes prior to and every 10, 30 or 120 minutes during the erosive challenge. Roots were removed at either 6 or 12 hours, washed thoroughly and cut into 120microm thick sections. Depths of demineralization were measured using an optical graticule under polarized light microscopy. A high level of protection was provided when the roots were coated with APF gel every 10 or 30 minutes. APF gel will partially inhibit endogenous erosion of roots for up to 30 minutes if applied, for example, the night before a morning reflux episode. This should be considered along with other erosion control or reduction procedures for patients suffering from the effects of endogenous erosion.
[Effect of nano-hydroxyapatite to glass ionomer cement].
Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun
2007-12-01
To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P < 0.001, P < 0.05). The nanoleakages and microleakages appeared at the material-dentine interface in the two groups, but there were more microleakages in control group than in experiment group (P = 0.004). New crystals of hydroxyapatite were formed into a new mineralizing zone at the interface of tooth and nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.
Proteins, pathogens, and failure at the composite-tooth interface.
Spencer, P; Ye, Q; Misra, A; Goncalves, S E P; Laurence, J S
2014-12-01
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed. © International & American Associations for Dental Research.
The effectiveness of four-cavity treatment systems in sealing amalgam restorations.
Morrow, Leean A; Wilson, Nairn H F
2002-01-01
Amalgam does not bond to tooth tissue; therefore, restorations using such material are prone to leakage despite the deposition of corrosion products. This study evaluated the effectiveness of four cavity treatment systems placed in vivo in sealing restorations of amalgam. Four cavity treatment systems were investigated in this study: Cervitec, Gluma One Bond, Panavia 21 and Copaliner Dentin Varnish and Sealant. No cavity treatment was placed in an additional group to serve as a control. The teeth were extracted within 15 minutes of restoration placement. The specimens were thermocycled (5-55 +/- 2 degrees C, 500 cycles), immersed in a dye solution, sectioned and scored for leakage. Scanning electron microscopy also examined features of the tooth/restoration interfaces. There were statistically significant differences among the groups regarding leakage scores (p = 0.00). None of the materials tested consistently prevented leakage; however, use of Copaliner Dentin Varnish and Sealant resulted in less overall, occlusal and cervical microleakage than any other systems tested. Significantly more leakage was observed in relation to the cervical portions of the cavities (p = 0.00). No significant differences were identified between the leakage scores obtained for the buccal and palatal (lingual) cavities and the different tooth types (p = 0.52 and 0.83, respectively). A level of significance of 0.05 was selected in all cases. The benefits of the materials tested in this study need to be evaluated using robust, long-term clinical studies. Further work should continue to develop laboratory tests that predict the behavior and performance of cavity sealants in clinical service.
Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellis, David J.; Hetter, Katherine M.; Jones, Joseph
2008-01-15
Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on themore » cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.« less
West, Nicola Xania; Sanz, Mariano; Lussi, Adrian; Bartlett, David; Bouchard, Phillipe; Bourgeois, Denis
2013-10-01
Dentine hypersensitivity (DH) manifests as a transient but arresting oral pain. The incidence is thought to be rising, particularly in young adults, due to increases in consumption of healthy, yet erosive, diets. This study aimed to assess the prevalence of DH and relative importance of risk factors, in 18-35 year old Europeans. In 2011, 3187 adults were enrolled from general dental practices in France, Spain, Italy, United Kingdom, Finland, Latvia and Estonia. DH was clinically evaluated by cold air tooth stimulation, patient pain rating (yes/no), accompanied by investigator pain rating (Schiff 0-3). Erosive toothwear (BEWE index 0-3) and gingival recession (mm) were recorded. Patients completed a questionnaire regarding the nature of their DH, erosive dietary intake and toothbrushing habits. 41.9% of patients reported pain on tooth stimulation and 56.8% scored ≥1 on Schiff scale for at least one tooth. Clinical elicited sensitivity was closely related to Schiff score and to a lesser degree, questionnaire reported sensitivity (26.8%), possibly reflecting the transient nature of the pain, alongside good coping mechanisms. Significant associations were found between clinically elicited DH and erosive toothwear and gingival recession. The questionnaire showed marked associations between DH and risk factors including heartburn/acid reflux, vomiting, sleeping medications, energy drinks, smoking and acid dietary intake. Overall, the prevalence of DH was high compared to many published findings, with a strong, progressive relationship between DH and erosive toothwear, which is important to recognise for patient preventive therapies and clinical management of DH pain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei
2013-01-01
Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023
Treatment of Necrotic Teeth by Apical Revascularization: Meta-analysis.
He, Ling; Zhong, Juan; Gong, Qimei; Kim, Sahng G; Zeichner, Samuel J; Xiang, Lusai; Ye, Ling; Zhou, Xuedong; Zheng, Jinxuan; Liu, Yongxing; Guan, Chenyu; Cheng, Bin; Ling, Junqi; Mao, Jeremy J
2017-10-24
Each year ~5.4 million children and adolescents in the United States suffer from dental infections, leading to pulp necrosis, arrested tooth-root development and tooth loss. Apical revascularization, adopted by the American Dental Association for its perceived ability to enable postoperative tooth-root growth, is being accepted worldwide. The objective of the present study is to perform a meta-analysis on apical revascularization. Literature search yielded 22 studies following PRISMA with pre-defined inclusion and exclusion criteria. Intraclass correlation coefficient was calculated to account for inter-examiner variation. Following apical revascularization with 6- to 66-month recalls, root apices remained open in 13.9% cases (types I), whereas apical calcification bridge formed in 47.2% (type II) and apical closure (type III) in 38.9% cases. Tooth-root lengths lacked significant postoperative gain among all subjects (p = 0.3472) or in subgroups. Root-dentin area showed significant increases in type III, but not in types I or II cases. Root apices narrowed significantly in types II and III, but not in type I patients. Thus, apical revascularization facilitates tooth-root development but lacks consistency in promoting root lengthening, widening or apical closure. Post-operative tooth-root development in immature permanent teeth represents a generalized challenge to regenerate diseased pediatric tissues that must grow to avoid organ defects.
Cotti, Elisabetta; Mereu, Manuela; Lusso, Daniela
2008-05-01
This case report describes the treatment of a necrotic immature permanent central incisor with complete crown fracture, suspected root fracture, and sinus tract, which was not treated with conventional apexification techniques. Instead, a regenerative approach based on the trauma literature's methods for revascularization was provided. The root canal was gently debrided of necrotic tissue with a sharp spoon excavator and irrigated for only one third of its length with NaOCl and then medicated with calcium hydroxide. After 15 days the sinus tract had healed, and the tooth was asymptomatic. The tooth was accessed, calcium hydroxide was removed, bleeding was stimulated to form an intracanal blood clot, and mineral trioxide aggregate was placed coronally to the blood clot. After 8 months, a coronal calcified barrier was radiographically evident and accompanied with progressive thickening of the root wall and apical closure. Two and a half years after treatment was initiated, the tooth remained asymptomatic, and the sinus tract had not reappeared. The progressive increase in the thickness of the dentinal walls and subsequent apical development suggest that appropriate biologic responses can occur with this type of treatment of the necrotic immature permanent tooth with sinus tract.
Santschi, Katharina; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon
2015-02-01
To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.
Zinc oxide eugenol paste jeopardises the adhesive bonding to primary dentine.
Pires, C W; Lenzi, T L; Soares, F Z M; Rocha, R O
2018-05-12
This was to evaluate the influence of root canal filling pastes on microshear bond strength (µSBS) of an adhesive system to primary dentine. Human (32) primary molars were randomly assigned into four experimental groups (n = 8): zinc oxide eugenol paste (ZOE); iodoform paste (Guedes-Pinto paste); calcium hydroxide paste thickened with zinc oxide; and no filling paste (control). Flat dentine surfaces were covered with a 1 mm-thick layer of the pastes for 15 min at 37 °C. The pastes were mechanically removed from dentine surfaces, followed by rinsing and drying. After adhesive application (Adper Single Bond 2, 3M ESPE), starch tubes were placed over pre-treated dentine and filled with composite resin (Z250, 3M ESPE). The µSBS test was performed after 24 h of water storage at 37 °C. The failure mode was evaluated using a stereomicroscope. The µSBS values (MPa) were analysed with one-way ANOVA and Tukey post-hoc tests (α = 0.05). The lowest µSBS values were achieved when ZOE was used. No difference was found among other filling pastes compared with control group. All specimens showed adhesive/mixed failures. Zinc oxide eugenol paste negatively influenced the bond strength of adhesive systems to primary dentine. Iodoform-based Guedes-Pinto paste and calcium hydroxide paste thickened with zinc oxide did not influence the microshear bond strength values.
Kague, E; Witten, P E; Soenens, M; Campos, C L; Lubiana, T; Fisher, S; Hammond, C; Brown, K Robson; Passos-Bueno, M R; Huysseune, A
2018-03-15
The capacity to fully replace teeth continuously makes zebrafish an attractive model to explore regeneration and tooth development. The requirement of attachment bone for the appearance of replacement teeth has been hypothesized but not yet investigated. The transcription factor sp7 (osterix) is known in mammals to play an important role during odontoblast differentiation and root formation. Here we study tooth replacement in the absence of attachment bone using sp7 zebrafish mutants. We analysed the pattern of tooth replacement at different stages of development and demonstrated that in zebrafish lacking sp7, attachment bone is never present, independent of the stage of tooth development or fish age, yet replacement is not interrupted. Without bone of attachment we observed abnormal orientation of teeth, and abnormal connection of pulp cavities of predecessor and replacement teeth. Mutants lacking sp7 show arrested dentinogenesis, with non-polarization of odontoblasts and only a thin layer of dentin deposited. Osteoclast activity was observed in sp7 mutants; due to the lack of bone of attachment, remodelling was diminished but nevertheless present along the pharyngeal bone. We conclude that tooth replacement is ongoing in the sp7 mutant despite poor differentiation and defective attachment. Without bone of attachment tooth orientation and pulp organization are compromised. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Chan Ho; Oh, Joung-Hwan; Jung, Hong-Moon; Choi, Yoonnyoung; Rahman, Saeed Ur; Kim, Sungtae; Kim, Tae-Il; Shin, Hong-In; Lee, Yun-Sil; Yu, Frank H; Baek, Jeong-Hwa; Ryoo, Hyun-Mo; Woo, Kyung Mi
2017-10-01
Cementum formation on the exposed tooth-root surface is a critical process in periodontal regeneration. Although various therapeutic approaches have been developed, regeneration of integrated and functional periodontal complexes is still wanting. Here, we found that the OCCM30 cementoblasts cultured on fibrin matrix express substantial levels of matrix proteinases, leading to the degradation of fibrin and the apoptosis of OCCM30 cells, which was reversed upon treatment with a proteinase inhibitor, ε-aminocaproic acid (ACA). Based on these findings, ACA-releasing chitosan particles (ACP) were fabricated and ACP-incorporated fibrin (fibrin-ACP) promoted the differentiation of cementoblasts in vitro, as confirmed by bio-mineralization and expressions of molecules associated with mineralization. In a periodontal defect model of beagle dogs, fibrin-ACP resulted in substantial cementum formation on the exposed root dentin in vivo, compared to fibrin-only and enamel matrix derivative (EMD) which is used clinically for periodontal regeneration. Remarkably, the fibrin-ACP developed structural integrations of the cementum-periodontal ligament-bone complex by the Sharpey's fiber insertion. In addition, fibrin-ACP promoted alveolar bone regeneration through increased bone volume of tooth roof-of-furcation defects and root coverage. Therefore, fibrin-ACP can promote cementogenesis and osteogenesis by controlling biodegradability of fibrin, implicating the feasibility of its therapeutic use to improve periodontal regeneration. Cementum, the mineralized layer on root dentin surfaces, functions to anchor fibrous connective tissues on tooth-root surfaces with the collagenous Sharpey's fibers integration, of which are essential for periodontal functioning restoration in the complex. Through the cementum-responsible fiber insertions on tooth-root surfaces, PDLs transmit various mechanical responses to periodontal complexes against masticatory/occlusal stimulations to support teeth. In this study, periodontal tissue regeneration was enhanced by use of modified fibrin biomaterial which significantly promoted cementogenesis within the periodontal complex with structural integration by collagenous Sharpey's fiber insertions in vivo by controlling fibrin degradation and consequent cementoblast apoptosis. Furthermore, the modified fibrin could improve repair and regeneration of tooth roof-of-furcation defects, which has spatial curvatures and geometrical difficulties and hardly regenerates periodontal tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Expression of Dentin Sialophosphoprotein in Non-mineralized Tissues
Prasad, Monica; Zhu, Qinglin; Sun, Yao; Wang, Xiaofang; Kulkarni, Ashok; Boskey, Adele; Feng, Jian Q.
2011-01-01
Dentin sialophosphoprotein (DSPP) and its cleaved products, dentin phosphoprotein (DPP) and dentin sialoprotein (DSP), play important roles in biomineralization. Believed to be tooth specific, the authors’ group revealed its expression in bone, and more recently, they and other groups also showed its expression in a few types of soft tissues. In this study, the authors systematically examined the expression of DSPP in a variety of non-mineralized tissues using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, Western immunoblotting, and immunohistochemistry analyses in wild-type mice as well as β-galactosidase assays in the Dspp lacZ knock-in mice. These approaches showed the presence of DSPP in the salivary glands, cartilage, liver, kidney, and brain and its absence in the heart and spleen. Real-time PCR showed that the expression levels of DSPP mRNA in salivary glands, cartilage, liver, and kidney were higher than in the bone. Interestingly, DSPP was observed in the pericytes of blood vessels in the dental pulp, which are believed to be able to differentiate into odontoblasts. On the basis of these observations, the authors conclude that DSPP and/or its cleaved products may fulfill important functions in certain non-mineralized tissues in addition to its role in biomineralization. PMID:22043023
Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation
Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R.
2011-01-01
The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding. PMID:21220360
Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel.
White, Shane N; Paine, Michael L; Ngan, Amanda Y W; Miklus, Vetea G; Luo, Wen; Wang, HongJun; Snead, Malcolm L
2007-02-23
Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.
[Biocompatibility of crown and bridge materials. 1. Substances in contact with dentin].
Klotzer, W T
1989-11-01
It is mandatory that the materials and drugs used in restorative dentistry be free from side effects resulting in potential tooth loss or irreversible damage to vital dental tissues. Up to now there have been no reliable in vitro methods available for the evaluation of pulp reactions. Since numerous different materials and drugs are successively applied to prepared dentine, pulp reactions are caused by cumulative action, and the causative factors, except for extremely toxic substances, cannot be revealed by clinical and/or posttreatment studies alone. At present, the evaluation of pulp reactions must still rely on histologic studies using human or animal teeth. Reports on pulp reactions to materials and drugs are reviewed. Few dependable figures have been reported on pulp reactions to dentinal medication, "sterilization", disinfectants and on the biologic response to and effectiveness of varnishes, liners, desensitizing agents, smear-layer removers, etc. Resins and composite materials seem to provoke acute reactions, mainly by the heat generated during setting, and chronic reactions due to the stimulation of bacterial growth. Except for glass ionomer cements, most of the publications show a high degree of agreement on the tissue reactions to luting agents. Regarding dentine bonding agents, however, it has not been possible to draw any conclusions, so far.
Limongi, Orlando; de Albuquerque, Diana Santana; Baratto Filho, Flares; Vanni, José Roberto; de Oliveira, Elias P Motcy; Barletta, Fernando Branco
2007-01-01
This in vitro study compared, using computed tomography (CT), the amount of dentin removed from root canal walls by manual and mechanical rotary instrumentation techniques. Forty mandibular incisors with dental crown and a single canal were selected. The teeth were randomly assigned to two groups, according to the technique used for root canal preparation: Group I - manual instrumentation with stainless steel files; Group II - mechanical instrumentation with RaCe rotary nickel-titanium instruments. In each tooth, root dentin thickness of the buccal, lingual, mesial and distal surfaces in the apical, middle and cervical thirds of the canal was measured (in mm) using a multislice CT scanner (Siemens Emotion, Duo). Data were stored in the SPSS v. 11.5 and SigmaPlot 2001 v. 7.101 softwares. After crown opening, working length was determined, root canals were instrumented and new CT scans were taken for assessment of root dentin thickness. Pre- and post-instrumentation data were compared and analyzed statistically by ANOVA and Tukey's post-hoc test for significant differences (p=0.05). Based on the findings of this study, it may be concluded that regarding dentin removal from root canal walls during instrumentation, neither of the techniques can be considered more effective than the other.
Clinical study to monitor dentinal hypersensitivity with episodic use of a desensitising dentifrice
Mason, Stephen; Kingston, Rose; Shneyer, Lucy; Harding, Máiréad
2017-01-01
Objectives/Aims: To evaluate continuous and episodic twice-daily usage regimens of a desensitising dentifrice containing 5% calcium sodium phosphosilicate (CSPS). Materials and Methods: In this exploratory, single-centre, randomised, examiner-blind study, subjects with dentinal hypersensitivity were randomised to continuous (24 weeks) use of a 5% CSPS-containing dentifrice or episodic use of the dentifrice comprising two 8-week treatment periods separated by 8 weeks′ use of a standard fluoride dentifrice. Sensitivity was assessed by tactile threshold (Yeaple probe) and evaporative (air) sensitivity (Schiff sensitivity score). Other measures included labelled magnitude scales to assess subjects′ responses to the evaporative stimulus, the Dentine Hypersensitivity Experience Questionnaire and a tooth sensitivity question. Results: Seventy-six subjects were randomised to continuous (n=38) or episodic (n=38) use. Small but statistically significant improvements from baseline in Schiff sensitivity scores were observed at weeks 8, 16 and 24 with both regimens (all P<0.05). Increases from baseline in tactile threshold were not statistically significant. No significant between-regimen difference was observed for any endpoint. No treatment-related adverse events were reported. Discussion: Dentifrice containing 5% CSPS improved dentinal hypersensitivity with both episodic and continuous twice-daily usage regimens over 24 weeks and was well tolerated. Conclusion: No performance differences were observed between the two usage regimens. PMID:29789771
Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog
2012-05-01
Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
Application of Diode Laser in the Treatment of Dentine Hypersensitivity.
Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Zukanovic, Amila; Pasic, Enes; Pavlic, Veriva
2016-12-01
Dentine hypersensitivity is characterized by acute, sharp pain arising from the exposed dentine, most commonly in response to thermal, tactile, or chemical stimuli, and which cannot be linked to any other pathological changes in the tooth or the environment. Therapy uses various impregnating agents in the form of solutions or gels and, in more recent times, laser. The aim of this research was to examine the effects of treatment of hypersensitive dental cervix with diode laser. The study included 18 patients with 82 sensitive teeth. The degree of dentine hypersensitivity was evaluated by visual analogue scale (VAS), and the treatment was carried out by application of low-power diode laser over the span of three visits, which depended on the initial sensitivity. There is a significant difference in VAS values measured at the onset of treatment (baseline) and immediately after the first laser treatment (t=9.275; p=0.000), after 7 days, after the second laser treatment (14 days) (t=7.085, p=0.000), as well as after 14 days and the third laser treatment (t=5.517, p=0.000), which confirms the effectiveness of this therapeutic procedure. The results showed a reduction of hypersensitivity in response to tactile stimulus with a probe after the third treatment, even with teeth whose value on the VAS was very high at the beginning of treatment (baseline). Within the scope of the conducted study, laser therapy has provided extremely safe and effective results in the treatment of cervical dentine hypersensitivity.
Galloza, Marina Og; Jordão-Basso, Keren Cf; Bandeca, Matheus C; Costa, Samuel O; Borges, Alvaro H; Tonetto, Mateus R; Tirintan, Fabio C; Keine, Kátia C; Kuga, Milton C
2017-11-01
The aim of this study was to evaluate the effects of bleaching gel using 35% hydrogen peroxide (HP), associated with red carmine pigment (RC), in the 3:1 or 1:1 ratio, on fracture resistance and dentin microhardness of endodontically treated teeth. A total of 40 lower incisors were endodontically treated and divided into four groups (n = 10), according to the bleaching protocol: G1 (HP3), 35% HP + RC (3:1); G2 (HP1), 35% HP + RC (1:1); G3 (positive), 38% HP; and G4 (negative), unbleached. Four dental bleaching sessions were performed. The dental crowns were restored after the last session and submitted to the fracture resistance test. Totally, 60 specimens from the endodontically treated lower incisor crowns were prepared to evaluate the effects on dentin microhardness. The analysis was measured (in Knoop) prior to and after the last dental bleaching session using similar bleaching protocols. G2 presented the lowest fracture resistance (p < 0.05). The other groups were similar to each other (p > 0.05). No difference was observed in the reduction of dentin microhardness among the groups (p > 0.05). A 1:1 ratio (bleaching gel:pigment) caused a significant fracture resistance reduction in relation to the other protocols. No effect on the dentin microhardness reduction was observed. The pigment addition to the bleaching agent accelerates the bleaching chemical reaction. However, no studies have evaluated the ideal proportion to optimize tooth bleaching.
Zhi, Q H; Lo, E C M; Kwok, A C Y
2013-03-01
The purpose of this study was to compare the effect of silver fluoride, silver nitrate and potassium fluoride on remineralization of demineralized enamel and dentine in vitro. Forty premolars were cut into cuboidal blocks. Acid-resistant varnish was painted onto each block to cover all surfaces, except two windows, one in enamel and one in dentine. The tooth blocks were placed in demineralizing solution for 96 hours. They were then randomly divided into four groups of 10 blocks each and immersed in solutions of AgF, AgNO(3), KF or water for 3 minutes. Afterwards, they were immersed in a remineralizing solution for 108 hours. Micro CT scanning was conducted before and after remineralization. The increase in linear attentuation coefficient (LAC) for the enamel lesions after remineralization was 1.08/cm, 0.95/cm, 0.86/cm and 0.60/cm in the AgF, AgNO(3), KF and control groups, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control; AgF > KF). The increase in LAC for the dentine lesions was 1.01/cm, 0.92/cm, 0.88/cm and 0.53/cm, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control). Topical application of silver or fluoride ions can increase the mineral density of demineralized enamel and dentine lesions during remineralization. The synergistic effect of silver and fluoride ions is relatively small. © 2013 Australian Dental Association.
Residual dentin thickness in mandibular premolars prepared with gates glidden and ParaPost drills.
Pilo, R; Tamse, A
2000-06-01
The main factor that determines the prognosis of restored pulpless teeth is preservation of sound dentin. This study evaluated the residual dentinal thickness (RDT) of mandibular premolars after preparation of post space with Gates Glidden and ParaPost drills. Twelve extracted single canal mandibular premolars were embedded in clear polyester resin to the cementoenamel junction (CEJ) in a muffle device. Three horizontal sections were made 1, 3, and 5 mm apical to the CEJ. Mesiodistal (MD) and faciolingual (FL) axes were carefully marked and the RDT was measured for each slice. Each tooth slice was reassembled in the muffle device with orientation pins, then secured with stabilizing pins. This procedure was repeated after enlarging the root canal to K-40 file and preparing the coronal root canal space with Gates Glidden drills and ParaPost drills Nos. 3, 4, and 5. Residual dentinal thickness in a MD direction was 3.77 +/- 0.51 mm in the unprepared upper slice and 2.23 +/- 0.31 mm in the No. 5 ParaPost drill prepared lower slice, for a difference of 41%. The corresponding values for the FL direction were 4.35 +/- 0.51 mm and 4.08 +/- 0.46 mm, respectively (6%). The average dentinal thickness 5 mm below the CEJ in the mesial and distal directions after post space preparation approached the accepted minimal 1 mm. A conservative approach to post space preparation was advocated.
Interfacial Characteristics and Cytocompatibility of Hydraulic Sealer Cements.
Kebudi Benezra, Mira; Schembri Wismayer, Pierre; Camilleri, Josette
2018-06-01
The stability and long-term success of root canal obturation depends on the choice of sealer because the sealer bonds to the dentin and stabilizes the solid cone. Furthermore, the sealer needs to be nontoxic because sealer toxicity will certainly lead to treatment failure. The aim of this study was to assess the sealer-dentin interface of 3 hydraulic root canal sealers and to evaluate their cytocompatibility compared with AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany). Four dental root canal sealers were assessed. AH Plus, MTA Fillapex (Angelus, Londrina, Brazil), BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France), and Endoseal (Maruchi, Wonju-si, Gangwon-do, South Korea) were characterized using scanning electron microscopy and energy-dispersive spectroscopy. The sealer-tooth interface was assessed by confocal microscopy and scanning electron microscopy, and biocompatibility was measured by assessing the cell metabolic function using direct contact assays and alkaline phosphatase activity. The tricalcium silicate-based sealers presented a different microstructure and elemental composition despite their similar chemistry and classification. BioRoot RCS was free of aluminum, and all sealers presented different radiopacifying elements. The sealer penetration in the dentinal tubules and interfacial characteristics were different. The migration of silicon was evident from sealer to tooth for all sealers containing tricalcium silicate. MTA Fillapex and BioRoot RCS exhibited the best cytocompatibility in both the direct contact test and alkaline phosphatase activity. The use of hydraulic calcium silicate-based sealers has introduced a different material type to endodontics. These materials are different than other sealers mostly because of their hydraulic nature and their interaction with the environment. Although the sealers tested had a similar chemistry, their cytocompatibility and bonding mechanisms were diverse. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine
Zhang, Ning; Melo, Mary Anne S.; Bai, Yuxing; Xu, Hockin H. K.
2015-01-01
Objectives Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibition bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time. Methods MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentin shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts. Results Adding 7.5% MPC into primer and adhesive did not decrease the dentin bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control. Conclusions A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentin bond strength. The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries. PMID:25234652
Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.
2013-01-01
Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068
Salmela, Eija; Lukinmaa, Pirjo-Liisa; Partanen, Anna-Maija; Sahlberg, Carin; Alaluusua, Satu
2011-08-01
Fluoride interferes with enamel matrix secretion and mineralization and dentin mineralization. The most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), also impairs dental hard tissue formation and mineralization in vitro and in vivo. Our aim was to investigate in vitro whether the combined effect of sodium fluoride (NaF) and TCDD on dental hard tissue formation is potentiative. For this purpose, mandibular first and second molar tooth germs of E18 mouse embryos were cultured for 5-12 days with NaF and TCDD alone at various concentrations (2.5, 5, 10, 12.5, 15, and 20 μM and 5, 10, 12.5, and 15 nM, respectively) to determine the highest concentrations, which alone cause no or negligible effects. Morphological changes were studied from the whole tooth photographs and histological tissue sections. The concentrations found were 15 μM for NaF and 10 nM for TCDD. While at these concentrations, the effects of NaF and TCDD alone were barely detectable, the effect of simultaneous exposure on dentin and enamel formation was overt; mineralization of predentin to dentin and enamel matrix secretion and mineralization were impaired. Immunohistochemical analysis revealed that the combined exposure modified amelogenin expression by odontoblasts. Morphology of ameloblasts and the expression of amelogenin indicated that ameloblasts were still secretory. The results show that NaF and TCDD have potentiative, harmful effects on the formation of dental hard tissues. Since children can be exposed to subclinical levels of fluoride and dioxins during early childhood, coincidently with mineralization of the first permanent teeth, this finding may have clinical significance.
Zilberman, Uri; Bibi, Haim
2016-01-01
Multiple sulfatase deficiency (MSD) is a rare autosomal recessive inborn error of metabolism due to reduced catalytic activity of the different sulfatase. Affected individuals show neurologic deterioration with mental retardation, skeletal anomalies, organomegaly, and skin changes as in X-linked ichthyosis. The only organ that was not examined in MSD patients is the dentition. To evaluate the effect of the metabolic error on dental development in a patient with the intermediate severe late-infantile form of MSD (S155P). Histological and chemical study were performed on three deciduous and five permanent teeth from MSD patient and pair-matched normal patients. Tooth germ size and enamel thickness were reduced in both deciduous and permanent MSD teeth, and the scalloping feature of the DEJ was missing in MSD teeth causing enamel to break off from the dentin. The mineral components in the enamel and dentin were different. The metabolic error insults the teeth in the stage of organogenesis in both the deciduous and permanent dentition. The end result is teeth with very sharp cusp tips, thin hypomineralized enamel, and exposed dentin due to the break off of enamel. These findings are different from all other types of MPS syndromes.Clinically the phenotype of intermediate severe late-infantile form of MSD appeared during the third year of life. In children of parents that are carriers, we can diagnose the disease as early as birth using X-ray radiograph of the anterior upper region or as early as 6-8 months when the first deciduous tooth erupt and consider very early treatment to ameliorate the symptoms.
Piemjai, Morakot; Miyasaka, Kumiko; Iwasaki, Yasuhiko; Nakabayashi, Nobuo
2002-12-01
Demineralized dentin beneath set cement may adversely affect microleakage under fixed restorations. Microleakage of direct composite inlays cemented with acid-base cements and a methyl methacrylate resin cement were evaluated to determine their effect on the integrity of the underlying hybridized dentin. Sixty Class V box preparations (3 mm x 3 mm x 1.5 mm) were precisely prepared in previously frozen bovine teeth with one margin in enamel and another margin in dentin. Direct composite inlays (EPIC-TMPT) for each preparation were divided into 4 groups of 15 specimens each and cemented with 3 acid-base cements (control group): Elite, Ketac-Cem, Hy-Bond Carbo-Cem, and 1 adhesive resin cement: C&B Metabond. All specimens were stored in distilled water for 24 hours at 37 degrees C before immersion in 0.5% basic fuchsin for 24 hours. The dye penetration was measured on the sectioned specimens at the tooth-cement interface of enamel and cementum margins and recorded with graded criteria under light microscopy (Olympus Vanox-T) at original magnification x 50, 100, and 200. A Kruskal-Wallis and the Mann-Whitney test at P<.05 were used to analyze leakage score. All cementum margins of the 3 acid-base cements tested demonstrated significantly higher leakage scores than cementum margins for inlays cemented with the resin cement tested(P<.01). No leakage along the tooth-cement interface was found for inlays retained with the adhesive resin cement. Within the limitations of this study, the 3 acid-base cements tested exhibited greater microleakage at the cementum margins than did the adhesive resin cement that was tested.
Incisal tooth wear and self-reported TMD pain in children and adolescents.
Hirsch, Christian; John, Mike T; Lobbezoo, Frank; Setz, Juergen M; Schaller, Hans-Guenter
2004-01-01
Incisal tooth wear may be a sign of long-term bruxing behavior. Bruxism is purported to be a risk factor for temporomandibular disorders (TMD). The aim of this population-based cross-sectional study was to determine if anterior tooth wear is associated with the self-report of TMD pain in children and adolescents. In a population sample of 1,011 children and adolescents (mean age 13.1 years, range 10 to 18 years; female 52%; response rate 85%), TMD cases were defined as subjects reporting pain in the face, jaw muscles, and temporomandibular joint during the last month according to RDC/TMD. All other subjects were considered controls. Incisal tooth wear was assessed in the clinical examination using a 0 to 2 scale (no wear, enamel wear, dentin wear) for every anterior permanent tooth. The mean wear score for the individuals was categorized into 0, 0.01 to 0.20, 0.21 to 0.40, and 0.41+. A multiple logistic regression analysis, controlling for the effects of age and gender, analyzed the association between the categorized summary wear score and TMD. Specifically, the hypothesis of a trend between higher tooth wear scores and higher risk of TMD was tested. An odds ratio of 1.1 indicated, after adjusting for gender and age, no statistically significantly higher risk of TMD pain with higher tooth wear scores. Incisal tooth wear was not associated with self-reported TMD pain in 10- to 18-year-old subjects.
The bleaching of teeth: a review of the literature.
Joiner, Andrew
2006-08-01
To review current knowledge of tooth whitening with respect to external bleaching methods. The scope is the external bleaching of vital teeth and focuses on mechanisms; in vivo and in vitro measurement methods, and factors influencing the efficacy of the whitening process. "Medline" and "ISI Web of Science" databases from 1966 and 1974, respectively were searched electronically with key words tooth, teeth, colo*r, white*, bleach* and peroxide. The importance of tooth whitening for patients and consumers has seen a dramatic increase in the number of products and procedures over recent years, with a concomitant rise in publications on this topic. Literature suggests that the mechanisms of tooth whitening by peroxide occur by the diffusion of peroxide through enamel to cause oxidation and hence lightening of coloured species, particularly within the dentinal regions. A number of approaches are available for measuring changes in tooth colour. These include visual measurements by trained clinicians and instrumental measurements using spectrophotometry, chromameters and digital image analysis. The key factors that affect tooth whitening efficacy by peroxide containing products are concentration and time. In general, higher concentrations are faster than lower concentrations. However, lower concentrations can approach the efficacy of higher concentrations with extended treatment times. Alternative bleach systems to peroxide have received only minor attention. The efficacy of light activated systems versus non-light activated controls in clinical studies is limited and conflicting. Other factors which can influence tooth bleaching outcome include type of stain, initial tooth colour and subject age.
Le Luyer, Mona; Coquerelle, Michael; Rottier, Stéphane; Bayle, Priscilla
2016-01-01
Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves.
Ozmen, Bilal; Koyuturk, Alp Erdin; Tokay, Ugur; Cortcu, Murat; Sari, Mustafa Erhan
2015-10-16
The purpose of this in vitro study was to evaluate the dentin shear bond strength of 4 self-etching adhesives having a different pH on primary and permanent teeth dentin. The occlusal enamel was removed from 60 freshly extracted third molar and 60 primary second molar human teeth, which were randomly separated into 4 groups (n = 15). Four adhesive systems were applied: G-Bond (GC Corporation, Tokyo, Japan, pH: 1.5), Futura Bond M (Voco, Cuxhaver, Germany, pH: 1.4), Adper Prompt L-Pop (3M/ESPE, St Paul, MN, USA, pH: 0.8), and Clearfil S(3) Bond (Kuraray Medical, Tokyo, Japan, pH: 2.7) according to the manufacturer's instructions. After the application of dentin bonding agents, a composite resin material (Z250 Restorative A2, 3M ESPE, St. Paul, MN, USA) for permanent teeth and a compomer resin material (Dyract Extra A2, Dentsply, Konstanz, Germany) for primary teeth was applied onto the prepared dentin surfaces. The data were obtained by using a universal test machine at a crosshead speed of 1 mm/min. The mean values were compared using Tukey's multiple comparison test. Although there was no difference between adhesives on the permanent teeth, Clearfil S3 adhesive showed higher bond (18.07 ± 0.58 MPa) (P>0.05). Lower bond strength values were obtained from primary teeth and especially G-Bond adhesive (9.36 ± 0.48 MPa) (P<0.05). Self-etching adhesives with different pH and solvent types can be used successfully for permanent teeth dentin but adhesives with low pH did not provide greater shear bond strength values.
Jadhav, Ganesh Ranganath; Shah, Dipali; Raghvendra, Srinidhi Surya
2015-01-01
Caries or trauma induced non-vital immature permanent tooth with blunderbuss, thin root which are very common among childrens are corrected using regenerative endodontic (revascularization) procedures. In the presented case, a 16-year-old boy reported with chief complaint of pain in maxillary left central incisor (Tooth #21). Tooth #21 showed grade III mobility, draining labial sinus, and short blunderbuss root with diffuse periapical radiolucency. Patient was explained the treatment plan and written informed consent was taken. Platelet rich fibrin (PRF) was prepared according to standard protocol. Autologous PRF was carried to the apical portion of the root canal after inducing revascularization. Access opening was double sealed with MTA and resin modified glass ionomer cement (RMGI). Baseline, 12 month and 18 month follow-up intraoral radiographs were taken. Clinically case was asymptomatic with complete resolution of intraoral sinus. Periapical healing, apical closure, root lengthening and dentinal wall thickening were uneventful. Thus PRF supplementation hastens the predictability and rate of revascularization in non-vital immature permanent teeth.
Teeth: Among Nature's Most Durable Biocomposites
NASA Astrophysics Data System (ADS)
Lawn, Brian R.; Lee, James J.-W.; Chai, Herzl
2010-08-01
This paper addresses the durability of natural teeth from a materials perspective. Teeth are depicted as smart biocomposites, highly resistant to cumulative deformation and fracture. Favorable morphological features of teeth at both macroscopic and microscopic levels contribute to an innate damage tolerance. Damage modes are activated readily within the brittle enamel coat but are contained from spreading catastrophically into the vulnerable tooth interior in sustained occlusal loading. Although tooth enamel contains a multitude of microstructural defects that can act as sources of fracture, substantial overloads are required to drive any developing cracks to ultimate failure—nature's strategy is to contain damage rather than avoid it. Tests on model glass-shell systems simulating the basic elements of the tooth enamel/dentin layer structure help to identify important damage modes. Fracture and deformation mechanics provide a basis for analyzing critical conditions for each mode, in terms of characteristic tooth dimensions and materials properties. Comparative tests on extracted human and animal teeth confirm the validity of the model test approach and point to new research directions. Implications in biomechanics, especially as they relate to dentistry and anthropology, are outlined.
A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.
Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter
2009-09-01
The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.
Selective removal of dental composite using a rapidly scanned carbon dioxide laser
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Fried, Daniel
2011-03-01
Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.
Methods for monitoring erosion using optical coherence tomography
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel
Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga
This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.
Tooth wear: the view of the anthropologist.
Kaidonis, John A
2008-03-01
Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as 'modern-day' pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment.
The extent of slits at the interfaces between luting cements and enamel, dentin and alloy.
Oilo, G
1978-01-01
Four different cements were used to assess the presence of slits at the cement/tooth or the cement/alloy interfaces using a tooth-crown model. The model consisted of ground sections of teeth and plane plates of silver/palladium alloy. The plates were fixed with bolts between two brass plates and with three different dimensions of the cement film between tooth and alloy, i.e. 50 micrometer, 100 micrometer and 200 micrometer. The tooth-alloy specimens were sectioned and the adaption of cements was studied with an indirect technique (replica) in a scanning electron microscope. The extent of slits was expressed as the length of all slits relative to the total length of the interface in each specimen. The results showed that the zinc phosphate cement and polycarboxylate cement exhibited a slight to moderate tendency to formation of slits at the interfaces. The EBA cement had a small extent of slits adjacent to thin cement films, but more slits were observed with increasing film thickness. The composite resin cement had a marked tendency to slit formation independent of the cement film thickness.
Zhang, Ke; Cheng, Lei; Imazato, Satoshi; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H. K.
2013-01-01
Objectives The objective of this study was to investigate the effects of dentin primer containing dual antibacterial agents, namely, 12-methacryloyloxydodecylpyridinium bromide (MDPB) and nanoparticles of silver (NAg), on dentin bond strength, dental plaque microcosm biofilm response, and fibroblast cytotoxicity for the first time. Methods Scotchbond Multi-Purpose (SBMP) was used as the parent bonding agent. Four primers were tested: SBMP primer control (referred to as “P”), P+5%MDPB, P+0.05%NAg, and P+5%MDPB+0.05%NAg. Dentin shear bond strengths were measured using extracted human teeth. Biofilms from the mixed saliva of 10 donors were cultured to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Human fibroblast cytotoxicity of the four primers was tested in vitro. Results Incorporating MDPB and NAg into primer did not reduce dentin bond strength compared to control (p>0.1). SEM revealed well-bonded adhesive-dentin interfaces with numerous resin tags. MDPB or NAg each greatly reduced biofilm viability and acid production, compared to control. Dual agents MDPB+NAg had a much stronger effect than either agent alone (p<0.05), increasing inhibition zone size and reducing metabolic activity, CFU and lactic acid by an order of magnitude, compared to control. There was no difference in cytotoxicity between commercial control and antibacterial primers (p>0.1). Conclusions The method of using dual agents MDPB+NAg in the primer yielded potent antibacterial properties. Hence, this method may be promising to combat residual bacteria in tooth cavity and invading bacteria at the margins. The dual agents MDPB+NAg may have wide applicability to other adhesives, composites, sealants and cements to inhibit biofilms and caries. PMID:23402889
Fracture toughness of dentin/resin-composite adhesive interfaces.
Tam, L E; Pilliar, R M
1993-05-01
The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.
Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet
2017-01-01
Introduction Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. Aim The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. Materials and Methods This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm2) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. Results On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Conclusion Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH. PMID:28969290
Patil, Anup Raghunath; Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet
2017-08-01
Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm 2 ) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH.
P, Torkzaban; S, Seyedzadeh Sabounchi
2016-01-01
Statement of Problem: Root surface contamination or infection can potentially change the consequences of regenerative periodontal therapies and therefore the modification and disinfection of the contaminated root surfaces are necessary. Objectives: This study aimed to compare the surface characteristics of the extracted human teeth after exposure to four root conditioners in different time periods. Materials and Methods: The study samples were prepared from 40 freshly extracted teeth including 20 affected teeth with periodontal diseases and 20 healthy teeth. After performing root planning, 240 dentinal block samples were prepared and each affected and healthy sample was randomly allocated to receive one of the following root conditioners; Ethylenediaminetetraaceti acid (EDTA), citric acid, doxycycline, and tetracycline or rinsed with normal saline as the control agent. The prepared specimens were evaluated using scanning electron microscope and the inter-group differences and changes in study indices; dentin (%), tubular spaces (%), and diameter of dentinal tubules (μm²) were compared using one-way ANOVA test. Results: In the control group receiving normal saline, the changes in the indicators of dentin, tubular spaces, and diameter of dentinal tubules remained insignificant in all time periods. EDTA, citric acid, and tetracycline had chelating effects on the study indices; however, doxycycline led to gradual decrease of the tubular space and diameter as well as increase in dentin percentage. Conclusions: In different time intervals and when considering healthy or affected tooth surfaces, the effect of conditioning agents could be different. Amongst the four agents used, EDTA and tetracycline consistently increased the diameter of tubules and percentage of patent tubules in both healthy and diseased teeth. PMID:28959749
Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu
2016-06-01
A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Namhee; De Souza, Grace M.
2017-01-01
Objective To determine the effects of whitening strips on bovine dentin fatigue resistance and flexural strength in vitro. Materials and methods A total of eighty bovine dentin specimens (2x2x17mm) were treated with either: control glycerine gel on plastic film wrap or whitening strips containing 9.5% hydrogen peroxide. Treatment was applied for 30 minutes, twice a day, for 1- or 4-weeks. After the last treatment, ten specimens per group were randomly selected to undergo fatigue testing (106 cycles, 3Hz, 20N) while the other ten were subjected to flexural strength testing after ten days of storage in artificial saliva. Kaplan-Meier method with a log rank test, Wilcoxon test and Cox regression were used to assess fatigue test results (p<0.05). One-way ANOVA and Tukey’s tests were used to compare the flexural strength results (p<0.05). Results There were significant differences in survival during the fatigue test among the groups (p<0.001). Treatment (control or bleach) was a significant factor for specimen survival (p<0.001, Exp(B) = 33.45). There were significant differences in mean flexural strength (p<0.001). No significant difference was found between “1-wk control” and “4-wk control”. The mean flexural strength and fatigue resistance of the “4-wk bleach” were significantly lower than all the other groups. Conclusions The use of whitening strips reduced the fatigue resistance and flexural strength of bovine dentin in vitro. Until the effect of whitening strips on mechanical properties of human dentin is fully elucidated, it remains prudent to advise patients to avoid excessive direct use of whitening strips on dentin. PMID:28278191
Maleki-pour, Mohammad Reza; Birang, Reza; Khoshayand, Maryam; Naghsh, Narges
2015-01-01
Introduction: Dentin hypersensitivity (DH) is characterized by tooth pain arising from exposure of dental roots. In this study the efficiency of neodymium yttrium-aluminum-garnet (Nd:YAG) laser in association with graphite on dentinal surface changes as the alternative to the treatment of DH was evaluated. Methods: Sixteen noncarious human third molars were collected and sectioned into 5 parts from cementoenamel junction (CEJ) to the furcation area. The prepared samples were randomly assigned into five groups (Gs) of each 16: Control (G1), treated by Nd:YAG laser at 0.5 W (G2), irradiation of Nd:YAG with a 0.25 W output power(G3), smeared with graphite and then using Nd:YAG laser at output powers of 0.5 W (G4) and 0.25 W (G5). For all groups the parameters were 15 Hz, 60 s, at two stages and with a right angle irradiation. The number and diameter of dentinal tubules (DT) were compared and analyzed by SPSS software, One way ANOVA and Post hoc LSD tests. Results:The number of open dentinal tubules varied significantly between all groups except among G1 with G3 and G2 with G5. Multiple comparison tests also exhibited significant differences regarding the diameter of tubules between the groups two by two except among G2 with G5. Conclusion: Nd:YAG laser used at 0.25 W and 0.5 W with application of graphite smear was able to reduce the number and diameter of dentinal tubules. PMID:25699166
Liang, Xue; Zhang, Jing Yang; Cheng, Iek Ka; Li, Ji Yao
2016-01-01
Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nanohardness and friction coefficient) of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group), 15 days (30 Gy group), 25 days (50 Gy group), 35 days (70 Gy group); the control group was not exposed. The nanohardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nanohardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load), and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15th-25th days of treatment, which is when application of measures to prevent radiation caries should be considered.
Post-Irradiation Polymerization of a Silorane Composite
2013-04-26
methacrylate-based two- step self-etching adhesive system that is necessary to bond the silorane to tooth 3 structure. The dentin bond strength of...the Filtek LS system is equivalent to that of methacrylate-based systems if the Filtek LS primer and adhesive are used. However, siloranes are not...Maj Bryan Wilson 2. Academic Title: Resident, Advanced Education in General· Dentistry Residency (AEGD-2) 3. School/Department/Center: Air Force
NASA Astrophysics Data System (ADS)
Nam, S. H.; Hong, J. W.; Lee, H. J.; Jeon, Y. C.; Kim, G. C.
2017-08-01
The purpose of this study was to evaluate the influence of bleaching with nonthermal atmospheric pressure plasma and 15% hydrogen peroxide (HP) or 15% carbamide peroxide (CP). Sixty human enamel and dentin slabs were randomly assigned to six groups as follows: Group 1 was a control group and did not receive any treatment; Group 2 was exposed only to plasma, as a negative control; Group 3 was treated with 15% HP; Group 4 was treated with 15% HP plus plasma; Group 5 was treated with 15% CP alone; and Group 6 was treated with 15% CP plus plasma during 30 min bleaching treatments. A microhardness measurement was conducted according to a microhardness tester. The amount of calcium (Ca), phosphorus (P), chloride (Cl), sodium (Na), magnesium (Mg), and zinc (Zn) in the enamel and dentin was quantified with an electron probe microanalyzer (EPMA). The data were analyzed by using the Student’s t test and one-way analysis of variance (ANOVA), complemented by Tukey’s test. The statistical analysis did not show any significant differences in microhardness values and six mineral contents in all groups (p > 0.05). Therefore, we believe that the application of nonthermal atmospheric pressure plasma is a safe energy source for tooth bleaching.
Ning, Huiying; Liu, Hongwei
2011-08-01
The purpose of this study was to establish an indirect co-culture system of rat apical tooth germ-conditioned medium (APTG-CM) and periodontal ligament cells (PDLCs). PDLCs were isolated and cultured through the method of enzyme-digestion. Vimentin and cytokeratin(CK) were used to demonstrate the cells' mesenchymal derivation. Co-culture system of APTG-CM and PDLCs for 28 days, osteocalcin (OCN), collagen type I (COL I) and bone sialoprotein (BSP) were detected in PDLCs by immunocytochemistry. Morphological changes were observed by inverted microscope. With building a transplant by dental tube, periodontal ligament cell sheet and ceramic biologic bone (CBB) in vitro, then, the combinations of dental tube and PDLCs incubated by APTG-CM were implanted subcutaneously into athymic mice for 8 weeks. This study demonstrated that cellular cementum-like tissue formed along the dentin surface and CBB, with fibrous tissue adjacent or inserted into CBB in vivo. PDLCs were grown better in the CBB than in dentin tubes. And the vertical fibers can't embed in the control. PDLCs, embedded within this APTG-CM, exhibite several phenotypic characteristics of cementoblast lineages. Thereby it contributes to the main processes of periodontal tissue regeneration with rat APTG-CM.
NASA Astrophysics Data System (ADS)
Guerra, M.; Ferreira, C.; Carvalho, M. L.; Santos, J. P.; Pessanha, S.
2016-08-01
Over the years, the presence of mercury in amalgam fillings has raised some safety concerns. Amalgam is one of the most commonly used tooth fillings and contains approximately 50% of elemental mercury and 50% of other metals, mostly silver, tin and copper. Amalgam can release small amounts of mercury vapor over time, and patients can absorb these vapors by inhaling or ingesting them. In this study, 10 human teeth treated with dental amalgam were analyzed using energy dispersive X-ray fluorescence (EDXRF) to study the diffusion of its constituents, Ag, Cu, Sn and Hg. The used EDXRF setup, makes use of a polycapillary lens to focus radiation up to 25 μm allowing the mapping of the elemental distribution in the samples. Quantification was performed using the inbuilt software based on the Fundamental Parameters method for bulk samples, considering a hydroxyapatite matrix. The teeth were longitudinally cut and each slice was scanned from the surface enamel to the inner region (dentin and pulp cavity). Mercury concentration profiles show strong levels of this element close to the amalgam region, decreasing significantly in the dentin, and increasing again up to 40,000 μg·g- 1 in the cavity were the pulp used to exist when the tooth was vital.
Hidden contributions of the enamel rods on the fracture resistance of human teeth.
Yahyazadehfar, M; Bajaj, Devendra; Arola, Dwayne D
2013-01-01
The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin-enamel junction, they are deflected by the decussated rods and continue growth about the tooth's periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The role of oral hygiene: does toothbrushing harm?
Wiegand, Annette; Schlueter, Nadine
2014-01-01
Although toothbrushing is considered a prerequisite for maintaining good oral health, it also has the potential to have an impact on tooth wear, particularly with regard to dental erosion. Experimental studies have demonstrated that tooth abrasion can be influenced by a number of factors, including not only the physical properties of the toothpaste and toothbrush used but also patient-related factors such as toothbrushing frequency and force of brushing. While abrasion resulting from routine oral hygiene can be considered as physiological wear over time, intensive brushing might further harm eroded surfaces by removing the demineralised enamel surface layer. The effects of brushing on eroded dentine are not fully elucidated, particular under in vivo conditions. However, there are indications that brushing after an acid impact causes less additional hard tissue loss in dentine than in enamel. Toothbrushing frequency and force as well as toothbrush hardness were shown to act as co-factors in the multifactorial aetiology of non-cervical carious lesions. In vitro studies showed that toothbrushing abrasion is primarily related to the abrasivity of the toothpaste, while the toothbrush acts as a carrier, only modifying the effects of the toothpaste. The benefits of normal oral hygiene procedure exceed possible side effects by far, but excessive toothbrushing - especially of eroded teeth - might cause some harmful effects. © 2014 S. Karger AG, Basel.
The effect of propolis fluoride on caries dentine activity
NASA Astrophysics Data System (ADS)
Darwita, Risqa Rina; Soekanto, Sri Angky; Finisha, Andanali Rhukul; Wahyuni, Hardiati Nur; Andiani, Salsabila Ghina
2018-02-01
This research was conducted to analyze the effect of propolis fluoride on the occurrence of arrested caries dentine surface. The design of the study was a clinical trial experimental. The respondent were primary school students aged 6-8 years, from primary school in Kukusan, Depok, West Java, Indonesia. They were screened of dental examination and the total number of 296 children with an age range of 6-8 year old were included in the study. All students who had dentin caries were get dental treatment with propolis fluoride topical application in dentin caries surface. After one month, two months and four months all students who were got propolis fluoride topical application in dentin caries surface were controlled. All data were analyzed by Wilcoxon test. The total number of dentinal decay of 296 student was 1740 surfaces indicated to Flolis topical application. After one, two and three months of Flolis application, all arrested of dentinal decay was evaluated, the result of evaluation from the second month to the third month evaluation was found that the arrested dentinal caries surfaces were decreased significantly at 29.36% (p<0.01), while the evaluation of arrested dentinal caries surface from the first month to the third month was decreased significantly at 38.62% (p<0.001). Flolis was proven significantly to be able to arrest the activity of dental caries, and their ability to arrest dental caries was significantly different. Flolis was found to be effective in arresting dentinal caries surface until three months application, and should be repeated after 3 months of Flolis application.
NASA Astrophysics Data System (ADS)
Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan
2003-11-01
Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.
Immunodetection of osteoadherin in murine tooth extracellular matrices.
Couble, Marie-Lise; Bleicher, Françoise; Farges, Jean-Christophe; Peyrol, Simone; Lucchini, Marion; Magloire, Henry; Staquet, Marie-Jeanne
2004-01-01
An antiserum was generated from synthetic peptides highly conserved between different mammalian species to immunolocalise the small leucine-rich proteoglycan osteoadherin (OSAD) in murine teeth. In 19-day-old embryos of rats and mice, a positive staining was found in incisor predentin and alveolar bone surrounding developing incisors and molars. In newborns, OSAD was detected at the tip of the first molar cusp where it accumulated in predentin concomitantly with odontoblast differentiation. In 2-day-old rats and mice, in the first molar, immunostaining revealed positive predentin, enamel matrix close to the apical pole of ameloblasts and a strong signal in dentin. At this stage, OSAD was detected in predentin in the second molar. Ultrastructural immunocytochemistry showed gold particles associated with collagen fibres in predentin and in foci at the dentin mineralisation front. Gold particles were also detected near the secretory pole of ameloblasts where enamel crystallites elongate. No staining was detected in pulp tissue and dental follicle. Restriction of OSAD expression to the extracellular matrix of bone, dentin and enamel suggests a role of this proteoglycan in the organisation of mineralised tissues.
Violet and blue light-induced green fluorescence emissions from dental caries.
Shakibaie, F; Walsh, L J
2016-12-01
The objective of this laboratory study was to compare violet and visible blue LED light-elicited green fluorescence emissions from enamel and dentine in healthy or carious states. Microscopic digital photography was undertaken using violet and blue LED illumination (405 nm and 455 nm wavelengths) of tooth surfaces, which were photographed through a custom-made stack of green compensating filters which removed the excitation light and allowed green fluorescence emissions to pass. Green channel pixel data were analysed. Dry sound enamel and sound root surfaces showed strong green fluorescence when excited by violet or blue lights. Regions of cavitated dental caries gave lower green fluorescence, and this was similar whether the dentine in the lesions was the same colour as normal dentine or was darkly coloured. The presence of saliva on the surface did not significantly change the green fluorescence, while the presence of blood diluted in saliva depressed green fluorescence. Using violet or blue illumination in combination with green compensating filters could potentially aid in the assessment of areas of mineral loss. © 2016 Australian Dental Association.
Torres, Carolina Paes; Miranda Gomes-Silva, Jaciara; Menezes-Oliveira, Maria Angélica Hueb; Silva Soares, Luís Eduardo; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina
2018-05-01
The chemical compositions (organic and inorganic contents) and mechanical behaviors of the dentin of permanent and deciduous teeth were analyzed and compared using X-ray fluorescence spectrometry (µ-EDXRF) Fourier transform Raman spectroscopy (FT-Raman) and a microhardness test (HD). Healthy fresh human primary and permanent molars (n = 10) were selected, The buccal surfaces facing upwards were stabilized in an acrylic plate, flattened, polished, and submitted to the µ-EDXRF, FT-Raman, and HD analysis. The results of the analysis were subjected to ANOVAs and Mann-Whitney U/Student's t multiple comparisons tests. The data showed similar values for the dentin of the primary and permanent teeth in P content, organic content (amide I peak), inorganic content ( PO43- - 430 and 590), and microhardness, Nevertheless, Ca content and Ca/P weight ratio were higher, and the CO32- peak was lower in the dentin of the permanent teeth compared to primary teeth. It be concluded that despite permanent teeth showed more Ca element, both substrates showed similar behavior of chemical and physical properties. © 2018 Wiley Periodicals, Inc.
Mullan, F; Paraskar, S; Bartlett, D W; Olley, R C
2017-05-01
To investigate the effects of a 5% NovaMin containing dentifrice on dentine tubule patency and surface roughness at 100g and 400g tooth brush abrasion forces. 75 polished human dentine samples were prepared and randomly allocated into one of five groups; control (1), Na 2 PFO 3 100g abrasion force (2), NovaMin 100g (3), Na 2 PFO 3 400g (4) and NovaMin 400g (5). The control group underwent two 2-min cycles of artificial saliva (AS), one 2-min erosion cycle; the rest underwent two toothbrush abrasion cycles in an AS/dentifrice slurry and one 2-min erosion cycle. All samples were imaged at baseline and post intervention using Tandem Scanning Microscopy and Profilometry to analyse tubule patency and roughness. Mean tubule patency increased significantly between baseline and post intervention in groups 1,2 and 4 and decreased significantly post intervention in groups 3 and 5 (p<0.01). Post intervention, there were statistically significant differences in mean patent tubules between NovaMin and the Na 2 PFO 3 and control groups (p<0.001). Surface roughness increased for all groups between baseline and post interventions (P<0.001); mean (SD) roughness increases for groups 1, 2, 3, 4 and 5 were 0.14 (0.05) μm, 0.18 (0.04) μm, 0.16 (0.06) μm, 0.19 (0.07) μm and 0.21 (0.02) μm respectively. Differences between group 1 and 5 were significant (p<0.01). Brushing with NovaMin resulted in significant dentine tubule occlusion at 100g and 400g, but brushing with Na 2 PFO 3 resulted in increased tubule patency. Surface roughness increased significantly at 400g brushing with NovaMin. There was no correlation between tubule patency and surface roughness. A NovaMin desensitising dentifrice resulted in tubule occlusion even at high brushing forces. There was minimal increase in surface roughness at the lower (100g) brushing force. Copyright © 2017 Elsevier Ltd. All rights reserved.
Menon, Navya P; Varma, Balagopal R; Janardhanan, Sureshkumar; Kumaran, Parvathy; Xavier, Arun Mamachan; Govinda, Bhat Sangeetha
2016-01-01
To clinically and radiographically evaluate the reparative dentin formation in indirect pulp treatment (IPT) using mineral trioxide aggregate (MTA) and light cured calcium silicate (TheraCal) in primary molars over a period of 6 months. A clinical trial on IPT on 43 primary molars in 21 patients between the age of 4-7 years, divided into two groups: 22 teeth in MTA group and 21 in TheraCal group. Measurement of the variation in dentin thickness was done on the digitalized radiograph at baseline, 3 months and 6 months using CorelDRAW X3 software. Statistical analysis using an independent t -test for intragroup and intergroup comparison showed a significant increase in dentin thickness in both the MTA and TheraCal group (intragroup comparison [ P < 0.05]). However, intergroup comparison between MTA and TheraCal showed no statistical difference in reparative dentin formation ( P > 0.05). Clinically and radiographically, both MTA and TheraCal are good IPT materials. The better handling characteristics and comparable reparative dentin-forming ability of TheraCal make this material an alternative to MTA in pediatric restorative procedures.
Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M
2016-01-01
To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, p<0.05), and no significant differences were found among the adhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.
Olivier, Juan-Gonzalo; García-Font, Marc; Gonzalez-Sanchez, Jose-Antonio; Roig-Cayon, Miguel
2016-01-01
Background The objective of the study was to evaluate and compare how apical enlargement with K3 and K3XF nickel-titanium (NiTi) rotary instruments reduces the root thickness in the danger zone and affects canal transportation and centering ability in mandibular molar mesial canals in a manikin extracted tooth model. Material and Methods Seventy-two mesial root canals of first mandibular molars were instrumented. Initial and post-instrumentation Cone Beam Computed Tomography scans were performed after root canal preparation up to size 25, 30, 35 and 40 files. Canal transportation, canal centering and remaining root dentin thickness toward the danger zone were calculated in sections 1, 2 and 3 mm under the furcation level. Data were analyzed using non-parametric Kruskal-Wallis analysis of variance at a significance level of P < 0.05. Results K3 instruments removed more dentin toward the danger zone compared with K3XF instruments (P< .05) and significant differences in dentin thickness were found when canal enlargement was performed to a #35-40 with both systems (P< 0.05). No significant differences in canal transportation and centering ability were found between systems, except when canal enlargement was performed to a #40 (P = 0,0136). No differences were observed when comparing the number of uses in both systems (P> 0.05). Conclusions Under the conditions of this study K3 removed a significant amount of dentin at the furcation level compared with the R-Phase K3XF rotary system in curved root canals. Enlargement to a 35-40/04 file removed significantly more dentin with both systems. Key words:K3, K3XF, R-phase, center ability, canal transportation, dentin thickness, increased apical enlargement, danger zone, dentin thickness. PMID:27703602
Parkinson, Charles R; Willson, Richard J
2011-01-01
The objective of this study was to evaluate the relative level of dentin tubule occlusion and dentin mineralization conferred by a 5% w/w calcium sodium phosphosilicate (45S5)/1450 ppm fluoride toothpaste in comparison to a range of commercial toothpastes reported to occlude dentin tubules. Two separate experiments were employed to (i) determine the level of dentin tubule occlusion, and (ii) explore the change in dentin mineralization conferred by a number of marketed toothpastes and controls, following twice-daily brushing in a longitudinal, acid challenge-based, dentin disc model. In Study I, 192 bovine dentin discs, polished and etched in citric acid to provide a smooth dentin surface with patent tubules, were divided into eight treatment groups and subjected to brushing with one of seven test toothpastes or deionized water over four days. Prior to and between treatments, the dentin samples were stored in saliva. The test products were fluoridated toothpastes containing: calcium sodium phosphosilicate (45S5); strontium acetate; arginine/calcium carbonate; amine fluoride; calcium sulphate/diphosphate; stannous fluoride; casein stabilized amorphous calcium phosphate toothpaste; and a non-occluding negative control, deionized water. At the end of each treatment day (1 though 4), one group of samples was removed for scanning electron microscopy (SEM) analysis and graded on a categorical visual scale to assess the level of dentin tubule occlusion. A subset of samples from Study I was also cross-sectioned and examined using SEM. For the exploratory mineralization study (Study II), 120 dentin specimens were prepared as previously described and divided into four treatment groups consisting of A, C, F, and a tooth sealant varnish (I), and subjected to the treatment regimen described in Study I. The dentin samples were assessed for changes in surface microhardness using an indenter fitted with a Knoop probe and the level of dentin occlusion. In Study I, the 5% w/w calcium sodium phosphosilicate/1450 ppm fluoride-containing toothpaste (A), the stannous fluoride-containing toothpaste (F), and the strontium acetate-containing toothpaste (B) delivered the highest level of occlusion following four days of twice-daily brushing and a twice-daily acid challenge on days 3 and 4. Surface analysis of a subset of Study I samples, following four days of treatment, indicated that the 5% w/w calcium sodium phosphosilicate/1450 ppm fluoride-containing toothpaste formed a distinct layer at the surface of dentin. For Study II, surface microhardness analysis revealed that the 5% w/w calcium sodium phosphosilicate/1450 ppm fluoride-containing toothpaste (A) delivered significantly more surface hardening then the control or competitor toothpastes on days 2 and 4. Desensitizing toothpastes reported to operate by an occlusion mechanism have been observed to confer varying degrees of dentin tubule occlusion and dentin mineralization over four days in an acid challenge-based in vitro model. A 5% w/w calcium sodium phosphosilicate/1450 ppm fluoride-containing toothpaste was observed to impart a significant level of dentin tubule occlusion and surface hardening, and form durable occlusive deposits following four days of twice-daily brushing in vitro.