The value of thyroid shielding in intraoral radiography
Hazenoot, Bart; Sanderink, Gerard C H; Berkhout, W Erwin R
2016-01-01
Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p < 0.01. Results: The ANOVA test revealed that the differences between mean doses of all protocols and geometries were statistically significant, p < 0.001. For the Isup, thyroid dose levels were comparable with both collimators at a level indicating primary beam exposure. Thyroid shield reduced this dose with circa 75%. For the Csup position, round collimation also revealed primary beam exposure, and thyroid shield yield was 70%. In Csup with rectangular collimation, the thyroid dose was reduced with a factor 4 compared with round collimation and thyroid shield yielded an additional 42% dose reduction. The thyroid dose levels for the Csup, Psup, Msup and BW exposures were lower with rectangular collimation without thyroid shield than with round collimation with thyroid shield. With rectangular collimation, the thyroid shield in Psup, Msup and BW reduced the dose 10% or less, where dose levels were already low, implying no clinical significance. Conclusions: For the exposures in the upper anterior region, thyroid shield results in an important dose reduction for the thyroid. For the other exposures, thyroid shield augments little to the reduction achieved by rectangular collimation. The use of thyroid shield is to be advised, when performing upper anterior radiography. PMID:27008105
PWR upper/lower internals shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homyk, W.A.
1995-03-01
During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less
Examination of shipping package 9975-04985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Package 9975-04985 was examined following the identification of several unexpected conditions during surveillance activities. A heavy layer of corrosion product on the shield and the shield outer diameter being larger that allowed by drawing tolerances contributed to a very tight fit between the upper fiberboard assembly and shield. The average corrosion rate for the shield is estimated to be 0.0018 inch/year or less, which falls within the bounding rate of 0.002 inch/year that has been previously recommended for these packages. Several apparent foreign objects were noted within the package. One object observed on the air shield was identified as tape.more » The other objects were comprised of mostly fine fibers from the cane fiberboard. It is postulated that the upper and lower fiberboard assemblies were able to rub against each other due to the upper fiberboard assembly being held tight to the shield, and a few stray cane chips became frayed under vibratory motions.« less
Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield
NASA Astrophysics Data System (ADS)
Park, Yongcheol
Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.
Electrostatically screened, voltage-controlled electrostatic chuck
Klebanoff, Leonard Elliott
2001-01-01
Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.
NASA Technical Reports Server (NTRS)
Falarski, M. D.; Aoyagi, K.; Koenig, D. G.
1973-01-01
The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, Douglas E.; Orr, Richard
1993-01-01
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, D.E.; Orr, R.
1993-12-07
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.
Ohlinger, R.D.; Humphrey, H.W.
1985-08-26
A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.
MEANS FOR SHIELDING AND COOLING REACTORS
Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.
1959-02-10
Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.
Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.
1985-01-01
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea. ?? 1985.
LPT. Shield test facility assembly and test building (TAN646). East ...
LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Method of shielding a liquid-metal-cooled reactor
Sayre, Robert K.
1978-01-01
The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.
Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Amri, A; Rodgers, A
2007-01-05
Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions,more » reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being underlain by slower velocities, {+-}3% for P-waves and {+-}6% for S-waves. Seismic anisotropy was inferred from shear-wave splitting, using teleseismic SKS waveforms. Results reveal a splitting time of approximately 1.4 seconds, with the fast axis slightly east of north. The shear-wave splitting results are consistent across the Peninsula, with a slight clockwise rotation parallel for stations near the Gulf of Aqaba. In summary, these results allow us to make several conclusions about the tectonic evolution and current state of the Arabian Plate. Lithospheric thickness implies that thinning near the Red Sea has accompanied the rupturing of the Arabian-Nubian continental lithosphere. The step in the lithospheric thickness across the Shield-Platform boundary likely reveals a pre-existing difference in the lithospheric structure prior to accretion of the terranes composing the eastern Arabian Shield. Tomographic imaging of upper mantle velocities implies a single large-scale thermal anomaly underlies the Arabian Shield and is associated with Cenozoic uplift and volcanism.« less
Wigner, E.P.; Young, G.J.
1958-10-14
A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.
2008-09-01
Arabian Shield. Background The Arabian Shield consists of a late Proterozoic crystalline basement overlain by Tertiary and Quaternary volcanic...mantle structure under the Arabian Shield using body waves, we measured and inverted relative travel times from stations in Arabia. We augmented the...Rodgers, and A. Al-Amri (2008). S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography, Geochem. Geophys
Supplemental heating of deposition tooling shields
Ohlhausen, James A.; Peebles, Diane E.; Hunter, John A.; Eckelmeyer, Kenneth H.
2000-01-01
A method of reducing particle generation from the thin coating deposited on the internal surfaces of a deposition chamber which undergoes temperature variation greater than 100.degree. C. comprising maintaining the temperature variation of the internal surfaces low enough during the process cycle to keep thermal expansion stresses between the coating and the surfaces under 500 MPa. For titanium nitride deposited on stainless steel, this means keeping temperature variations under approximately 70.degree. C. in a chamber that may be heated to over 350.degree. C. during a typical processing operation. Preferably, a supplemental heater is mounted behind the upper shield and controlled by a temperature sensitive element which provides feedback control based on the temperature of the upper shield.
NASA Astrophysics Data System (ADS)
Fu, Q. G.; Liu, X. W.; Xu, S. G.; Li, M.; Zhang, C. C.
2009-08-01
In this article, the stress-shielding effect of a Nitinol swan-like memory compressive connector (SMC) is evaluated. Patients with fracture healing of an upper limb after SMC internal fixation or stainless steel plate fixation were randomly selected and observed comparatively. With the informed consent of the SMC group, minimal cortical bone under the swan-body and swan-neck was harvested; and in the steel plate fixation group, minimal cortical bone under the steel plate and opposite side to the steel plate was also harvested for observation. Main outcome measurements were taken such as osteocyte morphology, Harversian canal histological observation under light microscope; radiographic observation of fracture healing, and computed tomography quantitative scanning of cortical bone. As a conclusion, SMC has a lesser stress-shielding effect to fixed bone than steel plate. Finally, the mechanism of the lesser stress-shielding effect of SMC is discussed.
McDonald, Douglas B.; Buchholz, Carol E.
1994-01-01
A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A
2013-09-01
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.
Pressure Distribution Tests on PW-9 Wing Models from -18 Degree Through 90 Degree Angle of Attack
NASA Technical Reports Server (NTRS)
Loeser, Oscar E , Jr
1929-01-01
At the request of the Army Air Corps, an investigation of the pressure distribution over PW-9 wing models was conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The primary purpose of these tests was to obtain wind-tunnel data on the load distribution on the cellule to be correlated with similar information obtained in flight tests, both to be used for design purposes. Because of the importance of the conditions beyond the stall as affecting the control and stability, this investigation was extended through 90 degree angle of attack. The results for the range of normal flight have been given in NACA Technical Report No. 271. The present paper presents the same results in a different form and includes, in addition, those over the greater range of angle of attack, -18 degrees through 90 degrees. The results show that: (1) at angles of attack above maximum lift, the biplane upper wing pressures are decreased by the shielding action of the lower wing. (2) the burble of the biplane lower wing, with respect to the angle of attack, is delayed, due to the shielding action of the lower wing. (3) the center of pressure of the biplane upper wing (semispan) is, in general, displaced forward and outward with reference to that of the wing as a monoplane, while for the lower wing there is but slight difference for both conditions. (4) the overhanging portion of the upper wing is little affected by the presence of the lower wing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan
USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons frommore » escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.« less
Noise shielding by a hot subsonic jet
NASA Technical Reports Server (NTRS)
Vijayaraghavan, A.; Parthasarathy, S. P.
1981-01-01
An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.
Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis
NASA Astrophysics Data System (ADS)
Stern, Robert J.; Johnson, Peter
2010-07-01
The Arabian Plate originated ˜ 25 Ma ago by rifting of NE Africa to form the Gulf of Aden and Red Sea. It is one of the smaller and younger of the Earth's lithospheric plates. The upper part of its crust consists of crystalline Precambrian basement, Phanerozoic sedimentary cover as much as 10 km thick, and Cenozoic flood basalt (harrat). The distribution of these rocks and variations in elevation across the Plate cause a pronounced geologic and topographic asymmetry, with extensive basement exposures (the Arabian Shield) and elevations of as much as 3000 m in the west, and a Phanerozoic succession (Arabian Platform) that thickens, and a surface that descends to sea level, eastward between the Shield and the northeastern margin of the Plate. This tilt in the Plate is partly the result of marginal uplift during rifting in the south and west, and loading during collision with, and subduction beneath, the Eurasian Plate in the northeast. But a variety of evidence suggests that the asymmetry also reflects a fundamental crustal and mantle heterogeneity in the Plate that dates from Neoproterozoic time when the crust formed. The bulk of the Plate's upper crystalline crust is Neoproterozoic in age (1000-540 Ma) reflecting, in the west, a 300-million year process of continental crustal growth between ˜ 850 and 550 Ma represented by amalgamated juvenile magmatic arcs, post-amalgamation sedimentary and volcanic basins, and granitoid intrusions that make up as much as 50% of the Shield's surface. Locally, Archean and Paleoproterozoic rocks are structurally intercalated with the juvenile Neoproterozoic rocks in the southern and eastern parts of the Shield. The geologic dataset for the age, composition, and origin of the upper crust of the Plate in the east is smaller than the database for the Shield, and conclusions made about the crust in the east are correspondingly less definitive. In the absence of exposures, furthermore, nothing is known by direct observation about the composition of the crust north of the Shield. Nonetheless, available data indicate a geologic history for eastern Arabian crust different to that in the west. The Neoproterozic crust (˜ 815-785 Ma) is somewhat older than in the bulk of the Arabian Shield, and igneous and metamorphic activity was largely finished by 750 Ma. Thereafter, the eastern part of the Plate became the site of virtually continuous sedimentation from 725 Ma on and into the Phanerozoic. This implies that a relatively strong lithosphere was in place beneath eastern Arabia by 700 Ma in contrast to a lithospheric instability that persisted to ˜ 550 Ma in the west. Lithospheric differentiation is further indicated by the Phanerozoic depositional history with steady subsidence and accumulation of a sedimentary succession 5-14 km thick in the east and a consistent high-stand and thin to no Phanerozoic accumulation over the Shield. Geophysical data likewise indicate east-west lithospheric differentiation. Overall, the crustal thickness of the Plate (depth to the Moho) is ˜ 40 km, but there is a tendency for the crust to thicken eastward by as much as 10% from 35-40 km beneath the Shield to 40-45 km beneath eastern Arabia. The crust also becomes structurally more complex with as many as 5 seismically recognized layers in the east compared to 3 layers in the west. A coincident increase in velocity is noted in the upper-crust layers. Complementary changes are evidenced in some models of the Arabian Plate continental upper mantle, indicating eastward thickening of the lithospheric mantle from ˜ 80 km beneath the Shield to ˜ 120 km beneath the Platform, which corresponds to an overall lithospheric thickening (crust and upper mantle) from ˜ 120 km to ˜ 160 km eastward. The locus of these changes coincides with a prominent magnetic anomaly (Central Arabian Magnetic Anomaly, CAMA) in the extreme eastern part of the Arabian Shield that extends north across the north-central part of the Arabian Plate. The CAMA also coincides with a major structural boundary separating a region of northerly and northwesterly basement trends in the west from a region of northerly and northeasterly trends in the northeastern part of the Plate, and with the transition from high-stand buoyant Shield to subsided Platform. Its coincidence with geophysically indicated changes in the lower crust and mantle structure suggests that a fundamental lithospheric boundary is present in the central part of the Arabian Plate. The ages and isotopic characteristics of xenoliths brought to the surface in Cenozoic basalt eruptions indicate that the lower crust and upper mantle are largely juvenile Neoproterozoic additions, meaning that the lower crust and upper mantle formed about the same time as the upper crust. This implies that the lithospheric boundary in the central part of the Arabian Plate dates from Neoproterozoic time. We conclude that lithospheric differentiation across the Arabian Plate is long lived and has controlled much of the Phanerozoic sedimentary history of the Plate.
High Tc superconductors as thermal radiation shields
NASA Astrophysics Data System (ADS)
Zeller, A. F.
1990-06-01
The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.
Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur
NASA Technical Reports Server (NTRS)
Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary
2008-01-01
The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields.
Kelaranta, Anna; Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika
2016-01-01
Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination.
A direct method for fabricating tongue-shielding stent.
Wang, R R; Olmsted, L W
1995-08-01
During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.
Treatment vault shielding for a flattening filter-free medical linear accelerator
NASA Astrophysics Data System (ADS)
Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.
2009-03-01
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Treatment vault shielding for a flattening filter-free medical linear accelerator.
Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N
2009-03-07
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Fire resistant PV shingle assembly
Lenox, Carl J.
2012-10-02
A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.
Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields
Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika
2016-01-01
Objectives: Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Methods: Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. Results: The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. Conclusions: The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination. PMID:26313308
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south end of EBOR helium wing. Camera facing north. Monorail protrudes from upper-level door. Rust marks on concrete wall are from stack. Metal shed is post-1970 addition. INEEL negative no. HD-40-8-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Preventing Accidental Ignition of Upper-Stage Rocket Motors
NASA Technical Reports Server (NTRS)
Hickman, John; Morgan, Herbert; Cooper, Michael; Murbach, Marcus
2005-01-01
A report presents a proposal to reduce the risk of accidental ignition of certain upper-stage rocket motors or other high energy hazardous systems. At present, mechanically in-line initiators are used for initiation of many rocket motors and/or other high-energy hazardous systems. Electrical shorts and/or mechanical barriers, which are the basic safety devices in such systems, are typically removed as part of final arming or pad preparations while personnel are present. At this time, static discharge, test equipment malfunction, or incorrect arming techniques can cause premature firing. The proposal calls for a modular out-of-line ignition system incorporating detonating-cord elements, identified as the donor and the acceptor, separated by an air gap. In the safe configuration, the gap would be sealed with two shields, which would prevent an accidental firing of the donor from igniting the system. The shields would be removed to enable normal firing, in which shrapnel generated by the donor would reliably ignite the acceptor to continue the ordnance train. The acceptor would then ignite a through bulkhead initiator (or other similar device), which would ignite the motor or high-energy system. One shield would be remotely operated and would be moved to the armed position when a launch was imminent or conversely returned to the safe position if the launch were postponed. In the event of failure of the remotely operated shield, the other shield could be inserted manually to safe the system.
NASA Astrophysics Data System (ADS)
Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.
2015-12-01
This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.
Preliminary design of the thermal protection system for solar probe
NASA Technical Reports Server (NTRS)
Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.
1982-01-01
A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.
Sherrod, D.R.; Murai, T.; Tagami, Takahiro
2007-01-01
Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Sherrod, David R.; Murai, Takashi; Tagami, Takahiro
2007-04-01
Thirty-seven new K Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9 2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3 0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.
Upper Lithospheric Sources of Magnetic and Gravity Anomalies of The Fennoscandian Shield
NASA Astrophysics Data System (ADS)
Korhonen, J. V.; Koistinen, T.; Working GroupFennoscandian Geophysical Maps
Magnetic total intensity anomalies (DGRF-65), Bouguer anomalies (d=2670 kg/m3) and geological units from 3400 Ma to present of the Fennoscandian Shield have been digitally compiled and printed as maps 1:2 000 000. Insert maps 1:15,000,000 com- pare anomaly components in different source scales: pseudogravimetric anomaly ver- sus Bouguer anomaly, DGRF-65 anomaly versus pseudomagnetic anomaly, magnetic vertical derivative versus second derivative of Bouguer anomaly. Data on bulk density, total magnetisation and lithology of samples have been presented as scatter diagrams and distribution maps of the average petrophysical properties in space and time. In sample level, the bulk density correlates with the lithology and, together with mag- netisation, establishes four principal populations of petrophysical properties. The av- erage properties, calculated for 5 km x 5 km cells, correlate only weakly with av- erage Bouguer-anomaly and magnetic anomaly, revealing major deep seated sources of anomalies. Pseudogravimetric and Bouguer anomalies correlate only locally with each other. The correlation is negative in the area of felsic Palaeoproterozoic rocks in W- and NW-parts of the Shield. In 2D models the sources of gravity anomalies are explained by lateral variation of density in upper and lower crust. Smoothly varying regional components are explained by boundaries of the lower crust, the upper mantle and the astenosphere. Magnetic anomalies are explained by lateral variation of magnetisation in the upper crust. Re- gional components are due to the lateral variation of magnetisation in the lower crust and the boundaries of lower crust and mantle and the Curie isotherm of magnetite.
Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.; Pan, Heng; Liu, X. K.
2009-07-01
A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less
The first discovery of Hadean zircon in garnet granulites from the Sutam River (Aldan Shield)
NASA Astrophysics Data System (ADS)
Glukhovskii, M. Z.; Kuz'min, M. I.; Bayanova, T. B.; Lyalina, L. M.; Makrygina, V. A.; Shcherbakova, T. F.
2017-09-01
For the first time in Russia, a Hadean zircon grain with an age of 3.94 Ga (ID-TIMS) has been discovered in high-aluminous garnet granulites of the Aldan Shield among the U-Pb zircons with an age from 1.92 Ga. In this connection, the problems of its parental source, the petrogenesis of granulites that captured this zircon, and the mechanism of occurrence of these deep rocks in the upper horizons of the crust have been solved. The comparison of the geochemistry of garnet granulites and the middle crust has shown that the granulites are enriched in the entire range of rare-earth elements (except for the Eu minimum), as well as in Al2O3, U, and Th and are depleted in the most mobile elements (Na, Ca, Sr). In the upper part of the allitic weathering zone of the middle crust, which formed under conditions of arid climate, this zircon grain was originated from the weathered granites from the middle crust. In the latter case, they were empleced discretely in the upper granite-gneiss crust under high pressure conditions (the rutile age is 1.83-1.82 Ga). The zircon with an age of 3.94 Ga is comparable to the Hadean zircons from orthogneisses of the Acasta region (Canadian Shield, 4.03-3.94 Ga).
NASA Astrophysics Data System (ADS)
Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi
2007-12-01
The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust beneath NIL is very thick (58 +/- 2 km), and the S velocity in the intermediate and lower crust is around 4.0 km s-1. This anomalously large velocity and thickness can be explained by scraping off the lower crust, when the Indian lithosphere underthrusts the Himalaya.
NASA Technical Reports Server (NTRS)
Barron, Daniel R. (Inventor); Jasulaitis, Vytas (Inventor); Morrill, Brion F. (Inventor)
1995-01-01
Apparatus is described for automatically mating a pair of connectors and protecting them prior to mating, which minimizes weight and uses relatively simple and reliable mechanisms. Lower and upper connectors (24, 26) are held in lower and upper parts (14, 16) of a housing, with the upper connector mounted on a carrier (32) that is motor driven to move down and mate the connectors. A pair of movable members (36, 38) serve as shields, as coarse alignment aids, and as force transmitters. The movable members are pivotally mounted at the bottom of the upper housing, and as the carrier moves down it pivots the members out of the way. The movable members have socket elements (116) that closely receive pin elements (120) on the lower housing part, to coarsely align the connectors and to react mating and unmating forces between the housings. The carrier has a pair of plate portions (60, 62) with slots (64), and the movable members have cam followers engaged with the slot walls, to move the members with precision. The carrier plate-like portions engage follower members (82) that pivot open lower shield parts (44, 46) covering the lower connector, which is mounted on four stacks of Belleville washers (142).
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...
ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao
2017-05-01
The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.
1991-10-01
KNEE I SHOULDER V SHIN /CALF 357 OTITIS EXTERNA 17 HEAT EXHAUSTION J, UPPER ARM W ANKLE T358 OITIS MEDIA K ELBOW X FOOT 0 337 CONJUNCTIVITIS - 18...OTHER, SPECIFY:__ 17 HEAT EXHAUSTION a CHEST T UPPER LEG S18 HEAT STROKE H RIBS U KNEE EYEAR: _ 19 LACERATION I SHOULDER V SHIN ,-LF 0 38010...GROINoGENITAL 03 ALERT 0 VERBAL RESPONSE I SHOULDER V UPPER LEG C3 PAIN RESPONSE 0’ UNRESPONSIVE J UPPER ARM W KNEE K ELBOW X SHIN /CALF MEDICATION L
Crustal structure of southwestern Saudi Arabia
Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.
1983-01-01
The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat flow, and mantle compressional wave velocities. Such a lithosphere could be produced by upwelling of hot asthenosphere beneath the Red Sea which then flows laterally beneath the lithosphere of the Arabian Plate.
NASA Technical Reports Server (NTRS)
Miao, D.; Barber, J. R.; Dewitt, R. L.
1977-01-01
Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.
Cosmic Ray Interactions in Shielding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.
2011-09-08
This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less
Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.
Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk
2017-06-01
The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thermal Conductance of Pressed Bimetal Contact Pairs at Liquid Nitrogen Temperatures
NASA Technical Reports Server (NTRS)
Kittle, Peter; Salerno, Louis J.; Spivak, Alan L.
1994-01-01
Large Dewars often use aluminum radiation shields and stainless steel vent lines. A simple, low cost method of making thermal contact between the shield and the line is to deform the shield around the line. A knowledge of the thermal conductance of such a joint is needed to thermally analyze the system. The thermal conductance of pressed metal contacts consisting of one aluminum and one stainless steel contact has been measured at 77 K, with applied forces from 8.9 N to 267 N. Both 5052 or 5083 aluminum were used as the upper contact. The lower contact was 304L stainless steel. The thermal conductance was found to be linear in temperature over the narrow temperature range of measurement. As the force was increased, the thermal conductance ranged from roughly 9 to 21 mW/K within a range of errors from 3% to 8%. Within the range of error no difference could be found between the using either of the aluminum alloys as the upper contact. Extrapolating the data to zero applied force does not result in zero thermal conductance. Possible causes of this anomalous effect are discussed.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.
1985-05-31
This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.
NASA Technical Reports Server (NTRS)
Baer, J. W.; Black, W. E.
1974-01-01
The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.
Shield Design for Lunar Surface Applications
NASA Astrophysics Data System (ADS)
Johnson, Gregory A.
2006-01-01
A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.
A lead isotope study of mineralization in the Saudi Arabian Shield
Stacey, J.S.; Doe, B.R.; Roberts, R.J.; Delevaux, M.H.; Gramlich, J.W.
1980-01-01
New lead isotope data are presented for some late Precambrian and early Paleozoic vein and massive sulfide deposits in the Arabian Shield. Using the Stacey Kramers (1975) model for lead isotope evolution, isochron model ages range between 720 m.y. and 420 m.y. Most of the massive sulfide deposits in the region formed before 680 m.y. ago, during evolution of the shield. Vein type mineralization of higher lead content occurred during the Pan African event about 550 m.y. ago and continued through the Najd period of extensive faulting in the shield that ended about 530 m.y. ago. Late post-tectonic metamorphism may have been responsible for vein deposits that have model ages less than 500 m.y. Alternatively some of these younger model ages may be too low due to the mineralizing fluids acquiring radiogenic lead from appreciably older local crustal rocks at the time of ore formation. The low207Pb/204Pb ratios found for the deposits in the main part of the shield and for those in north-eastern Egypt, indicate that the Arabian craton was formed in an oceanic crustal environment during the late Precambrian. Involvement of older, upper-crustal material in the formation of the ore deposits in this part of the shield is precluded by their low207Pb/204Pb and208Pb/204Pb characteristics. In the eastern part of the shield, east of longitude 44??20???E towards the Al Amar-Idsas fault region, lead data are quite different. They exhibit a linear207Pb/204Pb-206Pb/204Pb relationship together with distinctly higher208Pb/204Pb characteristics. These data imply the existence of lower crustal rocks of early Proterozoic age that apparently have underthrust the shield rocks from the east. If most of the samples we have analyzed from this easterly region were mineralized 530 m.y. ago, then the age of the older continental rocks is 2,100??300 m.y. (2??). The presence of upper crustal rocks, possibly also of early Proterozoic age, is indicated by galena data from Hailan in South Yemen and also from near Muscat in Oman. These data are the first to indicate such old continental material in these regions. ?? 1980 Springer-Verlag.
Radiation Shielding Optimization on Mars
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.
2013-01-01
Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina
2010-01-01
Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event
1998-08-10
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter’s external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the "eyeballs" on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter
Tony Rollins prepares a new tile for the Space Shuttle orbiter
NASA Technical Reports Server (NTRS)
1998-01-01
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the 'eyeballs' on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.
Radiation protection in interventional radiology: survey results of attitudes and use.
Lynskey, G Emmett; Powell, Daniel K; Dixon, Robert G; Silberzweig, James E
2013-10-01
To assess attitudes of interventional radiologists toward personal radiation protection and the use of radiation protection devices. Invitations to an anonymous online survey that comprised eight questions focused on operator attitudes toward radiation protection devices were sent via e-mail to the active membership of the Society of Interventional Radiology (SIR): a total of 3,158 e-mail invitations. A single reminder e-mail was sent. There were 504 survey responders (16% response rate). Reported radiation safety device use included lead apron (99%), thyroid shield (94%), leaded eyeglasses (54%), ceiling-suspended leaded shield (44%), rolling leaded shields (12%), ceiling-suspended/rolling lead-equivalent apron (4%), radiation-attenuating sterile surgical gloves (1%), and sterile lead-equivalent patient-mounted drape (4%). Reasons commonly cited for not using certain devices were comfort (eyewear), ease of use (mounted shields), and lack of availability (rolling/hanging shields and patient-mounted shields). Interventionalists have an array of tools from which to choose for personal radiation protection; however, for a variety of reasons related to lack of availability or choice, these tools are not universally employed. Further study may be of value to clarify why comfort was cited most often as the primary barrier to the use of protective eyewear and difficulty of use was cited as the primary barrier to use of mounted shields (despite reporting that concern for radiation-induced injury to the eye is paramount). It may also be of interest to further study why certain devices with demonstrable protection effects are not readily available, such as rolling/hanging and patient-mounted shields. © SIR, 2013.
Limitations on space flight due to cosmic radiations.
CURTIS, H J
1961-02-03
These conclusions (10) may be summarized as follows: 1) Flight below the Van Allen belts seems reasonably safe without radiation shielding. 2) It is probably impractical to shield a rocket sufficiently to permit a man to remain in the inner Van Allen belt for more than about an hour, but it should be possible for him to go through it without serious harm. 3) Shielding for the outer Van Allen belt is possible but would have to be quite heavy if a stay of more than a few hours were contemplated. 4) The primary cosmic radiation is not intense enough to deliver a serious radiation dose, even for exposures of a few weeks, and the heavy cosmic ray primaries do not seem to present an unusual hazard.
Sisson, T.W.; Kimura, Jun-Ichi; Coombs, M.L.
2009-01-01
A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol 142:520-542, 2002). It may represent the melting products of a fertile domain in the ambient upper mantle impinged upon and perturbed by the sustained plume source that feeds later shield-stage magmatism. ?? US Government 2009.
NASA Astrophysics Data System (ADS)
Sisson, T. W.; Kimura, J.-I.; Coombs, M. L.
2009-12-01
A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids’ distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400°C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ~3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol 142:520-542, 2002). It may represent the melting products of a fertile domain in the ambient upper mantle impinged upon and perturbed by the sustained plume source that feeds later shield-stage magmatism.
NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal
2016-07-27
National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.
Shielding of medical imaging X-ray facilities: a simple and practical method.
Bibbo, Giovanni
2017-12-01
The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.
Respiratory disease among military personnel in Saudi Arabia during Operation Desert Shield.
Richards, A L; Hyams, K C; Watts, D M; Rozmajzl, P J; Woody, J N; Merrell, B R
1993-01-01
OBJECTIVES. The purpose of this study was to determine whether respiratory disease due to crowded living conditions and high levels of suspended and blowing sand had a major adverse impact on US military personnel during Operation Desert Shield. METHODS. A questionnaire survey was administered to 2598 combat troops stationed in Northeast Saudi Arabia for a mean of 102 days. Samples of surface sand from seven different locations were analyzed by scanning electron microscopy and x-ray diffraction. RESULTS. Among surveyed troops, 34.4% reported a sore throat, 43.1% complained of a cough, 15.4% complained of chronic rhinorrhea, and 1.8% were unable to perform their routine duties because of upper respiratory symptoms. Evaluation of sleeping accommodations indicated that complaints of a sore throat and cough were most closely associated with sleeping in air-conditioned buildings; in contrast, complaints of rhinorrhea were associated with exposure to the outdoor environment while living in tents. Sand samples consisted mostly of quartz, with just 0.21% by weight of respirable size (< 10 microns in diameter). CONCLUSIONS. These findings indicate that upper respiratory complaints were frequent among Operation Desert Shield troops and were related both to the troops' housing and to their exposure to the outside environment. PMID:8363011
SU-E-T-243: Design of a Novel Testing Port for Radiation Protection and Shielding Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanny, S; Parsai, E; Harrell, D
2015-06-15
Purpose: The majority of radiation shielding research utilizes Monte Carlo simulation because of the difficulty in eliminating secondary radiations from measurements. We have designed a test port into a primary barrier of our newest vault to allow for shielding measurements while ensuring adequate protection to the public and staff during normal machine operation. This port allows for measurement of attenuation values of shielding materials, differential dose albedos, and radiation scatter fractions. Methods: The vault design utilized the maze as part of a compound primary barrier. The test port is contained within the maze and is centered along isocenter. The innermore » 30 cm has a 20×20 cm{sup 2} opening, while the remaining length has a 30×30 cm{sup 2} opening. The block that contains the port has a density of 200 pcf to minimize internal scatter. The 30×30 cm{sup 2} opening is occupied by removable 215 pcf concrete blocks. The innermost and outermost blocks activate an interlock wired into the beam-enable loop. This disallows beam-on in treatment mode if the interlock isn’t closed. The interlock can be overridden in service mode, or by-passed via an override switch in case of circuit failure. Results: The test port was installed in August. The beam is disabled when the interlock is tripped. Measurements taken when the primary beam is not incident on the port are indistinguishable from background. Ambient dose levels surrounding the vault with the designed shielding blocks in place are all within allowable limits for occupational workers. Conclusions: We have designed and installed a unique testing port for radiation protection and shielding measurements. This port is appropriately interlocked and designed to mitigate any risks of incidental exposure to staff or members of the public. The test port design allows measurements with “good geometry” and efficient removal of contaminating sources of radiation present in many shielding measurements. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is an employee of Universal Minerals International, Inc, the company that provided the aggregates for the high density concretes used in the vault construction.« less
The Birth and Growth of Kupaianaha Lava Shield, Kilauea Volcano: 1986-1992
NASA Astrophysics Data System (ADS)
Hon, K.; Heliker, C.
2007-12-01
Kupaianaha began to form on July 20, 1986, 3 km northeast of Pu`u `O`o, which had been the focus of Kilauea¡¦s east-rift-zone eruption for the prior 3.5 years. On July 18, Pu`u `O`o was primed for the 48th episode of high fountaining. Instead, fissures erupted first uprift and then downrift of the cone. This activity, which lasted until mid- morning on July 19, was preceded by an earthquake swarm and accompanied by 17.4 Ýradians of deflation at Kilauea¡¦s summit. On July 20, another small swarm of earthquakes heralded the eruption of the 200-m-long Kupaianaha fissure. Lava flows spread rapidly from the new fissure, advancing about 800 m southeastward during the first 2 days. The nascent shield was 4 m high by July 25, and a lava pond was forming over the vents. On July 26, a major breakout fed a channelized flow with an `a`a terminus that traveled 4.6 km southeast before stagnating on August 3. The upper end of the channel remained active on the shield after August 3 and evolved into the pond neck and the upper section of master tube that would direct most of the lava to the southeast during the next five years. The Kupaianaha shield attained a height of 33 m during August due to pond overflows, and expanded to cover an area of 1 x 1.6 km. By early October 1986, the lava pond had acquired its final shape and the shield was over 40 m high. Growth of the shield via intrusions also began in August and continued throughout the first year. Outpourings of intruded lava built satellitic shields, and extrusions of `a`a emanated from upwarped regions on the flanks of the shield. Intrusions were volumetrically less important than pond overflows, but they had a significant effect on the final shield morphology. The Kupaianaha shield reached a final height of 60 m early in July 1987, when a blockage of the master tube caused the pond to overflow in all directions for the last time. Two days later, the master tube broke open on the east side of the shield, building a satellitic shield nearly as high as the main shield in just 2 days. Lava flows from this shield constructed a new tube system to the southeast. On July 29, the new tube became blocked and lava overflowed from the summits of both the satellitic and main shields. The increased pressure reopened the connection to the original master tube buried within Kupaianaha. During this same period, the large (500 x 200 m) laccolith complex and `a`a flow field that formed on the north side of the shield in the spring of 1987 remained quiet, but a new domal laccolith (150 x 100 m) grew 15 m high on the south side of the shield. Repeated extrusions from this structure in early July built an apron of `a`a that extended 0.5 km to the base of the shield. On July 27, a 1.5-km-long `a`a flow erupted from the north laccolith, and four days later it subsided 3-4 m. This sequence of events ended the growth of Kupaianaha shield. Beginning in September 1986, well before shield-building activity diminished, tube-fed lava flows had been progressing slowly away from the shield. During the first year, flow activity alternated between the shield and the advancing flow field, as immature lava tubes formed and failed. By the end of 1987, most of the flow activity was located on the coastal plain, terminating at ocean entries 10-12 km from the vent. This was the status quo for the remainder of Kupaianaha era. The end of Kupaianaha came slowly. The pond remained unchanged until early 1990, when repeated pauses in the eruption caused the pond to crust over. Through 1991, the lava output diminished, and, in early February 1992, Kupaianaha stopped erupting. Within 10 days, the ongoing eruption returned to Pu`u `O`o.
DOT National Transportation Integrated Search
1978-08-01
The characteristics of a prototype head shield for hazardous material tank cars were evaluated with respect to the maintenance of its structural integrity under normal service conditions. The primary concern was with the resistance to fatigue damage ...
NPR Reactor shield calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, E.G.
1961-09-27
At the request of IPD Personnel, calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly. The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the frontmore » face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft{sup 3} and 265 lb/ft{sup 3} (designated by I-S-245-P and I-S-265-P, respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.« less
Costa, Paulo R; Caldas, Linda V E
2002-01-01
This work presents the development and evaluation using modern techniques to calculate radiation protection barriers in clinical radiographic facilities. Our methodology uses realistic primary and scattered spectra. The primary spectra were computer simulated using a waveform generalization and a semiempirical model (the Tucker-Barnes-Chakraborty model). The scattered spectra were obtained from published data. An analytical function was used to produce attenuation curves from polychromatic radiation for specified kVp, waveform, and filtration. The results of this analytical function are given in ambient dose equivalent units. The attenuation curves were obtained by application of Archer's model to computer simulation data. The parameters for the best fit to the model using primary and secondary radiation data from different radiographic procedures were determined. They resulted in an optimized model for shielding calculation for any radiographic room. The shielding costs were about 50% lower than those calculated using the traditional method based on Report No. 49 of the National Council on Radiation Protection and Measurements.
Particle trap for compressed gas insulated transmission systems
Cookson, A.H.
1984-04-26
A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.
Particle trap for compressed gas insulated transmission systems
Cookson, Alan H.
1985-01-01
A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.
Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.
1979-08-01
The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberti, W.
1961-01-01
BS>It is calculated that nurses and patients adjacent to hospitalized persons bearing implanted radioisotopes, such as Ra, Co/sup 60/, and Cs/sup 137/, often receive daily doses of radiation exceeding by several fold the minimum dose of 17 Mr/day. To prevent this exposure a bedside concrete shield was constructed that allows the patient to be attended by hospital personnel but reduces the exposure of most of their body by a factor of 50. The cubicle is located in the corner of walls of concrete, and the concrete shield, placed on the other side of the bed, is 100 cm high andmore » 50 cm thick. The upper portion of the shield curves convexly toward the bed so that only the head of the attendant is not protected by the shield. It is estimated that less than 1 to 2.5% of the gamma radiation from Ra or Co/sup 60/ and less than 0.5% from Cs/sup 137/ would not be absorbed by this shield. (H.H.D.)« less
On the morphometry of terrestrial shield volcanoes
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu
2016-04-01
Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified distinction, taking into account the lava/pyroclasts ratio and the spatial distribution of eruptive vents.
NASA Technical Reports Server (NTRS)
Goeorge, Kerry; Cucinotta, Francis A.
2007-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.
NASA Astrophysics Data System (ADS)
Julià, Jordi; Ammon, Charles J.; Herrmann, Robert B.
2003-08-01
We estimate lithospheric velocity structure for the Arabian Shield by jointly modeling receiver functions and fundamental-mode group velocities from events recorded by the 1995-1997 Saudi Arabian Portable Broadband Deployment. Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times, and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with the observed surface geology; the Asir terrane to the West consists of a 10-km-thick upper crust of 3.3 km/s overlying a lower crust of 3.7-3.8 km/s; in the Afif terrane to the East, the upper crust is 20 km thick and has an average velocity of 3.6 km/s, and the lower crust is about 3.8 km/s; separating the terranes, the Nabitah mobile belt is made of a gradational upper crust up to 3.6 km/s at 15 km overlying an also gradational lower crust up to 4.0 km/s. The crust-mantle transition is found to be sharp in terranes of continental affinity (east) and gradual in terranes of oceanic affinity (west). The upper mantle shear velocities range from 4.3 to 4.6 km/s. Temperatures around 1000 °C are obtained from our velocity models for a thin upper mantle lid observed beneath station TAIF, and suggest that the lithosphere could be as thin as 50-60 km under this station.
NASA Technical Reports Server (NTRS)
Brendley, K.; Chato, J. C.
1982-01-01
The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell Feder and Mahmoud Z. Yousef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell E. Feder and Mahmoud Z. Youssef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less
2008-05-20
of the demonstration; yellow stars indicate the inshore and offshore fields. ................. 39 Figure 19. Wave height (upper) and current...demonstration; yellow stars indicate the inshore and offshore fields. 40 Figure 19. Wave height (upper) and current magnitude (lower) measured...State Park to Barking Sands, are composed of material eroded from the Kokee Highlands, remnant of a shield volcano that is dissected on its western side
2008-09-01
improved resolution for shallow geologic structures . Jointly inverting these datasets with seismic body wave (S) travel times provides additional...constraints on the shallow structure and an enhanced 3D shear wave model for our study area in western China. 2008 Monitoring Research Review...for much of Eurasia, although the Arabian Shield and Arctic are less well recovered. The upper velocity gradient was tested for 10-degree cells
Weil, R; Mellors, P; Fiske, T; Sorensen, J A
2014-01-01
Machinery entanglements are one of the top three causes of death in farming. Education on the risks of unshielded power take-off (PTO) equipment does not appear to significantly alter farmers' willingness to replace missing or broken shielding. Different assessments conducted in various regions of the U.S. indicate that as many as one-third to one-half of PTOs are inadequately shielded. Qualitative research was conducted with New York farmers to identify the factors that influence the decision to replace damaged or missing PTO driveline shields. Interview topics included: knowledge of entanglement risks, decisions regarding safety in general, decisions relating to PTO driveline shielding specifically, and the barriers and motivators to replacing missing or broken PTO driveline shields. Interviews with 38 farmers revealed the following themes: (1) farmers are fully aware of PTO entanglement risk, (2) insufficient time and money are primary barriers to purchasing or replacing damaged or missing PTO driveline shields, (3) PTO driveline shield designs are problematic and have led to negative experiences with shielding, and (4) risk acceptance and alternate work strategies are preferred alternatives to replacing shields. Our findings indicate that more innovative approaches will be required to make PTO driveline shield use a viable and attractive choice for farmers. New shield designs that address the practical barriers farmers face, as well as the provision of logistical and financial assistance for shield replacement, may alter the decision environment sufficiently to make replacing PTO driveline shielding a more attractive option for farmers.
Schreiber, R.B.; Fero, A.H.; Sejvar, J.
1997-12-16
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.
Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James
1997-01-01
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Richard Dean; Thom, Robert Anthony
A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectablemore » to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.« less
Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da
2015-12-01
The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.
Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica
2017-05-10
Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).
Is Collegiality a Weapon or a Shield?
ERIC Educational Resources Information Center
Cipriano, Robert E.; Buller, Jeffrey L.
2017-01-01
There are two primary means to prevent the abuse of collegiality and transform it into a shield to protect the most vulnerable. First, colleges and universities should follow the examples of their peers by developing clear definitions of what types of behavior constitute collegiality and what types of activity are protected as academic freedom or…
Air core poloidal magnetic field system for a toroidal plasma producing device
Marcus, Frederick B.
1978-01-01
A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.
Geology of the small Tharsis volcanoes: Jovis Tholus, Ulysses Patera, Biblis Patera, Mars
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1994-01-01
Jovis Tholus, Ulysses Patera, and Biblis Patera, three small volcanoes in the Tharsis area of Mars, provide important insight into the evolution of volcanism on Mars. All three are interpreted to be shield volcanoes, indicating that shield volcansim was present from the outset in Tharsis. Jovis Tholus is the least complex with simple repeated outpouring of lavas and caldera-forming events. Ulysses Patera is dominated by a giant caldera within which is a line of cinder cones or domes suggesting terminal stages of volcanism in which the magma had either significant volatiles or increased viscosity. Biblis Patera is characterized by nested calderas which have expanded by block faulting of the flank; it also exhibits lava flows erupted onto the flanks from events along concentric fractures. These shields are different from the younger Tharsis Montes shields only in terms of the volume of erupted material. The limited shield volume suggests that the magma source which fed the shields was rapidly depleted. The relatively large size ofthe calderas probably results from relatively large, shallow magma bodies rather than significant burial of the flanks by younger lavas. Eruption rates consistent with typical terrestrial basaltic eruptiuon rates suggest that these volcanoes were probably built over time spans of 10(exp 4) to 10(exp 5) years. Stratigraphic ages range from Early to Upper Hesperian; absolute ages range from 1.9 to 3.4 Ga.
Key, Douglas J; Boudreaux, Lauren
2016-11-01
Laxity of the eyelid and periorbital area, a common manifestation of aging, is usually addressed via blepharoplasty and/ or fat transfer. Given the trend toward safer, less invasive treatments preferred by those patients reticent to undergo more invasive procedures, viable alternatives have been sought. Transcutaneous temperature controlled radiofrequency (TTCRF) integrates non- invasive super cial RF treatment with automatic temperature feedback control of energy deposition, as a stimulator of overall collagen remodeling; however, the globe of the eye is particularly sensitive to RF energy. The purpose of the study was to propose a method by which TTCRF and other non-ablative modalities could be used to treat eyelid and infrabrow laxity, with autoclavable opaque black haptic scleral contact lenses protecting the globe of the eye. Subjects (n=40, 36 women and 4 men, age range, 33-72) with mild to moderate laxity of the eyelid and infrabrow were treated with TTCRF using black plastic eye shields (Oculoplastik, Montreal, Quebec, Canada) to protect the globe of the eye from heat and RF energy. With the shields in place subjects were treated with the 10 mm small monopolar emitter of the ThermiSmooth device (Thermi, Irving, Tex.), using small circular looping motions to safely elevate the temperature of target tissue to the therapeutically rel- evant range for approximately 6 minutes; tissue temperature was measured in real time using the device's forward-looking infrared imaging. No major adverse events were recorded. Treatment was safe and tolerable for all subjects. The use of autoclavable opaque black plastic eye shields provides a safe method of treating the upper eye lid and infrabrow using TTCRF. J Drugs Dermatol. 2016;15(11):1302-1305..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T. L.; Nilsson, R.; Chen, C. H.
We have carried out two sets of observations to quantify the properties of SiO gas in the unusual HD 172555 debris disk: (1) a search for the J = 8–7 rotational transition from the vibrational ground state, carried out with the Atacama Pathfinder EXperiment (APEX) submillimeter telescope and heterodyne receiver at 863 μ m and (2) a search at 8.3 μ m for the P(17) ro-vibrational transition of gas phase SiO, carried out with the Very Large Telescope (VLT)/VISIR with a resolution, λ /Δ λ , of 30,000. The APEX measurement resulted in a 3.3 σ detection of an interstellarmore » feature, but only an upper limit to emission at the radial velocity and line width expected from HD 172555. The VLT/VISIR result was also an upper limit. These were used to provide limits for the abundance of gas phase SiO for a range of temperatures. The upper limit from our APEX detection, assuming an 8000 K primary star photospheric excitation, falls more than an order of magnitude below the self-shielding stability threshold derived by Johnson et al. (2012). Our results thus favor a solid-state origin for the 8.3 μ m feature seen in the Spitzer IRS spectrum of the circumstellar excess emission and the production of circumstellar O i and Si i by SiO UV photolysis. The implications of these estimates are explored in the framework of models of the HD 172555 circumstellar disk.« less
SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanny, S; Parsai, E
2014-06-01
Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, withinmore » various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction measurement, and simulation of photo-nuclear interaction within the maze barrier for high-energy beams.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli
2017-02-01
The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.
Double shroud delivery of silica precursor for reducing hexavalent chromium in welding fume.
Wang, Jun; Kalivoda, Mark; Guan, Jianying; Theodore, Alexandros; Sharby, Jessica; Wu, Chang-Yu; Paulson, Kathleen; Es-Said, Omar
2012-01-01
The welding process yields a high concentration of nanoparticles loaded with hexavalent chromium (Cr(6+)), a known human carcinogen. Previous studies have demonstrated that using tetramethylsilane (TMS) as a shielding gas additive can significantly reduce the Cr(6+) concentration in welding fume particles. In this study, a novel insulated double shroud torch (IDST) was developed to further improve the reduction of airborne Cr(6+) concentration by separating the flows of the primary shielding gas and the TMS carrier gas. Welding fumes were collected from a welding chamber in the laboratory and from a fixed location near the welding arc in a welding facility. The Cr(6+) content was analyzed with ion chromatography and X-ray photoelectron spectroscopy (XPS). Results from the chamber sampling demonstrated that the addition of 3.2 ≈ 5.1% of TMS carrier gas to the primary shielding gas resulted in more than a 90% reduction of airborne Cr(6+) under all shielding gas flow rates. The XPS result confirmed complete elimination of Cr(6+) inside the amorphous silica shell. Adding 100 ≈ 1000 ppm of nitric oxide or carbon monoxide to the shielding gas could also reduce Cr(6+) concentrations up to 57% and 35%, respectively; however, these reducing agents created potential hazards from the release of unreacted agents. Results of the field test showed that the addition of 1.6% of TMS carrier gas to the primary shielding gas reduced Cr(6+) concentration to the limitation of detection (1.1 μg/m(3)). In a worst-case scenario, if TMS vapor leaked into the environment without decomposition and ventilation, the estimated TMS concentration in the condition of field sampling would be a maximum 5.7 ppm, still well below its flammability limit (1%). Based on a previously developed cost model, the use of TMS increases the general cost by 3.8%. No visual deterioration of weld quality caused by TMS was found, although further mechanical testing is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C; Kim, J; Park, S
Purpose: Photon beams with energy higher than 10 MV interact with metal material in the primary barriers, where lead or steel have been widely used, neutrons can be generated. Monte Carlo simulations were performed to simulate the production of photoneutrons and the neutron shielding effect. Methods: For two photon beam energies, 15 MV and 18 MV, we simulated to strike metal sheets (steel and lead), and the ambient dose equivalents were calculated at the isocenter (in the patient plane) while delivering 1 Gy to the patient. For these cases, the thickness of the neutron shielding materials (Borated polyethylene (BPE) andmore » concrete) were simulated to reduce the patient exposure by neutron doses. Results: When 18 MV photons interact with the metal sheets in the primary barrier, the evaluated neutron doses at the isocenter inside the treatment vault were 48.7 µSv and 7.3 µSv for lead and steel, respectively. In case of 15 MV photons, the calculated neutron doses were 18.6 µSv and 0.6 µSv for lead and steel, respectively. The neutron dose delivered to the patient can be reduced to negligible levels by including a 10 cm thick sheet of BPE or 22 cm thick sheet of concrete. Conclusion: When bunker shielding is designed with a primary barrier including a metal sheet inside the wall for a high energy machine, proper neutron shielding should be constructed to avoid undesirable extra dose.« less
George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A
2002-01-01
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.
2002-01-01
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Honeycomb vs. Foam: Evaluating Potential Upgrades to ISS Module Shielding
NASA Technical Reports Server (NTRS)
Ryan, Shannon J.; Christiansen, Eric L.
2009-01-01
The presence of honeycomb cells in a dual-wall structure is advantageous for mechanical performance and low weight in spacecraft primary structures but detrimental for shielding against impact of micrometeoroid and orbital debris particles (MMOD). The presence of honeycomb cell walls acts to restrict the expansion of projectile and bumper fragments, resulting in the impact of a more concentrated (and thus lethal) fragment cloud upon the shield rear wall. The Multipurpose Laboratory Module (MLM) is a Russian research module scheduled for launch and ISS assembly in 2011 (currently under review). Baseline shielding of the MLM is expected to be predominantly similar to that of the existing Functional Energy Block (FGB), utilizing a baseline triple wall configuration with honeycomb sandwich panels for the dual bumpers and a thick monolithic aluminum pressure wall. The MLM module is to be docked to the nadir port of the Zvezda service module and, as such, is subject to higher debris flux than the FGB module (which is aligned along the ISS flight vector). Without upgrades to inherited shielding, the MLM penetration risk is expected to be significantly higher than that of the FGB module. Open-cell foam represents a promising alternative to honeycomb as a sandwich panel core material in spacecraft primary structures as it provides comparable mechanical performance with a minimal increase in weight while avoiding structural features (i.e. channeling cells) detrimental to MMOD shielding performance. In this study, the effect of replacing honeycomb sandwich panel structures with metallic open-cell foam structures on MMOD shielding performance is assessed for an MLM-representative configuration. A number of hypervelocity impact tests have been performed on both the baseline honeycomb configuration and upgraded foam configuration, and differences in target damage, failure limits, and derived ballistic limit equations are discussed.
Destructive examination of shipping package 9975-02644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02644 as part of a comprehensive SRS surveillance program for plutonium material stored in the K-Area Complex (KAC). During the field surveillance inspection of this package in KAC, three non-conforming conditions were noted: the axial gap of 1.389 inch exceeded the 1 inch maximum criterion, the exposed height of the lead shield was greater than the 4.65 inch maximum criterion, and the difference between the upper assembly inside height and the exposed height of the lead shield was less than the 0.425 inch minimum criterion. All threemore » of these observations relate to axial shrinkage of the lower fiberboard assembly. In addition, liquid water (condensation) was observed on the interior of the drum lid, the thermal blanket and the air shield.« less
Topography of the shield volcano, Olympus Mons on Mars
Wu, S.S.C.; Garcia, P.A.; Jordan, R.; Schafer, F.J.; Skiff, B.A.
1984-01-01
Olympus Mons, one of the largest known shield volcanoes in the Solar System, covers an area of >3.2 ?? 105 km2and has a diameter of >600 km, excluding its vast aureole deposits. The structure is five times larger than the largest shield volcano on the Earth. It is situated on the north-west flank of the Tharsis volcanic region, a broad topographic rise on the martian surface. The volcano has three physical subdivisions: the summit caldera, the terraced upper flanks, and the lower flanks, which terminate in a scarp 2-10 km high that nearly surrounds the structure. A large block of images of the Tharsis region, including Olympus Mons, was obtained by the Viking mission1. Here we present a topographic map of Olympus Mons, compiled using various combinations of stereo pairs of these images, together with stereoscopic perspective views generated by image processing techniques. ?? 1984 Nature Publishing Group.
Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo
2008-05-01
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.
Zinn, W.H.
1958-07-01
A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, S; Vanderhoek, M
Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beammore » entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.« less
NASA Astrophysics Data System (ADS)
Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.
2011-08-01
The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor
Gravity field over northern Eurasia and variations in the strength of the upper mantle
NASA Technical Reports Server (NTRS)
Kogan, Mikhail G.; Mcnutt, Marcia K.
1993-01-01
The correlation of long-wavelength gravity anomalies in northern Eurasia with seismic velocity anomalies in the upper mantle reverses in sign between western and eastern Eurasia. The difference between western and eastern Eurasia can be explained by the presence of a low-viscosity zone in the uppermost mantle beneath eastern Eurasia that is absent to the west. The location of the lateral change in viscosity corresponds with the geologic boundary between the older shields and platforms of the Baltics, Russia, and Siberia and the younger, geologically active mountain belts of eastern Asia. This relation provides evidence that differences in the strength of the upper mantle control the locus of intracontinental deformation.
Harmsen, Samuel M; Norris, Tom R
2017-09-01
Press-fit humeral fixation in reverse shoulder arthroplasty (RSA) has become increasingly popular; however, radiographic analysis of these stems is limited. We aimed to evaluate the radiographic and clinical outcomes of an adjustable diaphyseal press-fit humeral stem in primary RSA. We conducted a retrospective review of 232 primary RSAs in 219 patients performed by a single surgeon using this system. Radiographic outcomes were evaluated in patients with at least 2 years of radiographic follow-up. Standardized postoperative digital radiographs were analyzed for loosening, osteolysis, and stress shielding. Clinical outcomes in patients who also had complete clinical data sets were evaluated at the most recent follow-up. Radiographic evidence of loosening was identified in 1 RSA (0.4%) associated with deep infection. Aseptic loosening was not observed. No stems were identified as being at high risk for loosening. Internal stress shielding was observed proximal to the coated diaphyseal component in 226 shoulders (97.4%). This finding was often visible at 3 months (92.7%) and predictably progressed on subsequent radiographs. Progression beyond the 2-year period was rarely seen (4.4%). No external stress shielding or osteolysis was observed. Thirty-six complications occurred in 33 patients (15.1%). At an average follow-up of 36.6 months, significant improvements were identified in all measured clinical outcomes (P < .001). Predictable fixation is achieved using an adjustable diaphyseal press-fit humeral system in primary RSA. Internal stress shielding is commonly observed but does not appear to compromise quality of fixation or clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Köhler, A.; Balling, N.; Ebbing, J.; England, R.; Frassetto, A.; Gradmann, S.; Jacobsen, B. H.; Kvarven, T.; Maupin, V.; Medhus, A. Bondo; Mjelde, R.; Ritter, J.; Schweizer, J.; Stratford, W.; Thybo, H.; Wawerzinek, B.; Weidle, C.
2012-04-01
The origin of the Scandinavian mountains, located far away from any presently active plate margin, is still not well understood. In particular, it is not clear if the mountains are sustained isostatically either by crustal thickening or by light upper mantle material. Within the TopoScandiaDeep project (a collaborative research project within the ESF TOPO-EUROPE programme), we therefore analyse recently collected passive seismological and active seismic data in the southern Scandes and surrounding regions. We infer crustal and upper mantle (velocity) structures and relate them to results of gravity and temperature-composition modelling. The Moho under the high topography of southern Norway appears from controlled source seismic refraction and Receiver Functions as relatively shallow (<= 45 km) compared to the deeper conversion (>55 km) imaged beneath the low topography in Sweden and elsewhere in the Baltic Shield area outside Norway. The Receiver Function modeling as well as the active seismic results suggest that the differences in the observed Moho response may represent the transition between tectonically reworked Moho under southern Norway and an intact, cratonic crust-mantle boundary beneath the Baltic Shield. Furthermore, the 410km-discontinuity and the LAB is imaged, the latter one suggesting a lithospheric thickening in NE direction. Upper mantle P-wave and S-wave velocities in southern Sweden and southern Norway east of the Oslo Graben are correspondingly relatively high while lower velocities are observed in the southwestern part of Norway and northern Denmark. The lateral velocity gradient, interpreted as the southwestern boundary of thick Baltic Shield lithosphere, is remarkably sharp. Differences in upper mantle velocities are found at depths of 100-400 km and amount to ± 2-3%. S-to-P wave conversions, interpreted to originate from the lithosphere-asthenosphere boundary, are preliminary estimated to 90-120 km depth. Inversion of Rayleigh and Love surface wave phase velocity dispersion curves from observations of ambient noise and earthquakes yield another independent model of the crust and upper mantle structure below southern Norway. Inverted crustal velocities and Moho depths are consistent with the results of seismic refraction and receiver functions. Additionally, indications for radial crustal anisotropy of up to about 3% are found. The inferred upper mantle S-wave velocities show that the lithosphere under southern Norway has characteristics usually found under continental platforms and changes towards a cratonic-like velocity structure in the East, in agreement with the body wave tomography. All in all, these separate investigations give a very consistent and stable picture of the crust and upper mantle configuration. Integrated geophysical modeling of the results shows that a lateral transition from thinner, warmer lithosphere under southern Norway towards thicker, colder lithosphere under Sweden results in a density distribution that significantly adds to the isostatic support of Norway's high topography.
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2006-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.
Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation
NASA Astrophysics Data System (ADS)
Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.
2017-11-01
The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.
Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D
2011-08-01
The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.
NASA Technical Reports Server (NTRS)
Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)
2016-01-01
Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.
Cloud immersion building shielding factors for US residential structures.
Dickson, E D; Hamby, D M
2014-12-01
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
Long wavelength magnetic anomalies over continental rifts in cratonic region
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.
2017-12-01
New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost (<80 km depth) lithospheric mantle in these regions in the spinel-peridotite and plagioclase-peridotite stability fields. The most common lithology by far (95% of samples) is a spinel-lherzolite indicating relatively low oxygen fugacities (FMQ -1). Chrome spinel in these peridotites is non-magnetic (Al + Mg > 0.2 or Fe < 0.3) and primary magnetite (Fe3O4) occurs only in trace amounts, typically yielding low natural remanent magnetizations (NRM < 10-2 A/m). The low Koenigsberger ratios (Qn < 1) of these materials, combined with high geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also <1, the new data presented here suggests that relatively young rifts would display a central negative magnetic anomaly surrounded by two broad positive anomalies. The latitude of the rift is predicted to exert a primary control on the magnitude of such anomalies, while the steepness of the magnetic gradient across the rift would primarily reflect thermal equilibration over time.
Trailing Shield For Welding On Pipes
NASA Technical Reports Server (NTRS)
Coby, John B., Jr.; Gangl, Kenneth J.
1991-01-01
Trailing shield ensures layer of inert gas covers hot, newly formed bead between two tubes or pipes joined by plasma arc welding. Inert gas protects weld bead from oxidation by air until cooler and less vulnerable to oxidation. Intended for use on nickel-base alloy pipes, on which weld beads remain hot enough to oxidize after primary inert-gas purge from welding-torch cup has passed.
Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) Shield
NASA Astrophysics Data System (ADS)
Ojakangas, Richard W.; Marmo, Jukka S.; Heiskanen, Kim I.
2001-06-01
The peneplaned Archean craton of the Fennoscandian Shield served as a platform upon which a continental margin assemblage, the Karelian Supergroup, was deposited between ˜2.45 and ˜1.9 Ga. Major subaerial unconformities separate five sedimentary-volcanic groups of the supergroup — the Sumian, Sariolian, Jatulian (Lower and Upper), Ludicovian, and Kalevian. Second-order depositional sequences are implied. Early extension (˜2.45 Ga) resulted in localized rifts that were likely areas of later subsidence as well; they received thicker accumulations of sediments and volcanic rocks than did the adjacent platform. It is in these rifts and perhaps other downwarped areas that the sediments that were once more widespread were preserved, leading to interpretations of separate depositional basins by some workers. Seas transgressed onto the craton at least three times — in Sariolian time as evidenced by interpreted glaciomarine deposits, in Jatulian time as evidenced by widespread orthoquartzites (including tidalites) and stromatolitic carbonates, and in Ludicovian time as evidenced by organic-rich shales and turbidites. The tectonic-magmatic history is complex. Three episodes of mafic volcanism were widespread at 2.45, 2.2, and 2.1 Ga. Island arcs formed to the south of the craton and collided at ˜1.9-1.85 Ga (the Svecofennian orogeny). This collision resulted in northeastward thrusting (e.g. the Outokumpu nappe) and folding and metamorphism of the Karelian Supergroup. The primary paleoclimatic indicators are (1) glaciogenic rocks near the base of the Paleoproterozoic succession indicating ice-house conditions; (2) remnants of a major paleosol on the glaciogenic rocks, indicative of deep weathering under greenhouse conditions (subtropical or tropical?); and (3) carbonate pseudomorphs after evaporite minerals in stromatolitic dolomites, perhaps indicative of aridity. Similarities in magmatism, tectonics, sedimentary rock types and sequences, and paleoclimatic indicators have led to hypotheses that the Fennoscandian Shield and North America may have been part of the same supercontinent during Neoarchean and Paleoproterozoic time.
Eder, H
1995-03-01
Presently examiners using angiographic methods are not accustomed to measure the exposition of parts of the body. This results in a considerable undervaluation of the really received doses (in terms of effective dose). Only a consequent application of dosimetry in parts of the body--demanded by section 35 of the German X-Ray Regulation and also by the corresponding guide-line--demonstrates the real problems i.e. oversteppings of dose limits. The use of practicable installations for permanent shielding will lead to an improvement of the situation and result in a significant decrease of the received doses and--at the same time--a minor physical burden of the examinator. Dosimetry of radiation was performed at the position of the examiner both with and without the application of permanent shielding (acrylic glass (PMMA) containing lead plus shielding of the lower part of the body). It could be demonstrated that a decrease of the received dose can be reached by a rate of 2.5 to 5 concerning the trunk and of 50 concerning the skull, upper arm and hands.
CAD-Based Shielding Analysis for ITER Port Diagnostics
NASA Astrophysics Data System (ADS)
Serikov, Arkady; Fischer, Ulrich; Anthoine, David; Bertalot, Luciano; De Bock, Maartin; O'Connor, Richard; Juarez, Rafael; Krasilnikov, Vitaly
2017-09-01
Radiation shielding analysis conducted in support of design development of the contemporary diagnostic systems integrated inside the ITER ports is relied on the use of CAD models. This paper presents the CAD-based MCNP Monte Carlo radiation transport and activation analyses for the Diagnostic Upper and Equatorial Port Plugs (UPP #3 and EPP #8, #17). The creation process of the complicated 3D MCNP models of the diagnostics systems was substantially accelerated by application of the CAD-to-MCNP converter programs MCAM and McCad. High performance computing resources of the Helios supercomputer allowed to speed-up the MCNP parallel transport calculations with the MPI/OpenMP interface. The found shielding solutions could be universal, reducing ports R&D costs. The shield block behind the Tritium and Deposit Monitor (TDM) optical box was added to study its influence on Shut-Down Dose Rate (SDDR) in Port Interspace (PI) of EPP#17. Influence of neutron streaming along the Lost Alpha Monitor (LAM) on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) of EPP#8. For the UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), an excessive neutron streaming along the CXRS shutter, which should be prevented in further design iteration.
NASA Astrophysics Data System (ADS)
Wawerzinek, B.; Ritter, J. R. R.; Roy, C.
2013-08-01
We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.
Vlastra, Wieneke; Delewi, Ronak; Sjauw, Krischan D; Beijk, Marcel A; Claessen, Bimmer E; Streekstra, Geert J; Bekker, Robbert J; van Hattum, Juliette C; Wykrzykowska, Joanna J; Vis, Marije M; Koch, Karel T; de Winter, Robbert J; Piek, Jan J; Henriques, José P S
2017-11-01
Interventional cardiologists are increasingly exposed to radiation-induced diseases like cataract and the stochastic risk of left-sided brain tumors. The RADPAD is a sterile, disposable, lead-free shield placed on the patient with the aim to minimize operator-received scatter radiation. The objective of the trial was to examine the RADPAD's efficacy in a real-world situation. In the current, double-blind, sham-controlled, all-comer trial, patients undergoing diagnostic catheterization or percutaneous coronary interventions were randomized in a 1:1:1 ratio to a radiation absorbing shield (RADPAD), standard treatment (NOPAD), or a sham shield (SHAMPAD). The sham shield allowed testing for shield-induced radiation behavior. The primary outcome was the difference in relative exposure of the primary operator between the RADPAD and NOPAD arms and was defined as the ratio between operator's exposure (E in µSv) and patient exposure (dose area product in mGy·cm 2 ), measured per procedure. A total of 766 consecutive coronary procedures were randomized to the use of RADPAD (N=255), NOPAD (N=255), or SHAMPAD (N=256). The use of RADPAD was associated with a 20% reduction in relative operator exposure compared with that of NOPAD ( P =0.01) and a 44% relative exposure reduction compared with the use of a SHAMPAD ( P <0.001). Use of the SHAMPAD was associated with a 43% higher relative radiation exposure than procedures with NOPAD ( P =0.009). In clinical daily practice, the standard use of the RADPAD radiation shield reduced operator radiation exposure compared with procedures with NOPAD or SHAMPAD. This study supports the routine use of RADPAD in the catheterization laboratory. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03139968. © 2017 American Heart Association, Inc.
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Mantle transition zone structure beneath the Canadian Shield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.
2010-12-01
The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.
Twin jet shielding. [for aircraft noise reduction
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cuffel, R. F.; Massier, P. F.
1979-01-01
For an over-the-wing/under-the-wing engine configuration on an airplane, the noise produced by the upper jet flow is partially reflected by the lower jet. An analysis has been performed which can be used to predict the distribution of perceived noise levels along the ground plane at take-off for an airplane which is designed to take advantage of the over/under shielding concept. Typical contours of PNL, the shielding benefit in the shadow zone, and the EPNL values at 3.5 nautical miles from brake release as well as EPNL values at sideline at 0.35 nautical miles have been calculated. This has been done for a range of flow parameters characteristic of engines producing inverted velocity profile jets suitable for use in a supersonic cruise vehicle. Reductions up to 6.0 EPNdB in community noise levels can be realized when the over engines are operated at higher thrust and the lower engines simultaneously operated with reduced thrust keeping the total thrust constant.
Wigner, E.P.; Weinberg, A.W.; Young, G.J.
1958-04-15
A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.
Preliminary Development of a Multifunctional Hot Structure Heat Shield
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V
2014-01-01
Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.
NASA Astrophysics Data System (ADS)
Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.
2014-06-01
We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.
Ford Motor Company NDE facility shielding design.
Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H
2005-01-01
Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.
High Dynamic Range Nonlinear Measurement using Analog Cancellation
2012-10-01
shield around sensitive areas. The target may also be sensitive to radiated coupling from the system and will benefit from a shield box or Faraday ... cage , if it is not already enclosed. On the shared measurement path and through the target, cross-channel coupling cannot be prevented, so low-PIM...testing is desired, traditional filtering is recommended, as the primary benefits of the analog canceller are effectively nullified. 2.4 Wideband
Status of the Electroforming Shield Design (ESD) project
NASA Technical Reports Server (NTRS)
Fletcher, R. E.
1977-01-01
The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.
A Comparison of Interventional Approaches for Increasing Power Take-off Shielding on New York Farms.
Sorensen, Julie A; Tinc, Pamela J; Dalton, Deb; Scott, Erika E; Jenkins, Paul L
2017-01-01
Power take-off (PTO) driveline entanglements are a primary source of injury on US farms. As with many farm injury concerns, hazard control technology is widely available for mitigating the risk of these entanglements. Despite the availability of hazard control technology, PTO shields are damaged or missing on approximately 57% of PTO driveline implements in New York. Given the catastrophic nature of entanglements and the ready access to safety technology, a better understanding of what motivates farmers to install or replace PTO shields is warranted. To examine this question, agricultural health and safety researchers in New York State conducted an initial comparison of PTO shield sales on farms receiving one of three different interventional approaches. These included PTO shield audits, a social marketing campaign, and on-farm safety services. PTO shield purchases were tracked from January 2011 through June 2016 on farms receiving these interventions and on other farms that were not exposed to interventional strategies. Results indicate that a significantly higher number of PTO shields were purchased on farms that requested and received on-farm safety services versus farms that were exposed to PTO shield audits, the social marketing campaign, or the control group. PTO shield sales were slightly elevated on farms receiving driveline audits, as compared with control farms (although these differences were not significant). No marked differences in sales were noted between control farms and farms exposed to the social marketing campaign. Only one of the three interventional strategies (on-farm safety services) approached the number of PTO shield sales necessary to prevent an entanglement.
Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.
Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G
2005-01-01
We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Isolated primary lymphedema tarda of the upper limb.
Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin
2013-03-01
Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.
Contaminant deposition building shielding factors for US residential structures.
Dickson, Elijah; Hamby, David; Eckerman, Keith
2017-10-10
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.
Contaminant deposition building shielding factors for US residential structures.
Dickson, E D; Hamby, D M; Eckerman, K F
2015-06-01
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit.
Switching from pure- into simple-shear mode during uplift of the Altiplano plateau (Central Andes)
NASA Astrophysics Data System (ADS)
Babeyko, A. Yu.; Sobolev, S. V.
2003-04-01
The Altiplano plateau of the Central Andes is the second greatest plateau in the world after Tibet with an average elevation of about 4 km formed as a result of ocean-continent collision between subducting Nasca plate on the west and Brazilian shield on the east. According to the well known Isacks (1988) scenario, the Cenozoic evolution of the plateau started ca. 30 Ma in response to the retreat of the flat-subducted Nasca plate. Astenospheric material, which replaced the retreated plate, thermally thinned and softened the overlying lithosphere. The Altiplano crust, being pushed by the Brazilian shield from the east, was first shortened in a pure-shear mode and reached 60-70 km in thickness. At ca. 8-10 Ma deformation changed to a simple-shear mode: it was ceased in the upper crust of the plateau and migrated eastwards, into the Subandean, while the plateau itself continued to grow due to ongoing shortening in the lower crust. We employ numerical 2D thermomechanical modelling to test the above scenario and to evaluate the key parameters, which account for the transition from pure- to simple- shear style of the lithosphere-scale deformation under pure-shear boundary condition. As a numerical tool we use explicit finite difference/finite element lagrangian code with markers tracking material properties. The model contains rheologically different layers representing sediments, felsic and mafic crust, lithospheric mantle, and astenosphere. Rheological laws are Mohr-Coloumb elasto-plastic with softening and Maxwell visco-elastic with nonlinear power-law creep. Initial and boundary conditions simulate thermal activation of the Altiplano lithosphere by upwelling astenosphere as well as its westward pushing by the cold Brazilian shield with constant velocity. We found that model shortening always occurs in a pure-shear mode unless the uppermost crust of the Brazilian shield becomes during the deformation considerably weaker than the Altiplano upper crust (drop of friction coefficient down to 0.05-0.1). This weakening may be attributed to more pronounced plastic softening in thick layer of the Paleozoic sediments covering the shield. Another nessesary condition is formation of a prominent (2-3 km) topographic step between the plateau and foreland before the beginning of the second phase. This topographic step is explained by initial localization of the pure-shear-type deformation under the Altiplano, where the crust is hotter and more felsic than the crust of the Brazilian shield.
Aeroshell for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
2008-01-01
This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver. This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested. The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent. The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet. In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell. The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the tiles. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, C; Singh, A; AlDahlawi, I
Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layersmore » of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkopi, E; Lightfoot, C; LeBlanc, E
Purpose: The rising complexity of interventional fluoroscopic procedures has resulted in an increase of occupational radiation exposures in the interventional radiology (IR) department. This study assessed the impact of ancillary shielding on optimizing radiation protection for the IR staff. Methods: Scattered radiation measurements were performed in two IR suites equipped with Axiom Artis systems (Siemens Healthcare, Erlangen, Germany) installed in 2006 and 2010. Both rooms had suspended ceiling-mounted lead-acrylic shields of 75×60 cm (Mavig, Munich, Germany) with lead equivalency of 0.5 mm, and under-table drapes of 70×116 cm and 65×70 cm in the newer and the older room respectively. Themore » larger skirt can be wrapped around the table’s corner and in addition the newer suite had two upper shields of 25×55 cm and 25×35 cm. The patient was simulated by 30 cm of acrylic, air kerma rate (AKR) was measured with the 180cc ionization chamber (AccuPro Radcal Corporation, Monrovia, CA, USA) at different positions. The ancillary shields, x-ray tube, image detector, and table height were adjusted by the IR radiologist to simulate various clinical setups. The same exposure parameters were used for all acquisitions. AKR measurements were made at different positions relative to the operator. Results: The AKR measurements demonstrated 91–99% x-ray attenuation by the drapes in both suites. The smaller size of the under-table skirt and absence of the side-drapes in the older room resulted in a 20–50 fold increase of scattered radiation to the operator. The mobile suspended lead-acrylic shield reduced AKR by 90–94% measured at 150–170 cm height. The recommendations were made to replace the smaller under-table skirt and to use the ceiling-mounted shields for all IR procedures. Conclusion: The ancillary shielding may significantly affect radiation exposure to the IR staff. The use of suspended ceiling-mounted shields is especially important for reduction of interventional radiologists’ cranial radiation.« less
6. Workers laying up the graphite core of the 105B ...
6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA
As polar ozone mends, UV shield closer to equator thins
NASA Astrophysics Data System (ADS)
Reese, April
2018-02-01
Thirty years after nations banded together to phase out chemicals that destroy stratospheric ozone, the gaping hole in Earth's ultraviolet radiation shield above Antarctica is shrinking. But new findings suggest that at midlatitudes, where most people live, the ozone layer in the lower stratosphere is growing more tenuous—for reasons that scientists are struggling to fathom. In an analysis published this week, researchers found that from 1998 to 2016, ozone in the lower stratosphere ebbed by 2.2 Dobson units—a measure of ozone thickness—even as concentrations in the upper stratosphere rose by about 0.8 Dobson units. The culprit may be ozone-eating chemicals such as dichloromethane that break down within 6 months after escaping into the air.
Influence of undersized cementless hip stems on primary stability and strain distribution.
Fottner, Andreas; Woiczinski, Matthias; Kistler, Manuel; Schröder, Christian; Schmidutz, Tobias F; Jansson, Volkmar; Schmidutz, Florian
2017-10-01
Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results. Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones ® ), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes. Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding. This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.
Poster - 11: Radiation barrier thickness calculations for the GammaPod
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Russa, Daniel; Vandervoort, Eric; Wilkins, Davi
A consortium of radiotherapy centers in North America is in the process of evaluating a novel new {sup 60}Co teletherapy device, called the GammaPod™ (Xcision Medical Systems, Columbia Maryland), designed specifically for breast SBRT. The GammaPod consists of 36 collimated {sup 60}Co sources with a total activity of 4320 Ci. The sources are housed in a hemispherical source carrier that rotates during treatment to produce a cylindrically symmetric cone of primary beam spanning 16° – 54° degrees from the horizontal. This unique beam geometry presents challenges when designing or evaluating room shielding for the purposes of meeting regulatory requirements, andmore » for ensuring the safety of staff and the public in surrounding areas. Conventional methods for calculating radiation barrier thicknesses have been adapted so that barrier transmission factors for the GammaPod can be determined from a few relevant distances and characteristics of the primary beam. Simple formalisms have been determined for estimating shielding requirements for primary radiation (with a rotating and non-rotating source carrier), patient-scattered radiation, and leakage radiation. When making worst case assumptions, it was found that conventional barrier thicknesses associated with linac treatment suites are sufficient for shielding all sources of radiation from the GammaPod.« less
BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)
1971-08-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. One scientific instrument was the ATM solar shield that formed the base for the rack/frame instrument and the instrument canister. The solar shield contained aperture doors for each instrument to protect against solar radiation and space contamination.
Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.
1982-04-01
Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailidis, D
2015-06-15
Purpose: To date, there isn’t formal approach for flattening filter-free (FFF) linac vault shielding evaluation, thus, we propose an extension to NCRP#151 to accommodate the recent large number of FFF linac installations.Methods and Materials: We extended the approach in NCRP#151 to design two Truebeam vaults in our new cancer center for hypofractionated treatments. Monte Carlo calculations have characterized primary, scattered, leakage and neutron radiations from FFF-modes. These calculations have shown that: a) FFF primary beam is softer on the central-axis compared to flattening filtered (FF), b) the lateral dose profile is peaked on the central axis and less integral targetmore » current is required to generate the same tumor dose with the FF beam. Thus, the TVLs for FFF mode are smaller than those of the FF mode and the scatter functions of the FF mode (NCRP#151) may not be appropriate for FFF-mode, c) the neutron source strength and fluence for 18X-FFF is smaller than 18X-FF, but it is not of a concern here, no 18X-FFF-mode is available on the linac under investigation. Results: These barrier thickness are smaller (12% reduction on the average) than those computed for conventional FF mode with same realistic primary workload since, the primary TVLs used here are smaller and the WL is smaller than the conventional (almost half reduced), keeping the TADR in tolerance. Conclusions: A comprehensive method for shielding barrier calculations based on dedicated data for FFF-mode linacs is highly desired. Meanwhile, we provide an extension to NCRP#151 to accommodate the shielding design of such installations. It is also shown that if a vault is already designed for IMRT/VMAT and SABR hypofractionated treatments with FFF-mode linac, the vault can also be used for a FFF mode linac replacement, leaving some leeway for slightly higher workload on the FFF linac.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, K; Li, X; Liu, B
2016-06-15
Purpose: To accurately measure the scatter radiation from a Hologic digital breast tomosynthesis (DBT) system and to provide updated scatter distribution to guide radiation shielding calculation for DBT rooms. Methods: A high sensitivity GOS-based linear detector was used to measure the angular distribution of scatter radiation from a Hologic Selenia Dimensions DBT system. The linear detector was calibrated for its energy response of typical DBT spectra. Following the NCRP147 approach, the measured scatter intensity was normalized by the primary beam area and primary air kerma at 1m from the scatter phantom center and presented as the scatter fraction. Direct comparisonmore » was made against Simpkin’s initial measurement. Key parameters including the phantom size, primary beam area, and kV/anode/target combination were also studied. Results: The measured scatter-to-primary-ratio and scatter fraction data closely matched with previous data from Simpkin. The measured data demonstrated the unique nonisotropic distribution of the scattered radiation around a Hologic DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous local survey, the scatter air kerma at 1m from the phantom center for wall/door is 0.018mGy/patient, for floor is 0.164mGy/patient, and for ceiling is 0.037mGy/patient. Conclusion: Comparing to Simpkin’s previous data, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload, added tomosynthesis acquisition, and strong small angle forward scattering. Due to the highly conservative initial assumptions, the shielding recommendation from NCRP147 is still sufficient for the Hologic DBT system given the workload from a previous local survey. With the data provided from this study, accurate shielding calculation can be performed for Hologic DBT systems with specific workload and barrier distance.« less
1973-05-01
The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop protecting it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the the station uninhabitable, threatening foods, medicines, films, and experiments. This image shows the sun-ravaged skin of the Orbital Workshop, bared by the missing heat shield, with blister scars and tarnish from temperatures that reached 300 degrees F. The rectangular opening at the upper center is the scientific airlock through which the parasol to protect the workshop from sun's rays was later deployed. This view was taken during a fly-around inspection by the Skylab-2 crew. The Marshall Space Flight Center had a major role in developing the procedures to repair the damaged Skylab.
HZE reactions and data-base development
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.
1993-01-01
The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.
NASA Astrophysics Data System (ADS)
Podugu, Nagaraju; Ray, Labani; Singh, S. P.; Roy, Sukanta
2017-07-01
Heat flow and heat production data sets constrain the crustal thermal structure in the 2.5-3.5 Ga Bundelkhand craton, the oldest cratonic core in northern Indian shield, for the first time and allow comparisons with the southern Indian shield. Temperature measurements carried out in 10 boreholes at five sites in the craton, combined with systematic thermal conductivity measurements on major rock types, yield low heat flow in the range of 32-41 mW m-2, which is distinct from the generally high heat flow reported from other parts of the northern Indian shield. Radioelemental measurements on 243 samples of drill cores and outcrops reveal both large variability and high average heat production for the Neo-Archaean to Palaeo-Proterozoic granites (4.0 ± 2.1 (SD) μW m-3) relative to the Meso-Archaean tonalite-trondhjemite-granodiorite (TTG) gneisses (2.0 ± 1.0 (SD) μW m-3). On the basis of new heat flow and heat production data sets combined with available geological and geophysical information, a set of steady state, heat flow-crustal heat production models representative of varying crustal scenarios in the craton are envisaged. Mantle heat flow and Moho temperatures are found to be in the range of 12-22 mW m-2 and 290-420°C, respectively, not much different from those reported for the similar age Dharwar craton in southern India. This study reveals similar mantle thermal regimes across the northern and southern parts of the Indian shield, in spite of varying surface heat flow regimes, implying that much of the intraprovince and interprovince variations in the Indian shield are explained by variations in upper crustal heat production.
NASA Technical Reports Server (NTRS)
Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu
2010-01-01
NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
ERIC Educational Resources Information Center
Caleon, Imelda S.; Subramaniam, R.
2008-01-01
The attitudes towards science of upper-primary students in three ability strands (average, above average, and gifted) were investigated. A total of 580 upper primary students from co-educational government and government-aided schools in Singapore were involved in this study. The attitude subscales investigated were enjoyment of science,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Balter, P; Beadle, B
Purpose: A fixed horizontal-beam linac, where the patient is treated in a seated position, could lower the overall costs of the treatment unit and room shielding substantially. This design also allows the treatment room and control area to be contained within a reduced space, such as a shipping container. The main application is the introduction of low-cost, high-quality radiation therapy to low- and middle-income regions. Here we consider shielding for upright treatments with a fixed-6MV-beam linac in a shipping container and a conventional treatment vault. Methods: Shielding calculations were done for two treatment room layouts using calculation methods in NCRPmore » Report 151: (1) a shipping container (6m × 2.4m with the remaining space occupied by the console area), and (2) the treatment vault in NCRP 151 (7.8m by 5.4m by 3.4m). The shipping container has a fixed gantry that points in one direction at all times. For the treatment vault, various beam directions were evaluated. Results: The shipping container requires a primary barrier of 168cm concrete (4.5 TVL), surrounded by a secondary barrier of 3.6 TVL. The other walls require between 2.8–3.3 TVL. Multiple shielding calculations were done along the side wall. The results show that patient scatter increases in the forward direction and decreases dramatically in the backward direction. Leakage scatter also varies along the wall, depending largely on the distance between the gantry and the wall. For the treatment room, fixed-beam requires a slightly thicker primary barrier than the conventional linac (0.6 TVL), although this barrier is only needed in the center of one wall. The secondary barrier is different only by 0–0.2 TVL. Conclusion: This work shows that (1) the shipping container option is achievable, using indigenous materials for shielding and (2) upright treatments can be performed in a conventional treatment room with minimal additional shielding. Varian Medical Systems.« less
Mehnati, Parinaz; Arash, Mehran; Akhlaghi, Parisa
2018-01-01
The article aims at constructing protective composite shields for breasts in chest computed tomography and investigating the effects of applying these new bismuth composites on dose and image quality. Polyurethane and silicon with 5% of bismuth were fabricated as a protective shield. At first, their efficiency in attenuating the X-ray beam was investigated by calculating the total attenuation coefficients at diagnostic energy range. Then, a physical chest phantom was scanned without and with these shields at tube voltage of 120 kVp, and image parameters together with dose values were studied. The results showed that these two shields have great effects on attenuating the X-ray beam, especially for lower energies (<40 kV), and in average, the attenuation coefficients of bismuth-polyurethane composite are higher in this energy range. The maximum relative differences between the average Hounsfield units (HUs) and noises of images without and with shield for both composites in 13 regions of interest were 4.5% and 15.7%, respectively. Moreover, primary investigation confirmed the ability of both shields (especially polyurethane-bismuth composite) in dose reduction. Comparing these two composites regarding the amount of dose reduction, the changes in HU and noise, and attenuation coefficients in diagnostic energy range, it seems that polyurethane composite is more useful for dose reduction, especially for higher tube voltages. PMID:29628636
NASA Astrophysics Data System (ADS)
Bayanova, Tamara; Korchagin, Aleksey; Chachshin, Viktor; Nerovich, Ludmila; Drogobuzhskaya, Svetlana
2017-04-01
Baddeleyite was firstly found and U-Pb dating in PGE layered intrusions of the Fennoscandian Shield in the rock-forming orthopyroxene (Lukkulaisvaara intrusion in Karelia region) and in magmatic zircon from gabbronorite Mt. Generalskaya (Kola region). Real crystals of baddeleyite were separated and U-Pb measured from Fedorovo-Pansky complex in gabbronorites lower part of the Pt-Pd reef intrusion (as first phase 2.50 Ga) and in upper part of Pt-Pd reef in anorthosites (second phase -2.45 Ga) and reflect time interval about 50 Ma of magmatic complex activity. In basite dykes from Cr-Ti-V Imandra lopolith baddeleyite were dating by U-Pb with 2.40 Ga. Therefore total duration time of Kola LIP and magmatic origin of the multimetal deposits are estimated as 100 Ma [1]. New additional isotope Nd-Sr-He data for the WR of the layered PGE intrusions in the Kola-Karelia-Finland big belt more than 500 km reflect EM-1 mantle reservoir. New REE (ELAN- 9000) distributions in the WR and dykes complexes of the Fedorovo-Pansky and Monshegorck Cu-Ni and PGE ore deposits gave OIB, N-MORB and E-MORB primary plume mantle source due to Re-Os data [2]. LA-ICP-MS data of REE investigations in baddeleyite crystals from Monchegorsk ore region yielded 1000 C forming of the grains and high U-Pb closure temperatures compared with zircon. Baddeleyite also primary magmatic minerals in the layered PGE intrusions and dykes complexes from Fennoscandian Shield and U-Pb precise data using artificial 205 Pb spike of the crystals together with time data for different continents gave new important information concerning break up and super continental reconstruction of geological history in paleoproterozoic time [3]. Acknowledgements: Many thanks to G.Wasserburg for 205 Pb artificial spike, J. Ludden, F. Corfu, V. Todt and U. Poller for assistance in the establishing of the U-Pb for single zircon and baddeleyite. All studies are supported by RFBR 16-05-00305. All investigations are devoted to memory of academician RAS F.P. Mitrofanov due to whom baddeleyite was found, separation and studied by U-Pb (ID-TIMS and LA-ICP-MS) methods. References: [1] Bayanova et al. (2014), INTECH, 143-193; [2] Yang Sheng-Hong et. al. (2016), Mineralium Deposita 51, 1055-1073; [3] Ernst R. Large igneous provinces. (2016), London, 500
NASA Astrophysics Data System (ADS)
Amarasinghe, Chamindu; LANL nEDM Collaboration
2017-09-01
The LANL neutron Electric Dipole Moment (nEDM) experiment is an effort to set a sensitivity limit of 3.2 × 10-27 e cm on the electric dipole moment of the neutron, an order of magnitude smaller than the current upper limit. This measurement uses Ramsey's method of oscillating magnetic fields. The magnetic field and field gradient have to be low enough to avoid the smearing of the Ramsey fringes and to increase the neutron dephasing time respectively. The experiment is enclosed in a two layer Mu-metal magnetically shielded room (MSR) to null any external magnetic fields from the environment. The MSR is degaussed to sufficiently reduce its residual magnetic field and field gradient. The MSR is designed for residual fields as low as 30 nT. The experiment further requires a field gradient of 1 nT/m or smaller. Here we report on the degaussing procedure and the resulting improvement in the shielding prowess of the MSR. Funded by an NSF Grant.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers move the heat shield (foreground) toward the upper backshell/ Mars Exploration Rover 1 (MER-1), in the background. The backshell and heat shield will be mated. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
NASA Astrophysics Data System (ADS)
Nassief, M. O.; Ali, H. M.; Zakir, F. A.
The mafic intrusive complex at Jebel Tanumah is located 15 km north-west of Khamis Mushayt in the southern Arabian Shield and includes olivine-bearing gabbro as well as amphibole-diopside-hornblende gabbro cumulates. These rocks have been generally metamorphosed to upper greeenschist-lower amphibolite facies. Fourteen white rock silicate analyses indicate that the majority of the rocks are calc-alkaline to tholeiitic in composition. The two major structural units in the Khamis Mushayt region identified by Coleman consist of the basement complex of Asir Mountains and the younger metamorphic rocks. Syntectonic granitic rocks intruded the antiforms characterizing the younger rocks whereas the lower parts of the synforms are intruded by post-tectonic intrusions of layered gabbros such as the one studied at Jebel Tanumah.
Superior Patency of Upper Arm Arteriovenous Fistulae in High Risk Patients
Chiulli, Larissa C; Vasilas, Penny; Dardik, Alan
2011-01-01
Background Despite an increased propensity to primary failure in forearm arteriovenous fistulae compared to upper arm fistulae, forearm fistulae remain the preferred primary access type for chronic hemodialysis patients. In a high risk patient population with multiple medical comorbidities associated with requirement for intravenous access we compared the rates of access failure in forearm and upper arm fistulae. Materials and Methods The records of all patients having primary native arteriovenous fistulae placed between 2004 and 2009 at the VA Connecticut Healthcare system were reviewed (n=118). Primary and secondary patency of upper arm and forearm fistulae were evaluated using Kaplan-Meier survival analysis. The effects of medical comorbidities on access patency were analyzed with Cox regression. Results The median time to primary failure of the vascular access was 0.288 years in the forearm group compared to 0.940 years in the upper arm group (p=0.028). Secondary patency was 52% at 4.9 years in upper arm fistulae compared to 52% at 1.1 years in the forearm group (p=0.036). There was no significant effect of patient comorbidities on fistula failure; however, there was a trend toward upper arm surgical site as a protective factor for primary fistula patency (Hazard Ratio=0.573, p=0.076). Conclusions In veterans needing hemodialysis, a high risk population with extensive comorbid factors often requiring intravascular access, upper arm fistulae are not only a viable option for primary vascular access, but are likely to be a superior option to classic forearm fistulae. PMID:21571318
Prosperity: The Antidote to Radical Islam
2009-04-01
nuanced requiring detailed analysis. The obvious characteristics of youth, poverty, and lack of education must be a veneer masking a more complex set...demographic characteristics used by Pape to try to defeat what seems intuitively obvious. Although he admits Islamic fundamentalism is the least...would like to shield young and impressionable Catholics.” 58 Irish Catholics for most of the 20 th Century fought the upper class Protestants with
Contributions to the geodynamics of western Canada
NASA Astrophysics Data System (ADS)
Fluck, Paul
Western Canada exhibits a large variation in continental lithosphere from very old rocks in the Canadian Shield across the younger Cordillera to the current accretion of the Yakutat Terrane in the Gulf of Alaska. The geodynamics are driven by the Pacific-North America plate motion resulting in deformation, seismicity, and mountain building across the Canadian Cordillera. The way the lithosphere reacts to deformation or loading depends on its thickness and strength. The effective elastic thickness of the lithosphere, Te , has been estimated in this thesis study using a coherence analysis of Bouguer gravity and topography. There is very thick and strong lithosphere in the old Canadian Shield (Te > 100 km) and thin and weak lithosphere in the Cordillera (Te = 20--30 km). Lithospheric temperature, derived from surface heat flow and upper crust radioactive heat generation, is the most important control on the strength of the lithosphere. Calculated temperatures at the base of the crust are high in the young and hot Cordillera (˜900--1000°C) and very low in the old and cold Craton (˜400--450°C). The depths to the thermally controlled brittle-ductile transition are in general agreement with the Te estimates. The high temperatures in the lower crust and upper mantle of the Cordillera reduce the density by thermal expansion. This thermal isostasy explains the surprising observation of high topography over thin crust. The estimated lithospheric temperatures are used to calculate lithospheric strength profiles. In agreement with the Te estimates, the Cordillera has a weak zone in the lower crust facilitating detachment of the upper crust. Analysis of GPS continuous and campaign data show that the Northern Cordillera is moving at ˜5--10 mm/y in a northward direction driven by the collision of the Yakutat Block in the Gulf of Alaska and is overthrusting the strong lithosphere of the Canadian Shield.* *This dissertation is multimedia (contains text and other applications not available in printed format). The CD requires the following system applications: Internet Browser; Adobe Acrobat; Microsoft Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, T., E-mail: tba@et.aau.dk; Schaltz, E.
2015-05-07
Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in themore » vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.« less
NASA Technical Reports Server (NTRS)
Atwell, William; Rojdev, Kristina; Aghara, Sukesh; Sriprisan, Sirikul
2013-01-01
In this paper we present a novel space radiation shielding approach using various material lay-ups, called "Graded-Z" shielding, which could optimize cost, weight, and safety while mitigating the radiation exposures from the trapped radiation and solar proton environments, as well as the galactic cosmic radiation (GCR) environment, to humans and electronics. In addition, a validation and verification (V&V) was performed using two different high energy particle transport/dose codes (MCNPX & HZETRN). Inherently, we know that materials having high-hydrogen content are very good space radiation shielding materials. Graded-Z material lay-ups are very good trapped electron mitigators for medium earth orbit (MEO) and geostationary earth orbit (GEO). In addition, secondary particles, namely neutrons, are produced as the primary particles penetrate a spacecraft, which can have deleterious effects to both humans and electronics. The use of "dopants," such as beryllium, boron, and lithium, impregnated in other shielding materials provides a means of absorbing the secondary neutrons. Several examples of optimized Graded-Z shielding layups that include the use of composite materials are presented and discussed in detail. This parametric shielding study is an extension of some earlier pioneering work we (William Atwell and Kristina Rojdev) performed in 20041 and 20092.
Airborne Data Link Operational Evaluation Test Plan
1993-08-01
be provided by a combination of glare shield mounted, blue lens , aviation-type lamps and lighted distinctive message indicators on the CDUs or CDU...consist of either SELCAL sound only or SELCAL tone combined with forward primary field of view visual alerting (a blue light mounted on the glare shield in...INCORPORATED DOT/FAA/CT-TN93/30 9. Pe’form,"g Orgaoniatio Name end Address 10. Work Unit No. (TRAIS) CTA, INCORPORATED Suite 1000 11 Contac of Great me. 2500
CHAMBER - IONIZATION - EXPERIMENT - GEMINI-TITAN (GT)-6 EQUIPMENT - CAPE
1965-12-10
S65-61788 (For release: 11 Dec. 1965) --- Close-up view of equipment which will be used in the D-8 (Radiation in Spacecraft) experiment on the National Aeronautics and Space Administration's Gemini-6 spaceflight. This experiment is designed to make highly accurate measurements of the absorbed dose rate of radiation which penetrates the Gemini spacecraft, and determine the spatial distribution of dose levels inside the spacecraft particularly in the crew area. This is experimentation of the U.S. Air Force Weapons Laboratory, Kirtland AFB, N.M. LOWER LEFT: The second ionization chamber, this one is unshielded. This chamber can be removed from its bracket by the astronaut who will periodically take measurements at various locations in the spacecraft. Nearby is Passive Dosimeter Unit which is one of five small packets each containing a standard pocket ionization chamber, gamma electron sensitive film, glass needles and thermo luminescent dosimeters which are mounted at various locations in the cabin. UPPER LEFT: Photo illustrates how ionization chamber can be removed from bracket for measurements. LOWER RIGHT: Shield of bulb-shaped chamber will be removed (shown in photo) as the spacecraft passes through the South Atlantic anomaly, the area where the radiation belt dips closest to Earth's surface. UPPER RIGHT: Dome-shaped object is shield covering one of two Tissue Equivalent Ionization Chambers (sensors) which will read out continuously the instantaneous rate at which dose is delivered during the flight. This chamber is mounted permanently. The information will be recorded aboard the spacecraft, and will also be received directly by ground stations. This chamber is shielded to simulate the amount of radiation the crew members are receiving beneath their skin. Photo credit: NASA or National Aeronautics and Space Administration
Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.
Ambroglini, Filippo; Battiston, Roberto; Burger, William J
2016-01-01
A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharrati, Hedi
2005-05-01
In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations andmore » does not exceed 75% for the leakage radiation.« less
ERIC Educational Resources Information Center
Stolare, Martin
2017-01-01
The topic of this article is history education in upper primary school. Traditionally, the history subject has had a narrative orientation at this school level in Sweden, but it is also pattern that is discernible internationally. The recent Swedish upper primary school syllabus places more emphasis on the procedural aspects of the subject. In…
ERIC Educational Resources Information Center
Alshamali, Mahmoud A.; Daher, Wajeeh M.
2016-01-01
This study aimed at identifying the levels of scientific reasoning of upper primary stage (grades 4-7) science teachers based on their use of a problem-solving strategy. The study sample (N = 138; 32 % male and 68 % female) was randomly selected using stratified sampling from an original population of 437 upper primary school teachers. The…
A magnetic shield/dual purpose mission
NASA Technical Reports Server (NTRS)
Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick
1994-01-01
The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.
Magnetic shielding of 3-phase current by a composite material at low frequencies
NASA Astrophysics Data System (ADS)
Livesey, K. L.; Camley, R. E.; Celinski, Z.; Maat, S.
2017-05-01
Electromagnetic shielding at microwave frequencies (MHz and GHz) can be accomplished by attenuating the waves using ferromagnetic resonance and eddy currents in conductive materials. This method is not as effective at shielding the quasi-static magnetic fields produced by low-frequency (kHz) currents. We explore theoretically the use of composite materials - magnetic nanoparticles embedded in a polymer matrix - as a shielding material surrounding a 3-phase current source. We develop several methods to estimate the permeability of a single magnetic nanoparticle at low frequencies, several hundred kHz, and find that the relative permeability can be as high as 5,000-20,000. We then use two analytic effective medium theories to find the effective permeability of a collection of nanoparticles as a function of the volume filling fraction. The analytic calculations provide upper and lower bounds on the composite permeability, and we use a numerical solution to calculate the effective permeability for specific cases. The field-pattern for the 3-phase current is calculated using a magnetic scalar potential for each of the three wires surrounded by a cylinder with the effective permeability found above. For a cylinder with an inner radius of 1 cm and an outer radius of 1.5 cm and an effective permeability of 50, one finds a reduction factor of about 8 in the field strength outside the cylinder.
NASA Technical Reports Server (NTRS)
Wood, Jessica J.; Foster, Lee W.
2013-01-01
A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, M; Sawkey, D; Johnsen, S
Purpose: To validate the physics parameters of a Monte Carlo model for patient plane leakage calculations on the 6MV Unique linac by comparing the simulations against IEC patient plane leakage measurements. The benchmarked model can further be used for shielding design optimization, to predict leakage in the proximity of intended treatment fields, reduce the system weight and cost, and improve components reliability. Methods: The treatment head geometry of the Unique linac was simulated in Geant4 (v9.4.p02 with “Opt3” standard electromagnetic physics list) based on CAD drawings of all collimation and shielding components projected from the target to the area withinmore » 2m from isocenter. A 4×4m2 scorer was inserted 1m from the target in the patient plane and multiple phase space files were recorded by performing a 40-node computing cluster simulation on the EC2 cloud. The photon energy fluence was calculated relative to the value at isocenter for a 10×10cm2 field using 10×10mm2 bins. Tungsten blocks were parked accordingly to represent MLC120. The secondary particle contamination to patient plane was eliminated by “killing” those particles prior to the primary collimator entrance using a “kill-plane”, which represented the upper head shielding components not being modeled. Both IEC patient-plane leakage and X/Y-jaws transmission were simulated. Results: The contribution of photons to energy fluence was 0.064% on average, in excellent agreement with the experimental data available at 0.5, 1.0, and 1.5m from isocenter, characterized by an average leakage of 0.045% and a maximum leakage of 0.085%. X- and Y-jaws transmissions of 0.43% and 0.44% were found in good agreement with measurements of 0.48% and 0.43%, respectively. Conclusion: A Geant4 model based on energy fluence calculations for the 6MV Unique linac was created and validated using IEC patient plane leakage measurements. The “kill-plane” has effectively eliminated electron contamination to patient plane in these simulations.« less
A Review of Radiolysis Concerns for Water Shielding in Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2008-01-01
This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion. With the space program focus m emphasize more on permanent return to the Moon and eventually manned exploration of Mars, there has been a renewed look at fission power to meet the difficult technical & design challenges associated with this effort. This is due to the ability of fission power to provide a power rich environment that is insensitive to solar intensity and related aspects such as duration of night, dusty environments, and distance from the sun, etc. One critical aspect in the utilization of fission power for these applications of manned exploration is shielding. Although not typically considered for space applications, water shields have been identified as one potential option due to benefits in mass savings and reduced development cost and technical risk (Poston, 2006). However, the water shield option requires demonstration of its ability to meet key technical challenges including such things as adequate natural circulation for thermal management and capability for operational periods up to 8 years. Thermal management concerns have begun to be addressed and are not expected to be a problem (Pearson, 2007). One significant concern remaining is the ability to maintain the shield integrity through its operational lifetime. Shield integrity could be compromised through shield pressurization and corrosion resulting from the radiolytic decomposition of water.
NASA Astrophysics Data System (ADS)
Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim
2018-04-01
The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
Inertial Upper Stage Thermal Test Program
1989-04-12
EPDM , a tnermal insuiative rubber material covering the SRM ignitor housing, were made in both convective and radiative heater environments under...N2 to ensure an inert environment for these tests. 11 EPDM RUBBER FIBERGLAS PHENOLIC Fig. 2. IUS SRM-2 ignitor. 12 RADIA TOR EMI SHIELD-,," MOVABLE...testing. EPDM Grafoil seal, Viton Thermal-protection materials , IBSTRACT (Continue on reve4 if necessary and identify by block number) An extensive ther
MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts
NASA Astrophysics Data System (ADS)
Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark
2016-04-01
The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the dated basalts. We find that in several cases the low shields are younger than their adjacent mare basalts. However, the stratigraphic relationships might be more complicated because [2,5] observed that basalts embay the low shields. Thus, further studies are required to unambiguously constrain the stratigraphic relationships and to characterize possible effects of small count areas and topography on the determination of AMAs with CSFD measurements. Provided the AMAs were not affected by the relatively small size of the count areas and topographic slopes, these results imply that the volcanic activity in the Marius Hills region lasted > 1 Ga longer than previously thought [e.g., 4]. [1] McCauley (1967b) Mantles of the Earth an terrestrial planets, 431-460; [2] Lawrence et al. (2013) JGR 118; [3] Wilhelms (1987) USGS Spec. Pub. 1348; [4] Heather et al. (2003) JGR 108; [5] Weitz and Head (1999) JGR 104; [6] Hiesinger et al. (2003) JGR 108; [7] Kneissl et al. (2012) PSS 59; [8] Michael and Neukum, (2010) EPSL 294; [9] Neukum et al. (2001) SSR 96.
Effects of Classroom-Based Energizers on Primary Grade Students' Physical Activity Levels
ERIC Educational Resources Information Center
Bailey, Catherine Goffreda; DiPerna, James Clyde
2015-01-01
The primary aim of this study was to determine the effects of classroom-based exercise breaks (Energizers; Mahar, Kenny, Shields, Scales, & Collins, 2006) on students' physical activity levels during the school day. A multiple baseline design across first grade (N = 3) and second grade (N = 3) classrooms was used to examine the effects of the…
The p-wave upper mantle structure beneath an active spreading centre - The Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1984-01-01
Over 1400 seismograms of earthquakes in Mexico are analyzed and data sets for the travel time, apparent phase velocity, and relative amplitude information are utilized to produce a tightly constrained, detailed model for depths to 900 km beneath an active oceanic ridge region, the Gulf of California. The data are combined by first inverting the travel times, perturbing that model to fit the p-delta data, and then performing trial and error synthetic seismogram modelling to fit the short-period waveforms. The final model satisfies all three data sets. The ridge model is similar to existing upper mantle models for shield, tectonic-continental, and arc-trench regimes below 400 km, but differs significantly in the upper 350 km. Ridge model velocities are very low in this depth range; the model 'catches up' with the others with a very large velocity gradient from 225 to 390 km.
2011-02-15
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers prepare NASA's Glory upper stack for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. A portion of the umbilical tower is attached to the upper stack which falls away from the spacecraft during liftoff. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB
Seismicity in the platform regions of Ukraine in the zones of anomalous electrical conductivity
NASA Astrophysics Data System (ADS)
Kushnir, A. N.; Kulik, S. N.; Burakhovich, T. K.
2013-05-01
It is established for the first time that there are several regions in Ukraine, in which the earthquakes occurring within platform territory are correlated to the anomalous conductive structures in the Earth's crust and upper mantle. These regions are identified as (1) Donbass and the eastern part of the Dnieper-Donetsk Depression (DDD); (2) eastern margin of the Ingulets-Krivoi Rog suture zone in the area of the Krivoi Rog-Kremenchug fault zone; (3) the western part of the Cis-Azov megablock; (4) the western boundary of the Ukrainian Shield and its slope; (5) North Dobruja and Pre-Dobrujan Depression. The reconstructed tree-dimensional (3D) geoelectrical models of the Earth's crust and upper mantle feature anomalously low values of electric resistivity. The earthquake sources in the platform areas of Ukraine are localized above the top and in the upper parts of the crustal anomalies of electrical conductivity.
A versatile program for the calculation of linear accelerator room shielding.
Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M
2018-03-22
This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.
Clague, D.A.; Frey, F.A.
1982-01-01
These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.
NASA Astrophysics Data System (ADS)
Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.
2013-09-01
Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.
Resonance dependence of gravitropicreactionof cress roots in weak combined magnetic fields.
NASA Astrophysics Data System (ADS)
Bogatina, N. I.; Sheykina, N. V.; Kordyum, E. L.
The gravitropic reaction of cress was studied in combined magnetic fields, that is the static magnetic field of the order of Earth's one and parallel to it alternating magnetic field. The frequency region for alternating magnetic field was varied in wide diapason ( from 1 Hz up to 45 Hz). The magnitude of alternating magnetic field was equal to 6 microT. The magnetic field conditions were well reproducible. For this purpose the external magnetic field was shielded in the work volume and artificial magnetic field was created in the volume. Both ferromagnetic metal shield and superconductive one with warm volume for work were used. The magnetic noises inside both of ferromagnetic metal and superconductive shields were measured to provide the well reproducible characteristics of artificial field created in the work volume. The objects of investigation were the roots of cress after 2-3-days germination. They were located in the closed humid room, that was located inside the shield in the artificially created magnetic field. All roots were in the darkness. For control we used the analogous roots located in the analogous volume but only in the static magnetic field of the Earth. We measured the divergence angle of the root from its primary direction of growing. We obtained the following results. The curve of dependence of measured angles on the frequency of alternating component of magnetic field had series of sharp peaks. These peaks were well reproducible and their location depended on the magnitude of the static component of magnetic field. The frequency of peak location is in direct proportion with its magnitude. The analysis showed that the location of peaks coincided very well with the cyclotron frequencies of the following ions: Ca+2, Cu+1 , K+1: Fe+3: Ag+1: and with the cyclotron frequencies of ions of phytohormons such as ions of indolile-acetic acid, abscise acid and gibberellins. Some quantitive analogies between the gravitropic process and the effect of combined magnetic field are discussed at the molecular level. In particularly it was shown that in the gravity field the pressure difference between the upper and down parts of the root was of the order of the pressure difference created by the Lorenz force. The displacement of the point where the pressure approached the maximum value on membrane surface could lead to the changes in the ion transport direction and so to the changes of the gravitropic reaction direction. The possibilities of the method for the studying the gravitropic reaction were discussed.
Multiple output power supply circuit for an ion engine with shared upper inverter
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)
2001-01-01
A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.
Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission
Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-01-01
Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685
NASA Astrophysics Data System (ADS)
Endo, Y.; Ogawa, M.; Danielache, S. O.; Ueno, Y.
2017-12-01
Archean sulfur mass-independent fractionation (S-MIF) is a unique proxy within the geological and geochemical records for studying the composition of the Archean atmosphere. S-MIF signatures are defined as Δ33S = δ33S - 0.515×δ34S and Δ36S = δ36S - 1.90×δ34S. Archean S-MIF is characterized as Δ36S/Δ33S = -1. Recent SO2 photochemical experiments under specific reducing conditions reproduced the Archean trend for the first time [1]. Self-shielding of SO2 photolysis and intersystem crossing in excited SO2 are probably key mechanisms for explaining Archean S-MIF. Self-shielding is originated from UV spectra changed by upper SO2 own absorption. Because 32S accounts for about 95% of all sulfur isotopes, the photolysis rate constant of only 32SO2 is lower than other isotopologue. Thus, SO2 photolysis in the bottom of the atmosphere undergoes mass-independent fractionation. Fractionation factors by SO2 photolysis reaction can be calculated by absorption cross-sections of 32SO2, 33SO2, 34SO2 and 36SO2 and respective quantum yields. Quantitative estimations self-shielding fractionation factors requires high-spectral resolution cross-sections, but they have not been reported yet. Here we report measurements of high-resolution cross-sections (1cm-1) and fractionation factors by SO2 photolysis including self-shielding. Moreover, because the absorption wavelength varies with each isotopologue, photolysis rate constants of all isotopologues (32S16O2, 32S16O18O, etc) should be different. Then self-shielding may affect the ratio of isotopologues such as clumped-isotopes. We calculated preliminary calculation clumped isotope enrichment in residual species by self-shielding. Reference: [1] Endo, Y., Ueno, Y., Aoyama, S., & Danielache, S. O. (2016). Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere. EPSL, 453, 9-22.
Wetting a rail tanker behind a noise shield.
Rosmuller, Nils
2009-05-30
In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.
Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions
Ambroglini, Filippo; Battiston, Roberto; Burger, William J.
2016-01-01
A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth’s dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European’s Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented. PMID:27376023
Follow-Up Care for Older Women With Breast Cancer
2000-05-01
better predictor of upper body mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and...outcomes, including primary tu- Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical ...comorbidity and their relation to a range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall
The influence of premature loss of temporary upper molars on permanent molars.
Cernei, E R; Maxim, Dana Cristiana; Zetu, Irina Nicoleta
2015-01-01
Premature loss of primary molars due to dental caries and their complications has been associated with space loss and eruptive difficulties, especially when the loss occurs early. The aim of our study was to determine the impact of premature loss of temporary upper molars upon the longitudinal axis of the first and second upper permanent molar. The study group included 64 patients 6-9 years old with premature loss of primary molars and a control group of 48 patients with intact temporary teeth. It was evaluated the angle between longitudinal axis of first and second upper permanent molars and occlusal plane. The sofware used is Easy Dent 4 Viewer®.The data were analyzed by using the Statistical Package for the Social Sciences (version 20.0; SPSS, Chicago, III). It was observed that premature loss of upper second deciduous molars modifies greater the vertical axis of the permanent molars than the premature loss of first upper primary molar. First upper primary molar loss cause an acceleration eruption of first premolar, which will produce a distal inclintion of the both permanent molars. The use of space maintainers after premature loss of the second upper temporary molar is a last solution in preventing tridimensional lesions in the dental arch and occlusion.
Supplemental shielding of BMIT SOE-1 at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Bassey, Bassey; Abueidda, Abdallah; Cubbon, Grant; Street, Darin; Sabbir Ahmed, Asm; Wysokinski, Tomasz W.; Belev, George; Chapman, Dean
2014-07-01
High field superconducting wiggler beamlines present shielding challenges due to the high critical energy of the synchrotron spectrum. An unexpected, but predictable, weakness in the secondary optical enclosure (SOE-1) was discovered on the BioMedical Imaging and Therapy (BMIT) insertion device (ID) beamline 05ID-2 at the Canadian Light Source (CLS). SOE-1 is a monochromatic beam hutch; the beam in it is supplied by three monochromators housed in an upstream primary optical enclosure (POE-3). The initial shielding of SOE-1 was based on a shielding calculation against target scattered and direct monochromatic (fundamental and harmonics) beams from the monochromators in POE-3. During a radiation survey of the hutch, radiation above the expected level was measured at the downstream end of SOE-1. This increment in radiation level is attributed to scattered white beam into SOE-1 by a K-Edge subtraction (KES) monochromator's crystal (a single crystal monochromator) in POE-3. Though this is peculiar to the BMIT beamline 05ID-2, it may not be uncommon for other beamlines that use single crystal monochromators. Calculations of the level of expected leakage radiation due to the scattered white beam arriving on the downstream wall of the SOE-1 are presented, as well as the supplemental shielding that will reduce the leakage to less than 1 μSv/h as required at the CLS. Also presented are the installed supplemental shielding, and a comparison of the calculations and measurements of the dose rates on the back wall of SOE-1 End Wall, before and after installation of the supplemental shielding.
NASA Astrophysics Data System (ADS)
Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen
2016-10-01
Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol
The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack.more » It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim
2015-09-15
The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies.more » In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.« less
Progress on ITER Diagnostic Integration
NASA Astrophysics Data System (ADS)
Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael
2013-10-01
On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.
NASA Technical Reports Server (NTRS)
Berlin, G. L.; Tarabzouni, M. A.; Munshi, Z. M. N.; Chavez, P. S., Jr.
1984-01-01
The primary objectives of the investigation are to determine fully the utility of Shuttle Imaging Radar-B (SIR-B) images for providing valuable surface indicators for ground-water prospecting in the Arabian shield and to identify and assess defining characteristics of sand sheets, sand streaks, and sand dunes in the fringe areas of An Nafud and Al Jafurah. Specific objectives include the determination of the incremental contribution of incidence angle to the total information that can be extracted from SIR-B standard and digitally-enhanced images in the AL Jafurah fringe area; the determination of the incremental contribution of digitally-registered multisensor images; and the development of a groundwater exploration plan for the Ha'il test area in the Arabian Shield.
High voltage isolation transformer
NASA Technical Reports Server (NTRS)
Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)
1985-01-01
A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.
High voltage isolation transformer
NASA Astrophysics Data System (ADS)
Clatterbuck, C. H.; Ruitberg, A. P.
1985-04-01
A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.
The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.
2015-01-01
NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.
Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.
1996-01-01
We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also indicate that Mauna Kea lavas formed through smaller degrees of partial melting at greater depth than Mauna Loa lavas. These chemical and isotopic differences are consistently found between volcanoes along the western "Loa" and eastern "Kea" trends and reflect large-scale variations in source composition and melting environment. We propose a simple model of a radially zoned plume centered beneath the Loa trend. Loa trend lavas generated from the hot plume axis reflect high degrees of partial melting from a source containing a mixture of enriched plume-source material and entrained lower mantle. Kea trend lavas, in contrast, are generated from the cooler, peripheral portions of the plume, record lower degrees of partial melting, and tap a source containing a greater proportion of depleted upper mantle.
Multiple-Cone Sunshade for a Spaceborne Telescope
NASA Technical Reports Server (NTRS)
Cafferty, Terry; Ford, Virginia
2008-01-01
A document describes a sunshade assembly for the spaceborne telescope of the Terrestrial Planet Finder Coronagraph mission. During operation, the telescope is aimed at target stars in the semihemisphere away from the Earth's Sun. The observatory rotates about its pointing axis during a single star observation, resulting in relative movement of the Sun. The sunshade assembly protects the telescope against excessive solar-induced thermal distortions for times long enough to complete observations. The assembly includes a cylindrical baffle immediately surrounding the telescope, and a series of coaxial conical shields at half-cone angle increments of between 3 and 6. The black inner surface of the cylindrical baffle suppresses stray light. The outer surface of the cylindrical baffle and all the surfaces of the conical shields except the outermost one are specular and highly reflective in the infrared. The outer surface of the outer shield is a material with low solar absorptance and high infrared emittance, such as silverized Teflon or white paint. This arrangement strongly radiatively couples each shield layer more effectively to cold space than to adjacent shield layers. The result is that the solar-driven temperature gradients in the cylindrical baffle are nearly negated, and only weakly communicated to the highly-infrared-reflective face of the primary telescope mirror.
Spacesuit Radiation Shield Design Methods
NASA Technical Reports Server (NTRS)
Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.
2006-01-01
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.
Performance of a Haynes 188 metallic standoff thermal protection system at Mach 7
NASA Technical Reports Server (NTRS)
Avery, D. E.
1981-01-01
A flight weight, metallic thermal protection system (TPS) model applicable to reentry and hypersonic vehicles was subjected to multiple cycles of both radiant and aerothermal heating to evaluate its aerothermal performance and structural integrity. The TPS was designed for a maximum operating temperature of 1255 K and featured a shingled, corrugation stiffened corrugated skin heat shield of Haynes 188, a cobalt base alloy. The model was subjected to 3 radiant preheat/aerothermal tests for a total of 67 seconds and to 15 radiant heating tests for a total of 85.9 minutes at 1255 K. The TPS limited the primary structure to temperatures below 430 K in all tests. No catastrophic failures occurred in the heat shields, supports, or insulation system. The TPS continued to function even after exposure to a differential temperature 4 times the design value produced thermal buckles in the outer skin. The shingled thermal expansion joint effectively allowed for thermal expansion of the heat shield without allowing any appreciable hot gas flow into the model cavity, even though the overlap gap between shields increased after several thermal cycles.
Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim
2012-10-01
A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim
2012-10-15
Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenthmore » value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.« less
A survey of outpatient visits in a United States Army forward unit during Operation Desert Shield.
Wasserman, G M; Martin, B L; Hyams, K C; Merrill, B R; Oaks, H G; McAdoo, H A
1997-06-01
Reports suggest that deployed soldiers during Operations Desert Shield and Desert Storm remained healthy, but primary care data are limited. We reviewed the outpatient visit surveillance data from the 3d Armored Cavalry Regiment to obtain information regarding soldiers' health in the field. Nontraumatic orthopedic problems accounted for the highest incidence of primary health care visits, followed by unintended injuries, gastrointestinal, respiratory, and dermatologic conditions. Visits for heat injuries, sexually transmitted diseases, unexplained fever, and psychiatric problems were low, probably due to preventive measures. These results suggest that increased prevention to decrease orthopedic problems and unintended injuries may substantially reduce outpatient visits during future deployments. Medical surveillance during future deployments can be improved by taking advantage of current advances in technology to facilitate patient data retrieval and provide timely information to first- and second-echelon medical personnel.
2007-09-01
consists of late Proterozoic crystalline basement overlain by Tertiary and Quaternary volcanic rocks in some places. The breakup of the Arabian Plate from...with structure directly below the crust. To investigate upper mantle structure under the Arabian Shield, measured and inverted relative travel times...Plateau, Zagros Mountains, Arabian Peninsula, Turkish Plateau, Gulf of Aqaba, Dead Sea Rift) and the Horn of Africa (including the northern part of
FAST CHOPPER BUILDING, TRA665. CAMERA FACING NORTH. NOTE BRICKEDIN WINDOW ...
FAST CHOPPER BUILDING, TRA-665. CAMERA FACING NORTH. NOTE BRICKED-IN WINDOW ON RIGHT SIDE (BELOW PAINTED NUMERALS "665"). SLIDING METAL DOOR ON COVERED RAIL AT UPPER LEVEL. SHELTERED ENTRANCE TO STEEL SHIELDING DOOR. DOOR INTO MTR SERVICE BUILDING, TRA-635, STANDS OPEN. MTR BEHIND CHOPPER BUILDING. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Conceptual development of an impact-attenuation system for intersecting roadways.
DOT National Transportation Integrated Search
2015-09-01
Longitudinal barriers are commonly used to shield hazards, including stiff bridge rail ends and slopes. In some locations, : a secondary roadway intersects the primary roadway within the guardrails length-of-need (LON). Some intersections may : ha...
NASA Astrophysics Data System (ADS)
Koontz, S. L.; Atwell, W. A.; Reddell, B.; Rojdev, K.
2010-12-01
In the this paper, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event effect (SEE) environments behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i.e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations are fully three dimensional with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. FLUKA is a fully integrated and extensively verified Monte Carlo simulation package for the interaction and transport of high-energy particles and nuclei in matter. The effects are reported of both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. SPE heavy ion spectra are not addressed. Our results, in agreement with previous studies, show that use of the Exponential form of the event spectra can seriously underestimate spacecraft SPE TID and SEE environments in some, but not all, shielding mass cases. The SPE spectra investigated are taken from four specific SPEs that produced ground-level events (GLEs) during solar cycle 23 (1997-2008). GLEs are produced by highly energetic solar particle events (ESP), i.e., those that contain significant fluences of 700 MeV to 10 GeV protons. Highly energetic SPEs are implicated in increased rates of spacecraft anomalies and spacecraft failures. High-energy protons interact with Earth’s atmosphere via nuclear reaction to produce secondary particles, some of which are neutrons that can be detected at the Earth’s surface by the global neutron monitor network. GLEs are one part of the overall SPE resulting from a particular solar flare or coronal mass ejection event on the sun. The ESP part of the particle event, detected by spacecraft, is often associated with the arrival of a “shock front” at Earth some hours after the arrival of the GLE. The specific SPEs used in this analysis are those of: 1) November 6, 1997 - GLE only; 2) July 14-15, 2000 - GLE from the 14th plus ESP from the 15th; 3) November 4-6, 2001 - GLE and ESP from the 4th; and 4) October 28-29, 2003 - GLE and ESP from the 28th plus GLE from the 29th. The corresponding Band and Exponential spectra used in this paper are like those previously reported.
Wind tunnel investigation of simulated helicopter engine exhaust interacting with windstream
NASA Technical Reports Server (NTRS)
Shaw, C. S.; Wilson, J. C.
1974-01-01
A wind tunnel investigation of the windstream-engine exhaust flow interaction on a light observation helicopter model has been conducted in the Langley V/STOL tunnel. The investigation utilized flow visualization techniques to determine the cause to determine the cause of exhaust shield overheating during cruise and to find a means of eliminating the problem. Exhaust flow attachment to the exhaust shield during cruise was found to cause the overheating. Several flow-altering devices were evaluated to find a suitable way to correct the problem. A flow deflector located on the model cowling upstream of the exhaust in addition to aerodynamic shield fairings provided the best solution. Also evaluated was heat transfer concept employing pin fins to cool future exhaust hardware. The primary flow visualization technique used in the investigation was a newly developed system employing neutrally buoyant helium-filled bubbles. The resultant flow patterns were recorded on motion picture film and on television magnetic tape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wroe, A; Slater, J; McAuley, G
Purpose: To design, implement and evaluate a shielding system that will reduce out-of-field dose experienced by the patient and associated electronic systems in passively scattered proton therapy treatment. Methods: A multi-stage neutron shielding system was retrofitted to the Gantry 1 treatment nozzle at Loma Linda University Medical Center. The system uses multiple borated polyethylene plates staged after the primary beam modifying devices to attenuate and absorb neutrons produced by such devices. This arrangement locates increasing levels of shielding between the sources of secondary particles in the nozzle and the patient. Additionally, the design of this shielding structure allows it tomore » be easily retrofitted to an existing proton nozzle system without impacting design or treatment beam characteristics. The effectiveness of the shielding was evaluated both through experimental measurements and Geant4 Monte Carlo simulations. Results: Measurements were completed with Landauer Luxel+ dosimeters that use optically stimulated luminescence and CR-39 to detect fast neutrons, thermal neutrons, protons, photons and beta particles. Measurements of a 250 MeV proton beam indicated that the shielding system reduced out-of-field dose to the patient by almost half with dose equivalent values at 50 and 40 cm from the field edge decreasing from 0.965 and 1.262 mSv/Gy to 0.596 and 0.777 mSv/Gy respectively. The installation of the multi-stage shielding system also reduced dose equivalent experienced by electronic systems installed in the treatment room by up to 80%. Geant4 simulations were also used to evaluate the neutron fluence at various positions in the treatment room as well as provide information on microdosimetry spectra within the patient and treatment room. Conclusion: The shielding system described above proved to be an effective an inexpensive method of reducing out-of-field doses to the patient and electronic systems and can be easily retrofitted to existing passive scattering nozzles.« less
NASA Astrophysics Data System (ADS)
Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.
2009-05-01
In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.
Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.
2003-01-01
For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
NASA Technical Reports Server (NTRS)
Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.
2006-01-01
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Yazgan, Çağrı
2017-09-01
Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
NASA Astrophysics Data System (ADS)
Stern, R. J.; Mooney, W. D.
2011-12-01
We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm) and Cr (435 vs. 117 ppm). Despite high Mg# in pyroxene-rich xenoliths, mineral compositions of labradoritic plagioclase (mean ~An64) and relatively Fe-rich pyroxenes (mean OPX ~En63; mean CPX~ WO48 En35 Fs17) indicate that these are somewhat fractionated. Trace element patterns are similar to those expected for convergent-margin magmatic suites. Nd-model ages define a mean of 0.76±0.08 Ga, similar to the age of exposed Arabian Shield upper crust. An isochron plot (147Sm/144Nd vs. 143Nd/144Nd) is consistent with formation in Neoproterozoic time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by Cenozoic magmas, which may also be true for NE Africa and perhaps mafic lower crust on the flanks of the East African Rift. Such an interpretation predicts a strong lower crust for those regions underlain by anhydrous mafic lower crust of Neoproterozoic age.
Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.
Eklund, Karin; Ahnesjö, Anders
2010-11-01
Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode were shown to give comparable, or better, results than the traditionally used shielded diode. Spectra calculated for photon fields in water can be directly used for modeling the response of unshielded silicon diodes with plastic encapsulations. Unshielded diodes used together with appropriate corrections can replace shielded diodes in photon dose measurements.
Energy efficient skylight construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentoft, A.P.; Couture, P.A.
1978-02-14
An energy efficient skylight construction is described. A skylight cover is secured by a frame to a curbing comprised of an insulating core, the interior and exterior surfaces of which are covered by non-combustible shields separated along the upper and lower surfaces of the curbing by a gap which serves as a ''thermal break'' between the highly conductive inner and outer shields. The frame is pierced by drain openings the exterior of which are covered by a filter type material such as foam or glass fibers that is both absorbtive of moisture and resistant to the passage of air. Themore » frame is secured to the outward portion of the curbing and includes a flange extending inward across the gap between the shields, which serves as a gutter to collect condensation which drips off the glazing. The inward portion of the flange is covered with an insulating gasket which prevents condensation from forming on the flange and which prevents the warmer, more moisture laden, inside air from reaching the cold underside of the gutter flange or the edge of the outerskin. The core insulation is inserted, without adhesives, into the assembled inside skin, and then the exposed surface of the insulation is bonded to the inside surface of the outer skin.« less
Radio for hidden-photon dark matter detection
Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...
2015-10-08
We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less
METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broughton, J.; Butler, J.; Brimstone, M.
1969-10-31
The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less
Weber, N; Monnin, P; Elandoy, C; Ding, S
2015-12-01
Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Test report dot 7A type a liquid packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E. T.; Brandjes, C.; Benoit, T. J.
This test report documents the performance of Savannah River National Laboratory’s (SRNL’s) U.S. Department of Transportation (DOT) Specification 7A; General Packaging, Type A shielded liquid shipping packaging and compliance with the regulatory requirements of Title 49 of the Code of Federal Regulations (CFR). The primary use of this packaging design is for the transport of radioactive liquids of up to 1.3 liters in an unshielded configuration and up to 113 mL of radioactive liquids in a shielded configuration, with no more than an A2 quantity in either configuration, over public highways and/or commercial aircraft. The contents are liquid radioactive materialsmore » sufficiently shielded and within the activity limits specified in173.435 or 173.433 for A2 (normal form) materials, as well as within the analyzed thermal heat limits. Any contents must be compatibly packaged and must be compatible with the packaging. The basic packaging design is based on the U.S. Department of Energy’s (DOE’s) Model 9979 Type A fissile shipping packaging designed and tested by SRNL. The shielded liquid configuration consists of the outer and inner drums of the 9979 package with additional low density polyethylene (LDPE) dunnage nesting a tungsten shielded cask assembly (WSCA) within the 30-gallon inner drum. The packaging model for the DOT Specification 7A, Type A liquids packaging is HVYTAL.« less
IMRT treatment of anal cancer with a scrotal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan
The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less
Radiation Protection for Lunar Mission Scenarios
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.
2005-01-01
Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.
2004-01-01
With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.
With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.
NASA Astrophysics Data System (ADS)
Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.
2004-01-01
With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.
Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.
2003-01-01
Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while erosion incises deep river valleys, such as those on the Island of Kaua?i. The edges of the submarine terraces that ring the islands, thus, mark paleocoastlines that are now as much as 2,000 m underwater, many of which are capped by drowned coral reefs.
Development and optimization of hardware for delta relaxation enhanced MRI.
Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J
2014-10-01
Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.
High temperature insulation barrier composite
NASA Technical Reports Server (NTRS)
Onstott, Joseph W. (Inventor)
1989-01-01
A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Wang, Yirui; Liang, Jianwen
2016-06-01
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion
NASA Astrophysics Data System (ADS)
Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.
2007-05-01
Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.
NASA Astrophysics Data System (ADS)
Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.
2014-12-01
Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the duration of activity.
Cosentino, Marco; Palou, Joan; Gaya, Josep M; Breda, Alberto; Rodriguez-Faba, Oscar; Villavicencio-Mavrich, Humberto
2013-02-01
To investigate the existence of predictive factors for concomitant, primary UUT-UCC and BC. Upper urinary tract urothelial cell carcinoma (UUT-UCC) is a pan-urothelial disease of the transitional epithelial cells. Although several studies have shown the association of bladder recurrence following UUT-UCC, little is known on the incidence of concomitant UUT-UCC and bladder cancer (BC) without previous BC. A retrospective review of 673 patients diagnosed and treated for UUT-UCC was performed. Patients with history of BC were excluded. We investigated age, sex, location of the upper tract tumor (calyx, renal pelvis, upper ureter, mid-ureter, lower ureter), multifocality, clinical symptoms, tumor grade and pathological stage. Contingency tables and chi-square test were used for categorical variables and analysis of variance (ANOVA) for quantitative variables. 450 patients eligible for inclusion were identified. Of these, 76 (17 %) presented concomitant primary UUT-UCC and BC. Location of primary UUT-UCC was in calyx and/or renal pelvis in 25 patients (34 %), upper ureter 8 (11 %) and lower ureter 37 (49 %). In 6 patients (8 %), data were missing. Concomitant BC was found in 10, 18, and 33 % of patients with primary caliceal/renal pelvis, upper ureter and lower ureter UUT-UCC, respectively. On multivariate analysis, location of UUT-UCC was the only predictive factor for concomitant bladder tumor (OR: 1.7; 95 % CI, 1.007-2.906 p = 0.047). Our findings suggest that the possibility of concomitant BC in primary diagnosed patient with UUT-UCC is as high as 33 % and mainly depends on upper tract tumor location.
Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario.
Mishra, Bibekananda; Selvam, T Palani; Sharma, P K Dash
2017-01-01
Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.
Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario
Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash
2017-01-01
Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes. PMID:28405104
ERIC Educational Resources Information Center
Anderson, Rosemary
2009-01-01
This article discusses the identities that may be constructed by upper primary aged pupils during silent reading sessions. The findings presented are taken from a 2-year ethnographic case study, which investigated how four dyslexic pupils, aged 10-11 (Y5-6), coped with the classroom reading they encountered at a large primary school in northern…
Nuclear pumped lasers: Advantages of O2 (1 delta)
NASA Technical Reports Server (NTRS)
Taylor, J. J.
1979-01-01
Nuclear pumped laser technology was evaluated as a possible future weapons contender. It was determined that in order to become a primary weapon the following engineering problems must be solved: shielding, heat dissipation, high efficiency fixed focus pumping, good beam quality, and thermal blooming.
[Routine fluoroscopic investigations after primary bariatric surgery].
Gärtner, D; Ernst, A; Fedtke, K; Jenkner, J; Schöttler, A; Reimer, P; Blüher, M; Schön, M R
2016-03-01
Staple line and anastomotic leakages are life-threatening complications after bariatric surgery. Upper gastrointestinal (GI) tract X-ray examination with oral administration of a water-soluble contrast agent can be used to detect leaks. The aim of this study was to evaluate the impact of routine upper GI tract fluoroscopy after primary bariatric surgery. Between January 2009 and December 2014 a total of 658 bariatric interventions were carried out of which 442 were primary bariatric operations. Included in this single center study were 307 sleeve gastrectomies and 135 Roux-en-Y gastric bypasses. Up to December 2012 upper GI tract fluoroscopy was performed routinely between the first and third postoperative days and the detection of leakages was evaluated. In the investigation period 8 leakages (2.6 %) after sleeve gastrectomy, 1 anastomotic leakage in gastrojejunostomy and 1 in jejunojejunostomy after Roux-en-Y gastric bypass occurred. All patients developed clinical symptoms, such as abdominal pain, tachycardia or fever. In one case the leakage was detected by upper GI fluoroscopy and in nine cases radiological findings were unremarkable. No leakages were detected in asymptomatic patients. Routine upper GI fluoroscopy is not recommended for uneventful postoperative courses after primary bariatric surgery.
Firing of pulverized solvent refined coal
Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.
1990-05-15
A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Schwartz, Susan Y.
We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.
Shield volcanism and lithospheric structure beneath the Tharsis plateau, Mars
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.
1976-01-01
The heights of four great shield volcanoes, when interpreted as reflecting the local hydrostatic head on a common source of upwelling magma, provide significant constraints on models of lithospheric structure beneath the Tharsis plateau. If Bouguer gravity anomalies are modeled in terms of a variable thickness crust, and a two-component (crust/mantle) earth-like structure is assumed for the Martian lithosphere, the derived model lithosphere beneath the Tharsis plateau has the following properties: (1) the upper low-density 'crustal' component is thickened beneath the Tharsis plateau; (2) the lower high-density 'mantle' component is thinned beneath the Tharsis plateau; and (3) there is a net gradient on the base of the Martian lithosphere directed downward away from beneath the summit of the Tharsis plateau. A long history of magmatic intrusion is hypothesized to have been the cause of the updoming of the Tharsis plateau and the maintenance of the plateau in a state of only partial compensation.
STS-43 TDRS-E during preflight processing at KSC's VPF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.
NERVA 400E thrust train dynamic analysis
NASA Technical Reports Server (NTRS)
Vronay, D. F.
1972-01-01
The natural frequencies and dynamic responses of the NERVA 400E engine thrust train were determined for nuclear space operations (NSO), and earth-orbital shuttle (EOS) during launch and boost conditions. For NSO, a mini-tank configuration was analyzed with the forward end of the upper truss assumed fixed at the stage/mini-tank interface. For EOS, both a mini-tank and an engine only configuration were analyzed for a specific engine assembly support (EAS) stiffness. For all cases the effect of the shield on dynamic response characteristics was determined by performing parallel analyses with and without the shield. Gimbaling loads were not generated as that effort was scheduled after the termination date. The analysis, while demonstrating the adequacy of the engine design, revealed serious deficiencies in the EAS. Responses at the unsupported ends of the engine are excessive. Responses at the nuclear subsystem interface appear acceptable. It is recommended that additional analysis and design effort be expended upon the EAS to ensure that all engine responses stay within reasonable bounds.
2011-02-15
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers monitor NASA's Glory upper stack as a crane lifts it from a stationary rail for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB
MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLorenzo, M; Wu, D; Rutel, I
2015-06-15
Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation. We have confirmed that this software accurately calculates air-kerma rates and required barrier thicknesses for diagnostic radiography and fluoroscopic rooms.« less
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Thibeault, S. A.
2006-01-01
This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.
Radiation skyshine from a 6 MeV medical accelerator.
Gossman, Michael S; McGinley, Patton H; Rising, Mary B; Pahikkala, A Jussi
2010-05-06
This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs.
Internship and Consulting Engagements: Management of the University's Liability.
ERIC Educational Resources Information Center
Peak, Daniel A.; O'Hara, Michael J.
1999-01-01
Examines liability incurred by university-sponsored information technology internships and consulting relationships with the business community. In these outreach engagements, the university takes the role of primary insurer for the business client and provides an indemnity shield for the university's representatives. As the number of engagements…
NASA Technical Reports Server (NTRS)
Mishler, H. W.
1974-01-01
The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.
Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.
2008-01-01
Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.
Temporal geochemical evolution of Kilauea Volcano: Comparison of Hilina and Puna Basalt
NASA Astrophysics Data System (ADS)
Chen, C.-Y.; Frey, F. A.; Rhodes, J. M.; Eastern, R. M.
Temporal geochcmical variations in Hawaiian shield-building lavas provide important constraints on the origin and evolution of these lavas. We determined the major and trace element content, and Sr, Nd and Pb isotopic ratios of the oldest subaerially exposed lavas on Kilauea Volcano, i.e., the >25 Ka to perhaps 100 Ka, Hilina Basalt. Except for lower K2O and Rb abundances in Hilina lavas, the compositions of these prehistoric lavas overlap with historical Kilauea lavas. Although the studied Hilina lavas are not highly altered, the lower abundances of K2O and Rb may reflect post-eruptive alteration. Compared with historical Kilauea lavas, Hilina lavas have a similar range in Sr and Nd isotopic ratios, but they range to more radiogenic Pb isotopic ratios. The mantle source of Kilauea lavas is heterogeneous in isotopic ratios and perhaps in abundance ratios of some incompatible elements, but there is no evidence for systematic long-term geochemical variations in the source of Kilauea lavas. None of the prehistoric Kilauea lavas have isotopic characteristics similar to those of subaerial Mauna Loa lavas. Apparently, the sources and ascent paths of lavas forming the adjacent Kilauea and Mauna Loa shields have largely remained distinct during subaerial growth of the Kilauea shield. Compared to lavas from other Hawaiian shields, Kilauea lavas range to relatively high 206Pb/204Pb and low 87Sr/86Sr. These isotopic ratios are correlated with trace element abundance ratios that involve Nb, e.g., Zr/Nb; some Hilina lavas define the upper range in 206Pb/204Pb (˜18.82), and they have low Zr/Nb (˜8). This "Kilauea component" which has isotopic characteristics similar to the FOZO component (e.g., Hauri et al., 1994a] is an intrinsic part of the Hawaiian plume.
NASA Astrophysics Data System (ADS)
Poh, Jonathan; Yamato, Philippe; Gapais, Denis; Duretz, Thibault; Ledru, Patrick
2017-04-01
The formation of the architecture of the main cratons of the Canadian Shield has been debated over the past three decades. Understanding the role of tangential Vs. vertical tectonics in the Rae craton is of great interest as the role of inherited structure is fundamental for the subsequent drainage of fluids and the formation of high to ultra-high grade unconformity-type uranium deposits. These deposits are located in the vicinity of the intersection between the unconformity at the base of the Paleoproterozoic Athabasca sedimentary basin (1.75-1.5 Ga) and the graphite-rich metasediments of the Wollaston-Mudjatik transition zone, one of the main fault system of the Rae Craton related to the Trans-Hudson orogeny (1.82-1.78 Ga). A new tectonic model, Pop-down tectonics, was proposed as the primary driving process to concentrate supracrustal materials, strains, fluid transfers and metal transport in permeability enhanced deformation zones. The sub-vertical structural patterns with regional horizontal shortening seen in the tectonic model appear to be consistent with field evidences and has the potential for sustaining strong fluid-rock interactions. In the light of previous analogue modelling studies, we test the viability of the Pop-down tectonics model in a thermo-mechanical framework. The numerical experiments are based on a series of 2D visco-elasto-plastic thermo-mechanical models. We employ various thermal and rheological parameters derived from laboratory experiments. The geometry, thermicity and kinematics of the models are further constrained by applying existing geophysical and geological data. We impose a fixed upper mantle temperature of 1330 °C and a thin crust ranging from 30 - 40 km. The outcome of the models will provide insights into the mechanical processes controlling the deformation of hot lithospheres in convergent settings.
Impact of a flattening filter free linear accelerator on structural shielding design.
Jank, Julia; Kragl, Gabriele; Georg, Dietmar
2014-03-01
The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise™ linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard ÖNORM S 5216 and to the US American NCRP Report No. 151. We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the accommodated linac operates with or without a flattening filter. The lower consumption of shielding space and material for new treatment vaults housing a FFF machine may reduce building costs, whereas for existing vaults one might benefit in terms of increased weekly workload. Also a more frequent use of monitor unit intense treatment techniques as well as aiming at reduced occupational exposure for staff is conceivable. Copyright © 2013. Published by Elsevier GmbH.
SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog
2016-06-06
The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shieldingmore » method is the subgroup method.« less
Geologic Map of Kalaupapa Peninsula, Moloka‘i, Hawai‘i, USA
Okubo, Chris H.
2012-01-01
Kalaupapa Peninsula, along the northern coast of East Moloka‘i volcano, is a remarkably well-preserved example of rejuvenated-stage volcanism from a Hawaiian volcano. Mapping of lava flows, vents and other volcanic constructs reveals a diversity of landforms on this small monogenetic basaltic shield. The late-stage lava distributary system of this shield is dominated by a prominent lava channel and tube system emanating from the primary vent, Kauhakō crater. This system, along with several smaller examples, fed five prominent rootless vents downslope from Kauhakō. This map shows the subaerial part of this volcanic construct at 1:30,000 scale and encompasses an area of approximately 20.6 km2.
Upper aerodigestive tract cancer and the lung: a tale of two aspirations.
Vaideeswar, P; Ghodke, R
2012-01-01
Patients with upper aerodigestive epithelial cancers frequently develop second primary cancers due to common risk factors or develop distant metastases depending on the locoregional status of the primary tumor. In most instances, the organ affected is the lung. Pulmonary spread usually occurs due to hematogenous or lymphatic dissemination. The following is a report of two patients with upper aerodigestive tract squamous cell carcinomas who developed lung metastases due to aspiration, a route not well documented in recent literature.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.
2012-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.
Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte
2000-01-01
Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl.
Ellsworth mountains: Position in West Antarctica due to sea-floor spreading
Schopf, J.M.
1969-01-01
Similarities of middle and upper Paleozoic deposits of the Ellsworth Mountains with those of the Pensacola, Horlick, and other Transantarctic mountains indicate that all these ranges may have had a related geologic history. A tentative explanation is now suggested which involves sea-floor spreading and translocation of the Ellsworth crustal block from its original location adjacent to the East Antarctic Shield. Accordingly, the islands of West Antarctica may differ in origin and the Transantarctic Mountains of East Antarctica may represent one margin of an ancient rift.
Preliminary biplane tests in the variable density wind tunnel
NASA Technical Reports Server (NTRS)
Shoemaker, James M
1928-01-01
Biplane cellules using the N.A.C.A.-M6 airfoil section have been tested in the variable density wind tunnel of the National Advisory Committee for Aeronautics. Three cellules, differing only in the amount of stagger, were tested at two air densities, corresponding to pressures of one atmosphere and of twenty atmospheres. The range of angle of attack was from -2 degrees to +48 degrees. The effect of stagger on the lift and drag, and on the shielding effect of the upper wing by the lower at high angles of attack was determined.
Rootless shield and perched lava pond collapses at Kīlauea Volcano, Hawai'i
Patrick, Matthew R.; Orr, Tim R.
2012-01-01
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.
Sliding-gate valve for use with abrasive materials
Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.
1985-01-01
The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.
Context-Sensitive Adjustment of Cognitive Control in Dual-Task Performance
ERIC Educational Resources Information Center
Fischer, Rico; Gottschalk, Caroline; Dreisbach, Gesine
2014-01-01
Performing 2 highly similar tasks at the same time requires an adaptive regulation of cognitive control to shield prioritized primary task processing from between-task (cross-talk) interference caused by secondary task processing. In the present study, the authors investigated how implicitly and explicitly delivered information promotes the…
NASA Astrophysics Data System (ADS)
Shafer, J. T.; Gudding, J. A.; Neal, C. R.; Regelous, M.
2002-12-01
Ocean Drilling Project (ODP) Leg 197, Site 1205 penetrated 283 m into the volcanic basement of Nintoku Seamount, which is located roughly half-way along the Emperor Seamount Chain and has been dated at approximately 55-56 Ma by 40Ar-39Ar (R. Duncan, pers. comm., 2002). 25 subaerially-erupted lava flows, together with interflow sediments and soil horizons, were recovered. We report major and trace element compositions of 33 rock samples spanning the entire lava sequence and hawaiite clasts from a conglomerate immediately overlying the igneous basement. The volcanic rocks at Site 1205 are dominantly alkalic to intermediate basalts with between 5 and 11% MgO, with the degree of alkalinity generally increasing up-section, and the eruption rate (inferred from the thickness and abundance of interflow soils) appears to have decreased with time. Two flows in the lower half of the hole are tholeiitic and divide the section into two different alkalic basalt series. One of these flows contains accumulated olivine crystals and has a picritic composition. The upper alkalic series generally becomes enriched in the highly incompatible elements (ITEs) up-section from the tholeiitic units and is overlain by a conglomerate that contains cobbles of hawaiite that are highly enriched in ITEs. Normalized patterns are subparallel to those of the upper series of alkalic basalts, suggesting the hawaiites may be related by fractional crystallization. The lower alkalic series contains basalts that are among the most ITE enriched of the recovered basement sequence, but does not show the same variations as the upper series. The petrology of the Site 1205 lavas is very similar to those of lavas erupted during the later evolutionary stages of young volcanoes from the Hawaiian Islands and were probably all erupted during the post-shield alkalic stage; at Nintoku the post-shield alkalic cap appears to be relatively thick (at least 300m) compared to many other Hawaiian volcanoes, but is similar to that of Mauna Kea and Haleakala. Fractionation of the observed phenocryst phases (olivine and plagioclase) was responsible for much of the compositional variation within the Nintoku basaltic lavas, and the low Sc concentrations of the hawaiites show that they have also fractionated clinopyroxene. However, variations in incompatible trace element ratios indicate that the lavas cannot all be related by crystal fractionation from a single parental magma. Nintoku lavas exhibit broad similarities in major and trace element compositions of post-shield lavas from the Hawaiian Islands. For example, La/Yb ratios of the 1205 basalts (5-13) are similar to those of alkali basalts from Mauna Kea (5-12), but lower than those from Haleakala (12-17). However, distinct differences also occur. Nintoku lavas have relatively low Zr concentrations, so that they plot below the main Hawaiian array on a Zr/Nb-La/Yb diagram. Previous studies have show that lavas from the oldest Emperor Seamounts have relatively depleted incompatible trace element compositions; our data suggest that by 56 Ma, lavas erupted above the Hawaiian Hotspot were essentially similar to young (<5 Ma) lavas from the Hawaiian Islands.
ERIC Educational Resources Information Center
Wilkie, Karina J.; Clarke, Doug
2015-01-01
This paper discusses upper primary school teachers' perspectives on changes to their knowledge and practice through participation in a design-based research project. It analyses their experiences using Clarke and Hollingsworth's (2002) empirically-founded model for professional growth to understand more about the mechanisms for change that might…
How Do Interest in Sciences Vary with Gender?
ERIC Educational Resources Information Center
Gafoor, K. Abdul
2011-01-01
This study explores interest in physics, chemistry and biology among school students in Kerala. It used a sample of 3236 (1659 boys, 1577 girls) students studying in upper primary to higher secondary classes. Three separate versions of scale of interest in science were used to quantify interest in science of upper primary, secondary and higher…
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.
2015-12-01
Hudson Bay is a shallow intracratonic basin that partially conceals the Trans-Hudson Orogen (THO) in northern Canada. The THO is thought to be a Himalayan-scale Paleoproterozoic orogenic event that was an important component of assembly of the Canadian Shield, marking the collision of the Archean Superior and Western Churchill plates. Until recently, only global and continental-scale seismic tomographic models had imaged the upper-mantle structure of the region, giving a broad but relatively low-resolution picture of the thick lithospheric keel. The Hudson Bay Lithospheric Experiment (HuBLE) investigated the present-day seismic structure beneath Hudson Bay and its surroundings, using a distributed broadband seismograph network installed around the periphery of the Bay and complemented by existing permanent and temporary seismographs further afield. This configuration, though not optimal for body-wave studies which use subvertical arrivals, is well-suited to surface wave tomographic techniques, with many paths crossing the Bay. As there is little seismicity in the region around the Canadian Shield, two-station measurements of teleseismic Rayleigh wave phase velocity formed the principal data set for lithospheric studies. The interstation measurements were combined in a linearized tomographic inversion for maps of phase velocity and azimuthal anisotropy at periods of 20-200 s; these maps were then used to calculate a pseudo-3D anisotropic upper-mantle shear-wavespeed model of the region. The model shows thick (~180-260 km), seismically fast lithosphere across the Hudson Bay region, with a near-vertical 'curtain' of lower wavespeeds trending NE-SW across the Bay, likely associated with more juvenile material trapped between the Archean Superior and Churchill continental cores during the THO. The lithosphere is layered, suggesting a 2-stage formation process. Seismic anisotropy patterns vary with depth; a circular pattern in the uppermost mantle wrapping around the Hudson Bay basin is superseded in the lower lithosphere by a pattern that mirrors THO-related structures within the crust; the lower layer thus likely formed when stress patterns related to the THO were still active.
Cyclotron-based effects on plant gravitropism
NASA Astrophysics Data System (ADS)
Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.
Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.
Contamination Control Considerations for the Next Generation Space Telescope (NGST)
NASA Technical Reports Server (NTRS)
Wooldridge, Eve M.
1998-01-01
The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or eliminating exposure of the OTA to sunlight or earth albedo during deployment and early on-orbit operations, cleaning of the primary and secondary mirrors at the launch site, cleaning of the launch vehicle fairing, locating thrusters and vents on the warm side of the sun shield only, and the possibility of including a deployable cover if that is shown to be necessary.
Role of Earth's plasmasphere in coupling of upper atmosphere
NASA Astrophysics Data System (ADS)
Singh, A. K.; Mishra, Sandhya; Dohare, S. K.
2010-02-01
The near-Earth space environment is a complex, ever changing system of magnetized plasmas whose behaviour has a profound impact upon our technology dependent society. The exploration of the cold, relatively dense, inner region of upper atmosphere (the plasmasphere) and its unexpectedly sharp outer boundary (the plasma pause) has proceeded through a combination of in-situ observations and ground based whistler observations. Studies have shown that plasmasphere is highly variable both spatially and temporally responding to changes in geomagnetic indices, ring current, penetration and shielding electric fields and subauroral electric fields. Consequently the plasmasphere exhibits erosion, emptying and refilling during active times. Infact, it is the electric field that plays one of the most important roles in coupling of upper atmosphere. The atmospheric dynamo is the main generator of the large-scale electric field in the upper atmosphere. It arises because of a special situation which electrons and ions move with different velocities across the magnetic field because of different collisions between electrons and neutral particles and ions with neutral particles. This process leads to charge separation and consequently to an electric field. In the present paper, storm/ quiet period VLF whistler data recorded at lower latitudes/mid latitudes are analyzed and attempt has been made to look at plasmasphere response on coupling of ionosphere and magnetosphere.
Current Lead Design for the Accelerator Project for Upgrade of LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor
2010-01-01
The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchangemore » section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.« less
Crustal reflectivity in the Skagerrak area
NASA Astrophysics Data System (ADS)
Larsson, F. R.; Husebye, E. S.
1991-04-01
Reflectors within the crystalline crust are often observed in deep seismic reflection profiling surveys. The lower crust in extensional areas is generally credited with an abundance of reflectors. The deep seismic reflection data (16 s TWT) from the M.V. Mobil Search cruise in Skagerrak show a reflective lower crust and a relatively transparent upper crust in most of the area. Reflectivity seems to be less inside the Oslo Rift, and also beneath the sediment-covered areas. Reflectivity maxima are found near the Moho and at depths of 10-20 km. The latter is taken to coincide with the transition between the brittle upper and ductile lower crust. The distribution of crustal reflectors in Skagerrak and their possible relationships with seismic velocities, earthquake depth distribution and major tectonic elements such as the Fennoscandian Border Zone, the Oslo Rift system and the shield environment are discussed. Hypotheses on the formation of the crustal reflectors are also briefly reviewed.
Limits on low-energy neutrino fluxes with the Mont Blanc liquid scintillator detector
NASA Astrophysics Data System (ADS)
Aglietta, M.; Antonioli, P.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Khalchukov, F. F.; Korolkova, E. V.; Kortchaguin, P. V.; Kortchaguin, V. B.; Kudryavtsev, V. A.; Malguin, A. S.; Periale, L.; Ryassny, V. G.; Ryazhskaya, O. G.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Yakushev, V. F.; Zatsepin, G. T.
1992-11-01
The LSD liquid scintillation detector has been operating since 1985 as an underground neutrino observatory in the Mont Blanc Laboratory with the main objective of detecting antineutrino bursts from collapsing stars. In August 1988 the construction of an additional lead and borex paraffin shield considerably reduced the radioactive background and increased the sensitivity of the apparatus. In this way the search for steady fluxes of low-energy neutrinos of different flavours through their interactions with free protons and carbon nuclei of the scintillator was made possible. No evidence for a galactic collapse was observed during the whole period of measurement. The corresponding 90% c.l. upper limit on the galactic collapses rate is 0.45 y -1 for a burst duration of ΔT ⩽ 10 s. After analysing the last 3 years data, the following 90% c.l. upper limits on the steady neutrino and antineutrino fluxes were obtained:
NASA Astrophysics Data System (ADS)
Glebovitskii, V. A.; Sedova, I. S.; Larionov, A. N.; Berezhnaya, N. G.
2017-10-01
It is proved that dating high-grade metamorphism events through dating of migmatites is quite efficient. Our investigation has made it possible to identify two events of 2500 and 2700 Ma and to estimate the age of an igneous protolith for both tonalite gneiss, the most ancient in the Belomorian belt, and related metagabbroid. Based on the upper crossing of the concordia and the discordia, the zircon core age is estimated at 2796 ± 63 Ma; this age is slightly different from that of a growth rim of rhythmically zoned prismatic zircon (2816 ± 110 Ma). A linear approximation of all measured points yields an upper crossing of 2803 ± 55 Ma. The error of these estimates is high for quite understandable reasons, and yet it should be taken into account when analyzing the geodynamic development regimes of Neo-Archaean endogenic processes.
Kriegel, J; Rebhandl, E; Reckwitz, N; Hockl, W
2016-12-01
Current and projected general practitioner (GP) and primary care in Austria shows structural and process inadequacies in the quality as well as assurance of healthcare supply. The aim is therefore to develop solution- and patient-oriented measures that take patient-related requirements and medical perspectives into account. Using an effect matrix, subjective expert and user priorities were ascertained, cause and effect relationships were examined, and an expanded circle of success for the optimization of GP and primary care in Upper Austria was developed. Through this, the relevant levers for target-oriented development and optimization of the complex system of GP and primary care in Upper Austria were identified; these are training to become general practitioners, entrepreneurs as well as management and coordination. It is necessary to further adapt the identified levers conceptually and operationally in a targeted approach. This is to be achieved by means of the primary health care (PHC) concept as well as management tools and information and communication technologies (ICT) associated with it. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.
2013-05-01
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.
Radiation protection for an intra-operative X-ray device
Eaton, D J; Gonzalez, R; Duck, S; Keshtgar, M
2011-01-01
Objectives Therapeutic partial breast irradiation can be delivered intra-operatively using the Intrabeam 50 kVp compact X-ray device. Spherical applicators are added to the source to give an isotropic radiation dose. The low energy of this unit leads to rapid attenuation with distance, but dose rates are much greater than for diagnostic procedures. Methods To investigate the shielding requirements for this unit, attenuation measurements were carried out with manufacturer-provided tungsten–rubber sheets, lead, plasterboard and bricks. A prospective environmental dose rate survey was also conducted in the designated theatre. Results As a result of isotropic geometry, the scattered dose around shielding can be 1% of primary and thus often dominates measured dose rates compared with transmission. The absorbed dose rate of the unshielded source at 1 m was 11.6 mGy h−1 but this was reduced by 95% with the shielding sheets. Measured values for the common shielding materials were similar to reference data for the attenuation of a 50 kVp diagnostic X-ray beam. Two lead screens were constructed to shield operators remaining in the theatre and an air vent into a service corridor. A lead apron would also provide suitable attenuation, although a screen allows greater flexibility for treatment operators. With these measures, staff doses were reduced to negligible quantities. Survey measurements taken during patient treatments confirmed no additional measures were required, but the theatre should be a controlled area and access restricted. Conclusion Results from this study and reference data can be used for planning other facilities. PMID:21304003
SDSS-IV MaNGA: constraints on the conditions for star formation in galaxy discs
NASA Astrophysics Data System (ADS)
Stark, David V.; Bundy, Kevin A.; Orr, Matthew E.; Hopkins, Philip F.; Westfall, Kyle; Bershady, Matthew; Li, Cheng; Bizyaev, Dmitry; Masters, Karen L.; Weijmans, Anne-Marie; Lacerna, Ivan; Thomas, Daniel; Drory, Niv; Yan, Renbin; Zhang, Kai
2018-02-01
Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal < 1) before reaching the threshold for self-shielding (τ > 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.
Upper Primary School Teachers' Mathematical Knowledge for Teaching Functional Thinking in Algebra
ERIC Educational Resources Information Center
Wilkie, Karina J.
2014-01-01
This article is based on a project that investigated teachers' knowledge in teaching an important aspect of algebra in the middle years of schooling--functions, relations and joint variation. As part of the project, 105 upper primary teachers were surveyed during their participation in Contemporary Teaching and Learning of Mathematics, a research…
INSTRUCTIONAL TELEVISION FOR THE UPPER PRIMARY. A TEACHER GUIDE, SEMESTER II.
ERIC Educational Resources Information Center
DELIKAN, ALFRED; AND OTHERS
TELECAST PROGRAMS FOR THE UPPER PRIMARY GRADES WERE IN ART, MUSIC, PHYSICAL EDUCATION AND SCIENCE. A PREVIEW OF THE CONTENT OF EACH UNIT WAS GIVEN, TOGETHER WITH DETAILED INFORMATION FOR FOLLOWUP ACTIVITY. IN THE ART SERIES, IT WAS RECOMMENDED THAT PUPIL PARTICIPATION TAKE PLACE AS SOON AS POSSIBLE AFTER THE TELECAST. INDIVIDUAL CREATIVITY WAS…
NASA Astrophysics Data System (ADS)
Moore, L.; Gazel, E.; Bodnar, R. J.; Carracedo, J. C.
2017-12-01
Pre-eruptive volatile contents of volcanic melts recorded by melt inclusions are useful for estimating rates of deep earth ingassing and outgassing on geologic timescales. Ocean island volcanoes may erupt melts derived from recycled material and thus have implications regarding the degree to which volatile-bearing phases like magnesite can survive subduction and be recycled by intraplate magmatism. However, melt inclusions affected by degassing will not reflect the original volatile content of the primary melt. Post-shield ocean island volcanoes are thought to erupt volatile-rich melts that ascend quickly, crystallizing in deep reservoirs and are more likely to reflect the composition of the primary melt. In this study, we compare melt inclusions from post-shield volcanoes, Haleakala (East Maui, Hawaii) and Tenerife (Canary Islands), to estimate the volatile budgets of two presumably plume-related ocean-island settings. Melt inclusions from Haleakala contain up to 1.5 wt% CO2, up to 1.3 wt% H2O, and about 2000 ppm of S. The CO2 concentration is similar to estimates for primary CO2 concentrations for Hawaii, suggesting that the melt inclusions in this study trapped a melt that underwent minimal degassing. Assuming a melt production rate of 2 km3/ka for postshield Hawaiian volcanism, the average fluxes of CO2 and S are about 80 t/year and 10 t/year respectively. Melt inclusions from Tenerife contain up to 1 wt% CO2, up to 2 wt% H2O, and about 4000 ppm of S. Assuming a melt production rate of 0.8 km3/ka for the northeast rift zone of Tenerife, the average fluxes of CO2 and S are about 20 t/year and 8 t/year respectively. The concentration of CO2 is lower than estimates of the primary melt CO2 content based on CO2/Nb from El Hierro. This may indicate that the inclusions trapped a melt that had degassed significantly, or that some of the CO2 in the inclusions has been sequestered in carbonate daughter crystals, which were observed in abundance.
The nature of orogenic crust in the central Andes
NASA Astrophysics Data System (ADS)
Beck, Susan L.; Zandt, George
2002-10-01
The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S; Gaherty, J; Schwartz, S
2007-07-25
We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across themore » lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.« less
Preliminary risk assessment for nuclear waste disposal in space, volume 2
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.
1982-01-01
Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.
Radiation environment on board Foton-M 3: the neutron component
NASA Astrophysics Data System (ADS)
Falzetta, Giuseppe; Zanini, Alba; Chiorra, Katia; Briccarello, Mauro; Belluco, Maurizio; Longo, Francesco; Jerse, Giovanna
The recoverable capsule Foton-M 3 (ESA mission) was launched from Baikonur on 2007 September 14 and landed on the Russian-Kazakh border 12 days later. The spacecraft carried on board several ESA experiments. During this space mission a study has been performed on the neutron component of the radiation environment inside the capsule. Neutrons are a not avoidable component of the secondary radiation produced by interaction of primary radiation with the spacecraft shielding. Because of their high LET, neutrons could represent a main risk for both the electronic instruments and the health of the astronauts during space missions. Monte Carlo simulations performed by Geant4 code have been carried out using as input primary proton and alpha spectra, obtained by various tools (i.e. Creme 96, Omere, etc . . . ) and the neutron fluxes and doses, as a function of neutron energies, have been evaluated. The simulation results are compared with experimental data obtained by passive neutron detectors. In this study the effectiveness of various shielding materials useful in space mission has been also investigated.
Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R
2011-04-29
Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wear Testing of the HERMeS Thruster
NASA Technical Reports Server (NTRS)
Williams, George J.; Gilland, James H.; Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Ahern, Drew W.; Yim, John; Herman, Daniel A.; Hofer, Richard R.; Sekerak, Michael
2016-01-01
The Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) as primary propulsion for the Asteroid Rendezvous and Redirect Mission (ARRM). This thruster is advancing the state of the art of hall-effect thrusters (HETs) and is intended to serve as a precursor to higher power systems for human interplanetary exploration. The HERMeS Thruster Demonstration Unit One (TDU-1) has entered a 2000-hour wear test campaign at NASA GRC and has completed the first three of four test segments totaling 728 hours of operation. This is the first test of a NASA-designed magnetically shielded thruster to extend beyond 300 hours of continuous operation.
NASA Technical Reports Server (NTRS)
Roberts, W. K.; Leonard, R. F.
1976-01-01
The 25 MeV deuteron beam from the NASA variable energy cyclotron incident on a thick beryllium target will deliver a tissue neutron dose rate of 2.14 rad micron A-min at a source to skin distance of 125 cm. A neutron survey of the existing hallways with various shielding configurations made during operating of the horizontal neutron delivery system indicates that minimal amounts of additional neutron shielding material are required to provide a low level radiation environment within a self-contained neutron therapy control station. Measurements also indicate that the primary neutron distribution delivered by a planned vertical delivery system will be minimally perturbed by neutrons backscattered from the floor.
Small, Scott R; Hensley, Sarah E; Cook, Paige L; Stevens, Rebecca A; Rogge, Renee D; Meding, John B; Berend, Michael E
2017-02-01
Short-stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem-length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry and (2) if short-stemmed components exhibit primary stability on par with clinically successful designs. Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion was then compared with reduced lateral shoulder short stem and short tapered-wedge designs in cyclic axial and torsional testing. Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as a function of reduced stem length within the same component design. Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short-stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.
2011-06-01
The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of a ˜1.83-1.76 Ga APW swathe from the North China Shield permits a comparison with other shields and yields a constraint to continental configurations during the late Palaeoproterozoic. A quasi-integral reconstruction of Palaeopangaea is tested here and supported by conformity of predominantly of uplift-related palaeopoles from the ˜1.90-1.70 Ga tectono-thermal belts and from SW → NE trending APW implied by the distribution of poles from the ˜1.80 Ga igneous suites including the LIP events. This trend incorporates the A2 → A1 migration and the granulite terrane cooling polar swathe from North China. The reconstruction indicates that continental crust consolidated in Palaeoproterozoic times by accretion of ˜2.3-1.7 Ga orogenic belts around a hemispheric and crescent-shape core already established by Late Archaean times. The North China Shield is interpreted to have bordered the western cratonic margin of the Indian Shield in a proximity supported by correlation of geological features and suggested by a number of previous workers. The Central Orogenic Zone of the North China shield characterised by tectono-thermal activity prior to ˜1.85 Ga was then contiguous with a comparable zone running through the centre of the Indian Shield and continuing into the Capricorn Belt of Western Australia. The ˜1.78-1.76 Ga dykes in North China continue into dyke swarms in the South India Shield and may have been sourced in a plume-related LIP focussed near the continental margin in the Xiong'er Aulacogen.
Physical models and primary design of reactor based slow positron source at CMRR
NASA Astrophysics Data System (ADS)
Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin
2018-07-01
Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109
77 FR 26154 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... stabilizer actuator (THSA), the THSA upper secondary attachment engaged because it could only withstand the... [trimmable horizontal stabilizer actuator] upper primary attachment, which may result in a loading of the... of the trimmable horizontal stabilizer actuator (THSA), the THSA upper secondary attachment engaged...
ERIC Educational Resources Information Center
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The purpose of this study was to examine the directionality of the relationship between text reading prosody and reading comprehension in the upper grades of primary school. We compared 3 theoretical possibilities: Two unidirectional relations from text reading prosody to reading comprehension and from reading comprehension to text reading prosody…
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Remia, K. R.
2013-01-01
This study is to identify tasks which can be used to spot students with Reading Disability in Malayalam among Upper Primary students. It used secondary data collected from students of Kerala. Students were categorized as dyslexic and low achievers based on their performance in reading, writing and arithmetic tests. Data on performance of normal…
Shielding Structures for Interplanetary Human Mission
NASA Astrophysics Data System (ADS)
Tracino, Emanuele; Lobascio, Cesare
2012-07-01
Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.
Kuroda, Hiroaki; Sakao, Yukinori; Mun, Mingyon; Uehara, Hirofumi; Nakao, Masayuki; Matsuura, Yousuke; Mizuno, Tetsuya; Sakakura, Noriaki; Motoi, Noriko; Ishikawa, Yuichi; Yatabe, Yasushi; Nakagawa, Ken; Okumura, Sakae
2015-01-01
Background Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC) located in the left upper division. Methods We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy) with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako’s method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station. Results We enrolled 417 patients (237 men, 180 women). Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC. Conclusions Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC. PMID:26247881
NASA Technical Reports Server (NTRS)
Severns, J. G.; Hobbs, R. M.; Elliott, N. P.; Towsley, R. H.; Virshup, G. F.
1989-01-01
LIPS 3 is a member of the Living Plume Shield series of spacecraft. In each LIPS project, the plume shield, a simple sheet metal cone, was structurally stiffened, and an active satellite was then built around it. The original purpose of the plume shield was to prevent the plume from solid propellent engines, which are fired outside the atmosphere after the aerodynamic shroud is jettisoned, from reaching the primary payload. The surface of LIPS 3 facing the plume also functioned in this manner, but the anterior surfaces were unaffected, and it was there that all solar arrays, sensors, and experiments were mounted. The purpose of LIPS 3 was to provide a test bed for new space power sources. With the long delays projected for schedules of the STS and other major launch systems, it appeared that a decade might pass before long term flight data could be obtained on many new and innovative power sources. The fact that a launch scheduled for early in 1987 required a plume shield was seen as a unique opportunity to obtain some of this data in a timely manner. The LIPS 3 system, the experiments placed aboard, and the experiment data acquisition subsystem are described. Various problems were encountered during integration and after launch; those which appear to effect the accuracy of experimental results are discussed. A preliminary description is given of the accuracy of the flight experiment data.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
The force exerted by the membrane potential during protein import into the mitochondrial matrix
NASA Technical Reports Server (NTRS)
Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas
2004-01-01
The force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated on the basis of continuum electrostatics. The force is found to vary from 3.0 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 6.5 to 12 A, its measured range. In the present model, the decrease in force with increasing pore width arises from the shielding effect of water. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a purely membranous pore without water gives a force of 3.2 pN per unit charge, which should represent an upper limit. When applied to mitochondrial import experiments on the protein barnase, these results imply that forces between 11 +/- 2 pN and 13.5 +/- 2.5 pN catalyze the unfolding of barnase in those experiments. A comparison of these results with unfolding forces measured using atomic force microscopy is made.
Geochemical evolution of Kohala Volcano, Hawaii
Lanphere, M.A.; Frey, F.A.
1987-01-01
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.
1992-01-01
The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.
Effects of radiation on DNA's double helix
NASA Technical Reports Server (NTRS)
2003-01-01
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
2003-01-22
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
NASA Astrophysics Data System (ADS)
Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.
2018-01-01
From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.
Aleinikoff, John Nicholas; Stoeser, D.B.
1988-01-01
The U-Pb zircon method was used to determine the ages of seven metaluminous-to-peralkaline post-orogenic granites located throughout the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of about 2-4:1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well developed prismatic faces (are pseudo-octahedral) or are anhedral. Some of the zircons from the peralkaline granites contain inherited radiogenic lead. This complicates interpretation of the isotopic data and. in many cases, may make the U-Pb method unsuitable for determining the age of a peralkaline granite. Zircons in the metaluminous granites do not contain inheritance and thus, best-fit chords calculated through the data have upper concordia intercepts that indicate the age of intrusion, and lower intercepts that indicate simple episodic lead loss. The results show that these granites were emplaced during multiple intrusive episodes from 670 to 510 Ma (Late Proterozoic to Cambrian).
Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.
2015-01-01
The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.
Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika
2015-01-01
The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.
NASA Technical Reports Server (NTRS)
Pearce, W. E.
1982-01-01
An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.
IET. Aerial view of project, 95 percent complete. Camera facing ...
IET. Aerial view of project, 95 percent complete. Camera facing east. Left to right: stack, duct, mobile test cell building (TAN-624), four-rail track, dolly. Retaining wall between mobile test building and shielded control building (TAN-620) just beyond. North of control building are tank building (TAN-627) and fuel-transfer pump building (TAN-625). Guard house at upper right along exclusion fence. Construction vehicles and temporary warehouse in view near guard house. Date: June 6, 1955. INEEL negative no. 55-1462 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Impact of Jovian radiation environmental hazard on spacecraft and mission development design
NASA Technical Reports Server (NTRS)
Divita, E.
1972-01-01
The environmental impact on the TOPS 12L configuration is discussed. The activities in system environmental design and testing are described, and radiation design restraints based on the upper limit model are given. Range energy cutoffs in aluminum are also presented and the effective shielding thicknesses for electrons and protons of different energies are included. Design integration problems and radiation testing aspects are considered. Data are given for selecting the parts which should be tested in a formal test program, and the piece-part radiation thresholds are tabulated for electrons and protons.
Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.
2009-01-01
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we Anther present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE.
The chronology and sequence of eruption of human permanent teeth in Northern Ireland.
Kochhar, R; Richardson, A
1998-12-01
To ascertain the average and range of ages and sequence of eruption of human permanent teeth, taking into account the effect of premature loss of primary antecedents. Longitudinal study. Caucasian subjects in Northern Ireland. Study casts at 6-monthly intervals from age 5 to 15 years of 276 children (146 males and 130 females) enrolled in the Belfast Growth Study. The mean and range of ages of eruption of each individual tooth were computed. Comparisons were made between the mean ages of eruption with and without premature loss of primary antecedents, between upper and lower arches, between right and left sides and between males and females. The sequence of eruption was also investigated. The means and ranges of eruption ages are reported. Premature loss of primary antecedents delayed eruption of permanent successors except for the upper premolars which were accelerated. The differences relating to the upper first premolar and lower canine were not statistically significant. Each lower tooth erupted before its upper counterpart except for the premolars. There was no significant difference in age of eruption between right and left sides. Females tended to erupt teeth before males with the exception of the second molars in both arches; however, the only differences to reach statistical significance related to upper and lower canines and upper lateral incisors. The most frequent orders of eruption were unique to the subject. These occurred in 22% of upper and 33% of lower arches. The classic sequences: first molar-central incisor-lateral incisor-first premolar-canine-second premolar-second molar (M1-I1-I2-PM1-C-PM2-M2) in the upper arch and I1-M1-I2-C-PM1-PM2-M2 in the lower arch occurred in only 16% of upper arches and 13% of lower arches. Males adhered to the textbook sequence (20% upper, 17% lower) more than females (12% upper, 8% lower). In the upper arch of females, the order M1-I1-I2-PM1-PM2-C-M2 in 10% of subjects was almost as frequent as the classic sequence. The ages, ranges and orders of eruption found in this study are more reliable than many which are frequently quoted on account of its longitudinal nature and the fact that the effect of premature loss of primary antecedents is taken into account. The exclusively Caucasian sample makes the data quite precise but limits applicability to patients of this ethnic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.
This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been takenmore » to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137 source placed in the centre of the measurement chamber. Small sources have also been used to determine the spatial variation of the detection efficiency for various positions within the measurement chamber. The data have been used to establish sentencing limits and different 'fingerprints' for specific waste streams including waste streams containing fission products and others based on other radionuclides including Am-241. Some of the test data that are presented have been used to validate the instrument performance. The monitor is currently in routine use at a nuclear facility for the measurement and sentencing of low-density low activity radioactive waste. (authors)« less
ERIC Educational Resources Information Center
Hanratty, Brian
2017-01-01
Centred on a carefully chosen selection of Heaney's Troubles poems, this paper explores pedagogical opportunities that the poems present in the context of upper post-primary classrooms in Northern Ireland's divided schools. Five poems are evaluated in total. These are: "The Other Side", "A Constable calls", "The Toome…
ERIC Educational Resources Information Center
Menazel, Basil H.
2015-01-01
The study aimed to identify upper primary level History teachers' attitudes toward the use of school field trips as an educational aid throughout schools in the Irbid First Education Directorate, through exploring the importance of school field trips in the creation of an interactive atmosphere and to encourage school administration attitudes…
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Narayan, Smitha
2012-01-01
In view of student shift away from science at advanced levels, and gender and locale based divergence in interest in studying physics, chemistry and biology, this study explores experience categories that significantly contribute to interest in science on a sample of upper primary school students from Kerala, India. A series of multiple regression…
Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii
Okubo, Paul G.; Benz, Harley M.; Chouet, Bernard A.
1997-01-01
Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9–11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low-velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6–8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.
Strickland, Sarah; Wasserman, Jason K; Giassi, Ana; Djordjevic, Bojana; Parra-Herran, Carlos
2016-05-01
Immunohistochemistry is frequently used to identify ovarian mucinous neoplasms as primary or metastatic; however, there is significant overlap in expression patterns. We compared traditional markers (CK7, CK20, CDX2, PAX8, estrogen receptor, β-catenin, MUC1, MUC2, and MUC5AC) to 2 novel proteins identified through mining of the Human Protein Atlas expression database: SATB2 and POF1B. The study cohort included 49 primary gastrointestinal (GI) mucinous adenocarcinomas (19 colorectal, 15 gastric, 15 pancreatobiliary), 60 primary ovarian mucinous neoplasms (19 cystadenomas, 21 borderline tumors, 20 adenocarcinomas), and 19 metastatic carcinomas to the ovary (14 lower and 5 upper GI primaries). Immunohistochemistry was performed on tissue microarrays, scored and interpreted as negative (absent or focal/weak) or positive. Metastatic tumors were frequently unilateral (42.8% of tumors from lower and 40% of tumors from upper tract) and ≥10 cm (85.7% of tumors from lower and 80% of tumors from upper tract). CK7 was positive in 88.5% upper GI and 88.3% primary ovarian compared with 24.3% lower GI neoplasms. CK20 and CDX2 were positive in 84.8% and 100% of lower GI tumors, respectively; however, expression was also common in upper GI (CK20 42.8%, CDX2 50%) and primary ovarian neoplasms (CK20 65.7%, CDX2 38.3%). Conversely, SATB2 was more specific for lower GI origin, being positive in 78.8% lower GI but only 11.5% upper GI and 1.7% primary ovarian neoplasms. PAX8 expression was common in primary ovarian neoplasms (75% of all neoplasms, 65% of carcinomas); only 1 (1.5%) GI tumor was positive. MUC2 and β-catenin were frequently positive in lower GI tumors (96.9% and 51.5%, respectively). Estrogen receptor expression was only seen in primary ovarian neoplasms (13.3%). Nuclear premature ovarian failure 1B (POF1B) expression was seen in malignant tumors regardless of their origin. A panel including CK7, SATB2, and PAX8 separated primary from secondary GI neoplasms with up to 77.1% sensitivity and 99% specificity, outperforming tumor laterality and size. Second-line markers such as CDX2, MUC2, estrogen receptor, MUC1, and β-catenin increased the sensitivity of immunohistochemistry in excluding lower GI origin. Biomarker search using proteomic databases has a value in diagnostic pathology, as shown with SATB2; however, as seen with POF1B, expression profiles in these databases are not always reproduced in larger cohorts.
Paul, Kalyan Kumar; Panigrahi, Sandeep Kumar; Soodi Reddy, Arun Kiran; Sahu, Trilochan
2017-01-01
In India, children of upper primary school receive less attention from health-care providers. The majority of their health problems are preventable through hygienic practices. The aim of this study was to find out the association of personal hygiene with common morbidities among upper primary school children. A cross-sectional study conducted in a rural upper primary school of Odisha. A semi-structured schedule based on the Global School Health Survey Questionnaire and necessary instruments for clinical examination were used. Data were entered in Microsoft Excel 2007 and analyzed by SPSS version 20 software. Of 90 participants, 58 (64.4%) were girls. The mean age was 11.8 (±1.01) years. The mean body mass index of females was significantly higher than males (16.95 vs. 14.72; P = 0.001). More than 90% of children maintained good personal hygiene such as clean tongue, clean hair, handwashing, and using footwear. The most common morbidities found were dental caries (38.9%), history of worms in stool and lethargy (20%). A mean score of 6.14 ± 0.11 (out of 8) was seen for personal hygiene and not associated with any particular morbidity or gender. Brushing daily was significantly associated with reduced dental caries (χ 2 = 8.7; P < 0.005) and foul-smelling breath (χ 2 = 4.93; P < 0.05). Fungal infections were significantly less in children who bathed daily (χ 2 = 28.7; <0.005) and wore clean clothes (χ 2 = 5.06; P < 0.05). Dental caries, foul-smelling breath, and fungal infections were significantly associated with poor personal hygiene. School health services should also focus on upper primary school children for improvement of personal hygiene.
[Primary upper urinary tract tumors and subsequent location in the bladder].
Azémar, M-D; Audouin, M; Revaux, A; Misraï, V; Comperat, E; Bitker, M-O; Chartier-Kastler, E; Richard, F; Cussenot, O; Rouprêt, M
2009-10-01
The urothelium is the epithelium that lines the upper and lower urinary tract. Over 95% of urothelial carcinomas are derived from urothelium. They can be located in the lower tract (bladder, urethra) or upper tract (pyelocaliceal cavities, ureter). Urothelial carcinomas are the fourth most common tumours after prostate (or breast) cancer, lung cancer and colorectal cancer. On one hand, bladder tumours account for 90-95% of urothelial carcinomas. It is the most common malignancy of the urinary tract and the second most common malignancy of the urogenital tract after prostate cancer. It accounts for 5-10% of all cancers diagnosed each year in Europe. On the other hand, upper urinary tract urothelial cell carcinomas (UUT-UCC) are scarce and account for only 5-10% of urothelial carcinomas. Recurrence in the bladder after primary UUT-UCC occurs in 15-50% of UUT-UCC. Differences in treatment modalities of the primary UUT-UCC do not play a key role in the subsequent appearance of a bladder recurrence. However, others factors have been described such as stage and location in the upper tract of the primary tumour or upper tract tumour multifocality. Previous history of bladder tumour is also associated with the risk that another tumour arises in the bladder subsequently. However, it becomes difficult to distinguish between natural history of bladder tumour and evolution of UUT-UCC in these cases. In most cases, bladder cancer occurs in the first two years after UUT-UCC management. Surveillance protocol is based on cystoscopy and on urinary cytology during at least every three months for two years. Current surveillance regimen have a low level of evidence considering the paucity of UUT-UCC.
The DarkSide-50 outer detectors
NASA Astrophysics Data System (ADS)
Westerdale, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Aldo, Ianni; Andrea, Ianni; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; DSkorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-05-01
DarkSide-50 is a dark matter detection experiment searching for Weakly Interacting Massive Particles (WIMPs), in Gran Sasso National Laboratory. For experiments like DarkSide-50, neutrons are one of the primary backgrounds that can mimic WIMP signals. The experiment consists of three nested detectors: a liquid argon time projection chamber surrounded by two outer detectors. The outermost detector is a 10 m by 11 m cylindrical water Cherenkov detector with 80 PMTs, designed to provide shielding and muon vetoing. Inside the water Cherenkov detector is the 4 m diameter spherical boron-loaded liquid scintillator veto, with a cocktail of pseudocumene, trimethyl borate, and PPO wavelength shifter, designed to provide shielding, neutron vetoing, and in situ measurements of the TPC backgrounds. We present design and performance details of the DarkSide-50 outer detectors.
Analysis of radiation risk from alpha particle component of solar particle events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.
1994-01-01
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.
Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming
2018-01-01
Background The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). Material/Methods Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. Results Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (P<0.01), a significantly increased left ventricular ejection fraction (LVEF) (P=0.01), a significantly lower rate of AKI (P<0.01) a significantly increased eGFR (P<0.01), and decreased area under the curve (AUC) of CK-MB, NO and SDF-1α. Conclusions RIPC of the upper arm following primary PCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO. PMID:29456238
Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming; Yang, Xiangjun
2018-02-19
BACKGROUND The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). MATERIAL AND METHODS Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. RESULTS Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (P<0.01), a significantly increased left ventricular ejection fraction (LVEF) (P=0.01), a significantly lower rate of AKI (P<0.01) a significantly increased eGFR (P<0.01), and decreased area under the curve (AUC) of CK-MB, NO and SDF-1α. CONCLUSIONS RIPC of the upper arm following primary PCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO.
Deep structure of Medicine Lake volcano, California
Ritter, J.R.R.; Evans, J.R.
1997-01-01
Medicine Lake volcano (MLV) in northeastern California is the largest-volume volcano in the Cascade Range. The upper-crustal structure of this Quaternary shield volcano is well known from previous geological and geophysical investigations. In 1981, the U.S. Geological Survey conducted a teleseismic tomography experiment on MLV to explore its deeper structure. The images we present, calculated using a modern form of the ACH-inversion method, reveal that there is presently no hint of a large (> 100 km3), hot magma reservoir in the crust. The compressional-wave velocity perturbations show that directly beneath MLV's caldera there is a zone of increased seismic velocity. The perturbation amplitude is +10% in the upper crust, +5% in the lower crust, and +3% in the lithospheric mantle. This positive seismic velocity anomaly presumably is caused by mostly subsolidus gabbroic intrusive rocks in the crust. Heat and melt removal are suggested as the cause in the upper mantle beneath MLV, inferred from petro-physical modeling. The increased seismic velocity appears to be nearly continuous to 120 km depth and is a hint that the original melts come at least partly from the lower lithospheric mantle. Our second major finding is that the upper mantle southeast of MLV is characterized by relatively slow seismic velocities (-1%) compared to the northwest side. This anomaly is interpreted to result from the elevated temperatures under the northwest Basin and Range Province.
CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Hu, R.
2015-01-01
Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves overmore » the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.« less
Chung, Hsiao-Jen; Lin, Alex Tong-Long; Lin, Chih-Chieh; Chen, Tzeng-Ji; Chen, Kuang-Kuo
2016-01-01
This study aimed to investigate associations between primary urinary incontinence and development of upper urinary tract stones in a nationwide population in Taiwan. Data of 1,777 adults with primary urinary incontinence and 26,655 controls (groups A, B, and C) without urinary incontinence at study inception were retrieved from the National Health Insurance System database in Taiwan and were analyzed retrospectively. No enrolled subjects had previous diagnosis of upper urinary tract stones or spinal cord injury. All subjects were followed through end of 2009, with a minimum follow-up of 8 years. A greater percentage of study subjects (334/1777, 18.8%) developed upper urinary tract stones than that of control groups A (865/8885, 9.7%) and B (888/8885, 10%), and C (930/8885, 10.5%) (all p-values < 0.0001). Urinary incontinence was associated with significantly increased risk of developing urinary tract stones (HR 1.99, 95% CI, 1.70–2.34, p < 0.001). Age and metabolic syndrome status were both associated with developing upper urinary tract stones (both p-values < 0.0001). After adjusting for metabolic syndrome, regression analysis showed that urinary incontinence was still associated with a significantly increased risk of developing upper urinary tract stones (HR 1.99, 95% CI = 1.76–2.26, p < 0.0001). Long-term follow-up of Taiwanese patients with primary urinary incontinence suggests that urinary incontinence is associated with a significantly increased risk of developing upper urinary tract stones. Study findings suggest that physicians treating patients with urinary incontinence should give attention to early detection of upper urinary tract stones. PMID:27536881
Chung, Hsiao-Jen; Lin, Alex Tong-Long; Lin, Chih-Chieh; Chen, Tzeng-Ji; Chen, Kuang-Kuo
2016-01-01
This study aimed to investigate associations between primary urinary incontinence and development of upper urinary tract stones in a nationwide population in Taiwan. Data of 1,777 adults with primary urinary incontinence and 26,655 controls (groups A, B, and C) without urinary incontinence at study inception were retrieved from the National Health Insurance System database in Taiwan and were analyzed retrospectively. No enrolled subjects had previous diagnosis of upper urinary tract stones or spinal cord injury. All subjects were followed through end of 2009, with a minimum follow-up of 8 years. A greater percentage of study subjects (334/1777, 18.8%) developed upper urinary tract stones than that of control groups A (865/8885, 9.7%) and B (888/8885, 10%), and C (930/8885, 10.5%) (all p-values < 0.0001). Urinary incontinence was associated with significantly increased risk of developing urinary tract stones (HR 1.99, 95% CI, 1.70-2.34, p < 0.001). Age and metabolic syndrome status were both associated with developing upper urinary tract stones (both p-values < 0.0001). After adjusting for metabolic syndrome, regression analysis showed that urinary incontinence was still associated with a significantly increased risk of developing upper urinary tract stones (HR 1.99, 95% CI = 1.76-2.26, p < 0.0001). Long-term follow-up of Taiwanese patients with primary urinary incontinence suggests that urinary incontinence is associated with a significantly increased risk of developing upper urinary tract stones. Study findings suggest that physicians treating patients with urinary incontinence should give attention to early detection of upper urinary tract stones.
Regional flow in the Baltic Shield during Holocene coastal regression
Voss, Clifford I.; Andersson, Johan
1993-01-01
The occurrence of saline waters in the Baltic Shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saline water, whether derived from submarine recharge in regions below Sweden's highest postglacial coastline or geochemical processes in the crystalline rock, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield, and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saline water is not necessarily stagnant, and significant flow may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional salinity distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, the regional flow field equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older water lags and will perpetually change between successive glaciations. These characteristics have direct implications for the safety of nuclear water repositories located at depth in Baltic Shield rocks.
Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts
NASA Astrophysics Data System (ADS)
Coombs, Michelle L.; Sisson, Thomas W.; Lipman, Peter W.
2006-03-01
Major-element and volatile (H 2O, CO 2, S) compositions of glasses from the submarine flanks of Kilauea Volcano record its growth from pre-shield into tholeiite shield-stage. Pillow lavas of mildly alkalic basalt at 2600-1900 mbsl on the upper slope of the south flank are an intermediate link between deeper alkalic volcaniclastics and the modern tholeiite shield. Lava clast glasses from the west flank of Papau Seamount are subaerial Mauna Loa-like tholeiite and mark the contact between the two volcanoes. H 2O and CO 2 in sandstone and breccia glasses from the Hilina bench, and in alkalic to tholeiitic pillow glasses above and to the east, were measured by FTIR. Volatile saturation pressures equal sampling depths (10 MPa = 1000 m water) for south flank and Puna Ridge pillow lavas, suggesting recovery near eruption depths and/or vapor re-equilibration during down-slope flow. South flank glasses are divisible into low-pressure (CO 2 < 40 ppm, H 2O < 0.5 wt.%, S < 500 ppm), moderate-pressure (CO 2 < 40 ppm, H 2O > 0.5 wt.%, S 1000-1700 ppm), and high-pressure groups (CO 2 > 40 ppm, S > ˜1000 ppm), corresponding to eruption ≥ sea level, at moderate water depths (300-1000 m) or shallower but in disequilibrium, and in deep water (> 1000 m). Saturation pressures range widely in early alkalic to strongly alkalic breccia clast and sandstone glasses, establishing that early Kīlauea's vents spanned much of Mauna Loa's submarine flank, with some vents exceeding sea level. Later south flank alkalic pillow lavas expose a sizeable submarine edifice that grew concurrent with nearby subaerial alkalic eruptions. The onset of the tholeiitic shield stage is marked by extension of eruptions eastward and into deeper water (to 5500 m) during growth of the Puna Ridge. Subaerial and shallow water eruptions from earliest Kilauea show that it is underlain shallowly by Mauna Loa, implying that Mauna Loa is larger, and Kilauea smaller, than previously recognized.
ERIC Educational Resources Information Center
Subheyyin, Eid H.; Mawajdeh, Baker S.; Talhouni, Mansour H.; Rfou', Mohammad O.
2017-01-01
This study aimed at determining the most important national values that should be included in the textbooks of social studies for the upper-primary stage grades in Jordan; and then identifying the degree of their inclusion in those books. The study used a descriptive-analytical approach. A study tool which includes twelve national values was…
ERIC Educational Resources Information Center
Caleon, Imelda S.; Subramaniam, R.
2007-01-01
Concepts learned in the classroom were reinforced and augmented by presenting them in a different context using cryogenics-based enrichment programmes (CBEPs) held in an out-of-school setting. The effectiveness of two CBEPs, which involve the use of liquid nitrogen and liquid oxygen, was explored. Using a sample of 265 upper primary students, it…
ERIC Educational Resources Information Center
Quinlan, Susan E.
Despite its cold and barren appearance, Alaska's tundra supports a surprising variety of insects, birds, and mammals. In this document, three teacher's guides (for primary, upper elementary, and junior and senior high schools) and a supplementary resource packet present a comprehensive unit of study on Alaska's living tundra. The five lessons in…
Upper mantle velocity structure beneath southern Africa from modeling regional seismic data
NASA Astrophysics Data System (ADS)
Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.
1999-03-01
The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
NASA Astrophysics Data System (ADS)
Julià, J.; Ammon, C. J.; Herrmann, R. B.
2002-12-01
Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.
NASA Astrophysics Data System (ADS)
Khalaf, E. A.; Obeid, M. A.
2013-09-01
This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.
1971-12-01
The Apollo Telescope Mount (ATM) was designed and constructed at the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab. The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This photograph shows the flight unit solar shield for the ATM that formed the base for the rack, a complex frame, and the canister that contained the instruments.
77 FR 19525 - Specification for 15 kV and 25 kV Primary Underground Power Cable
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... has revised the final rule. Comment: Conductor Shield, NRECA T&D suggested adding (for discharge... be 3 through 18 pounds (1.36 through 8.16 kg) for EPR discharge free and TR-XLPE cables. Discharge....16 kg) for EPR discharge free and TR-XLPE cables. Discharge resistant cables shall have strip tension...
1966-08-01
AS-202, the second Saturn IB launch vehicle developed by the Marshall Space Flight Center, lifts off from Cape Canaveral, Florida, August 25, 1966. Primary mission objectives included the confirmation of projected launch loads, demonstration of spacecraft component separation, and verification of heat shield adequacy at high reentry rates. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project (ASTP) in July 1975.
Radon, T; Gutermuth, F; Fehrenbacher, G
2005-01-01
The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.
Radiation transport calculations for cosmic radiation.
Endo, A; Sato, T
2012-01-01
The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. Copyright © 2012. Published by Elsevier Ltd.
Engineering design constraints of the lunar surface environment
NASA Technical Reports Server (NTRS)
Morrison, D. A.
1992-01-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
Engineering design constraints of the lunar surface environment
NASA Astrophysics Data System (ADS)
Morrison, D. A.
1992-02-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
Pires, Lívia Pereira Brocos; de Oliveira, Augusto Henrique Alves; da Silva, Hillionne Ferreira; de Oliveira, Patrícia Teixeira; dos Santos, Patrícia Bittencourt Dutra; Pinheiro, Fabio Henrique de Sá Leitão
2015-12-01
Orthodontic patients can experience pain and discomfort on the oral mucosa from trauma caused by friction with the brackets and the wires. In this split-mouth design, single-blind randomized controlled trial, we aimed to investigate whether brackets with a self-snapping customized plastic shield would induce less mucosa alteration and discomfort than those without the shield. The overall sample comprised 42 patients (22 female, 20 male) from a government-funded orthodontic practice, with a mean age of 16.7 years. Eligibility criteria included, among others, no history of mouth ulcers or systemic diseases. Customized shields for the maxillary and mandibular brackets were fabricated and inserted on one side of the mouth. The null hypothesis was that bracket shielding would have no advantage. The primary outcomes were mucosal and discomfort assessments. As the secondary outcome, the numbers of spontaneous detachments of the shields were reported. Treatment allocation was mainly implemented using a random number table for selection of the intervention side. Only the raters in charge of assessing the oral mucosa were blinded to the side of the mouth where the shields had been placed. The mucosa was assessed by 3 calibrated raters at the following time points: immediately before bracket placement (baseline assessment, T0), 3 days after delivering the shields (direct assessment of intervention, T1), and 4 days after removal of the shields (indirect assessment of intervention, T2). The raters used a newly devised yardstick in which the higher the score, the more severe the alteration. Discomfort was assessed at T1 and T2 using a visual analog scale. The Mann-Whitney U test was performed at the 5% level of significance. Of 60 patients, 42 were eligible, and 35 were randomly selected to have one side of the mouth receive the intervention. Two patients discontinued the intervention at T1, and 5 stopped at T2. Seven additional patients were recruited and completed all time points. Thus, 42 patients participated at T0, 40 at T1, and 35 at T2. Thirty-five patients participated at all time points. At T1, no statistically significant difference in terms of mucosa alteration was observed between the 2 sides (median of all differences [MD], 0.0; 95% CI, 0.0-1.0; P = 0.11). The same occurred at T2 (MD, 0.0; 95% CI, 0.0-0.0; P = 1.00). The comfort level was statistically higher at T1 on the shielded side (MD, 14.0; 95% CI, 1.0-36.0; P = 0.04), whereas no difference was observed at T2 (MD, 0.0; 95% CI, 0.0-1.0, P = 0.81). No serious harm was observed. The customized bracket shields were effective in reducing discomfort during the first 3 days of orthodontic treatment despite no significant difference in terms of visible mucosa alteration. This trial was not registered. The protocol was not published before trial commencement. Expenses for the fabrication of the shields were covered by the main author (L.P.B.P.). Orthodontic materials were from the Center for Dental Specialties in Cajazeiras, Brazil. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Heat flow and near-surface radioactivity in the Australian continental crust
Sass, J.H.; Jaeger, J.C.; Munroe, Robert J.
1976-01-01
Heat-flow data have been obtained at 44 sites in various parts of Australia. These include seven sites from the old (~ 2500 m.y.) Precambrian shield of Western Australia, seventeen from the younger (~ 600- 2000 m.y.) Precambrian rocks of South Australia, the Northern Territory, and Queensland, and twenty within the eastern Paleozoic and younger rocks. Thirty of the sites are located where no previous heat-flow data existed, and the remainder provide significant extensions or refinements of areas previously studied. Where the holes studied penetrated the crystalline basement rocks, or where the latter rocks were exposed within a few kilometers of the holes, the upper crustal radiogenic heat production has been estimated based on gamma-ray spectrometric determinations of U, Th, and K abundances. Three heat-flow provinces are recognized in Australia based on the linear relation (q = q* + DA0 ) between heat flow q and surface radioactivity A0. New data from the Western Australian shield support earlier studies showing that heat flow is low to normal with values ranging from 0.7 to 1.2 hfu and with the majority of values less than 1.0 hfu, and the parameters q* = 0.63 hfu and 0 = 4.5 km determined previously were confirmed. Heat flow in the Proterozoic shield of central Australia is quite variable, with values ranging between about l and 3 hfu. This variability is attributed mainly to variations in near-surface crustal radioactivity. The parameters of the heat-flow line are q* = 0.64 hfu and 0 = 11.1 km and moderately high temperatures are predicted for the lower crust and upper mantle. Previous suggestions of a band of l ow- to - normal heat flow near the coast in eastern Australia were confirmed in some areas, but the zone is interrupted in at least one region (the Sydney Basin), where heat flow is about 2.0 hfu over a large area. The reduced heat flow, q*, in the Paleozoic intrusive rocks of eastern Australia varies from about 0.8 to 2.0 hfu . This variability might be related to thermal transients associated with Late Tertiary and younger volcanic and tectonic activity, even though the relation between heat-flow values and the age of volcanism is not a simple one. Parts of the high heat-flow area in the southeast might be exploitable for geothermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C M; Cagliostro, D J
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).« less
Modification of the Western Gondwana craton by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, Jiashun; Liu, Lijun; Faccenda, Manuele; Zhou, Quan; Fischer, Karen M.; Marshak, Stephen; Lundstrom, Craig
2018-03-01
The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.
Ship Effect Neutron Measurements And Impacts On Low-Background Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.
2013-10-01
The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurementsmore » of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.« less
... of your abdomen. Newer scanners have an open design to minimize claustrophobia. A CT of the abdomen ... CE) Upper tract Crohn’s disease EGD-Upper GI Series (UGIS) Perianal Crohn’s disease MRI-EUS PSC (primary ...
Hemispheric differences in recognizing upper and lower facial displays of emotion.
Prodan, C I; Orbelo, D M; Testa, J A; Ross, E D
2001-01-01
To determine if there are hemispheric differences in processing upper versus lower facial displays of emotion. Recent evidence suggests that there are two broad classes of emotions with differential hemispheric lateralization. Primary emotions (e.g. anger, fear) and associated displays are innate, are recognized across all cultures, and are thought to be modulated by the right hemisphere. Social emotions (e.g., guilt, jealousy) and associated "display rules" are learned during early child development, vary across cultures, and are thought to be modulated by the left hemisphere. Display rules are used by persons to alter, suppress or enhance primary emotional displays for social purposes. During deceitful behaviors, a subject's true emotional state is often leaked through upper rather than lower facial displays, giving rise to facial blends of emotion. We hypothesized that upper facial displays are processed preferentially by the right hemisphere, as part of the primary emotional system, while lower facial displays are processed preferentially by the left hemisphere, as part of the social emotional system. 30 strongly right-handed adult volunteers were tested tachistoscopically by randomly flashing facial displays of emotion to the right and left visual fields. The stimuli were line drawings of facial blends with different emotions displayed on the upper versus lower face. The subjects were tested under two conditions: 1) without instructions and 2) with instructions to attend to the upper face. Without instructions, the subjects robustly identified the emotion displayed on the lower face, regardless of visual field presentation. With instructions to attend to the upper face, for the left visual field they robustly identified the emotion displayed on the upper face. For the right visual field, they continued to identify the emotion displayed on the lower face, but to a lesser degree. Our results support the hypothesis that hemispheric differences exist in the ability to process upper versus lower facial displays of emotion. Attention appears to enhance the ability to explore these hemispheric differences under experimental conditions. Our data also support the recent observation that the right hemisphere has a greater ability to recognize deceitful behaviors compared with the left hemisphere. This may be attributable to the different roles the hemispheres play in modulating social versus primary emotions and related behaviors.
Primary conjunctival amyloidosis.
Chakraborti, Chandana; Chaudhury, Krittika P; Biswas, Ranu Roy
2014-01-01
A 19-year-old previously healthy male presented with a 4 year history of painless drooping of right upper eyelid. On eversion of the right upper eyelid, a yellowish pink mass was seen in the tarsal region. Rest of the ocular examination was normal in both the eyes. Initial biopsy showed chronic inflammation. Subsequently, the entire mass was excised and histopathological examination showed the presence of amyloid in the subconjunctival stroma. At 3 months follow-up, similar lesion was detected in the right lower, left upper, and lower lid, which were treated with cryotherapy, with partial resolution. Patient has been followed up for more than 2 years without any complaints. To our knowledge, this is the first case report of an isolated primary conjunctival amyloidosis with involvement of both the upper and lower palpebral conjunctiva of either eye. It was treated successfully by excision and cryotherapy.
Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons
NASA Technical Reports Server (NTRS)
Hada, M.; George, Kerry A.; Cucinotta, F. A.
2008-01-01
During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.
Chromosome aberrations in human blood lymphocytes exposed to energetic protons
NASA Astrophysics Data System (ADS)
Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.
During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.
Initial Evaluation of Space Environmental Effects on the NGST Sunshield
NASA Technical Reports Server (NTRS)
Wooldridge, Eve M.; Powers, Charles
1998-01-01
The "Next Generation Space Telescope" (NGST), the follow-on telescope to the Hubble Space Telescope, will carry on exploration of the early universe with a primary mirror 6-8 meters in diameter optimized to operate in the infrared. The mirror and its instruments will perform extremely deep exposures at near infra-red wavelengths (0.5-30 microns), and will operate for 5-10 years. In order to achieve the requirements, cryogenic temperatures between 30-60 Kelvin must be maintained on the telescope (OTA) and in the science module (SIM). A primary feature for passive cooling in the designs presented is that of an enormous, light-weight deployable sunshield. As a result, issues of contamination from the sunshield and space environmental effects on the sunshield itself present a critical matter: if the sunshield becomes a source of contamination, or if environmental effects damage the sunshield, the NGST mission could be compromised or could fail completely. A molecular redistribution analysis has been performed on the Goddard Space Flight Center (GSFC) design for NGST. The analysis revealed that because the shield will initially cool down faster than the OTA, the shield would not be a significant source of molecular contamination during the cooling phase. However, if the shield were ever to warm up, it would be a very large source of molecular contamination. The sunshield itself is susceptible to degradation from an external source of contamination: the space environment at L2 or at 1 x 3 AU. It is therefore necessary to design the sunshield to withstand the space environment. Thin films and coatings on the sunshield have been evaluated and testing has begun so that a suitable film and/or coating can be chosen or developed for the NGST mission. The evaluation and test results will be presented.
Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu
2014-01-01
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Cintala, Mark; See, Thomas; Bernhard, Ronald; Cardenas, Frank; Davidson, William; Haynes, Jerry
1992-01-01
An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries.
On stress/strain shielding and the material stiffness paradigm for dental implants.
Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel
2017-10-01
Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
NASA Astrophysics Data System (ADS)
Yokley, Zachary
2013-04-01
The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.
Radiation skyshine from a 6 MeV medical accelerator
McGinley, Patton H.; Rising, Mary B.; Pahikkala, A. Jussi
2010-01-01
This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs. PACS numbers: 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x
NASA Astrophysics Data System (ADS)
Antonelli, Francesca; Esposito, Giuseppe; Dini, Valentina; Belli, Mauro; Campa, Alessandro; Sorrentino, Eugenio; Antonella Tabocchini, Maria; Lobascio, Cesare; Berra, Bruno
HZE particles from space radiation raise an important protection concern during long-term astronauts' travels. As high charge, high energy particles interact with a shield, both projec-tile and target fragmentation may occurs, so that the biological properties of the emerging radiation field depend on the nature and energy of the incident particles, and on the nature and thickness of the shield. We have studied the influence of PMMA and Kevlar shielding as well as the antioxidant compounds Rosmarinic acid or Resveratrol on DNA damage induction and processing (as evaluated by the g-H2AX phosphorylation assay) and on early and delayed cell death in AG01522 human fibroblasts irradiated with Fe ions of 595 MeV/u at the NASA Space Radiation Laboratory (NSRL), Brookhaven National Laboratory (BNL, Upton, USA). Insertion of PMMA or Kevlar shields (10 g/cm2 thick) gave no substantial change in the bio-logical effect per unit dose on the sample for all the end points studied. When irradiation was performed in the presence of 300 mM Rosmarinic acid or Resveratrol no difference were found for both early and delayed cell death, while a slight protective effect was observed for the initial and residual DNA damage. For both early and delayed cell death, Fe-ions are more effective than g-rays. The number of Fe-ion induced g-H2AX foci is instead lower than that induced by g-rays, due to the presence of multiple DSB within a single focus induced by Fe-ions. From a comparison of the g-H2AX data with the results on DNA fragmentation obtained with 414 MeV/u Fe ions at the Heavy Ions Medical Accelerator (HIMAC, Chiba, Japan) and with 1 GeV/u Fe ions at BNL, in the absence or in the presence of PMMA shields (Esposito et al, Advance in Space Research 2004) we speculate that the overall effect of the shield is a balance between the contributions due to the slowing down of the primary particles and that due to the nuclear fragmentation. Acknowledgment: Financial support from ASI project "From Molecules to Man: Space Re-search Applied to the improvement of the Quality of Life of the Ageing Population on Earth (MoMa)"
Motivating Inquiry in Statistics and Probability in the Primary Classroom
ERIC Educational Resources Information Center
Leavy, Aisling; Hourigan, Mairéad
2015-01-01
We describe how the use of a games environment combined with technology supports upper primary children in engaging with a concept traditionally considered too advanced for the primary classes: "The Law of Large Numbers."
Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.
Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo
2012-05-01
The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.
Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.
Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng
2004-08-01
In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.
Theerasopon, Pornpat; Wangsrimongkol, Tasanee; Sattayut, Sajee
2017-03-31
Although surgical treatment protocols for cleft lip and palate patients have been established, many patients still have some soft tissue defects after complete healing from surgical interventions. These are excess soft tissue, high attached fraena and firmed tethering scares. These soft tissue defects resulted shallowing of vestibule, restricted tooth movement, compromised periodontal health and trended to limit the maxillary growth. The aim of this case report was to present a method of correcting soft tissue defects after conventional surgery in cleft lip and palate patient by using combined laser surgery and orthodontic appliance. A bilateral cleft lip and palate patient with a clinical problem of shallow upper anterior vestibule after alveolar bone graft received a vestibular extension by using CO 2 laser with ablation and vaporization techniques at 4 W and continuous wave. A customized orthodontic appliance, called a buccal shield, was placed immediately after surgery and retained for 1 month to 3 months until complete soft tissue healing. The procedures were performed 2 episodes. Both interventions used the same CO 2 laser procedure. The first treatment resulted in partial re-attachment of soft tissue at surgical area. The second laser operation with the proper design of buccal shield providing passive contact with more extended flange resulting in a favorable outcome from 1 year follow up. Then the corrective orthodontic treatment could be continued effectively. The CO 2 laser surgery was a proper treatment for correcting soft tissue defects and the design of buccal shield was a key for success in molding surgical soft tissue.
System concept for a moderate cost Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.
1986-01-01
A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.
Radiation protection for manned space activities
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1983-01-01
The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.
NASA Technical Reports Server (NTRS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.;
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.
OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...
OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-24 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...
OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-49 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.
2016-11-15
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
The Prolonged Life-Span of Alveolar Macrophages
Murphy, Jaime; Summer, Ross; Wilson, Andrew A.; Kotton, Darrell N.; Fine, Alan
2008-01-01
To further examine the half-life of alveolar macrophages, chimeric CD 45.2 mice were generated through bone marrow transplantation of donor CD 45.1 cells. Before administration of donor cells, recipient mice were divided into two cohorts: the first cohort received total body irradiation; the second cohort also received irradiation—however, the thorax, head, and upper extremities were shielded with lead. Flow cytometric analysis was then performed on blood, peritoneal, and bronchoalveolar lavage cells over time to quantify engraftment. The data generated for the unshielded cohort of mice revealed a macrophage half-life of 30 days. In the shielded cohort, however, we found that by 8 months there was negligible replacement of recipient alveolar macrophages by donor cells, despite reconstitution of the blood and peritoneum by donor bone marrow. Consistent with these findings, the mean fluorescent intensity of alveolar macrophages remained stable over a 4-week period after in vivo PKH26 dye loading. Together, these data show that previous alveolar macrophage half-life studies were confounded by the fact that they did not account for the toxic effects of irradiation conditioning regimens, and demonstrate that the bone marrow does not significantly contribute to the alveolar macrophage compartment during steady-state conditions. PMID:18192503
Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...
2016-07-25
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1962-12-01
An arrangement is described for nuclear power plants including a reactor and at least one heat exchanger having primary and secondary circuits through which are passed heat-conveying fluids. Pressure-resisting walls about the heat exchangers and the reactor are either integral with or rigidly connected to one another. The heat exchangers are arranged so that their casings tend to shield withdrawn control rods from damage by radiation. (R.J.S.)
Bulk shielding facility quarterly report, October, November, and December 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.
1977-08-01
The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation Beaver...
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
NASA Astrophysics Data System (ADS)
Wang, Qinxian; Lin, Zhijia; Chen, Duofu
2014-05-01
Marinoan cap carbonates have been suggested to be primarily deposited in glacial meltwater and upwelled seawater. However, elemental geochemistry evidence for this depositional model is lacking. Here, we report high-spatial-resolution measurements of major, trace and rare earth elements of the Doushantuo cap carbonates from the Jiulongwan section in the Yangtze Gorges area, South China. Our results show that: 1) the basal cap carbonates display slight MREE enrichment, weak positive La anomalies, near-chondritic Y/Ho ratios, and slight negative Ce anomalies; 2) the lower-middle cap carbonates show slight LREE depletion or MREE enrichment, weak positive La and Eu anomalies, supra-chondritic Y/Ho ratios, and slight negative Ce anomalies; 3) the upper-middle cap carbonates have consistent enrichment of P, Fe, and trace metals, slight LREE depletion, and weak positive Ce, La and Eu anomalies; and 4) the upper cap carbonates exhibit LREE enrichment, weak positive La and Eu anomalies, supra-chondritic Y/Ho ratios, and mild negative Ce anomalies. These findings indicate that the Doushantuo cap carbonates did not precipitate from normal contemporaneous seawater, rather, the basal cap carbonates were deposited in oxygenated, relatively pure deglacial meltwater; the lower-middle cap carbonates in oxygenated brackish water; the upper-middle cap carbonates in upwelled anoxic brine water; and the upper cap carbonates in oxygenated brackish water. Our depositional model is consistent with the proposed sequence of events after the meltdown of Marinoan glaciation by Shields (2005).
High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.
Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M
2016-03-01
Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E; George, Gerald L; Dodge, Robert L
Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. In these environments, low-energy photons, i.e., those less than 250 keY, are encountered.more » Shielding glove box gloves are traditionally composed of lead-based materials, but these are now considered hazardous waste. This has prompted the development of new, nonhazardous- shielding gJovebox gloves. No studies, however, have investigated the effectiveness of these new glovebox gloves. We examined both leaded and nonhazardous- shielding glovebox gloves and compared their attenuation effectiveness over the energy range of interest at TA-55. All measurements are referenced to lead sheets, allowing direct comparisons to the common industry standard of 0.1 mm lead equivalent material. The attenuation properties of both types of glovebox gloves vary with energy, making it difficult for manufacturers to claim lead equivalency across the entire energy range used at TA-55. The positions of materials' photon energy absorption edges, which are particularly important to improved attenuation performance, depending upon the choice of radiation energy range, are discussed. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.« less
NASA Astrophysics Data System (ADS)
Bispo-Santos, F.; Dagrella Filho, M. S.; Reis, N. J.; Trindade, R. I.
2013-05-01
Definition of continental paleogeography for times prior to formation of Columbia Supercontinent (1900-1850 Ma) is very complex, since amalgamation of some continental blocks of Earth was still in progress, as in the case of Laurentia, Baltica and Amazonian Craton. So, paleogeographic models proposed for this time are still very speculative and/or subjective. The use of the paleomagnetic technique tracing apparent polar wander (APW) paths for the various cratonic blocks can contribute to understand the continental amalgamation and breakup, especially for times where all created oceanic lithosphere was fully consumed. In this study, we present the paleomagnetic data obtained for samples collected from 39 sites from the well-dated 1980-1960 Ma (U-Pb) volcanic rocks belonging to the Surumu Group, cropping out in the northern Roraima State (Guiana Shield, Amazonian Craton). AF and thermal treatment revealed northwestern directions with moderate downward inclinations on samples from 20 out of the 39 analyzed sites. Site mean directions cluster around the mean, Dm = 298.6°; Im = 39.4° (N = 20; α95 = 10.1°), which yielded a key paleomagnetic pole (SG) for the Guiana Shield, located at 234.8°E, 27.4°N (A95 = 9.8°). Magnetic mineralogy experiments show that the magnetization of these rocks, probably of primary origin, is carried by magnetite and/or hematite. The SG pole contributes to a better fit of the APW path traced for Guiana Shield during the Paleoproterozoic (2070-1960 Ma). Comparison with the APW path traced for the West-Africa Craton for the same time interval suggests that these cratonic blocks were linked at 2000-1960 Ma ago, forming a paleogeography in which the Guri (Guiana Shield) and Sassandra (West-Africa Craton) shear zones were aligned as suggested in previous geologic models. KEYWORDS: Paleoproterozoic, Paleomagnetism, APWP, Amazonian Craton, Surumu Group.
Gao, Y Y; Chen, X H
2017-06-05
Objective: The aim of this study is to investigate the clinical significance of four quadrant localization in the diagnosis and treatment of unknown primary cervical metastases. Method: The clinical data with unknown primary cervical metastases, were analyzed retrospectively. All the patients have not been found the original site in the initial treatment. There are four quadrants in the neck, the neck line as the longitudinal axis, and edge of cricoid cartilage as the horizontal axis. When cervical metastasis occurred in the left and right upper quadrant, the primary tumor site and radiotherapy from the skull base to the root of the neck; when appear in left and right lower quadrant, the primary investigation site and radiotherapy from neck to thoracic mediastinum, left lower abdomen also includes following primary search. At the same time, bilateral cervical metastasis cancers, focusing on the central line near the primary focus. Specific treatment strategies include ipsilateral total neck dissection and radical radiotherapy of the above radiotherapy site. Result: Left upper neck in 4 cases, right upper neck in 5 cases, left lower neck in 7 cases, lower right neck in 8 cases and mixed area in 6 cases. Only 10 of 30 patients (33.3%) with primary sites were found in the follow up period. In accordance with the four quadrant localization, the median time was 6 months. Conclusion: Four quadrant localization to locate the primary site is accurate, and individualized comprehensive treatment is the key to improve the curative effect. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Hertzog, Maxime; Rumpf, Michael Clemens; Hader, Karim
2017-08-26
Soccer is classified as a contact/collision sport with many player-to-player duels. Winning these duels, shielding the ball or fending off an opponent requires upper-body strength and power. Therefore this study aimed, a) to examine the time-related effect of an upper-body RT on maximal strength and power changes in highly trained soccer players, b) to investigate if the resistance-training (RT) status influences these changes throughout a competitive season. Twenty-eight soccer players participated in this study and were divided into an untrained (UG) and a trained (TG) group, according to their RT status. Both groups performed the same upper-body RT once a week, over 30 weeks. Maximal strength (1RM) and maximal power (MP) were assessed before, during and after the competitive season. Both groups significantly improved 1RM and MP over the entire competitive season, with a moderate (TG, 13%) to very large (UG, 21%) magnitude in 1RM and with a small (TG, 8%) to moderate (UG, 13%) magnitude in MP. After the initial 10 weeks of RT, UG presented significant and slightly (1RM) to moderately (MP) greater improvements than TG. For all other time intervals, the between-groups changes in 1RM were rated as similar. For the last 20 weeks of the RT, the change in MP was significantly lower for UG compared to TG. One upper-body RT-session per week will provide sufficient stimulus to enable an almost certain improvement in strength and power throughout a competitive season for all players disregarding their initial RT status.
1995-06-07
Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.
Spacecraft outer thermal blankets as hypervelocity impact bumpers
NASA Astrophysics Data System (ADS)
Cour-Palais, B. G.
1996-05-01
A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.
Observation of hard X-rays from the Crab pulsar and A0535+26
NASA Technical Reports Server (NTRS)
Wu, M.; Dai, C.; Lu, Z.; Ma, Y.; Li, G.; Fan, Z.; Zhang, C.; Xu, C.; Zhang, X.; Gu, Y.
1985-01-01
The Crab pulsar PSR0531+21 was observed in a balloon flight from the Xianghe Balloon Station (China). Data were obtained in the range 20 to 200 keV with a poswish hard X-ray telescope which comprised a 150 sq cm primary crystal of 5 mm thick CsI(T1) which actively shielded the lower 2 pi steradians by a 5 cm thick NaI(T1) crystal. The scintillation pulses originating in CsI and NaI crystals are distinguished by pulse shape discrimination. The telescope has a field of view of approximately 4 deg H psi H pi determined by graded shield and collimator. The effective geometric area of the detector is 116 sq cm. It is noted that when folding a data flow on a long period interference from the data acquisition, transmission and recording system considerably affect the result.
Upper Washita River experimental watersheds: Sediment Database
USDA-ARS?s Scientific Manuscript database
Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...
Double-layer neutron shield design as neutron shielding application
NASA Astrophysics Data System (ADS)
Sariyer, Demet; Küçer, Rahmi
2018-02-01
The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.
Follow-Up Care for Older Women With Breast Cancer
1999-08-01
range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall physical function. Methods...mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and overall physical was the interview...Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical Dependent Variables. Our first
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Ares I Crew Launch Vehicle Upper Stage Element Overview
NASA Technical Reports Server (NTRS)
McArthur, J. Craig
2008-01-01
This viewgraph presentation gives an overview of NASA's Ares I Crew Launch Vehicle Upper Stage Element. The topics include: 1) What is NASA s Mission?; 2) NASA s Exploration Roadmap What is our time line?; 3) Building on a Foundation of Proven Technologies Launch Vehicle Comparisons; 4) Ares I Upper Stage; 5) Upper Stage Primary Products; 6) Ares I Upper Stage Development Approach; 7) What progress have we made?; 8) Upper Stage Subsystem Highlights; 9) Structural Testing; 10) Common Bulkhead Processing; 11) Stage Installation at Stennis Space Center; 12) Boeing Producibility Team; 13) Upper Stage Low Cost Strategy; 14) Ares I and V Production at Michoud Assembly Facility (MAF); 15) Merged Manufacturing Flow; and 16) Manufacturing and Assembly Weld Tools.
PWR PRELIMINARY DESIGN FOR PL-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-02-28
The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)
NASA Astrophysics Data System (ADS)
Schneider, J.; Freutel, F.; Zorn, S. R.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Martin, S. T.; Artaxo, P.; Wiedensohler, A.; Borrmann, S.
2011-07-01
The abundance of marker compounds for primary biological particles in submicron aerosol was investigated by means of aerosol mass spectrometry. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker peaks were identified. The identified marker peaks were compared with mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the Central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker peaks places upper limits of 7.5 % for amino acids and 5.6 % for carbohydrates on the contribution of primary biological aerosol particles (PBAPs) to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m-3. Carbohydrates and protein amino acids make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAPs mass fraction of about 20 % to the submicron organic aerosol.
Primary Productivity Regime and Nutrient Removal in the Danube Estuary
NASA Astrophysics Data System (ADS)
Humborg, C.
1997-11-01
The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.
RadWorks Storm Shelter Design for Solar Particle Event Shielding
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Cerro, Jeffrey; Clowdsley, Martha
2013-01-01
In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design minimal mass SPE radiation shelter concepts leveraging available resources. Discussion items include a description of the shelter trade space, the prioritization process used to identify the four primary shelter concepts chosen for maturation, a summary of each concept's design features, a description of the radiation analysis process, and an assessment of the parasitic mass of each concept.
Changing the lens: widening the approach to primary care research.
Checkland, Kath
2003-10-01
After years of being shielded from most of the managerial and organisational changes in health care, primary care is going through a period of change in many countries. Much of the research that has been done in primary care, in common with that in secondary care, puts at the centre of its methodology the concept of professionalism. However, there are other ways of theorising medical work, and using a wider range of theoretical 'lenses' when planning research into the impact of change will enhance and enrich that research. Viewing primary care physicians as 'workers', concerned, like other workers, with constructing understanding of what they do that helps them cope with pressures and uncertainties, shifts the focus of research questions away from issues of professional status towards the practical ways in which they deal with change in their local contexts. Research using this theoretical approach may be able to explain phenomena that other, more broad-brush approaches cannot.
Corcoran, Anthony T; Smaldone, Marc C; Mally, Dev; Ost, Michael C; Bellinger, Mark F; Schneck, Francis X; Docimo, Steven G; Wu, Hsi-Yang
2008-10-01
We studied the possibility that age, height, weight and body mass index could be used to predict the likelihood of successful ureteroscopic access to the upper urinary tract without previous stent placement in prepubertal children. We retrospectively reviewed all ureteroscopic procedures for upper tract calculi in prepubertal children from 2003 to 2007. We compared age, height, weight and body mass index in patients who underwent successful primary flexible ureteroscopic access and in those who required initial stent placement to perform ureteroscopy. Successful primary ureteroscopic access to the upper tract was achieved in 18 of 30 patients (60%). There was no difference in mean age (9.9 vs 9.5 years, p = 0.8), height (132 vs 128 cm, p = 0.6), weight (37 vs 36 kg, p = 0.86) or body mass index (19.3 vs 20.5 kg/m(2), p = 0.55) between patients with successful vs unsuccessful upper tract access. Locations that prevented access to the upper urinary tract were evenly distributed among the ureteral orifice, iliac vessels and ureteropelvic junction. Age, height, weight and body mass index could not predict the likelihood of successful ureteroscopic access to the upper tract. Placement of a ureteral stent for passive ureteral dilation is not necessary for successful ureteroscopic access to the renal pelvis in prepubertal children. An initial attempt at ureteroscopy, with placement of a ureteral stent if upper tract access is unsuccessful, decreases the number of procedures while maintaining a low complication rate.
PROPOSAL OF A CLINICAL CARE PATHWAY FOR THE MANAGEMENT OF ACUTE UPPER GASTROINTESTINAL BLEEDING.
Franco, Matheus Cavalcante; Nakao, Frank Shigueo; Rodrigues, Rodrigo; Maluf-Filho, Fauze; Paulo, Gustavo Andrade de; Libera, Ermelindo Della
2015-12-01
Upper gastrointestinal bleeding implies significant clinical and economic repercussions. The correct establishment of the latest therapies for the upper gastrointestinal bleeding is associated with reduced in-hospital mortality. The use of clinical pathways for the upper gastrointestinal bleeding is associated with shorter hospital stay and lower hospital costs. The primary objective is the development of a clinical care pathway for the management of patients with upper gastrointestinal bleeding, to be used in tertiary hospital. It was conducted an extensive literature review on the management of upper gastrointestinal bleeding, contained in the primary and secondary information sources. The result is a clinical care pathway for the upper gastrointestinal bleeding in patients with evidence of recent bleeding, diagnosed by melena or hematemesis in the last 12 hours, who are admitted in the emergency rooms and intensive care units of tertiary hospitals. In this compact and understandable pathway, it is well demonstrated the management since the admission, with definition of the inclusion and exclusion criteria, passing through the initial clinical treatment, posterior guidance for endoscopic therapy, and referral to rescue therapies in cases of persistent or rebleeding. It was also included the care that must be taken before hospital discharge for all patients who recover from an episode of bleeding. The introduction of a clinical care pathway for patients with upper gastrointestinal bleeding may contribute to standardization of medical practices, decrease in waiting time for medications and services, length of hospital stay and costs.
Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.
Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio
2009-10-01
Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.
A preliminary design of interior structure and foundation of an inflatable lunar habitat
NASA Technical Reports Server (NTRS)
Yin, Paul K.
1989-01-01
A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.
A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.
2015-01-01
Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas
2018-05-19
According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Keddie, S.; Head, James W., III
1992-01-01
The Magellan mission to Venus has emphasized the importance of volcanism in shaping the surface of the planet. Volcanic plains make up 80 percent of the terrain and hundreds of regions of localized eruptions have been identified. Large volcanos, defined as edifices with diameters greater than 100 km, are the sites of some of the most voluminous eruptions. Head et al. have identified 158 of these structures. Their spatial distribution is neither random nor arranged in linear chains as on the Earth; large volcanos on Venus are concentrated in two large, near-equatorial clusters that are also the site of many other forms of volcanic activity. The set of conditions that must be met on Venus that controls the change from widespread, distributed volcanism to focused, shield-building volcanism is not well understood. Future studies of transitional features will help to address this problem. It is likely, however, that the formation and evolution of a neutral buoyancy zone (NBZ) plays an important role in both determining the style of the volcanism and the development of the volcanic feature once it has begun to erupt. Head and Wilson have suggested that the high surface pressure on Venus may inhibit volatile exsolution, which may influence the density distribution of the upper crust and hence control the nature and location of a NBZ. The extreme variations in pressure with elevation may result in significantly different characteristics of such a NBZ at different locations on the planet. In order to test these ideas regarding the importance of NBZ development in the evolution of a large shield and to determine the style of volcanism, three large volcanos that occur at different basal elevations were examined and the distribution of large volcanos as a function of altitude was determined.
[Trial manufacture of a plunger shield for a disposable plastic syringe].
Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki
2008-08-20
A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (left) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians place protective material around the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (foreground) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
NASA Technical Reports Server (NTRS)
Stein, M.
1988-01-01
The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.
Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft
NASA Technical Reports Server (NTRS)
Pearce, W. E.
1983-01-01
An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.
NASA Astrophysics Data System (ADS)
Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.
2007-12-01
Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the eastern margin of the Altiplano, with pronounced differential relief and sloping substrate promoting failures toward the Gulf of Mexico coastal plain.
Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts
Coombs, Michelle L.; Sisson, Thomas W.; Lipman, Peter W.
2006-01-01
Major-element and volatile (H2O, CO2, S) compositions of glasses from the submarine flanks of Kilauea Volcano record its growth from pre-shield into tholeiite shield-stage. Pillow lavas of mildly alkalic basalt at 2600–1900 mbsl on the upper slope of the south flank are an intermediate link between deeper alkalic volcaniclastics and the modern tholeiite shield. Lava clast glasses from the west flank of Papau Seamount are subaerial Mauna Loa-like tholeiite and mark the contact between the two volcanoes. H2O and CO2 in sandstone and breccia glasses from the Hilina bench, and in alkalic to tholeiitic pillow glasses above and to the east, were measured by FTIR. Volatile saturation pressures equal sampling depths (10 MPa = 1000 m water) for south flank and Puna Ridge pillow lavas, suggesting recovery near eruption depths and/or vapor re-equilibration during down-slope flow. South flank glasses are divisible into low-pressure (CO2 <40 ppm, H2O < 0.5 wt.%, S <500 ppm), moderate-pressure (CO2 <40 ppm, H2O >0.5 wt.%, S 1000–1700 ppm), and high-pressure groups (CO2 >40 ppm, S ∼1000 ppm), corresponding to eruption ≥ sea level, at moderate water depths (300–1000 m) or shallower but in disequilibrium, and in deep water (>1000 m). Saturation pressures range widely in early alkalic to strongly alkalic breccia clast and sandstone glasses, establishing that early Kīlauea's vents spanned much of Mauna Loa's submarine flank, with some vents exceeding sea level. Later south flank alkalic pillow lavas expose a sizeable submarine edifice that grew concurrent with nearby subaerial alkalic eruptions. The onset of the tholeiitic shield stage is marked by extension of eruptions eastward and into deeper water (to 5500 m) during growth of the Puna Ridge. Subaerial and shallow water eruptions from earliest Kilauea show that it is underlain shallowly by Mauna Loa, implying that Mauna Loa is larger, and Kilauea smaller, than previously recognized.Keywords
Crooks, Colin John; Card, Timothy Richard; West, Joe
2012-11-13
Primary care records from the UK have frequently been used to identify episodes of upper gastrointestinal bleeding in studies of drug toxicity because of their comprehensive population coverage and longitudinal recording of prescriptions and diagnoses. Recent linkage within England of primary and secondary care data has augmented this data but the timing and coding of concurrent events, and how the definition of events in linked data effects occurrence and 28 day mortality is not known. We used the recently linked English Hospital Episodes Statistics and General Practice Research Database, 1997-2010, to define events by; a specific upper gastrointestinal bleed code in either dataset, a specific bleed code in both datasets, or a less specific but plausible code from the linked dataset. This approach resulted in 81% of secondary care defined bleeds having a corresponding plausible code within 2 months in primary care. However only 62% of primary care defined bleeds had a corresponding plausible HES admission within 2 months. The more restrictive and specific case definitions excluded severe events and almost halved the 28 day case fatality when compared to broader and more sensitive definitions. Restrictive definitions of gastrointestinal bleeding in linked datasets fail to capture the full heterogeneity in coding possible following complex clinical events. Conversely too broad a definition in primary care introduces events not severe enough to warrant hospital admission. Ignoring these issues may unwittingly introduce selection bias into a study's results.
ERIC Educational Resources Information Center
Immerman, Igor; Alfonso, Daniel T.; Ramos, Lorna E.; Grossman, Leslie A.; Alfonso, Israel; Ditaranto, Patricia; Grossman, John A. I.
2012-01-01
Aim: The aim of this study was to evaluate hand function in children with Erb upper brachial plexus palsy. Method: Hand function was evaluated in 25 children (eight males; 17 females) with a diagnosed upper (C5/C6) brachial plexus birth injury. Of these children, 22 had undergone primary nerve reconstruction and 13 of the 25 had undergone…
Primary Trait Analysis to Assess a Learner-Centered, Upper-Level Mathematics Course
ERIC Educational Resources Information Center
Alsardary, Salar; Pontiggia, Laura; Hamid, Mohammed; Blumberg, Phyllis
2011-01-01
This study presents a primary trait analysis of a learner-centered, discrete mathematics course based on student-to-student instruction. The authors developed a scoring rubric for the primary traits: conceptual knowledge, procedural knowledge, application of understanding, and mathematical communication skills. Eleven students took an exam…
Bridging the Transition from Primary to Secondary School
ERIC Educational Resources Information Center
Howe, Alan, Ed.; Richards, Val, Ed.
2011-01-01
The transition from primary to secondary school can often be a difficult time for children, and managing the transition smoothly has posed a problem for teachers at both upper primary and lower secondary level. At a time when "childhood" recedes and "adulthood" beckons, the inequalities between individual children can widen,…
Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle
NASA Astrophysics Data System (ADS)
Pichler, A.; Bartalucci, S.; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.
2016-05-01
The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (Violation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to Is transitions in copper, where 2 electrons are in the Is state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of 4.7 × 10-29. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violation of the PEP by around 2 orders of magnitude.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Hydrodynamics of sediment threshold
NASA Astrophysics Data System (ADS)
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
Closely Reading Informational Texts in the Primary Grades
ERIC Educational Resources Information Center
Fisher, Douglas; Frey, Nancy
2014-01-01
In this article we discuss the differences between close reading in the primary grades and upper elementary grades. We focus on text selection, initial reading. repeated reading, annotation, text-based discussions, and responding to texts.
NASA Technical Reports Server (NTRS)
Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.
2007-01-01
One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition, the capability of synthesizing radiation shielding materials for habitat structures primarily from Lunar or Martian in-situ resources will also be presented. Such an approach would significantly _reduce the cost associated with transportation of such materials and structures from earth. Results from radiation exposure measurements will be presented demonstrating the shielding effectiveness of the developed materials. Mechanical testing data will be discussed to illustrate that the specific mechanical properties of the developed composites are comparable to structural aluminum based alloys currently used for the space shuttle and space station.
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William
2011-01-01
A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.
Mark C. Gabriel; Randy Kolka; Trent Wickman; Ed Nater; Laurel. Woodruff
2009-01-01
The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue...
Bulk Shielding Facility quarterly report, April, May and June 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, B.L.; Lance, E.D.
1984-12-01
The BSR operated at an average power level of 1310 kW for 3.8% of the time during April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training startups and was operated on five occasions for the NBS and HEDL recheck of a previous experiment run on the LWR pressure vessel surveillance dosimetry improvement program.
Galster, M; Guhl, C; Uder, M; Adamus, R
2013-05-01
Efficacy of radiation protection tools for the eye lens dose of the radiologist in fluoroscopic interventions. A patient phantom was exposed using a fluoroscopic system. Dose measurements were made at the eye location of the radiologist using an ionization chamber. The setting followed typical fluoroscopic interventions. The reduction of scattered radiation by the equipment-mounted shielding (undercouch drapes and overcouch top) was evaluated. The ceiling-suspended lead acrylic glass screen was tested in scattered radiation generated by a slab phantom. The protective properties of different lead glass goggles and lead acrylic visors were evaluated by thermoluminescence measurements on a head phantom in the primary beam. The exposition of the lens of about 110 to 550 μSv during radiologic interventions is only slightly reduced by the undercouch drapes. Applying the top in addition to the drapes reduces the lens dose by a factor of 2 for PA projections. In 25°LAO the dose is reduced by a factor between 1.2 and 5. The highest doses were measured for AP angulations furthermore the efficacy of the equipment-mounted shielding is minimal. The ceiling-suspended lead screen reduced scatter by a factor of about 30. The lead glass goggles and visors reduced the lens dose up to a factor of 8 to 10. Depending on the specific design, the tested models are less effective especially for radiation from lateral with cranial angulation of the beam. Occasionally the visors even caused an increase of dose. The exposition of the eye lens can be kept below the new occupational limit recommended by the ICRP if the radiation shielding equipment is used consistently. © Georg Thieme Verlag KG Stuttgart · New York.
SHIELDING CONSIDERATIONS FOR THE SMALL ANIMAL RADIATION RESEARCH PLATFORM (SARRP)
Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron
2014-01-01
The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m3 enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1–3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076
Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P; Holder, J; Young, B
2006-11-02
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less
Inaba, Yutaka; Kobayashi, Naomi; Oba, Masatoshi; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki
2016-08-01
Although few studies have examined the direct effect of stress shielding on clinical outcomes, periprosthetic bone loss due to stress shielding is still an issue of concern, especially when physicians perform uncemented total hip arthroplasty (THA) in younger patients. Differences in femoral stem design may affect the degree of postoperative stress shielding. Therefore, the characteristics of the behavior for stress shielding of each type of femoral stem should be determined. This study compares differences in bone mineral density (BMD) change in the femur after primary THA between 3 major types of uncemented stems. Among a total of 89 hips, 26 hips received THA with a fit-and-fill type stem (VerSys Fiber Metal MidCoat; Zimmer, Inc, Warsaw, IN), 32 hips received a tapered rectangular Zweymüller-type stem (SL-Plus; Smith & Nephew Inc, Memphis, TN), and 31 received a tapered wedge-type stem (Accolade TMZF; Stryker Orthopaedics, Mahwah, NJ). BMD measurements were performed with a HOLOGIC Discovery device (Hologic Inc, Waltham, MA). BMD in the medial-proximal femur was maintained for 3 years after THA in the group with the tapered wedge-type stem. BMD in the lateral-proximal femur was maintained for 3 years after THA in the group with the Zweymüller-type stem. There were no significant differences in the Harris Hip Score among the 3 stem groups preoperatively and 1, 2, and 3 years after surgery. There are clear differences in postoperative BMD loss of the proximal femur among these 3 commonly used uncemented stems. Copyright © 2016 Elsevier Inc. All rights reserved.
Active shield technology for space craft protection revisited in new laboratory results and analysis
NASA Astrophysics Data System (ADS)
Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.
2009-04-01
Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025
Eslick, Enid M; Keall, Paul J
2015-10-01
Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.
THE SURVEY OF H I IN EXTREMELY LOW-MASS DWARFS (SHIELD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, John M.; Engstrom, Eric; Allan, John
We present first results from the Survey of H I in Extremely Low-mass Dwarfs (SHIELD), a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas contents and dynamics of galaxies with H I masses in the 10{sup 6}-10{sup 7} M{sub sun} range detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We describe the survey motivation and concept demonstration using Very Large Array imaging of six low-mass galaxies detected in early ALFALFA data products. We then describe the primary scientific goals of SHIELD and present preliminary EVLA and WIYN 3.5 m imaging of the 12 SHIELD galaxies. Withmore » only a few exceptions, the neutral gas distributions of these extremely low-mass galaxies are centrally concentrated. In only one system have we detected H I column densities higher than 10{sup 21} cm{sup -2}. Despite this, the stellar populations of all of these systems are dominated by blue stars. Further, we find ongoing star formation as traced by H{alpha} emission in 10 of the 11 galaxies with H{alpha} imaging obtained to date. Taken together these results suggest that extremely low-mass galaxies are forming stars in conditions different from those found in more massive systems. While detailed dynamical analysis requires the completion of data acquisition, the most well-resolved system is amenable to meaningful position-velocity analysis. For AGC 749237, we find well-ordered rotation of 30 km s{sup -1} at {approx}40'' distance from the dynamical center. At the adopted distance of 3.2 Mpc, this implies the presence of a {approx}>1 x 10{sup 8} M{sub sun} dark matter halo and a baryon fraction {approx}<0.1.« less
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Al-Saleh, Ahmad M.
2018-05-01
The Mizil gneiss dome is an elliptical structure consisting of an amphibolite-facies volcanosedimentary mantle and a gneissic granite core. This dome is located at the northern tip of the Ar Rayn terrane only a few kilometers from the eastern edge of the Arabian shield. Previous investigations have shown the intrusive core to be an adakitic diapir with a U-Pb zircon age of 689 ± 10 Ma; this age is 50-80 Ma years older than other granites in this terrane. Vorticity analysis was carried out on samples from the intrusive core and volcanosedimentary cover; the Passchier and Rigid Grain Net (RGN) methods were used to obtain the kinematic vorticity number ( W k) and the mean kinematic vorticity number ( W m). The W k and W m values show a marked increase towards the south; such a pattern indicates a N-S movement of the core pluton thus creating an inclined diapir tilted to the south. Analogue experiments simulating the flow of magma diapirs rising form a subducted slab through the mantle wedge have shown that supra-subduction zone oblique diapirs are produced close to the trench and are elongated normal to the convergence direction as is the case in the Mizil pluton. This effect was found to increase with increasing slab dip due to enhanced drag along the upper surface of the subducted lithospheric plate. Spontaneous subduction which is often associated with rollback resulting in back-arc extension and steep dipping slabs is thought to have occurred in the Mozambique Ocean by 700 Ma. The Mizil pluton is coeval with the back-arc Urd ophiolite from the adjacent Dawadimi terrane, and could therefore have been produced by incipient subduction of a relatively cold slab as observed in many Pacific margin adakites. The tectonic evolution of the eastern shield, as deduced from the Mizil dome and other data from Ar Rayn and neighboring terranes, begins with the subduction of >100 My-old lithosphere beneath the Afif terrane resulting in back-arc spreading and the splitting of the Ar Rayn arc from the Afif microplate, with the concomitant production of a small volume of adakite melt. Other arc terrane(s) docked east of Ar Rayn with the westward-directed subduction still going but a lower angles and greater depth due to trench jump; this phase produced the more prevalent non-adakitic group-1 granites. A major collisional orogeny affected the entire eastern shield between 620-600 Ma and sutured the eastern shield terranes with northern Gondwana.
Terminator assembly for a floating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, H.; Hall, J.E.
1987-10-20
A terminator assembly is described for use in mooring a floating surface to the floor of a body of water. The floating structure has has an upper support and a lower support, comprising: a hawsepipe extending downwardly from adjacent the upper support and supported by the lower support, a tension member extending downwardly from adjacent the upper support through the hawsepipe and the lower support. The tension member has a lower end adapted for connection to the floor of the body of water. Locking means connected to an upper portion of the tension member for maintaining the tension member inmore » tension by acting upon an upper portion of the hawsepipe without transferring primary tension load forces to the upper support.« less
Resource Utilization in Ambulatory Primary Care at Darnall Army Community Hospital, Fort Hood, Texas
1991-07-23
population: gastroenteritis (GI), otitis media (OM), and upper respiratory infection (URI). These resources will be thc- dependent variables of the study...1991. The children ranged in age from 3 to 5 years old and were diagnosed with otitis media , upper respiratory tract infection, and gastroenteritis. A...x-rays wer-e rarely ordered to confirm the diagnoses of otitis media , gastroeinteritis. and upper respiratory tract infection. Only eight, laboratory
Geophysical characteristics and crustal structure of greenstone terranes: Canadian Shield
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Losier, L.; Thurston, P. C.; Gupta, V. K.; Gibb, R. A.; Grieve, R. A. F.
1986-01-01
Geophysical studies in the Canadian Shield have provided some insights into the tectonic setting of greenstone belts. Greenstone belts are not rooted in deep crustal structures. Geophysical techniques consistently indicate that greenstones are restricted to the uppermost 10 km or so of crust and are underlain by geophysically normal crust. Gravity models suggest that granitic elements are similarly restricted, although magnetic modelling suggests possible downward extension to the intermediate discontinuity around approx. 18 km. Seismic evidence demonstrates that steeply-dipping structure, which can be associated with the belts in the upper crust, is not present in the lower crust. Horizontal intermediate discontinuities mapped under adjacent greenstone and granitic components are not noticeably disrupted in the boundary zone. Geophysical evidence points to the presence of discontinuities between greenhouse-granite and adjacent metasedimentary erranes. Measured stratigraphic thicknesses of greenstone belts are often twice or more the vertical thicknesses determined from gravity modelling. Explantations advanced for the discrepancy include stratigraphy repeated by thrust faulting and/or listric normal faulting, mechanisms which are consistent with certain aspects of conceptual models of greenstone development. Where repetition is not a factor the gravity evidence points to removal of the root zones of greenstone belts. For one region, this has been attributed to magmatic stopping during resurgent caldera activity.
Finn, Carol A.; Goodge, John W.
2010-01-01
Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.
Supported plasma sputtering apparatus for high deposition rate over large area
Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils
1977-01-01
A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.
Mantle transition zone discontinuities beneath the Tien Shan
NASA Astrophysics Data System (ADS)
Yu, Youqiang; Zhao, Dapeng; Lei, Jianshe
2017-10-01
To better understand geodynamic processes of intracontinental mountain building, we conduct a systematic investigation of the mantle transition zone (MTZ) beneath the Tien Shan and its surrounding areas using a receiver function method under non-plane wave front assumption. The resulting apparent depths of the 410 km (d410) and 660 km (d660) discontinuities and the MTZ thickness display significant lateral variations. Both the central Tien Shan and the Pamir Plateau are characterized by a thick MTZ, which can be well explained by the existence of lithospheric segments resulted from possible break-off of the subducted slab or lithosphere delamination. A thin MTZ and an obviously depressed d410, which may be induced by asthenosphere upwelling associated with the dropping lithospheric segment, are revealed beneath the Kazakh Shield. Seismic evidence is obtained for the potential existence of lower mantle upwelling beneath the Tarim Basin based on the observed thin MTZ and relatively significant uplift of d660. The subduction of the Kazakh Shield and Tarim lithosphere driven by the India-Eurasia collision possibly plays an essential role in the formation and evolution of the Tien Shan orogenic belt, and the lower mantle upwelling revealed beneath the Tarim Basin may promote the uplift of the Tien Shan by softening the upper mantle.
Gravity field and nature of continent-continent collision along the Himalaya
NASA Astrophysics Data System (ADS)
Verma, R. K.
Gravity field (Bouguer) in the Himalaya is characterised by large negative-values ranging from nearly -180 mGal to over -450 mGal in Naga-Parbat/Haramosh massif which go up to -550 mGal in the Karakoram region. The observed Bouguer anomaly in NW Himalaya has been interpreted along a profile passing from Gujranwala (located at the edge of the Indian shield) to the Haramosh massif in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted to increase from nearly 35 km near the edge of Indian shield to 75 km (below sea level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high density lower crustal rocks appear to have been emplaced in the upper part along the Main Mantle thrust. The gravityanomalies in the Nepal-Tibet region hasbeen interpreted in terms of a northward sloping Moho which down faulted by about 15 km to attain a depth of 65 km around Tingri which corresponds to explosion seismology data. The nature of isostatic compensation prevailing underneath the Himalaya has been discussed.
Space Radar Image of Pinacate Volcanic Field, Mexico
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers (93 miles) southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image. More than 300 volcanic vents occur in the Pinacate field, including cinder cones that experienced small eruptions as recently as 1934. The larger circular craters seen in the image are a type of volcano known as a 'maar', which erupts violently when rising magma encounters groundwater, producing highly pressurized steam that powers explosive eruptions. The highest elevations in the volcanic field, about 1200 meters (4000 feet), occur in the 'shield volcano' structure shown in bright white, occupying most of the left half of the image. Numerous cinder cones dot the flanks of the shield. The yellow patches to the right of center are newer, rough-textured lava flows that strongly reflect the long wavelength radar signals. Along the left edge of the image are sand dunes of the Gran Desierto. The dark areas are smooth sand and the brighter brown and purple areas have vegetation on the surface. Radar data provide a unique means to study the different types of lava flows and wind-blown sands. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 18, 1994. The image is 57 kilometers by 48 kilometers (35 miles by 30 miles) and is centered at 31.7 degrees north latitude, 113.4 degrees West longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.
Heat flow, seismic cut-off depth and thermal modeling of the Fennoscandian Shield
NASA Astrophysics Data System (ADS)
Veikkolainen, Toni; Kukkonen, Ilmo T.; Tiira, Timo
2017-12-01
Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000-2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40-60 mW m-2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9-15 mW m-2), upper crustal heat production values (3.3-1.1 μWm-3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm-3 were assigned, respectively. The models suggest a Moho temperature range of 460-500 °C.
The home stroke rehabilitation and monitoring system trial: a randomized controlled trial.
Linder, Susan M; Rosenfeldt, Anson B; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Bay, Curtis R; Wolf, Steven L; Alberts, Jay L
2013-01-01
Because many individuals poststroke lack access to the quality and intensity of rehabilitation to improve upper extremity motor function, a home-based robotic-assisted upper extremity rehabilitation device is being paired with an individualized home exercise program. The primary aim of this project is to determine the effectiveness of robotic-assisted home therapy compared with a home exercise program on upper extremity motor recovery and health-related quality of life for stroke survivors in rural and underserved locations. The secondary aim is to explore whether initial degree of motor function of the upper limb may be a factor in predicting the extent to which patients with stroke may be responsive to a home therapy approach. We hypothesize that the home exercise program intervention, when enhanced with robotic-assisted therapy, will result in significantly better outcomes in motor function and quality of life. A total of 96 participants within six-months of a single, unilateral ischemic, or hemorrhagic stroke will be recruited in this prospective, single-blind, multisite randomized clinical trial. The primary outcome is the change in upper extremity function using the Action Research Arm Test. Secondary outcomes include changes in: upper extremity function (Wolf Motor Function Test), upper extremity impairment (upper extremity portion of the Fugl-Meyer Test), self-reported quality of life (Stroke Impact Scale), and affect (Centers for Epidemiologic Studies Depression Scale). Similar or greater improvements in upper extremity function using the combined robotic home exercise program intervention compared with home exercise program alone will be interpreted as evidence that supports the introduction of in-home technology to augment the recovery of function poststroke. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Prediction of stemless humeral implant micromotion during upper limb activities.
Favre, Philippe; Henderson, Adam D
2016-07-01
Adequate primary stability is essential for the long term success of uncemented stemless shoulder implants. The goal of this study was to evaluate the micromotion of a stemless humeral implant during various upper limb activities. A finite element model was validated by reproducing experimental primary stability testing. Loading from an instrumented prosthesis representing a set of 29 upper limb activities were applied within the validated FE model. Peak micromotion and percentage area for different micromotion thresholds were considered. In all simulated activities, at least 99% of the implant surface experienced micromotion below 150μm. Micromotion depended strongly on loading with large discrepancies between upper limb activities. Carrying no external weight and keeping the arm at lower angles induced lower micromotion. Activities representative of demanding manual labor generally led to higher micromotion. Axilla crutches led to lower micromotion than forearm crutches. Micromotion increased when a wheelchair was used on slopes above 2% inclination. Micromotions below the 150μm threshold below which bone ingrowth occurs were measured over at least 99% of the implant surface for all simulated activities. Peak micromotion dependence on activity type demonstrates the need to consider physiologic in vivo loading and the full contact interface in primary stability evaluations. Focusing on activities with no hand weight and low arm motions during the rehabilitation period may enhance primary stability. For patients unable to walk without aids, axilla crutches and motorized wheelchairs might be more beneficial than forearm crutches and manual drive wheelchairs respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hurmerinta, Kirsti; Rice, David; Suomalainen, Anni
2016-01-01
Objectives: Lateral cephalometric radiography is a common radiographic examination technique in children. The exclusion of the thyroid gland from the primary X-ray beam is important especially with children. However, patient treatment might require displaying the four most cranial cervical vertebrae (C1–C4) for the assessment of cervical vertebral maturation. Our aim was to present a safe way to display C1–C4 and exclude the thyroid gland from the X-ray beam during lateral cephalometric radiography. Methods: The thyroid glands of 25, 7- to 12-year-old patients were localized by ultrasound examination and shielded prior to lateral cephalometric radiography. A roentgen-positive mark was taped on the patient's skin at the level of most cranial level of the thyroid gland in the midsagittal plane. After exposure, each lateral cephalometric radiograph (LCR) was analyzed for the visibility of the cervical vertebrae. The distance between the ear post and the highest edge of the thyroid shield (TS) at the lateral part of the neck was measured and compared with the distance between the centre of the radiological external auditory meatus, and a roentgen-positive mark was made on the LCR. Results: 68% of the LCRs displayed C1–C4, and the rest of them displayed C1–C3. In all of the patients, the highest edge of the TS in the lateral parts of the neck was located in a higher position than the actual most cranial level of the thyroid gland. Conclusions: Despite localizing the thyroid gland prior to lateral cephalometric radiography, simultaneous visualization of C1–C4 and exclusion of the thyroid gland from the primary X-ray beam during lateral cephalometric radiography might not be completely possible in children because of the design and poor fitness of the TS. PMID:26764584
Intercalated graphite fiber composites as EMI shields in aerospace structures
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.
Analysis of Shield Construction in Spherical Weathered Granite Development Area
NASA Astrophysics Data System (ADS)
Cao, Quan; Li, Peigang; Gong, Shuhua
2018-01-01
The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.
Endoscopic findings and associated risk factors in primary health care settings in Havana, Cuba.
Galbán, Enrique; Arús, Enrique; Periles, Ulises
2012-01-01
INTRODUCTION Upper gastrointestinal endoscopy, traditionally performed in Cuba in specialized hospitals, was decentralized to the primary health care level in 2004 to make it more patient-accessible. OBJECTIVES Describe frequency and distribution of the principal symptomatic diseases of the upper gastrointestinal tract and their relation to the main risk factors associated with each in a sample of urban adults who underwent upper gastrointestinal endoscopy in primary care facilities in Havana in selected months of 2007. METHODS A multicenter cross-sectional study was conducted, including 3556 patients seen in the primary health care network of Havana from May through November 2007. The endoscopies were performed at the 22 polyclinics (community health centers) providing this service. Diagnostic quality and accuracy were assessed by experienced gastroenterologists using a validated tool. Patients responded to a questionnaire with clinical, epidemiologic, and sociodemographic variables. Univariate and multivariate analyses (unconditional logistical regression) were used to identify associated risk factors. The significance level was set at p < 0.05 (or confidence interval excluding 1.0). RESULTS The diagnoses were: gastritis (91.6%), duodenitis (57.8%), hiatal hernia (46.5%), esophagitis (25.2%), duodenal ulcer (15.8%), gastric ulcer (6.2%) and malignant-appearing lesions (0.4%). Overall prevalence of Helicobacter pylori infection was 58.4%. The main risk factors for duodenal ulcer were H. pylori infection (OR 2.70, CI 2.17-3.36) and smoking (OR 2.08, CI 1.68-2.58); and for gastric ulcer, H. pylori (OR 1.58, CI 1.17-2.15) and age ≥60 years (OR 1.78, CI 1.28-2.47). H. pylori infection was the main risk factor for gastritis (OR 2.29, CI 1.79-2.95) and duodenitis (OR 1.58, CI 1.38-1.82); and age ≥40 years for hiatal hernia (OR 1.57, CI 1.33-1.84). External evaluation was "very good" or "good" for 99.3% of endoscopic procedures and 97.9% of reports issued. CONCLUSIONS Gastrointestinal endoscopy performed in primary care yielded high quality results and important information about prevalence of the most common diseases of the upper GI tract and associated risk factors. This study provides a reference for new research and can inform objective recommendations for community-based interventions to prevent and control these diseases. The existence of a network of universally accessible diagnostic endoscopy services at the primary care level, will contribute to conducting further research. KEYWORDS Endoscopy, gastrointestinal diseases, upper GI tract, prevalence, risk factors, primary care, Cuba.
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken
1989-01-01
During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.
Electroless shielding of plastic electronic enclosures
NASA Astrophysics Data System (ADS)
Thompson, D.
1985-12-01
The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.
Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearden, B.L.; Mancini, E.A.
1985-03-01
The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute themore » primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; ...
2016-06-25
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers
NASA Astrophysics Data System (ADS)
Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.
2016-09-01
Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.
Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.
1998-11-03
A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.
Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid
1998-01-01
A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.
The body's tailored suit: Skin as a mechanical interface.
Tissot, Floriane S; Boulter, Etienne; Estrach, Soline; Féral, Chloé C
2016-11-01
Skin, by nature, is very similar to the Rouquayrol-Denayrouze suit mentioned by Jules Verne in Twenty Thousand Leagues Under the Sea: it allows "to risk (…) new physiological conditions without suffering any organic disorder". Mechanical cues, to the same extent as other environmental parameters, are such "new physiological conditions". Indeed, skin's primary function is to form a protective barrier to shield inner tissues from the external environment. This requires unique mechanical properties as well as the ability to sense mechanical cues from the environment in order to prevent or repair mechanical damages as well as to function as the primary mechanosensory interface of the whole body. Copyright © 2016 Elsevier GmbH. All rights reserved.
50 CFR 14.142 - Primary enclosures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Wild Mammals and Birds to the United States Specifications for Elephants and Ungulates § 14.142 Primary... shall be located on the upper one-half of the primary enclosure. (b) No more than one elephant or... case of land or sea transport, a pair of juvenile elephants or ungulates or other pairs that have been...
50 CFR 14.142 - Primary enclosures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wild Mammals and Birds to the United States Specifications for Elephants and Ungulates § 14.142 Primary... shall be located on the upper one-half of the primary enclosure. (b) No more than one elephant or... case of land or sea transport, a pair of juvenile elephants or ungulates or other pairs that have been...
50 CFR 14.142 - Primary enclosures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wild Mammals and Birds to the United States Specifications for Elephants and Ungulates § 14.142 Primary... shall be located on the upper one-half of the primary enclosure. (b) No more than one elephant or... case of land or sea transport, a pair of juvenile elephants or ungulates or other pairs that have been...
50 CFR 14.142 - Primary enclosures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Wild Mammals and Birds to the United States Specifications for Elephants and Ungulates § 14.142 Primary... shall be located on the upper one-half of the primary enclosure. (b) No more than one elephant or... case of land or sea transport, a pair of juvenile elephants or ungulates or other pairs that have been...
50 CFR 14.142 - Primary enclosures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Wild Mammals and Birds to the United States Specifications for Elephants and Ungulates § 14.142 Primary... shall be located on the upper one-half of the primary enclosure. (b) No more than one elephant or... case of land or sea transport, a pair of juvenile elephants or ungulates or other pairs that have been...
Shields-1, A SmallSat Radiation Shielding Technology Demonstration
NASA Technical Reports Server (NTRS)
Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.
2015-01-01
The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware
TOP VIEW OF UPPER TRAM TERMINAL, PRIMARY ORE BIN, AND ...
TOP VIEW OF UPPER TRAM TERMINAL, PRIMARY ORE BIN, AND ORE CHUTE,LOOKING SOUTHWEST. TRAM MACHINERY AND GEARS ARE AT LOWER CENTER. A SMALL ELECTRIC MOTOR AT THE REAR LEFT OF THE TERMINAL PROBABLY WAS ADDED AFTER THE ORIGINAL CONSTRUCTION. THE MOVING CABLE OF THE TRAM WAS DRIVEN BY THESE GEARS AND THE LARGE WHEEL UNDERNEATH (SEE CA-291-31 FOR DETAIL). EMPTY TRAM BUCKETS CAME IN FROM THE LEFT, SWINGING AROUND TO THE CHUTES FROM THE ORE BIN TO BE LOADED FOR THE TRIP DOWN TO THE MILL (SEE CA-291-35 FOR DETAIL). THE BREAK OVER TOWER CAN BE SEEN IN THE DISTANCE AT TOP LEFT. THE SUPPORT TOWER BETWEEN THE UPPER TERMINAL AND THE BREAK OVER TOWER IS COLLAPSED. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Transfer impedances of balanced shielded cables
NASA Astrophysics Data System (ADS)
Hardiguian, M.
1982-07-01
The transfer impedance concept is extended to balanced shielded cables, e.g., shielded pairs and twinax in which the actual voltage developed at the load, between the two wires of a pair is emphasized. This parameter can be computed by a separate knowledge of the shield, and the shield-to-pair coupling (i.e., the pair unbalance ratio). Thus, a unique parameter called shield coupling evolves which relates directly the shield current to the differential output voltage. Conditions of cable pair and harness shielding and the impact of grounding at one or both ends are discussed.