High-intensity erotic visual stimuli de-activate the primary visual cortex in women.
Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert
2012-06-01
The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.
Cognitive processing in the primary visual cortex: from perception to memory.
Supèr, Hans
2002-01-01
The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.
The multisensory function of the human primary visual cortex.
Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J
2016-03-01
It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.
2016-01-01
Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J
2014-01-01
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.
2017-01-01
To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.
Morrill, Ryan J; Hasenstaub, Andrea R
2018-03-14
The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F
2001-11-01
Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.
Optical images of visible and invisible percepts in the primary visual cortex of primates
Macknik, Stephen L.; Haglund, Michael M.
1999-01-01
We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363
2017-05-19
Vijay Singh, Martin Tchernookov, Rebecca Butterfield, Ilya Nemenman, Rongrong Ji. Director Field Model of the Primary Visual Cortex for Contour...FTE Equivalent: Total Number: DISCIPLINE Vijay Singh 40 Physics 0.40 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Martin Tchernookov 0.20
Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.
Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel
2016-01-01
Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Higher Brain Functions Served by the Lowly Rodent Primary Visual Cortex
ERIC Educational Resources Information Center
Gavornik, Jeffrey P.; Bear, Mark F.
2014-01-01
It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain…
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
Audiovisual Association Learning in the Absence of Primary Visual Cortex.
Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice
2015-01-01
Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
1980-12-01
primary and secondary visual cortex or in the secondary visual cortex itself. When the secondary visual cortex is electrically stimulated , the subject...effect enhances their excitability, which reduces the additional stimulation ( electrical or chemical) required to elicit an action potential. These...and the peripheral area with rods. The rods have a very low light intensity threshold and provide stimulation to optic nerve fibers for low light
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.
Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki
2017-01-01
Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans
2015-01-01
Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.
Altered figure-ground perception in monkeys with an extra-striate lesion.
Supèr, Hans; Lamme, Victor A F
2007-11-05
The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.
Three-dimensional visual feature representation in the primary visual cortex
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-01-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. PMID:21724370
Three-dimensional visual feature representation in the primary visual cortex.
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-12-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César
2015-10-01
Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-01-01
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio
2015-02-19
Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.
Picchioni, Dante; Schmidt, Kathleen C; McWhirter, Kelly K; Loutaev, Inna; Pavletic, Adriana J; Speer, Andrew M; Zametkin, Alan J; Miao, Ning; Bishu, Shrinivas; Turetsky, Kate M; Morrow, Anne S; Nadel, Jeffrey L; Evans, Brittney C; Vesselinovitch, Diana M; Sheeler, Carrie A; Balkin, Thomas J; Smith, Carolyn B
2018-05-15
If protein synthesis during sleep is required for sleep-dependent memory consolidation, we might expect rates of cerebral protein synthesis (rCPS) to increase during sleep in the local brain circuits that support performance on a particular task following training on that task. To measure circuit-specific brain protein synthesis during a daytime nap opportunity, we used the L-[1-(11)C]leucine positron emission tomography (PET) method with simultaneous polysomnography. We trained subjects on the visual texture discrimination task (TDT). This was followed by a nap opportunity during the PET scan, and we retested them later in the day after the scan. The TDT is considered retinotopically specific, so we hypothesized that higher rCPS in primary visual cortex would be observed in the trained hemisphere compared to the untrained hemisphere in subjects who were randomized to a sleep condition. Our results indicate that the changes in rCPS in primary visual cortex depended on whether subjects were in the wakefulness or sleep condition but were independent of the side of the visual field trained. That is, only in the subjects randomized to sleep, rCPS in the right primary visual cortex was higher than the left regardless of side trained. Other brain regions examined were not so affected. In the subjects who slept, performance on the TDT improved similarly regardless of the side trained. Results indicate a regionally selective and sleep-dependent effect that occurs with improved performance on the TDT.
Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu
2016-09-01
The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi
2015-11-01
Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.
Learning invariance from natural images inspired by observations in the primary visual cortex.
Teichmann, Michael; Wiltschut, Jan; Hamker, Fred
2012-05-01
The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
Attentional load modulates responses of human primary visual cortex to invisible stimuli.
Bahrami, Bahador; Lavie, Nilli; Rees, Geraint
2007-03-20
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.
Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex
Huang, Xiaoying; Elyada, Yishai M.; Bosking, William H.; Walker, Theo
2014-01-01
Columnar organization of orientation selectivity and clustered horizontal connections linking orientation columns are two of the distinctive organizational features of primary visual cortex in many mammalian species. However, the functional role of these connections has been harder to characterize. Here we examine the extent and nature of horizontal interactions in V1 of the tree shrew using optical imaging of intrinsic signals, optogenetic stimulation, and multi-unit recording. Surprisingly, we find the effects of optogenetic stimulation depend primarily on distance and not on the specific orientation domains or axes in the cortex, which are stimulated. In addition, across a wide range of variation in both visual and optogenetic stimulation we find linear addition of the two inputs. These results emphasize that the cortex provides a rich substrate for functional interactions that are not limited to the orientation-specific interactions predicted by the monosynaptic distribution of horizontal connections. PMID:24695715
The Anatomy of Non-conscious Recognition Memory.
Rosenthal, Clive R; Soto, David
2016-11-01
Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Braille alexia during visual hallucination in a blind man with selective calcarine atrophy.
Maeda, Kengo; Yasuda, Hitoshi; Haneda, Masakazu; Kashiwagi, Atsunori
2003-04-01
The case of a 56-year-old man who has been blind for 25 years due to retinal degeneration is herein described. The patient complained of elementary visual hallucination, during which it was difficult for him to read Braille. Brain magnetic resonance imaging showed marked atrophy of the bilateral striate cortex. Visual hallucination as a release phenomenon of the primary visual cortex has never been reported to cause alexia for Braille. The present case supports the results of recent functional imaging studies of the recruitment of striate and prestriate cortex for Braille reading.
rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects.
Kupers, R; Pappens, M; de Noordhout, A Maertens; Schoenen, J; Ptito, M; Fumal, A
2007-02-27
To study the functional involvement of the visual cortex in Braille reading, we applied repetitive transcranial magnetic stimulation (rTMS) over midoccipital (MOC) and primary somatosensory (SI) cortex in blind subjects. After rTMS of MOC, but not SI, subjects made significantly more errors and showed an abolishment of the improvement in reading speed following repetitive presentation of the same word list, suggesting a role of the visual cortex in repetition priming in the blind.
Unravelling the development of the visual cortex: implications for plasticity and repair
Bourne, James A
2010-01-01
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872
Anderson, L A; Christianson, G B; Linden, J F
2009-02-03
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Simultaneous selection by object-based attention in visual and frontal cortex
Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.
2014-01-01
Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379
The influence of spontaneous activity on stimulus processing in primary visual cortex.
Schölvinck, M L; Friston, K J; Rees, G
2012-02-01
Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.
Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcar, V.J.; Dreher, B.
1990-01-01
High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary andmore » association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.« less
Perceptual expertise and top-down expectation of musical notation engages the primary visual cortex.
Wong, Yetta Kwailing; Peng, Cynthia; Fratus, Kristyn N; Woodman, Geoffrey F; Gauthier, Isabel
2014-08-01
Most theories of visual processing propose that object recognition is achieved in higher visual cortex. However, we show that category selectivity for musical notation can be observed in the first ERP component called the C1 (measured 40-60 msec after stimulus onset) with music-reading expertise. Moreover, the C1 note selectivity was observed only when the stimulus category was blocked but not when the stimulus category was randomized. Under blocking, the C1 activity for notes predicted individual music-reading ability, and behavioral judgments of musical stimuli reflected music-reading skill. Our results challenge current theories of object recognition, indicating that the primary visual cortex can be selective for musical notation within the initial feedforward sweep of activity with perceptual expertise and with a testing context that is consistent with the expertise training, such as blocking the stimulus category for music reading.
Preprocessing of emotional visual information in the human piriform cortex.
Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris
2017-08-23
This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.
An egalitarian network model for the emergence of simple and complex cells in visual cortex
Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert
2004-01-01
We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing
Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less
Information processing occurs via critical avalanches in a model of the primary visual cortex
NASA Astrophysics Data System (ADS)
Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-01-01
We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
Embedding of Cortical Representations by the Superficial Patch System
Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.
2011-01-01
Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233
Plasticity and stability of visual field maps in adult primary visual cortex
Wandell, Brian A.; Smirnakis, Stelios M.
2010-01-01
Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279
Lanska, Douglas J
2016-01-01
As a result of the wars in the early 20th century, elaboration of the visual pathways was greatly facilitated by the meticulous study of visual defects in soldiers who had suffered focal injuries to the visual cortex. Using relatively crude techniques, often under difficult wartime circumstances, investigators successfully mapped key features of the visual pathways. Studies during the Russo- Japanese War (1904-1905) by Tatsuji Inouye (1881-1976) and during World War I by Gordon Holmes (1876-1965), William Lister (1868-1944), and others produced increasingly refined retinotopic maps of the primary visual cortex, which were later supported and refined by studies during and after World War II. Studies by George Riddoch (1888-1947) during World War I also demonstrated that some patients could still perceive motion despite blindness caused by damage to their visual cortex and helped to establish the concept of functional partitioning of visual processes in the occipital cortex. © 2016 S. Karger AG, Basel.
Cooke, Sam F.; Bear, Mark F.
2014-01-01
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components. PMID:24298166
Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di
2015-01-01
Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Contextual modulation of primary visual cortex by auditory signals.
Petro, L S; Paton, A T; Muckli, L
2017-02-19
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Contextual modulation of primary visual cortex by auditory signals
Paton, A. T.
2017-01-01
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015
A Multi-Stage Model for Fundamental Functional Properties in Primary Visual Cortex
Hesam Shariati, Nastaran; Freeman, Alan W.
2012-01-01
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex. PMID:22496811
Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D
2007-12-01
A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.
Kuhlmann, Levin; Vidyasagar, Trichur R.
2011-01-01
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414
Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.
Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein
2012-10-15
Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
NASA Astrophysics Data System (ADS)
Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya
2016-07-01
The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.
Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.
Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2013-10-01
Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.
Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.
Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly
2012-05-01
Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas normally seen for vision. The differences in cortical organization between bilateral anophthalmia and other forms of congenital blindness are considered to be due to the total absence of stimulation in 'visual' cortex by light or retinal activity in the former condition, and suggests development of subcortical auditory input to the geniculo-striate pathway.
Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex
Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik
2012-01-01
Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444
Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B
2015-01-01
Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver
2016-01-01
Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
The evolution of neocortex in primates
Kaas, Jon H.
2013-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624
The evolution of neocortex in primates.
Kaas, Jon H
2012-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.
Hominoid visual brain structure volumes and the position of the lunate sulcus.
de Sousa, Alexandra A; Sherwood, Chet C; Mohlberg, Hartmut; Amunts, Katrin; Schleicher, Axel; MacLeod, Carol E; Hof, Patrick R; Frahm, Heiko; Zilles, Karl
2010-04-01
It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist
Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.
2016-01-01
Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982
Brooks, S J; Savov, V; Allzén, E; Benedict, C; Fredriksson, R; Schiöth, H B
2012-02-01
Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect. Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing. Copyright © 2011 Elsevier Inc. All rights reserved.
From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?
González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R
2006-01-01
Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
ERIC Educational Resources Information Center
Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.
2009-01-01
Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…
Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G
2013-01-01
Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.
Sensory experience modifies feature map relationships in visual cortex
Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S
2016-01-01
The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531
Cortical visual prostheses: from microstimulation to functional percept
NASA Astrophysics Data System (ADS)
Najarpour Foroushani, Armin; Pack, Christopher C.; Sawan, Mohamad
2018-04-01
Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated images that goes beyond punctate spots of light. In this review, we summarize the clinical and experimental progress that has been made in generating phosphenes and modulating their associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus specifically on the effects of different microstimulation parameters on perception and we analyse key challenges facing the generation of meaningful artificial percepts. Finally, we propose solutions to these challenges based on the application of supervised learning of population codes for spatial stimulation of visual cortex.
Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P
1996-09-01
The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.
Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.
Pigarev, Ivan N; Levichkina, Ekaterina V
2016-01-01
Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.
Neural dynamics of image representation in the primary visual cortex
Yan, Xiaogang; Khambhati, Ankit; Liu, Lei; Lee, Tai Sing
2013-01-01
Horizontal connections in the primary visual cortex have been hypothesized to play a number of computational roles: association field for contour completion, surface interpolation, surround suppression, and saliency computation. Here, we argue that horizontal connections might also serve a critical role of computing the appropriate codes for image representation. That the early visual cortex or V1 explicitly represents the image we perceive has been a common assumption on computational theories of efficient coding (Olshausen and Field 1996), yet such a framework for understanding the circuitry in V1 has not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation (Cornelissen et al. 2006, von der Heydt et al. 2003). In this study, we investigated, neurophysiologically, how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be decomposed into three components: a bottom-up feedforward input, an articulation of color tuning and a contextual modulation signal that is inversely proportional to the distance away from the bounding contrast border. We demonstrate through computational simulations that the behaviors of a model for image representation are consistent with many aspects of our neural observations. We conclude that the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests an additional new interpretation of the functional roles of horizontal connections in the primary visual cortex. PMID:22944076
Vision for perception and vision for action in the primate brain.
Goodale, M A
1998-01-01
Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.
Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi
2015-11-01
Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.
2007-01-01
Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X
2016-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina
Venkataramani, Sowmya
2016-01-01
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.
Venkataramani, Sowmya; Taylor, W Rowland
2016-03-16
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.
Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide
2017-01-01
Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730
Noninvasive studies of human visual cortex using neuromagnetic techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aine, C.J.; George, J.S.; Supek, S.
1990-01-01
The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterizemore » the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs.« less
Synchronous activity in cat visual cortex encodes collinear and cocircular contours.
Samonds, Jason M; Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2006-04-01
We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.
Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets.
Meredith, M Alex; Allman, Brian L
2015-03-01
The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Brewer, Alyssa A.; Barton, Brian
2012-01-01
Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669
Cortical thickness development of human primary visual cortex related to the age of blindness onset.
Li, Qiaojun; Song, Ming; Xu, Jiayuan; Qin, Wen; Yu, Chunshui; Jiang, Tianzi
2017-08-01
Blindness primarily induces structural alteration in the primary visual cortex (V1). Some studies have found that the early blind subjects had a thicker V1 compared to sighted controls, whereas late blind subjects showed no significant differences in the V1. This implies that the age of blindness onset may exert significant effects on the development of cortical thickness of the V1. However, no previous research used a trajectory of the age of blindness onset-related changes to investigate these effects. Here we explored this issue by mapping the cortical thickness trajectory of the V1 against the age of blindness onset using data from 99 blind individuals whose age of blindness onset ranged from birth to 34 years. We found that the cortical thickness of the V1 could be fitted well with a quadratic curve in both the left (F = 11.59, P = 3 × 10 -5 ) and right hemispheres (F = 6.54, P = 2 × 10 -3 ). Specifically, the cortical thickness of the V1 thinned rapidly during childhood and adolescence and did not change significantly thereafter. This trend was not observed in the primary auditory cortex (A1), primary motor cortex (M1), or primary somatosensory cortex (S1). These results provide evidence that an onset of blindness before adulthood significantly affects the cortical thickness of the V1 and suggest a critical period for cortical development of the human V1.
Relational Associative Learning Induces Cross-Modal Plasticity in Early Visual Cortex
Headley, Drew B.; Weinberger, Norman M.
2015-01-01
Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices. PMID:24275832
NASA Astrophysics Data System (ADS)
Clawson, Wesley Patrick
Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.
Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne
2015-09-21
Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.
Solomon, Selina S; Morley, John W; Solomon, Samuel G
2017-05-01
Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Model-based analysis of pattern motion processing in mouse primary visual cortex
Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.
2015-01-01
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738
Adaptive changes in early and late blind: a fMRI study of Braille reading.
Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E
2002-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.
Adaptive Changes in Early and Late Blind: A fMRI Study of Braille Reading
SNYDER, A. Z.; CONTURO, T. E.; AKBUDAK, E.; OLLINGER, J. M.; RAICHLE, M. E.
2013-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex. PMID:11784773
Computational model for perception of objects and motions.
Yang, WenLu; Zhang, LiQing; Ma, LiBo
2008-06-01
Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist 'What' and 'Where' pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives 'where', for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The computational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.
Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis
2014-11-07
Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C
2016-08-11
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma
Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2016-01-01
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406
Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal
2011-01-01
In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883
From attentional gating in macaque primary visual cortex to dyslexia in humans.
Vidyasagar, T R
2001-01-01
Selective attention is an important aspect of brain function that we need in coping with the immense and constant barrage of sensory information. One model of attention (Feature Integration Theory) that suggests an early selection of spatial locations of objects via an attentional spotlight would also solve the 'binding problem' (that is how do different attributes of each object get correctly bound together?). Our experiments have demonstrated modulation of specific locations of interest at the level of the primary visual cortex both in visual discrimination and memory tasks, where the actual locations of the targets was also important in being able to perform the task. It is suggested that the feedback mediating the modulation arises from the posterior parietal cortex, which would also be consistent with its known role in attentional control. In primates, the magnocellular (M) and parvocellular (P) pathways are the two major streams of inputs from the retina, carrying distinctly different types of information and they remain fairly segregated in their projections to the primary visual cortex and further into the extra-striate regions. The P inputs go mainly into the ventral (temporal) stream, while the dorsal (parietal) stream is dominated by M inputs. A theory of attentional gating is proposed here where the M dominated dorsal stream gates the P inputs into the ventral stream. This framework is used to provide a neural explanation of the processes involved in reading and in learning to read. This scheme also explains how a magnocellular deficit could cause the common reading impairment, dyslexia.
Degraded attentional modulation of cortical neural populations in strabismic amblyopia
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628
Degraded attentional modulation of cortical neural populations in strabismic amblyopia.
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.
Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno
2014-01-01
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432
How the blind "see" Braille: lessons from functional magnetic resonance imaging.
Sadato, Norihiro
2005-12-01
What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.
Yan, Xiaodan
2010-01-01
The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.
Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.
Flevaris, Anastasia V; Murray, Scott O
2015-09-02
Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.
Sergeeva, Elena G; Espinosa-Garcia, Claudia; Atif, Fahim; Pardue, Machelle T; Stein, Donald G
2018-05-02
In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABA A receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABA A receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC. Copyright © 2018. Published by Elsevier Inc.
Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno
2015-01-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851
Tracking blue cone signals in the primate brain.
Jayakumar, Jaikishan; Dreher, Bogdan; Vidyasagar, Trichur R
2013-05-01
In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.
Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto
2006-02-15
Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2015-09-01
Responses of most neurons in the primary visual cortex of mammals are markedly selective for stimulus orientation and their orientation tuning does not vary with changes in stimulus contrast. The basis of such contrast invariance of orientation tuning has been shown to be the higher variability in the response for low-contrast stimuli. Neurons in the lateral geniculate nucleus (LGN), which provides the major visual input to the cortex, have also been shown to have higher variability in their response to low-contrast stimuli. Parallel studies have also long established mild degrees of orientation selectivity in LGN and retinal cells. In our study, we show that contrast invariance of orientation tuning is already present in the LGN. In addition, we show that the variability of spike responses of LGN neurons increases at lower stimulus contrasts, especially for non-preferred orientations. We suggest that such contrast- and orientation-sensitive variability not only explains the contrast invariance observed in the LGN but can also underlie the contrast-invariant orientation tuning seen at the level of the primary visual cortex. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Activation of color-selective areas of the visual cortex in a blind synesthete.
Steven, Megan S; Hansen, Peter C; Blakemore, Colin
2006-02-01
Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.
A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements.
Hauswald, Anne; Lithari, Chrysa; Collignon, Olivier; Leonardelli, Elisa; Weisz, Nathan
2018-05-07
Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Electrophysiological evidence for biased competition in V1 for fear expressions.
West, Greg L; Anderson, Adam A K; Ferber, Susanne; Pratt, Jay
2011-11-01
When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.
The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?
Maloney, Ryan T
2015-01-01
Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.
Endogenous Sequential Cortical Activity Evoked by Visual Stimuli
Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael
2015-01-01
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
Coullon, Gaelle S. L.; Emir, Uzay E.; Fine, Ione; Watkins, Kate E.
2015-01-01
Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, 1H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. PMID:26180125
Emotional facilitation of sensory processing in the visual cortex.
Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2003-01-01
A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.
A morphological basis for orientation tuning in primary visual cortex.
Mooser, François; Bosking, William H; Fitzpatrick, David
2004-08-01
Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.
ERIC Educational Resources Information Center
Miller, Julie Ann
1978-01-01
The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)
Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice
Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo
2017-01-01
Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging. PMID:29138750
Anodal tDCS to V1 blocks visual perceptual learning consolidation.
Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan
2013-06-01
This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhaoping, Li
2016-10-01
Recent data have supported the hypothesis that, in primates, the primary visual cortex (V1) creates a saliency map from visual input. The exogenous guidance of attention is then realized by means of monosynaptic projections to the superior colliculus, which can select the most salient location as the target of a gaze shift. V1 is less prominent, or is even absent in lower vertebrates such as fish; whereas the superior colliculus, called optic tectum in lower vertebrates, also receives retinal input. I review the literature and propose that the saliency map has migrated from the tectum to V1 over evolution. In addition, attentional benefits manifested as cueing effects in humans should also be present in lower vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H.; Seifritz, Erich; Vollenweider, Franz X.
2015-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders. PMID:26909323
Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang
2014-03-01
Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.
Bourgeois, J P; Jastreboff, P J; Rakic, P
1989-01-01
We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulation does not affect the rate of synaptic accretion and overproduction. Both of these processes proceed in relation to the time of conception rather than to the time of delivery. In contrast, the size, type, and laminar distribution of synapses were significantly different between preterm and control infants. The changes and differences in these parameters correlate with the duration of visual stimulation and become less pronounced with age. If visual experience in infancy influences the maturation of the visual cortex, it must do so predominantly by strengthening, modifying, and/or eliminating synapses that have already been formed, rather than by regulating the rate of synapse production. Images PMID:2726773
NASA Technical Reports Server (NTRS)
Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.
Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.
ERIC Educational Resources Information Center
Phelps, Michael E.; Kuhl, David E.
1981-01-01
Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
Disney, Anita A; Reynolds, John H
2014-04-01
Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex. Copyright © 2013 Wiley Periodicals, Inc.
Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe
2015-01-01
If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199
Adult Visual Cortical Plasticity
Gilbert, Charles D.; Li, Wu
2012-01-01
The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310
ERIC Educational Resources Information Center
Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya
2012-01-01
The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…
The neurophysiology of figure-ground segregation in primary visual cortex.
Lamme, V A
1995-02-01
The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.
Muthukumaraswamy, Suresh D; Singh, Krish D
2008-05-01
In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-dimensional images of MEG source power were generated with synthetic aperture magnetometry (SAM) and showed a high degree of spatial correspondence with BOLD responses in primary visual cortex with a mean spatial separation of 6.5 mm, but the two modalities showed different tuning characteristics. The gamma rhythm showed a clear increase in induced power for the high spatial frequency stimulus while BOLD showed no difference in activity for the two spatial frequencies used. Both imaging modalities showed a general increase of activity with temporal frequency, however, BOLD plateaued around 6-10 Hz while the MEG generally increased with a dip exhibited at 6 Hz. These results demonstrate that the two modalities may show activation in similar spatial locations but that the functional pattern of these activations may differ in a complex manner, suggesting that they may be tuned to different aspects of neuronal activity.
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2011-01-01
Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Induced and evoked neural correlates of orientation selectivity in human visual cortex.
Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D
2011-02-14
Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.
Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde
2015-08-14
Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.
The Puzzle of Visual Development: Behavior and Neural Limits.
Kiorpes, Lynne
2016-11-09
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.
The primary visual cortex in the neural circuit for visual orienting
NASA Astrophysics Data System (ADS)
Zhaoping, Li
The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.
Independent effects of motivation and spatial attention in the human visual cortex.
Bayer, Mareike; Rossi, Valentina; Vanlessen, Naomi; Grass, Annika; Schacht, Annekathrin; Pourtois, Gilles
2017-01-01
Motivation and attention constitute major determinants of human perception and action. Nonetheless, it remains a matter of debate whether motivation effects on the visual cortex depend on the spatial attention system, or rely on independent pathways. This study investigated the impact of motivation and spatial attention on the activity of the human primary and extrastriate visual cortex by employing a factorial manipulation of the two factors in a cued pattern discrimination task. During stimulus presentation, we recorded event-related potentials and pupillary responses. Motivational relevance increased the amplitudes of the C1 component at ∼70 ms after stimulus onset. This modulation occurred independently of spatial attention effects, which were evident at the P1 level. Furthermore, motivation and spatial attention had independent effects on preparatory activation as measured by the contingent negative variation; and pupil data showed increased activation in response to incentive targets. Taken together, these findings suggest independent pathways for the influence of motivation and spatial attention on the activity of the human visual cortex. © The Author (2016). Published by Oxford University Press.
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan
2018-02-01
It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modular Representation of Luminance Polarity In the Superficial Layers Of Primary Visual Cortex
Smith, Gordon B.; Whitney, David E.; Fitzpatrick, David
2016-01-01
Summary The spatial arrangement of luminance increments (ON) and decrements (OFF) falling on the retina provides a wealth of information used by central visual pathways to construct coherent representations of visual scenes. But how the polarity of luminance change is represented in the activity of cortical circuits remains unclear. Using wide-field epifluorescence and two-photon imaging we demonstrate a robust modular representation of luminance polarity (ON or OFF) in the superficial layers of ferret primary visual cortex. Polarity-specific domains are found with both uniform changes in luminance and single light/dark edges, and include neurons selective for orientation and direction of motion. The integration of orientation and polarity preference is evident in the selectivity and discrimination capabilities of most layer 2/3 neurons. We conclude that polarity selectivity is an integral feature of layer 2/3 neurons, ensuring that the distinction between light and dark stimuli is available for further processing in downstream extrastriate areas. PMID:26590348
Approaches to a cortical vision prosthesis: implications of electrode size and placement
NASA Astrophysics Data System (ADS)
Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley
2016-04-01
Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.
Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.
Badgaiyan, Rajendra D
2012-12-01
Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.
Functional implications of orientation maps in primary visual cortex
NASA Astrophysics Data System (ADS)
Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim
2016-11-01
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.
Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2008-04-02
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.
Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin
2014-05-28
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.
Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly
2015-09-01
Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
Functional connectivity of visual cortex in the blind follows retinotopic organization principles.
Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S; Villringer, Arno; Amedi, Amir
2015-06-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit
2016-01-01
Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778
Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice.
Hernández-Zimbrón, Luis Fernando; Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gonzalez-Salinas, Roberto; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo; Zenteno, Edgar
2017-01-01
Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid- β peptide 1-42 (A β 42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, A β 42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of A β 42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in A β 42 production. Our results show a significant increase of A β 42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of A β 42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging.
Perceptual learning and adult cortical plasticity.
Gilbert, Charles D; Li, Wu; Piech, Valentin
2009-06-15
The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.
Attention Priority Map of Face Images in Human Early Visual Cortex.
Mo, Ce; He, Dongjun; Fang, Fang
2018-01-03
Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.
Information fusion via isocortex-based Area 37 modeling
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.
[Research advances on cortical functional and structural deficits of amblyopia].
Wu, Y; Liu, L Q
2017-05-11
Previous studies have observed functional deficits in primary visual cortex. With the development of functional magnetic resonance imaging and electrophysiological technique, the research of the striate, extra-striate cortex and higher-order cortical deficit underlying amblyopia reaches a new stage. The neural mechanisms of amblyopia show that anomalous responses exist throughout the visual processing hierarchy, including the functional and structural abnormalities. This review aims to summarize the current knowledge about structural and functional deficits of brain regions associated with amblyopia. (Chin J Ophthalmol, 2017, 53: 392 - 395) .
Analysis of haptic information in the cerebral cortex
2016-01-01
Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level. PMID:27440247
Stehberg, Jimmy; Dang, Phat T; Frostig, Ron D
2014-01-01
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.
Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.
2014-01-01
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339
Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing
2017-01-01
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1
2017-01-01
Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving. SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by locomotion differs between the upper layers, where the major effect is the increasing of firing rates, and in layer V, where the major effect is the reduction in noise correlations. PMID:28264980
Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.
Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J
2012-01-01
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
A linear model fails to predict orientation selectivity of cells in the cat visual cortex.
Volgushev, M; Vidyasagar, T R; Pei, X
1996-01-01
1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828
A neural circuit for gamma-band coherence across the retinotopic map in mouse visual cortex
Hakim, Richard; Shamardani, Kiarash
2018-01-01
Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex. PMID:29480803
Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob
In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.
Contextual modulation and stimulus selectivity in extrastriate cortex.
Krause, Matthew R; Pack, Christopher C
2014-11-01
Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A unified selection signal for attention and reward in primary visual cortex.
Stănişor, Liviu; van der Togt, Chris; Pennartz, Cyriel M A; Roelfsema, Pieter R
2013-05-28
Stimuli associated with high rewards evoke stronger neuronal activity than stimuli associated with lower rewards in many brain regions. It is not well understood how these reward effects influence activity in sensory cortices that represent low-level stimulus features. Here, we investigated the effects of reward information in the primary visual cortex (area V1) of monkeys. We found that the reward value of a stimulus relative to the value of other stimuli is a good predictor of V1 activity. Relative value biases the competition between stimuli, just as has been shown for selective attention. The neuronal latency of this reward value effect in V1 was similar to the latency of attentional influences. Moreover, V1 neurons with a strong value effect also exhibited a strong attention effect, which implies that relative value and top-down attention engage overlapping, if not identical, neuronal selection mechanisms. Our findings demonstrate that the effects of reward value reach down to the earliest sensory processing levels of the cerebral cortex and imply that theories about the effects of reward coding and top-down attention on visual representations should be unified.
Age, Sex, and Verbal Abilities Affect Location of Linguistic Connectivity in Ventral Visual Pathway
ERIC Educational Resources Information Center
Burman, Douglas D.; Minas, Taylor; Bolger, Donald J.; Booth, James R.
2013-01-01
Previous studies have shown that the "strength" of connectivity between regions can vary depending upon the cognitive demands of a task. In this study, the "location" of task-dependent connectivity from the primary visual cortex (V1) was examined in 43 children (ages 9-15) performing visual tasks; connectivity maxima were identified for a visual…
Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.
Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207
Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.
Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290
Compression and reflection of visually evoked cortical waves
Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young
2007-01-01
Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821
Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Potkin, Steven G; van Erp, Theo G M; Turner, Jessica A; Mueller, Bryon A; Calhoun, Vincent D; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G; Preda, Adrian; McEwen, Sarah C; Mathalon, Daniel H
2015-01-01
While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ford, Judith M.; Palzes, Vanessa A.; Roach, Brian J.; Potkin, Steven G.; van Erp, Theo G. M.; Turner, Jessica A.; Mueller, Bryon A.; Calhoun, Vincent D.; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G.; Preda, Adrian; McEwen, Sarah C.; Mathalon, Daniel H.
2015-01-01
Introduction: While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. Methods: We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Results: Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. Conclusions: VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. PMID:24619536
High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.
Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M
2016-03-01
Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.
Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R
2017-07-01
Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.
Kwon, Hyeok Gyu; Jang, Sung Ho
2014-08-22
A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel
2015-01-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722
Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde
2011-12-01
In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.
Global motion perception deficits in autism are reflected as early as primary visual cortex
Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.
2014-01-01
Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095
Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex
Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank
2013-01-01
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828
Perceptual learning selectively refines orientation representations in early visual cortex.
Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank
2012-11-21
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Neural correlates of the LSD experience revealed by multimodal neuroimaging.
Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J
2016-04-26
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.
Neural correlates of the LSD experience revealed by multimodal neuroimaging
Carhart-Harris, Robin L.; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E.; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T.; Williams, Tim M.; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I.; Nichols, David; Hobden, Peter; Evans, John; Singh, Krish D.; Wise, Richard G.; Curran, H. Valerie; Feilding, Amanda; Nutt, David J.
2016-01-01
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089
A magnetoencephalography study of visual processing of pain anticipation.
Machado, Andre G; Gopalakrishnan, Raghavan; Plow, Ela B; Burgess, Richard C; Mosher, John C
2014-07-15
Anticipating pain is important for avoiding injury; however, in chronic pain patients, anticipatory behavior can become maladaptive, leading to sensitization and limiting function. Knowledge of networks involved in pain anticipation and conditioning over time could help devise novel, better-targeted therapies. With the use of magnetoencephalography, we evaluated in 10 healthy subjects the neural processing of pain anticipation. Anticipatory cortical activity elicited by consecutive visual cues that signified imminent painful stimulus was compared with cues signifying nonpainful and no stimulus. We found that the neural processing of visually evoked pain anticipation involves the primary visual cortex along with cingulate and frontal regions. Visual cortex could quickly and independently encode and discriminate between visual cues associated with pain anticipation and no pain during preconscious phases following object presentation. When evaluating the effect of task repetition on participating cortical areas, we found that activity of prefrontal and cingulate regions was mostly prominent early on when subjects were still naive to a cue's contextual meaning. Visual cortical activity was significant throughout later phases. Although visual cortex may precisely and time efficiently decode cues anticipating pain or no pain, prefrontal areas establish the context associated with each cue. These findings have important implications toward processes involved in pain anticipation and maladaptive pain conditioning. Copyright © 2014 the American Physiological Society.
Cortical metabolic activity matches the pattern of visual suppression in strabismus.
Adams, Daniel L; Economides, John R; Sincich, Lawrence C; Horton, Jonathan C
2013-02-27
When an eye becomes deviated in early childhood, a person does not experience double vision, although the globes are aimed at different targets. The extra image is prevented from reaching perception in subjects with alternating exotropia by suppression of each eye's peripheral temporal retina. To test the impact of visual suppression on neuronal activity in primary (striate) visual cortex, the pattern of cytochrome oxidase (CO) staining was examined in four macaques raised with exotropia by disinserting the medial rectus muscles shortly following birth. No ocular dominance columns were visible in opercular cortex, where the central visual field is represented, indicating that signals coming from the central retina in each eye were perceived. However, the border strips at the edges of ocular dominance columns appeared pale, reflecting a loss of activity in binocular cells from disruption of fusion. In calcarine cortex, where the peripheral visual field is represented, there were alternating pale and dark bands resembling ocular dominance columns. To interpret the CO staining pattern, [(3)H]proline was injected into the right eye in two monkeys. In the right calcarine cortex, the pale CO columns matched the labeled proline columns of the right eye. In the left calcarine cortex, the pale CO columns overlapped the unlabeled columns of the left eye in the autoradiograph. Therefore, metabolic activity was reduced in the ipsilateral eye's ocular dominance columns which serve peripheral temporal retina, in a fashion consistent with the topographic organization of suppression scotomas in humans with exotropia.
Contextual Modulation is Related to Efficiency in a Spiking Network Model of Visual Cortex.
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo; Vanni, Simo
2015-01-01
In the visual cortex, stimuli outside the classical receptive field (CRF) modulate the neural firing rate, without driving the neuron by themselves. In the primary visual cortex (V1), such contextual modulation can be parametrized with an area summation function (ASF): increasing stimulus size causes first an increase and then a decrease of firing rate before reaching an asymptote. Earlier work has reported increase of sparseness when CRF stimulation is extended to its surroundings. However, there has been no clear connection between the ASF and network efficiency. Here we aimed to investigate possible link between ASF and network efficiency. In this study, we simulated the responses of a biomimetic spiking neural network model of the visual cortex to a set of natural images. We varied the network parameters, and compared the V1 excitatory neuron spike responses to the corresponding responses predicted from earlier single neuron data from primate visual cortex. The network efficiency was quantified with firing rate (which has direct association to neural energy consumption), entropy per spike and population sparseness. All three measures together provided a clear association between the network efficiency and the ASF. The association was clear when varying the horizontal connectivity within V1, which influenced both the efficiency and the distance to ASF, DAS. Given the limitations of our biophysical model, this association is qualitative, but nevertheless suggests that an ASF-like receptive field structure can cause efficient population response.
Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.
Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M
2014-01-01
Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1
Stevens, Beth
2017-01-01
Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. PMID:28951447
van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.
2014-01-01
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811
van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R
2014-10-07
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.
Oscillatory encoding of visual stimulus familiarity.
Kissinger, Samuel T; Pak, Alexandr; Tang, Yu; Masmanidis, Sotiris C; Chubykin, Alexander A
2018-06-18
Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials (VEPs) and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the muscarinic acetylcholine receptors (mAChRs) for their induction and expression. Finally, ongoing visually evoked theta (4-6 Hz) oscillations boost the VEP amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs. Significance Statement. Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning. Copyright © 2018 the authors.
Semantics of the visual environment encoded in parahippocampal cortex
Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray
2016-01-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216
Semantics of the Visual Environment Encoded in Parahippocampal Cortex.
Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray
2016-03-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.
Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex
NASA Astrophysics Data System (ADS)
Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay
2005-02-01
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.
Seeing touch is correlated with content-specific activity in primary somatosensory cortex.
Meyer, Kaspar; Kaplan, Jonas T; Essex, Ryan; Damasio, Hanna; Damasio, Antonio
2011-09-01
There is increasing evidence to suggest that primary sensory cortices can become active in the absence of external stimulation in their respective modalities. This occurs, for example, when stimuli processed via one sensory modality imply features characteristic of a different modality; for instance, visual stimuli that imply touch have been observed to activate the primary somatosensory cortex (SI). In the present study, we addressed the question of whether such cross-modal activations are content specific. To this end, we investigated neural activity in the primary somatosensory cortex of subjects who observed human hands engaged in the haptic exploration of different everyday objects. Using multivariate pattern analysis of functional magnetic resonance imaging data, we were able to predict, based exclusively on the activity pattern in SI, which of several objects a subject saw being explored. Along with previous studies that found similar evidence for other modalities, our results suggest that primary sensory cortices represent information relevant for their modality even when this information enters the brain via a different sensory system.
A unified account of tilt illusions, association fields, and contour detection based on elastica.
Keemink, Sander W; van Rossum, Mark C W
2016-09-01
As expressed in the Gestalt law of good continuation, human perception tends to associate stimuli that form smooth continuations. Contextual modulation in primary visual cortex, in the form of association fields, is believed to play an important role in this process. Yet a unified and principled account of the good continuation law on the neural level is lacking. In this study we introduce a population model of primary visual cortex. Its contextual interactions depend on the elastica curvature energy of the smoothest contour connecting oriented bars. As expected, this model leads to association fields consistent with data. However, in addition the model displays tilt-illusions for stimulus configurations with grating and single bars that closely match psychophysics. Furthermore, the model explains not only pop-out of contours amid a variety of backgrounds, but also pop-out of single targets amid a uniform background. We thus propose that elastica is a unifying principle of the visual cortical network. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Predictive Model of Anesthesia Depth Based on SVM in the Primary Visual Cortex
Shi, Li; Li, Xiaoyuan; Wan, Hong
2013-01-01
In this paper, a novel model for predicting anesthesia depth is put forward based on local field potentials (LFPs) in the primary visual cortex (V1 area) of rats. The model is constructed using a Support Vector Machine (SVM) to realize anesthesia depth online prediction and classification. The raw LFP signal was first decomposed into some special scaling components. Among these components, those containing higher frequency information were well suited for more precise analysis of the performance of the anesthetic depth by wavelet transform. Secondly, the characteristics of anesthetized states were extracted by complexity analysis. In addition, two frequency domain parameters were selected. The above extracted features were used as the input vector of the predicting model. Finally, we collected the anesthesia samples from the LFP recordings under the visual stimulus experiments of Long Evans rats. Our results indicate that the predictive model is accurate and computationally fast, and that it is also well suited for online predicting. PMID:24044024
Dagnino, Bruno; Gariel-Mathis, Marie-Alice
2014-01-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172
Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2015-02-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.
Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.
2015-01-01
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353
Cortical cell and neuron density estimates in one chimpanzee hemisphere.
Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H
2016-01-19
The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.
Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G
2013-01-01
Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Zold, Camila L.
2015-01-01
The primary visual cortex (V1) is widely regarded as faithfully conveying the physical properties of visual stimuli. Thus, experience-induced changes in V1 are often interpreted as improving visual perception (i.e., perceptual learning). Here we describe how, with experience, cue-evoked oscillations emerge in V1 to convey expected reward time as well as to relate experienced reward rate. We show, in chronic multisite local field potential recordings from rat V1, that repeated presentation of visual cues induces the emergence of visually evoked oscillatory activity. Early in training, the visually evoked oscillations relate to the physical parameters of the stimuli. However, with training, the oscillations evolve to relate the time in which those stimuli foretell expected reward. Moreover, the oscillation prevalence reflects the reward rate recently experienced by the animal. Thus, training induces experience-dependent changes in V1 activity that relate to what those stimuli have come to signify behaviorally: when to expect future reward and at what rate. PMID:26134643
Edge Detection Based On the Characteristic of Primary Visual Cortex Cells
NASA Astrophysics Data System (ADS)
Zhu, M. M.; Xu, Y. L.; Ma, H. Q.
2018-01-01
Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness
Neural networks for Braille reading by the blind.
Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M
1998-07-01
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Cotel, Florence; Fletcher, Lee N; Kalita-de Croft, Simon; Apergis-Schoute, John; Williams, Stephen R
2018-07-01
Neocortical information processing is powerfully influenced by the activity of layer 6 projection neurons through control of local intracortical and subcortical circuitry. Morphologically distinct classes of layer 6 projection neuron have been identified in the mammalian visual cortex, which exhibit contrasting receptive field properties, but little information is available on their functional specificity. To address this we combined anatomical tracing techniques with high-resolution patch-clamp recording to identify morphological and functional distinct classes of layer 6 projection neurons in the rat primary visual cortex, which innervated separable subcortical territories. Multisite whole-cell recordings in brain slices revealed that corticoclaustral and corticothalamic layer 6 projection neurons exhibited similar somatically recorded electrophysiological properties. These classes of layer 6 projection neurons were sparsely and reciprocally synaptically interconnected, but could be differentiated by cell-class, but not target-cell-dependent rules of use-dependent depression and facilitation of unitary excitatory synaptic output. Corticoclaustral and corticothalamic layer 6 projection neurons were differentially innervated by columnar excitatory circuitry, with corticoclaustral, but not corticothalamic, neurons powerfully driven by layer 4 pyramidal neurons, and long-range pathways conveyed in neocortical layer 1. Our results therefore reveal projection target-specific, functionally distinct, streams of layer 6 output in the rodent neocortex.
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
Orientation selectivity in the visual cortex of the nine-banded armadillo
Scholl, Benjamin; Rylee, Johnathan; Luci, Jeffrey J.; Priebe, Nicholas J.
2017-01-01
Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals. NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials. PMID:28053246
Neural Pathways Conveying Novisual Information to the Visual Cortex
2013-01-01
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed. PMID:23840972
Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements
McFarland, James M.; Cumming, Bruce G.
2016-01-01
The ability to distinguish between elements of a sensory neuron's activity that are stimulus independent versus driven by the stimulus is critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to repeated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates, however, small “fixational” eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, potentially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs. These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also demonstrate a novel approach for controlling for these eye-movement-induced effects. SIGNIFICANCE STATEMENT Distinguishing between the signal and noise in a sensory neuron's activity is typically accomplished by measuring neural responses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small “fixational” eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function, and demonstrate novel methods for doing so. PMID:27277801
Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G
2015-09-24
Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.
Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.
2008-01-01
In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275
Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P
2016-02-08
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition
Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua
2015-01-01
Humans can easily understand other people’s actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270
Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia
Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi
2013-01-01
Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297
Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.
Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu
2015-09-30
Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was <240 ms, the cue induced a transient increase of neuronal responses to the probe at the cued location during 40-100 ms after the onset of neuronal responses to the probe. This facilitation diminished and disappeared after repeated presentations of the same cue but recurred for a new cue of a different color. In another task to detect the probe, relative shortening of monkey's reaction times for the validly cued probe depended on the SOA in a way similar to the cue-induced V1 facilitation, and the behavioral and physiological cueing effects remained after repeated practice. Flashing two cues simultaneously in the two opposite visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal responses, and shortened the animal's reaction time, to a subsequent visual probe stimulus at the same location. However, the enhancement of the neural responses diminished after repeated exposures to this flash if the animal was not required to react to the probe. Moreover, a second, simultaneous, flash at another location weakened the neuronal and behavioral effects of the first one. These findings revealed, beyond the observations reported so far, the effects of exogenous attention in the brain. Copyright © 2015 the authors 0270-6474/15/3513419-11$15.00/0.
NASA Astrophysics Data System (ADS)
DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico
2017-02-01
Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.
Viswanathan, Pooja; Nieder, Andreas
2017-09-13
The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.
Global motion perception deficits in autism are reflected as early as primary visual cortex.
Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I
2014-09-01
Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stimulus Dependence of Correlated Variability across Cortical Areas
Cohen, Marlene R.
2016-01-01
The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163
Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob
2016-01-01
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. © 2016 S. Karger AG, Basel.
Feature extraction inspired by V1 in visual cortex
NASA Astrophysics Data System (ADS)
Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang
2018-04-01
Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.
Primary and multisensory cortical activity is correlated with audiovisual percepts.
Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P; Stufflebeam, Steven
2010-04-01
Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Copyright 2009 Wiley-Liss, Inc.
Primary and Multisensory Cortical Activity is Correlated with Audiovisual Percepts
Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P.; Stufflebeam, Steven
2012-01-01
Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. PMID:19780040
Global processing in amblyopia: a review
Hamm, Lisa M.; Black, Joanna; Dai, Shuan; Thompson, Benjamin
2014-01-01
Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing. PMID:24987383
Supèr, Hans; Lamme, Victor A F
2007-06-01
When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.
Computational models of cortical visual processing.
Heeger, D J; Simoncelli, E P; Movshon, J A
1996-01-01
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605
Chen, Guang; Rasch, Malte J.; Wang, Ran; Zhang, Xiao-hui
2015-01-01
Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits. PMID:26648548
Linking pain and the body: neural correlates of visually induced analgesia.
Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick
2012-02-22
The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.
Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data
Zhaoping, Li; Zhe, Li
2015-01-01
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341
Tal, Zohar; Geva, Ran; Amedi, Amir
2016-01-01
Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. PMID:26673114
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex
Khalil, Reem; Levitt, Jonathan B.
2014-01-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.
Khalil, Reem; Levitt, Jonathan B
2014-10-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.
Attention Increases Spike Count Correlations between Visual Cortical Areas.
Ruff, Douglas A; Cohen, Marlene R
2016-07-13
Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.
Attention Increases Spike Count Correlations between Visual Cortical Areas
Cohen, Marlene R.
2016-01-01
Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161
Transcranial focused ultrasound stimulation of human primary visual cortex
NASA Astrophysics Data System (ADS)
Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik
2016-09-01
Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.
Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta
2016-01-01
In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504
Primary Visual Cortex Represents the Difference Between Past and Present
Nortmann, Nora; Rekauzke, Sascha; Onat, Selim; König, Peter; Jancke, Dirk
2015-01-01
The visual system is confronted with rapidly changing stimuli in everyday life. It is not well understood how information in such a stream of input is updated within the brain. We performed voltage-sensitive dye imaging across the primary visual cortex (V1) to capture responses to sequences of natural scene contours. We presented vertically and horizontally filtered natural images, and their superpositions, at 10 or 33 Hz. At low frequency, the encoding was found to represent not the currently presented images, but differences in orientation between consecutive images. This was in sharp contrast to more rapid sequences for which we found an ongoing representation of current input, consistent with earlier studies. Our finding that for slower image sequences, V1 does no longer report actual features but represents their relative difference in time counteracts the view that the first cortical processing stage must always transfer complete information. Instead, we show its capacities for change detection with a new emphasis on the role of automatic computation evolving in the 100-ms range, inevitably affecting information transmission further downstream. PMID:24343889
Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio
2016-01-01
Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5 -/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5 -/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5 -/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.
Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.
2012-01-01
Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381
Temporal characteristics of audiovisual information processing.
Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T
2008-05-14
In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117
PAUL, ARCO P.; MEDINA, ALEXANDRE E.
2012-01-01
Neuronal plasticity deficits underlie many of the cognitive problems seen in Fetal Alcohol Spectrum Disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF−) or control GFP. After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF− or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD. PMID:22742904
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex
2017-01-01
Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Mechanisms of inhibition in cat visual cortex.
Berman, N J; Douglas, R J; Martin, K A; Whitteridge, D
1991-01-01
1. Neurones from layers 2-6 of the cat primary visual cortex were studied using extracellular and intracellular recordings made in vivo. The aim was to identify inhibitory events and determine whether they were associated with small or large (shunting) changes in the input conductance of the neurones. 2. Visual stimulation of subfields of simple receptive fields produced depolarizing or hyperpolarizing potentials that were associated with increased or decreased firing rates respectively. Hyperpolarizing potentials were small, 5 mV or less. In the same neurones, brief electrical stimulation of cortical afferents produced a characteristic sequence of a brief depolarization followed by a long-lasting (200-400 ms) hyperpolarization. 3. During the response to a stationary flashed bar, the synaptic activation increased the input conductance of the neurone by about 5-20%. Conductance changes of similar magnitude were obtained by electrically stimulating the neurone. Neurones stimulated with non-optimal orientations or directions of motion showed little change in input conductance. 4. These data indicate that while visually or electrically induced inhibition can be readily demonstrated in visual cortex, the inhibition is not associated with large sustained conductance changes. Thus a shunting or multiplicative inhibitory mechanism is not the principal mechanism of inhibition. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1804983
Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex
Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.
2015-01-01
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E
2017-10-18
Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex
Smiley, John F.; Schroeder, Charles E.
2017-01-01
Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008
A Clash of Bottom-Up and Top-Down Processes in Visual Search: The Reversed Letter Effect Revisited
ERIC Educational Resources Information Center
Zhaoping, Li; Frith, Uta
2011-01-01
It is harder to find the letter "N" among its mirror reversals than vice versa, an inconvenient finding for bottom-up saliency accounts based on primary visual cortex (V1) mechanisms. However, in line with this account, we found that in dense search arrays, gaze first landed on either target equally fast. Remarkably, after first landing,…
Correlation Based Target Location and Identification
1992-12-01
Research Daugman (7) cites research on the mammalian visual nervous system (retina, lateral geniculate , and primary visual cortex) as motivation for...brains, they can still sort slides into natural categories such as people, trees, and bodies of water, a capability that humans do easily. As such...critical neurobiological variables of a given neuron’s orientation and spatial frequency preference, the tuning bandwidths for these variables, the
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.
2015-01-01
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
A multichip aVLSI system emulating orientation selectivity of primary visual cortical cells.
Shimonomura, Kazuhiro; Yagi, Tetsuya
2005-07-01
In this paper, we designed and fabricated a multichip neuromorphic analog very large scale integrated (aVLSI) system, which emulates the orientation selective response of the simple cell in the primary visual cortex. The system consists of a silicon retina and an orientation chip. An image, which is filtered by a concentric center-surround (CS) antagonistic receptive field of the silicon retina, is transferred to the orientation chip. The image transfer from the silicon retina to the orientation chip is carried out with analog signals. The orientation chip selectively aggregates multiple pixels of the silicon retina, mimicking the feedforward model proposed by Hubel and Wiesel. The chip provides the orientation-selective (OS) outputs which are tuned to 0 degrees, 60 degrees, and 120 degrees. The feed-forward aggregation reduces the fixed pattern noise that is due to the mismatch of the transistors in the orientation chip. The spatial properties of the orientation selective response were examined in terms of the adjustable parameters of the chip, i.e., the number of aggregated pixels and size of the receptive field of the silicon retina. The multichip aVLSI architecture used in the present study can be applied to implement higher order cells such as the complex cell of the primary visual cortex.
Matsui, Teppei; Ohki, Kenichi
2013-01-01
Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987
Acute Inactivation of Primary Auditory Cortex Causes a Sound Localisation Deficit in Ferrets
Wood, Katherine C.; Town, Stephen M.; Atilgan, Huriye; Jones, Gareth P.
2017-01-01
The objective of this study was to demonstrate the efficacy of acute inactivation of brain areas by cooling in the behaving ferret and to demonstrate that cooling auditory cortex produced a localisation deficit that was specific to auditory stimuli. The effect of cooling on neural activity was measured in anesthetized ferret cortex. The behavioural effect of cooling was determined in a benchmark sound localisation task in which inactivation of primary auditory cortex (A1) is known to impair performance. Cooling strongly suppressed the spontaneous and stimulus-evoked firing rates of cortical neurons when the cooling loop was held at temperatures below 10°C, and this suppression was reversed when the cortical temperature recovered. Cooling of ferret auditory cortex during behavioural testing impaired sound localisation performance, with unilateral cooling producing selective deficits in the hemifield contralateral to cooling, and bilateral cooling producing deficits on both sides of space. The deficit in sound localisation induced by inactivation of A1 was not caused by motivational or locomotor changes since inactivation of A1 did not affect localisation of visual stimuli in the same context. PMID:28099489
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di
2015-08-01
In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity.
Ammari, Mohamed; Lecomte, Anthony; Sakly, Mohsen; Abdelmelek, Hafedh; de-Seze, René
2008-08-19
The world-wide and rapidly growing use of mobile phones has raised serious concerns about the biological and health-related effects of radio frequency (RF) radiation, particularly concerns about the effects of RFs upon the nervous system. The goal of this study was conducted to measure cytochrome oxidase (CO) levels using histochemical methods in order to evaluate regional brain metabolic activity in rat brain after exposure to a GSM 900 MHz signal for 45 min/day at a brain-averaged specific absorption rate (SAR) of 1.5 W/Kg or for 15 min/day at a SAR of 6 W/Kg over seven days. Compared to the sham and control cage groups, rats exposed to a GSM signal at 6 W/Kg showed decreased CO activity in some areas of the prefrontal and frontal cortex (infralimbic cortex, prelimbic cortex, primary motor cortex, secondary motor cortex, anterior cingulate cortex areas 1 and 2 (Cg1 and Cg2)), the septum (dorsal and ventral parts of the lateral septal nucleus), the hippocampus (dorsal field CA1, CA2 and CA3 of the hippocampus and dental gyrus) and the posterior cortex (retrosplenial agranular cortex, primary and secondary visual cortex, perirhinal cortex and lateral entorhinal cortex). However, the exposure to GSM at 1.5 W/Kg did not affect brain activity. Our results indicate that 6 W/Kg GSM 900 MHz microwaves may affect brain metabolism and neuronal activity in rats.
Associative learning changes cross-modal representations in the gustatory cortex
Vincis, Roberto; Fontanini, Alfredo
2016-01-01
A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations. DOI: http://dx.doi.org/10.7554/eLife.16420.001 PMID:27572258
Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo
2003-05-01
Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.
Regional microstructural organization of the cerebral cortex is affected by preterm birth.
Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine
2018-01-01
To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.
Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.
Calford, M B; Schmid, L M; Rosa, M G
1999-01-01
Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart. PMID:10189714
Spatial processing in the auditory cortex of the macaque monkey
NASA Astrophysics Data System (ADS)
Recanzone, Gregg H.
2000-10-01
The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.
Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-11-01
Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.
Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-01-01
Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414
Bruffaerts, Rose; De Weer, An-Sofie; De Grauwe, Sophie; Thys, Miek; Dries, Eva; Thijs, Vincent; Sunaert, Stefan; Vandenbulcke, Mathieu; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2014-09-01
We investigated the critical contribution of right ventral occipitotemporal cortex to knowledge of visual and functional-associative attributes of biological and non-biological entities and how this relates to category-specificity during confrontation naming. In a consecutive series of 7 patients with lesions confined to right ventral occipitotemporal cortex, we conducted an extensive assessment of oral generation of visual-sensory and functional-associative features in response to the names of biological and nonbiological entities. Subjects also performed a confrontation naming task for these categories. Our main novel finding related to a unique case with a small lesion confined to right medial fusiform gyrus who showed disproportionate naming impairment for nonbiological versus biological entities, specifically for tools. Generation of visual and functional-associative features was preserved for biological and non-biological entities. In two other cases, who had a relatively small posterior lesion restricted to primary visual and posterior fusiform cortex, retrieval of visual attributes was disproportionately impaired compared to functional-associative attributes, in particular for biological entities. However, these cases did not show a category-specific naming deficit. Two final cases with the largest lesions showed a classical dissociation between biological versus nonbiological entities during naming, with normal feature generation performance. This is the first lesion-based evidence of a critical contribution of the right medial fusiform cortex to tool naming. Second, dissociations along the dimension of attribute type during feature generation do not co-occur with category-specificity during naming in the current patient sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of the environment on the dendritic morphology of the rat auditory cortex
Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco
2010-01-01
The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593
Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J
2016-01-28
Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Liu, Qin; Ulloa, Antonio; Horwitz, Barry
2017-11-01
Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).
Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio
2016-01-01
Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5−/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5−/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5−/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development. PMID:27965538
Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S
2017-09-06
The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.
Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.
Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P
2013-07-24
Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.
Spatial integration and cortical dynamics.
Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G
1996-01-23
Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.
Limanowski, Jakub; Blankenburg, Felix
2016-03-02
The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual information. These brain areas thus likely integrate visual and proprioceptive information into a flexible multisensory body representation. Copyright © 2016 the authors 0270-6474/16/362582-08$15.00/0.
Visuospatial processing in children with neurofibromatosis type 1
Clements-Stephens, Amy M.; Rimrodt, Sheryl L.; Gaur, Pooja; Cutting, Laurie E.
2008-01-01
Neuroimaging studies investigating the neural network of visuospatial processing have revealed a right hemisphere network of activation including inferior parietal lobe, dorsolateral prefrontal cortex, and extrastriate regions. Impaired visuospatial processing, indicated by the Judgment of Line Orientation (JLO), is commonly seen in individuals with Neurofibromatosis type 1 (NF-1). Nevertheless, few studies have examined the neural activity associated with visuospatial processing in NF-1, in particular, during a JLO task. This study used functional neuroimaging to explore differences in volume of activation in predefined regions of interest between 13 individuals with NF-1 and 13 controls while performing an analogue JLO task. We hypothesized that participants with NF-1 would show anomalous right hemisphere activation and therefore would recruit regions within the left hemisphere to complete the task. Multivariate analyses of variance were used to test for differences between groups in frontal, temporal, parietal, and occipital regions. Results indicate that, as predicted, controls utilized various right hemisphere regions to complete the task, while the NF-1 group tended to recruit left hemisphere regions. These results suggest that the NF-1 group has an inefficient right hemisphere network. An additional unexpected finding was that the NF-1 group showed decreased volume of activation in primary visual cortex (BA 17). Future studies are needed to examine whether the decrease in primary visual cortex is related to a deficit in basic visual processing; findings could ultimately lead to a greater understanding of the nature of deficits in NF-1 and have implications for remediation. PMID:17988695
State dependence of noise correlations in macaque primary visual cortex
Ecker, Alexander S.; Berens, Philipp; Cotton, R. James; Subramaniyan, Manivannan; Denfield, George H.; Cadwell, Cathryn R.; Smirnakis, Stelios M.; Bethge, Matthias; Tolias, Andreas S.
2014-01-01
Shared, trial-to-trial variability in neuronal populations has a strong impact on the accuracy of information processing in the brain. Estimates of the level of such noise correlations are diverse, ranging from 0.01 to 0.4, with little consensus on which factors account for these differences. Here we addressed one important factor that varied across studies, asking how anesthesia affects the population activity structure in macaque primary visual cortex. We found that under opioid anesthesia, activity was dominated by strong coordinated fluctuations on a timescale of 1–2 Hz, which were mostly absent in awake, fixating monkeys. Accounting for these global fluctuations markedly reduced correlations under anesthesia, matching those observed during wakefulness and reconciling earlier studies conducted under anesthesia and in awake animals. Our results show that internal signals, such as brain state transitions under anesthesia, can induce noise correlations, but can also be estimated and accounted for based on neuronal population activity. PMID:24698278
State dependence of noise correlations in macaque primary visual cortex.
Ecker, Alexander S; Berens, Philipp; Cotton, R James; Subramaniyan, Manivannan; Denfield, George H; Cadwell, Cathryn R; Smirnakis, Stelios M; Bethge, Matthias; Tolias, Andreas S
2014-04-02
Shared, trial-to-trial variability in neuronal populations has a strong impact on the accuracy of information processing in the brain. Estimates of the level of such noise correlations are diverse, ranging from 0.01 to 0.4, with little consensus on which factors account for these differences. Here we addressed one important factor that varied across studies, asking how anesthesia affects the population activity structure in macaque primary visual cortex. We found that under opioid anesthesia, activity was dominated by strong coordinated fluctuations on a timescale of 1-2 Hz, which were mostly absent in awake, fixating monkeys. Accounting for these global fluctuations markedly reduced correlations under anesthesia, matching those observed during wakefulness and reconciling earlier studies conducted under anesthesia and in awake animals. Our results show that internal signals, such as brain state transitions under anesthesia, can induce noise correlations but can also be estimated and accounted for based on neuronal population activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Modularity in the Organization of Mouse Primary Visual Cortex
Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D’Souza, Rinaldo D.; Wang, Quanxin; Burkhalter, Andreas
2015-01-01
SUMMARY Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2− zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867
Smith, Milo R.; Burman, Poromendro
2016-01-01
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530
Shock-like haemodynamic responses induced in the primary visual cortex by moving visual stimuli
Robinson, P. A.
2016-01-01
It is shown that recently discovered haemodynamic waves can form shock-like fronts when driven by stimuli that excite the cortex in a patch that moves faster than the haemodynamic wave velocity. If stimuli are chosen in order to induce shock-like behaviour, the resulting blood oxygen level-dependent (BOLD) response is enhanced, thereby improving the signal to noise ratio of measurements made with functional magnetic resonance imaging. A spatio-temporal haemodynamic model is extended to calculate the BOLD response and determine the main properties of waves induced by moving stimuli. From this, the optimal conditions for stimulating shock-like responses are determined, and ways of inducing these responses in experiments are demonstrated in a pilot study. PMID:27974572
Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex
Zilles, Karl; Palomero-Gallagher, Nicola
2017-01-01
We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785
Mechanisms of Neuronal Computation in Mammalian Visual Cortex
Priebe, Nicholas J.; Ferster, David
2012-01-01
Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306
Stimulus relevance modulates contrast adaptation in visual cortex
Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof
2017-01-01
A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922
Aton, Sara J.; Broussard, Christopher; Dumoulin, Michelle; Seibt, Julie; Watson, Adam; Coleman, Tammi; Frank, Marcos G.
2013-01-01
Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep. PMID:23300282
Active training for amblyopia in adult rodents
Sale, Alessandro; Berardi, Nicoletta
2015-01-01
Amblyopia is the most diffused form of visual function impairment affecting one eye, with a prevalence of 1–5% in the total world population. Amblyopia is usually caused by an early functional imbalance between the two eyes, deriving from anisometropia, strabismus, or congenital cataract, leading to severe deficits in visual acuity, contrast sensitivity and stereopsis. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, as a result of a dramatic decline in visual cortex plasticity which occurs at the end of the critical period (CP) in the primary visual cortex. Notwithstanding this widely accepted dogma, recent evidence in animal models and in human patients have started to challenge this view, revealing a previously unsuspected possibility to enhance plasticity in the adult visual system and to achieve substantial visual function recovery. Among the new proposed intervention strategies, non invasive procedures based on environmental enrichment, physical exercise or visual perceptual learning (vPL) appear particularly promising in terms of future applicability in the clinical setting. In this survey, we will review recent literature concerning the application of these behavioral intervention strategies to the treatment of amblyopia, with a focus on possible underlying molecular and cellular mechanisms. PMID:26578911
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Hore, Victoria R A; Troy, John B; Eglen, Stephen J
2012-11-01
The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.
Functional size of human visual area V1: a neural correlate of top-down attention.
Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R
2014-06-01
Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.
Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.
Kok, Peter; de Lange, Floris P
2014-07-07
An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Visual Perceptual Learning and Models.
Dosher, Barbara; Lu, Zhong-Lin
2017-09-15
Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina
2017-05-01
A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766
Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.
Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L
2016-09-07
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.
Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI.
Sengupta, Ayan; Pollmann, Stefan; Hanke, Michael
2018-01-01
Spatial filtering strategies, combined with multivariate decoding analysis of BOLD images, have been used to investigate the nature of the neural signal underlying the discriminability of brain activity patterns evoked by sensory stimulation -- primarily in the visual cortex. Reported evidence indicates that such signals are spatially broadband in nature, and are not primarily comprised of fine-grained activation patterns. However, it is unclear whether this is a general property of the BOLD signal, or whether it is specific to the details of employed analyses and stimuli. Here we performed an analysis of publicly available, high-resolution 7T fMRI on the response BOLD response to musical genres in primary auditory cortex that matches a previously conducted study on decoding visual orientation from V1. The results show that the pattern of decoding accuracies with respect to different types and levels of spatial filtering is comparable to that obtained from V1, despite considerable differences in the respective cortical circuitry.
Congenital deafness affects deep layers in primary and secondary auditory cortex
Berger, Christoph; Kühne, Daniela; Scheper, Verena
2017-01-01
Abstract Congenital deafness leads to functional deficits in the auditory cortex for which early cochlear implantation can effectively compensate. Most of these deficits have been demonstrated functionally. Furthermore, the majority of previous studies on deafness have involved the primary auditory cortex; knowledge of higher‐order areas is limited to effects of cross‐modal reorganization. In this study, we compared the cortical cytoarchitecture of four cortical areas in adult hearing and congenitally deaf cats (CDCs): the primary auditory field A1, two secondary auditory fields, namely the dorsal zone and second auditory field (A2); and a reference visual association field (area 7) in the same section stained either using Nissl or SMI‐32 antibodies. The general cytoarchitectonic pattern and the area‐specific characteristics in the auditory cortex remained unchanged in animals with congenital deafness. Whereas area 7 did not differ between the groups investigated, all auditory fields were slightly thinner in CDCs, this being caused by reduced thickness of layers IV–VI. The study documents that, while the cytoarchitectonic patterns are in general independent of sensory experience, reduced layer thickness is observed in both primary and higher‐order auditory fields in layer IV and infragranular layers. The study demonstrates differences in effects of congenital deafness between supragranular and other cortical layers, but similar dystrophic effects in all investigated auditory fields. PMID:28643417
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.
Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D
2013-10-01
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.
The contribution of LM to the neuroscience of movement vision
Zihl, Josef; Heywood, Charles A.
2015-01-01
The significance of early and sporadic reports in the 19th century of impairments of motion vision following brain damage was largely unrecognized. In the absence of satisfactory post-mortem evidence, impairments were interpreted as the consequence of a more general disturbance resulting from brain damage, the location and extent of which was unknown. Moreover, evidence that movement constituted a special visual perception and may be selectively spared was similarly dismissed. Such skepticism derived from a reluctance to acknowledge that the neural substrates of visual perception may not be confined to primary visual cortex. This view did not persist. First, it was realized that visual movement perception does not depend simply on the analysis of spatial displacements and temporal intervals, but represents a specific visual movement sensation. Second persuasive evidence for functional specialization in extrastriate cortex, and notably the discovery of cortical area V5/MT, suggested a separate region specialized for motion processing. Shortly thereafter the remarkable case of patient LM was published, providing compelling evidence for a selective and specific loss of movement vision. The case is reviewed here, along with an assessment of its contribution to visual neuroscience. PMID:25741251
On the domain-specificity of the visual and non-visual face-selective regions.
Axelrod, Vadim
2016-08-01
What happens in our brains when we see a face? The neural mechanisms of face processing - namely, the face-selective regions - have been extensively explored. Research has traditionally focused on visual cortex face-regions; more recently, the role of face-regions outside the visual cortex (i.e., non-visual-cortex face-regions) has been acknowledged as well. The major quest today is to reveal the functional role of each this region in face processing. To make progress in this direction, it is essential to understand the extent to which the face-regions, and particularly the non-visual-cortex face-regions, process only faces (i.e., face-specific, domain-specific processing) or rather are involved in a more domain-general cognitive processing. In the current functional MRI study, we systematically examined the activity of the whole face-network during face-unrelated reading task (i.e., written meaningful sentences with content unrelated to faces/people and non-words). We found that the non-visual-cortex (i.e., right lateral prefrontal cortex and posterior superior temporal sulcus), but not the visual cortex face-regions, responded significantly stronger to sentences than to non-words. In general, some degree of sentence selectivity was found in all non-visual-cortex cortex. Present result highlights the possibility that the processing in the non-visual-cortex face-selective regions might not be exclusively face-specific, but rather more or even fully domain-general. In this paper, we illustrate how the knowledge about domain-general processing in face-regions can help to advance our general understanding of face processing mechanisms. Our results therefore suggest that the problem of face processing should be approached in the broader scope of cognition in general. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro
2016-10-01
Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf
Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao
2016-01-01
Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461
Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System
Ajina, Sara; Bridge, Holly
2017-01-01
Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system. PMID:27777337
Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex
Singer, Wolf; Maass, Wolfgang
2009-01-01
It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205
Stereo, Shading, and Surfaces: Curvature Constraints Couple Neural Computations
2014-04-23
Bullier, and J. S. Lund, ‘‘Circuits for local and global signal integration in primary visual cortex,’’ J. Neurosci ., vol. 22, no. 19, pp. 8633–8646...cortex,’’ J. Neurosci ., vol. 17, no. 6, pp. 2112–2127, Mar. 15, 1997. [16] Y. Boykov, O. Veksler, and R. Zabih, ‘‘Fast approximate energy minimization...plasticity: A Hebbian learning rule,’’ Annu. Rev. Neurosci ., vol. 31, pp. 25–46, 2008. [19] V. A. Casagrande and J. H. Kaas, ‘‘The afferent, intrinsic
Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui
2011-01-01
The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555
Universal transition from unstructured to structured neural maps
Sartori, Fabio; Cuntz, Hermann
2017-01-01
Neurons sharing similar features are often selectively connected with a higher probability and should be located in close vicinity to save wiring. Selective connectivity has, therefore, been proposed to be the cause for spatial organization in cortical maps. Interestingly, orientation preference (OP) maps in the visual cortex are found in carnivores, ungulates, and primates but are not found in rodents, indicating fundamental differences in selective connectivity that seem unexpected for closely related species. Here, we investigate this finding by using multidimensional scaling to predict the locations of neurons based on minimizing wiring costs for any given connectivity. Our model shows a transition from an unstructured salt-and-pepper organization to a pinwheel arrangement when increasing the number of neurons, even without changing the selectivity of the connections. Increasing neuronal numbers also leads to the emergence of layers, retinotopy, or ocular dominance columns for the selective connectivity corresponding to each arrangement. We further show that neuron numbers impact overall interconnectivity as the primary reason for the appearance of neural maps, which we link to a known phase transition in an Ising-like model from statistical mechanics. Finally, we curated biological data from the literature to show that neural maps appear as the number of neurons in visual cortex increases over a wide range of mammalian species. Our results provide a simple explanation for the existence of salt-and-pepper arrangements in rodents and pinwheel arrangements in the visual cortex of primates, carnivores, and ungulates without assuming differences in the general visual cortex architecture and connectivity. PMID:28468802
Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash
2012-10-01
To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Spatial limitations of fast temporal segmentation are best modeled by V1 receptive fields.
Goodbourn, Patrick T; Forte, Jason D
2013-11-22
The fine temporal structure of events influences the spatial grouping and segmentation of visual-scene elements. Although adjacent regions flickering asynchronously at high temporal frequencies appear identical, the visual system signals a boundary between them. These "phantom contours" disappear when the gap between regions exceeds a critical value (g(max)). We used g(max) as an index of neuronal receptive-field size to compare with known receptive-field data from along the visual pathway and thus infer the location of the mechanism responsible for fast temporal segmentation. Observers viewed a circular stimulus reversing in luminance contrast at 20 Hz for 500 ms. A gap of constant retinal eccentricity segmented each stimulus quadrant; on each trial, participants identified a target quadrant containing counterphasing inner and outer segments. Through varying the gap width, g(max) was determined at a range of retinal eccentricities. We found that g(max) increased from 0.3° to 0.8° for eccentricities from 2° to 12°. These values correspond to receptive-field diameters of neurons in primary visual cortex that have been reported in single-cell and fMRI studies and are consistent with the spatial limitations of motion detection. In a further experiment, we found that modulation sensitivity depended critically on the length of the contour and could be predicted by a simple model of spatial summation in early cortical neurons. The results suggest that temporal segmentation is achieved by neurons at the earliest cortical stages of visual processing, most likely in primary visual cortex.
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P
2016-09-01
Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne
2017-01-01
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725
Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne
2017-08-23
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.
Nonlinear dynamics of cortical responses to color in the human cVEP.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2017-09-01
The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
Analysis of retinal and cortical components of Retinex algorithms
NASA Astrophysics Data System (ADS)
Yeonan-Kim, Jihyun; Bertalmío, Marcelo
2017-05-01
Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
De Weerd, Peter; Reithler, Joel; van de Ven, Vincent; Been, Marin; Jacobs, Christianne; Sack, Alexander T
2012-02-08
Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Projection-specific visual feature encoding by layer 5 cortical subnetworks
Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.
2016-01-01
Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011
Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex
Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu
2013-01-01
The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796
Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.
2009-01-01
Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305
Yang, Zhiyong; Heeger, David J.; Blake, Randolph
2014-01-01
Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785
Multichannel optical mapping: investigation of depth information
NASA Astrophysics Data System (ADS)
Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio
2001-06-01
Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.
Sex-specific gray matter volume differences in females with developmental dyslexia.
Evans, Tanya M; Flowers, D Lynn; Napoliello, Eileen M; Eden, Guinevere F
2014-05-01
Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men, we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences, and instead, we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e., motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia.
Sex-specific Gray Matter Volume Differences in Females with Developmental Dyslexia
Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Eden, Guinevere F.
2013-01-01
Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences and instead we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e. motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia. PMID:23625146
The influence of surround suppression on adaptation effects in primary visual cortex
Wissig, Stephanie C.
2012-01-01
Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects. PMID:22423001
A Columnar Primary Visual Cortex (V1) Model Emulation Using a PS3 Cell-Be Array
2011-09-01
23 July 2010, pp 1-8, Barcelona , Spain, ISSN: 1098-7576, Print ISBN: 978-1-4244-6916, INSPEC Accession No.: 11593936, Digital Object Identifier...98subfields) X (128 FCs per subfield) X (64 minicolumns/ FC ) works out to 802816 minicolumns per hemisphere. All minicolumns within a
Orientation selectivity based structure for texture classification
NASA Astrophysics Data System (ADS)
Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu
2014-10-01
Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Schmid, Anita M.; Victor, Jonathan D.
2014-01-01
When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to “pop out” and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion. PMID:25064441
Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B
2018-06-01
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
Brain State Effects on Layer 4 of the Awake Visual Cortex
Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel
2014-01-01
Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767
Gain control by layer six in cortical circuits of vision.
Olsen, Shawn R; Bortone, Dante S; Adesnik, Hillel; Scanziani, Massimo
2012-02-22
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.
Heikkinen, Hanna; Sharifian, Fariba; Vigario, Ricardo; Vanni, Simo
2015-07-01
The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity. Copyright © 2015 the American Physiological Society.
A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex
Hussain Shuler, Marshall G.; Shouval, Harel Z.
2015-01-01
Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1) of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past. These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can be encoded at the expected delay in the network and how peaked responses express this reward expectancy. SIGNIFICANCE STATEMENT Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical approaches, it is treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe under what conditions this heterogeneity can arise by self-organization, and what information it can convey. This study, while focusing on a specific system, provides insight onto how heterogeneity can arise in general while also shedding light onto mechanisms of reinforcement learning using realistic biological assumptions. PMID:26377457
Changes in resting-state connectivity in musicians with embouchure dystonia.
Haslinger, Bernhard; Noé, Jonas; Altenmüller, Eckart; Riedl, Valentin; Zimmer, Claus; Mantel, Tobias; Dresel, Christian
2017-03-01
Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
ERIC Educational Resources Information Center
Schepers, Inga M.; Hipp, Joerg F.; Schneider, Till R.; Roder, Brigitte; Engel, Andreas K.
2012-01-01
Many studies have shown that the visual cortex of blind humans is activated in non-visual tasks. However, the electrophysiological signals underlying this cross-modal plasticity are largely unknown. Here, we characterize the neuronal population activity in the visual and auditory cortex of congenitally blind humans and sighted controls in a…
Cortical activity patterns predict speech discrimination ability
Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P
2010-01-01
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123
Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J
2018-03-01
Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural correlates of motor recovery after stroke: a longitudinal fMRI study
Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.
2013-01-01
Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084
Sounds Activate Visual Cortex and Improve Visual Discrimination
Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.
2014-01-01
A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419
Funk, Agnes P; Rosa, Marcello G P
1998-01-01
The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
Cicmil, Nela; Krug, Kristine
2015-01-01
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
Specific excitatory connectivity for feature integration in mouse primary visual cortex
Molina-Luna, Patricia; Roth, Morgane M.
2017-01-01
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769
Here, there and everywhere: higher visual function and the dorsal visual stream.
Cooper, Sarah Anne; O'Sullivan, Michael
2016-06-01
The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
Spectral and Temporal Processing in Rat Posterior Auditory Cortex
Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.
2009-01-01
The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251
Genetic Otx2 mis-localization delays critical period plasticity across brain regions.
Lee, H H C; Bernard, C; Ye, Z; Acampora, D; Simeone, A; Prochiantz, A; Di Nardo, A A; Hensch, T K
2017-05-01
Accumulation of non-cell autonomous Otx2 homeoprotein in postnatal mouse visual cortex (V1) has been implicated in both the onset and closure of critical period (CP) plasticity. Here, we show that a genetic point mutation in the glycosaminoglycan recognition motif of Otx2 broadly delays the maturation of pivotal parvalbumin-positive (PV+) interneurons not only in V1 but also in the primary auditory (A1) and medial prefrontal cortex (mPFC). Consequently, not only visual, but also auditory plasticity is delayed, including the experience-dependent expansion of tonotopic maps in A1 and the acquisition of acoustic preferences in mPFC, which mitigates anxious behavior. In addition, Otx2 mis-localization leads to dynamic turnover of selected perineuronal net (PNN) components well beyond the normal CP in V1 and mPFC. These findings reveal widespread actions of Otx2 signaling in the postnatal cortex controlling the maturational trajectory across modalities. Disrupted PV+ network function and deficits in PNN integrity are implicated in a variety of psychiatric illnesses, suggesting a potential global role for Otx2 function in establishing mental health.
Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity
Chavane, Frédéric; Sharon, Dahlia; Jancke, Dirk; Marre, Olivier; Frégnac, Yves; Grinvald, Amiram
2011-01-01
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread. PMID:21629708
Spatial organization of neurons in the frontal pole sets humans apart from great apes.
Semendeferi, Katerina; Teffer, Kate; Buxhoeveden, Dan P; Park, Min S; Bludau, Sebastian; Amunts, Katrin; Travis, Katie; Buckwalter, Joseph
2011-07-01
Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.
Structural reorganization of the early visual cortex following Braille training in sighted adults.
Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin
2017-12-12
Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.
Philips, Ryan T.; Chakravarthy, V. Srinivasa
2017-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation (rc). The rc between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps. PMID:28111542
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Philips, Ryan T; Chakravarthy, V Srinivasa
2016-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation ( r c ). The r c between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps.
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Garcia-Marin, Virginia; Ahmed, Tunazzina H.; Afzal, Yasmeen C.; Hawken, Michael J.
2014-01-01
The majority of thalamic terminals in V1 arise from lateral geniculate nucleus (LGN) afferents. Thalamic afferent terminals are preferentially labeled by an isoform of the vesicular glutamate transporter, VGluT2. The goal of our study was to determine the distribution of VGluT2-ir puncta in macaque and human visual cortex. First, we investigated the distribution of VGluT2-ir puncta in all layers of macaque monkey primary visual cortex (V1), and found a very close correspondence between the known distribution of LGN afferents from previous studies and the distribution of VGluT2-immunoreactive (-ir) puncta. There was also a close correspondence between cytochrome oxidase density and VGluT2-ir puncta distribution. After validating the correspondence in macaque, we made a comparative study in human V1. In many aspects, the distribution of VGluT2-ir puncta in human was qualitatively similar to that of the macaque: high densities in layer 4C, patches of VGluT2-ir puncta in the supragranular layer (2/3), lower but clear distribution in layers 1 and 6, and very few puncta in layers 5 and 4B. However, there were also important differences between macaques and humans. In layer 4A of human, there was a sparse distribution of VGluT2-ir puncta, whereas in macaque, there was a dense distribution with the characteristic honeycomb organization. The results suggest important changes in the pattern of cortical VGluT2 immunostaining that may be related to evolutionary differences in the cortical organization of LGN afferents between Old World monkeys and humans. PMID:22684983
Network model of top-down influences on local gain and contextual interactions in visual cortex.
Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D
2013-10-22
The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.
Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N
2018-03-01
Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6- 13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between V NT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.
DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide
2013-01-01
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700
Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B
2018-07-01
Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.
The orbitofrontal cortex and beyond: from affect to decision-making.
Rolls, Edmund T; Grabenhorst, Fabian
2008-11-01
The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.
Sounds activate visual cortex and improve visual discrimination.
Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A
2014-07-16
A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2014-01-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587
Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E
2017-05-01
Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2012-12-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.
Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E
2017-01-01
Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.
A Cortical Network for the Encoding of Object Change
Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.
2015-01-01
Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425
Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex
Sajo, Mari
2016-01-01
Dendritic spine turnover becomes limited in the adult cerebral cortex. Identification of specific aspects of spine dynamics that can be unmasked in adulthood and its regulatory molecular mechanisms could provide novel therapeutic targets for inducing plasticity at both the functional and structural levels for robust recovery from brain disorders and injuries in adults. Lynx1, an endogenous inhibitor of nicotinic acetylcholine receptors, was previously shown to increase its expression in adulthood and thus to limit functional ocular dominance plasticity in adult primary visual cortex (V1). However, the role of this “brake” on spine dynamics is not known. We examined the contribution of Lynx1 on dendritic spine turnover before and after monocular deprivation (MD) in adult V1 with chronic in vivo imaging using two-photon microscopy and determined the spine turnover rate of apical dendrites of layer 5 (L5) and L2/3 pyramidal neurons in adult V1 of Lynx1 knock-out (KO) mice. We found that the deletion of Lynx1 doubled the baseline spine turnover rate, suggesting that the spine dynamics in the adult cortex is actively limited by the presence of Lynx1. After MD, adult Lynx1-KO mice selectively exhibit higher rate of spine loss with no difference in gain rate in L5 neurons compared with control wild-type counterparts, revealing a key signature of spine dynamics associated with robust functional plasticity in adult V1. Overall, Lynx1 could be a promising therapeutic target to induce not only functional, but also structural plasticity at the level of spine dynamics in the adult brain. SIGNIFICANCE STATEMENT Dendritic spine turnover becomes limited in the adult cortex. In mouse visual cortex, a premier model of experience-dependent plasticity, we found that the deletion of Lynx1, a nicotinic “brake” for functional plasticity, doubled the baseline spine turnover in adulthood, suggesting that the spine dynamics in the adult cortex is actively limited by Lynx1. After visual deprivation, spine loss, but not gain rate, remains higher in adult Lynx1 knock-out mice than in control wild-type mice, revealing a key signature of spine dynamics associated with robust functional plasticity. Lynx1 would be a promising target to induce not only functional, but also structural plasticity at the level of spine dynamics in adulthood. PMID:27605620
Mechanisms of migraine aura revealed by functional MRI in human visual cortex
Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.
2001-01-01
Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655
Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?
Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837
Brain-stimulation induced blindsight: unconscious vision or response bias?
Lloyd, David A; Abrahamyan, Arman; Harris, Justin A
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.
Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex
Vaden, Ryan J.; Visscher, Kristina M.
2015-01-01
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806
Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean
2015-01-01
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100
Resolving human object recognition in space and time
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2014-01-01
A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044
Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
Adesnik, Hillel
2018-05-01
Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Recognition Memory for Braille or Spoken Words: An fMRI study in Early Blind
Burton, Harold; Sinclair, Robert J.; Agato, Alvin
2012-01-01
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5 yrs. In an event-related design, we studied blood oxygen level-dependent responses to studied (“old”) compared to novel (“new”) words. Presentation mode was in Braille or spoken. Responses were larger for identified “new” words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken “new” words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with “old”/“new” recognition. Left dorsolateral prefrontal cortex had larger responses to “old” words only with Braille. Larger occipital cortex responses to “new” Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for “new” words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering “old” words. A larger response when identifying “new” words possibly resulted from exhaustive recollecting the sensory properties of “old” words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a “sensory echo” that aids recollection. PMID:22251836
Recognition memory for Braille or spoken words: an fMRI study in early blind.
Burton, Harold; Sinclair, Robert J; Agato, Alvin
2012-02-15
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5years. In an event-related design, we studied blood oxygen level-dependent responses to studied ("old") compared to novel ("new") words. Presentation mode was in Braille or spoken. Responses were larger for identified "new" words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken "new" words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with "old"/"new" recognition. Left dorsolateral prefrontal cortex had larger responses to "old" words only with Braille. Larger occipital cortex responses to "new" Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for "new" words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering "old" words. A larger response when identifying "new" words possibly resulted from exhaustive recollecting the sensory properties of "old" words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a "sensory echo" that aids recollection. Copyright © 2011 Elsevier B.V. All rights reserved.
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perceptual learning increases the strength of the earliest signals in visual cortex.
Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A
2010-11-10
Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
Wu, Jinglong; Chen, Kewei; Imajyo, Satoshi; Ohno, Seiichiro; Kanazawa, Susumu
2013-01-01
In human visual cortex, the primary visual cortex (V1) is considered to be essential for visual information processing; the fusiform face area (FFA) and parahippocampal place area (PPA) are considered as face-selective region and places-selective region, respectively. Recently, a functional magnetic resonance imaging (fMRI) study showed that the neural activity ratios between V1 and FFA were constant as eccentricities increasing in central visual field. However, in wide visual field, the neural activity relationships between V1 and FFA or V1 and PPA are still unclear. In this work, using fMRI and wide-view present system, we tried to address this issue by measuring neural activities in V1, FFA and PPA for the images of faces and houses aligning in 4 eccentricities and 4 meridians. Then, we further calculated ratio relative to V1 (RRV1) as comparing the neural responses amplitudes in FFA or PPA with those in V1. We found V1, FFA, and PPA showed significant different neural activities to faces and houses in 3 dimensions of eccentricity, meridian, and region. Most importantly, the RRV1s in FFA and PPA also exhibited significant differences in 3 dimensions. In the dimension of eccentricity, both FFA and PPA showed smaller RRV1s at central position than those at peripheral positions. In meridian dimension, both FFA and PPA showed larger RRV1s at upper vertical positions than those at lower vertical positions. In the dimension of region, FFA had larger RRV1s than PPA. We proposed that these differential RRV1s indicated FFA and PPA might have different processing strategies for encoding the wide field visual information from V1. These different processing strategies might depend on the retinal position at which faces or houses are typically observed in daily life. We posited a role of experience in shaping the information processing strategies in the ventral visual cortex. PMID:23991147
Critical period revisited: impact on vision.
Morishita, Hirofumi; Hensch, Takao K
2008-02-01
Neural circuits are shaped by experience in early postnatal life. The permanent loss of visual acuity (amblyopia) and anatomical remodeling within primary visual cortex following monocular deprivation is a classic example of critical period development from mouse to man. Recent work in rodents reveals a residual subthreshold potentiation of open eye response throughout life. Resetting excitatory-inhibitory balance or removing molecular 'brakes' on structural plasticity may unmask the potential for recovery of function in adulthood. Novel pharmacological or environmental interventions now hold great therapeutic promise based on a deeper understanding of critical period mechanisms.
Csillik, B; Nemcsók, J; Boncz, I; Knyihár-Csillik, E
1998-01-01
Nitric oxide synthase (NOS) and the nicotinic acetylcholine receptor (nAChR) immunoreactivity of the cerebral cortex was studied in adult Macaca fascicularis monkeys at light- and electron microscopic levels. NOS was located by means of the polyclonal antibodies developed by Transduction Laboratories (Lexington, KY, USA), as primary serum, in a dilution of 1:1000, and nAChR was located by means of biotinylated alpha-bungarotoxin (BTX) obtained from Molecular probes (Eugene, Oregon, USA) in a dilution of 1:2000. While endothelial eNOS outlined blood vessels in the brain, brain-derived (neural) bNOS labelled three well-defined cell types in area 46 of the prefrontal cortex, viz. (a) bipolar cells, scattered through layers III to V, equipped with long dendrites which pass over the thickness of the cortex in a right angle to the pial surface, establishing dendritic bundles closely reminiscent of a columnar organization; (b) large multipolar cells, located mainly in layers V and VI, with axons which interconnect dendritic bundles of the bipolar cells and establish synapses with dendritic shafts and spines of the former; and (c) stellate cells, located in lamina II and III, which establish an axonal network in lamina zonalis (lamina I). This arrangement is most characteristic in area 46 of the prefrontal cortex; areas 10 and 12 display similar features. In contrast, the primary visual cortex (area 17), is lacking any sign of columnar organization. Localization of bNOS immunoreactivity is at marked variance to that of NADPH-diaphorase which labels large pyramidal cells in the primate cortex. Binding of alpha-bungarotoxin (BTX) which labels the alpha 7 subunit of nAChR is located in somata, dendrites and axons of interneurons scattered over the entire width of the prefrontal cortex; on the other hand, the monoclonal antibody mAb 35 which labels subunits alpha 1, alpha 3 and alpha 5 in the main immunogenic region of the receptor, visualizes apical dendritic shafts similar to those like bNOS. Strategic localization of bNOS in the primate prefrontal cortex fulfills criteria of producing a freely diffusing retrograde messenger molecule operative in signal transduction routes subserving topography and columnar organization of the cortex, as well as long-term potentiation and long-term depression phenomena underlying mnemonic and gnostic functions. Common occurrence of bNOS and nAChR in identical or similar structures in the prefrontal cortex suggests that interactions between nitrogen oxide and presynaptically released acetylcholine might be involved in the metasynaptic organization of the cerebral cortex, operating in a non-synaptic manner in maintaining optimal performance on cognitive tasks.
Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.
Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer
2005-02-08
Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
García-Tabernero, Antonio; Peña-Melián, Angel; Rosas, Antonio
2018-07-01
The comparative analysis of the endocranial surface of the El Sidrón new occipital fragment SD-2300 shows meaningful differences in the configuration of the occipital pole region between neandertals and anatomically modern humans (AMH). The particular asymmetries found in neandertals in the venous sinus drainage and the petalial patterns are recognizable in this new specimen as well. In addition, the supra- and infracalcarine fossae of the occipital pole region appear to deviate obliquely from the mid-line when compared with sapiens. Due to the excellent preservation conditions of SD-2300, the main sulci and gyri of the occipital pole area have been identified, this degree of detail being uncommon in a fossil specimen; in general, the gyrification pattern is similar to AMH, but with some notable differences. Particularly interesting is the description of the lunate and the calcarine sulci. The lunate sulcus is located close to the occipital pole, in a similar posterior position to in other Homo species. Regarding the calcarine sulcus, there are significant differences in the primary visual cortex, with the V1 area, or Brodmann area 17, being larger in Homo neanderthalensis than in Homo sapiens. This may lead to greater visual acuity in neandertals than in sapiens. © 2018 Anatomical Society.
Denman, Daniel J; Contreras, Diego
2014-10-01
Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bombeke, Klaas; Duthoo, Wout; Mueller, Sven C; Hopf, Jens-Max; Boehler, C Nico
2016-02-15
Controversy revolves around the question of whether psychological factors like attention and emotion can influence the initial feedforward response in primary visual cortex (V1). Although traditionally, the electrophysiological correlate of this response in humans (the C1 component) has been found to be unaltered by psychological influences, a number of recent studies have described attentional and emotional modulations. Yet, research into psychological effects on the feedforward V1 response has neglected possible direct contributions of concomitant pupil-size modulations, which are known to also occur under various conditions of attentional load and emotional state. Here we tested the hypothesis that such pupil-size differences themselves directly affect the feedforward V1 response. We report data from two complementary experiments, in which we used procedures that modulate pupil size without differences in attentional load or emotion while simultaneously recording pupil-size and EEG data. Our results confirm that pupil size indeed directly influences the feedforward V1 response, showing an inverse relationship between pupil size and early V1 activity. While it is unclear in how far this effect represents a functionally-relevant adaptation, it identifies pupil-size differences as an important modulating factor of the feedforward response of V1 and could hence represent a confounding variable in research investigating the neural influence of psychological factors on early visual processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Resolving ability and image discretization in the visual system.
Shelepin, Yu E; Bondarko, V M
2004-02-01
Psychophysiological studies were performed to measure the spatial threshold for resolution of two "points" and the thresholds for discriminating their orientations depending on the distance between the two points. Data were compared with the scattering of the "point" by the eye's optics, the packing density of cones in the fovea, and the characteristics of the receptive fields of ganglion cells in the foveal area of the retina and neurons in the corresponding projection zones of the primary visual cortex. The effective zone was shown to have to contain a scattering function for several receptors, as this allowed preliminary blurring of the image by the eye's optics to decrease the subsequent (at the level of receptors) discretization noise created by a matrix of receptors. The concordance of these parameters supports the optical operation of the spatial elements of the neural network determining the resolving ability of the visual system at different levels of visual information processing. It is suggested that the special geometry of the receptive fields of neurons in the striate cortex, which are concordant with the statistics of natural scenes, results in a further increase in the signal:noise ratio.
Organization of area hV5/MT+ in subjects with homonymous visual field defects.
Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M
2018-04-06
Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
Decoding information about dynamically occluded objects in visual cortex
Erlikhman, Gennady; Caplovitz, Gideon P.
2016-01-01
During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987
Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei
2010-12-01
One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.
Perrone-Bertolotti, Marcela; Kujala, Jan; Vidal, Juan R; Hamame, Carlos M; Ossandon, Tomas; Bertrand, Olivier; Minotti, Lorella; Kahane, Philippe; Jerbi, Karim; Lachaux, Jean-Philippe
2012-12-05
As you might experience it while reading this sentence, silent reading often involves an imagery speech component: we can hear our own "inner voice" pronouncing words mentally. Recent functional magnetic resonance imaging studies have associated that component with increased metabolic activity in the auditory cortex, including voice-selective areas. It remains to be determined, however, whether this activation arises automatically from early bottom-up visual inputs or whether it depends on late top-down control processes modulated by task demands. To answer this question, we collaborated with four epileptic human patients recorded with intracranial electrodes in the auditory cortex for therapeutic purposes, and measured high-frequency (50-150 Hz) "gamma" activity as a proxy of population level spiking activity. Temporal voice-selective areas (TVAs) were identified with an auditory localizer task and monitored as participants viewed words flashed on screen. We compared neural responses depending on whether words were attended or ignored and found a significant increase of neural activity in response to words, strongly enhanced by attention. In one of the patients, we could record that response at 800 ms in TVAs, but also at 700 ms in the primary auditory cortex and at 300 ms in the ventral occipital temporal cortex. Furthermore, single-trial analysis revealed a considerable jitter between activation peaks in visual and auditory cortices. Altogether, our results demonstrate that the multimodal mental experience of reading is in fact a heterogeneous complex of asynchronous neural responses, and that auditory and visual modalities often process distinct temporal frames of our environment at the same time.
Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps
Antolík, Ján
2017-01-01
Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869
2013-01-01
Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896
ERIC Educational Resources Information Center
Tsubomi, Hiroyuki; Ikeda, Takashi; Osaka, Naoyuki
2012-01-01
Perceived brightness is well described by Stevens' power function (S. S. Stevens, 1957, On the psychophysical law, "Psychological Review", Vol. 64, pp. 153-181), with a power exponent of 0.33 (the cubic-root function of luminance). The power exponent actually varies across individuals, yet little is known about neural substrates underlying this…
Acute effects of aerobic exercise promote learning
Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo
2016-01-01
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330
Penhune, V B; Zatorre, R J; Feindel, W H
1999-03-01
This experiment examined the participation of the auditory cortex of the temporal lobe in the perception and retention of rhythmic patterns. Four patient groups were tested on a paradigm contrasting reproduction of auditory and visual rhythms: those with right or left anterior temporal lobe removals which included Heschl's gyrus (HG), the region of primary auditory cortex (RT-A and LT-A); and patients with right or left anterior temporal lobe removals which did not include HG (RT-a and LT-a). Estimation of lesion extent in HG using an MRI-based probabilistic map indicated that, in the majority of subjects, the lesion was confined to the anterior secondary auditory cortex located on the anterior-lateral extent of HG. On the rhythm reproduction task, RT-A patients were impaired in retention of auditory but not visual rhythms, particularly when accurate reproduction of stimulus durations was required. In contrast, LT-A patients as well as both RT-a and LT-a patients were relatively unimpaired on this task. None of the patient groups was impaired in the ability to make an adequate motor response. Further, they were unimpaired when using a dichotomous response mode, indicating that they were able to adequately differentiate the stimulus durations and, when given an alternative method of encoding, to retain them. Taken together, these results point to a specific role for the right anterior secondary auditory cortex in the retention of a precise analogue representation of auditory tonal patterns.
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel
2017-07-26
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.
Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
Bornschein, Jörg; Henniges, Marc; Lücke, Jörg
2013-01-01
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Ventral and dorsal streams processing visual motion perception (FDG-PET study)
2012-01-01
Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430
Decoding natural images from evoked brain activities using encoding models with invertible mapping.
Li, Chao; Xu, Junhai; Liu, Baolin
2018-05-21
Recent studies have built encoding models in the early visual cortex, and reliable mappings have been made between the low-level visual features of stimuli and brain activities. However, these mappings are irreversible, so that the features cannot be directly decoded. To solve this problem, we designed a sparse framework-based encoding model that predicted brain activities from a complete feature representation. Moreover, according to the distribution and activation rules of neurons in the primary visual cortex (V1), three key transformations were introduced into the basic feature to improve the model performance. In this setting, the mapping was simple enough that it could be inverted using a closed-form formula. Using this mapping, we designed a hybrid identification method based on the support vector machine (SVM), and tested it on a published functional magnetic resonance imaging (fMRI) dataset. The experiments confirmed the rationality of our encoding model, and the identification accuracies for 2 subjects increased from 92% and 72% to 98% and 92% with the chance level only 0.8%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
Chen, W; Novotny, E J; Zhu, X H; Rothman, D L; Shulman, R G
1993-01-01
Spatially localized 1H NMR spectroscopy has been applied to measure changes in brain glucose concentration during 8-Hz photic stimulation. NMR spectroscopic measurements were made in a 12-cm3 volume centered on the calcarine fissure and encompassing the primary visual cortex. The average maximum change in glucose levels was 0.34 mumol.g-1 (n = 5) at 15 min; glucose level had turned toward resting level at 25 min. The glucose change was used to calculate the increase of glucose cerebral metabolic rate in the visual cortex region for individual subjects by using the Michaelis-Menten model of glucose transport on the assumption of constant transport kinetics. The glucose cerebral metabolic rate was calculated to increase over the nonstimulated rate by 22% during the first 15 min of photic stimulation. A model in which the glucose metabolic rate gradually decreases during stimulation was proposed as a possible explanation for the recovery of brain glucose and previously measured lactate concentrations to prestimulus values after 15 min. Images Fig. 1 PMID:8234332
Microstimulation with Chronically Implanted Intracortical Electrodes
NASA Astrophysics Data System (ADS)
McCreery, Douglas
Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.
Böhm, Michael R. R.; Melkonyan, Harutyun; Thanos, Solon
2015-01-01
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies. PMID:25788877
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Evidence for unlimited capacity processing of simple features in visual cortex
White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.
2017-01-01
Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964
Eguchi, Akihiro; Neymotin, Samuel A.; Stringer, Simon M.
2014-01-01
Although many computational models have been proposed to explain orientation maps in primary visual cortex (V1), it is not yet known how similar clusters of color-selective neurons in macaque V1/V2 are connected and develop. In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. Each color input is decomposed into a red, green, and blue representation and transmitted to the visual cortex via a simulated optic nerve in a luminance channel and red–green and blue–yellow opponent color channels. Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1 output layer makes synaptic connections to neighboring neurons and receives the three types of signals in the different channels from the corresponding photoreceptor position. Synaptic weights are randomized and learned using spike-timing-dependent plasticity (STDP). After training with natural images, the neurons display heightened sensitivity to specific colors. Information-theoretic analysis reveals mutual information between particular stimuli and responses, and that the information reaches a maximum with fewer neurons in the higher layers, indicating that estimations of the input colors can be done using the output of fewer cells in the later stages of cortical processing. In addition, cells with similar color receptive fields form clusters. Analysis of spiking activity reveals increased firing synchrony between neurons when particular color inputs are presented or removed (ON-cell/OFF-cell). PMID:24659956
Laminar circuit organization and response modulation in mouse visual cortex
Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin
2012-01-01
The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751
Mizuguchi, N; Nakata, H; Kanosue, K
2016-02-19
To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jacobs, Bob; Harland, Tessa; Kennedy, Deborah; Schall, Matthew; Wicinski, Bridget; Butti, Camilla; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R
2015-09-01
The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.
Verbal creativity in semantic variant primary progressive aphasia.
Wu, Teresa Q; Miller, Zachary A; Adhimoolam, Babu; Zackey, Diana D; Khan, Baber K; Ketelle, Robin; Rankin, Katherine P; Miller, Bruce L
2015-02-01
Emergence of visual and musical creativity in the setting of neurologic disease has been reported in patients with semantic variant primary progressive aphasia (svPPA), also called semantic dementia (SD). It is hypothesized that loss of left anterior frontotemporal function facilitates activity of the right posterior hemispheric structures, leading to de novo creativity observed in visual artistic representation. We describe creativity in the verbal domain, for the first time, in three patients with svPPA. Clinical presentations are carefully described in three svPPA patients exhibiting verbal creativity, including neuropsychology, neurologic exam, and structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) was performed to quantify brain atrophy patterns in these patients against age-matched healthy controls. All three patients displayed new-onset creative writing behavior and produced extensive original work during the course of disease. Patient A developed interest in wordplay and generated a large volume of poetry. Patient B became fascinated with rhyming and punning. Patient C wrote and published a lifestyle guidebook. An overlap of their structural MR scans showed uniform sparing in the lateral portions of the language-dominant temporal lobe (superior and middle gyri) and atrophy in the medial temporal cortex (amygdala, limbic cortex). New-onset creativity in svPPA may represent a paradoxical functional facilitation. A similar drive for production is found in visually artistic and verbally creative patients. Mirroring the imaging findings in visually artistic patients, verbal preoccupation and creativity may be associated with medial atrophy in the language-dominant temporal lobe, but sparing of lateral dominant temporal and non-dominant posterior cortices.
Lein, E S; Shatz, C J
2000-02-15
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.
Neuroprotective effects of yoga practice: age-, experience-, and frequency-dependent plasticity
Villemure, Chantal; Čeko, Marta; Cotton, Valerie A.; Bushnell, M. Catherine
2015-01-01
Yoga combines postures, breathing, and meditation. Despite reported health benefits, yoga’s effects on the brain have received little study. We used magnetic resonance imaging to compare age-related gray matter (GM) decline in yogis and controls. We also examined the effect of increasing yoga experience and weekly practice on GM volume and assessed which aspects of weekly practice contributed most to brain size. Controls displayed the well documented age-related global brain GM decline while yogis did not, suggesting that yoga contributes to protect the brain against age-related decline. Years of yoga experience correlated mostly with GM volume differences in the left hemisphere (insula, frontal operculum, and orbitofrontal cortex) suggesting that yoga tunes the brain toward a parasympatically driven mode and positive states. The number of hours of weekly practice correlated with GM volume in the primary somatosensory cortex/superior parietal lobule (S1/SPL), precuneus/posterior cingulate cortex (PCC), hippocampus, and primary visual cortex (V1). Commonality analyses indicated that the combination of postures and meditation contributed the most to the size of the hippocampus, precuneus/PCC, and S1/SPL while the combination of meditation and breathing exercises contributed the most to V1 volume. Yoga’s potential neuroprotective effects may provide a neural basis for some of its beneficial effects. PMID:26029093
Salient sounds activate human visual cortex automatically.
McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A
2013-05-22
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.
Salient sounds activate human visual cortex automatically
McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.
2013-01-01
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.
Huertas, Marco A; Hussain Shuler, Marshall G; Shouval, Harel Z
2015-09-16
Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1) of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past. These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can be encoded at the expected delay in the network and how peaked responses express this reward expectancy. Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical approaches, it is treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe under what conditions this heterogeneity can arise by self-organization, and what information it can convey. This study, while focusing on a specific system, provides insight onto how heterogeneity can arise in general while also shedding light onto mechanisms of reinforcement learning using realistic biological assumptions. Copyright © 2015 the authors 0270-6474/15/3512659-14$15.00/0.
"Visual" Cortex Responds to Spoken Language in Blind Children.
Bedny, Marina; Richardson, Hilary; Saxe, Rebecca
2015-08-19
Plasticity in the visual cortex of blind individuals provides a rare window into the mechanisms of cortical specialization. In the absence of visual input, occipital ("visual") brain regions respond to sound and spoken language. Here, we examined the time course and developmental mechanism of this plasticity in blind children. Nineteen blind and 40 sighted children and adolescents (4-17 years old) listened to stories and two auditory control conditions (unfamiliar foreign speech, and music). We find that "visual" cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound. We conclude that in the absence of visual input, spoken language colonizes the visual system during brain development. Our findings suggest that early in life, human cortex has a remarkably broad computational capacity. The same cortical tissue can take on visual perception and language functions. Studies of plasticity provide key insights into how experience shapes the human brain. The "visual" cortex of adults who are blind from birth responds to touch, sound, and spoken language. To date, all existing studies have been conducted with adults, so little is known about the developmental trajectory of plasticity. We used fMRI to study the emergence of "visual" cortex responses to sound and spoken language in blind children and adolescents. We find that "visual" cortex responses to sound increase between 4 and 17 years of age. By contrast, responses to spoken language are present by 4 years of age and are not related to Braille-learning. These findings suggest that, early in development, human cortex can take on a strikingly wide range of functions. Copyright © 2015 the authors 0270-6474/15/3511674-08$15.00/0.
Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.
Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan
2016-03-16
Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high-likelihood context, detection was faster and more reliable. Neuronal recording from the vibrissal cortex revealed enhanced representation of vibrations in the prioritized context. These results establish the rat as an alternative model organism to primates for studying attention. Copyright © 2016 the authors 0270-6474/16/363243-11$15.00/0.
Ye, Qian; Miao, Qing-Long
2013-08-08
Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2-6 during postnatal days (PD) 10-28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca(2+) binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors - Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2-6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development. © Elsevier B.V. All rights reserved.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike
2018-01-01
A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning enhances the relative impact of top-down processing in the visual cortex
Makino, Hiroshi; Komiyama, Takaki
2015-01-01
Theories have proposed that in sensory cortices learning can enhance top-down modulation by higher brain areas while reducing bottom-up sensory inputs. To address circuit mechanisms underlying this process, we examined the activity of layer 2/3 (L2/3) excitatory neurons in the mouse primary visual cortex (V1) as well as L4 neurons, the main bottom-up source, and long-range top-down projections from the retrosplenial cortex (RSC) during associative learning over days using chronic two-photon calcium imaging. During learning, L4 responses gradually weakened, while RSC inputs became stronger. Furthermore, L2/3 acquired a ramp-up response temporal profile with learning, coinciding with a similar change in RSC inputs. Learning also reduced the activity of somatostatin-expressing inhibitory neurons (SOM-INs) in V1 that could potentially gate top-down inputs. Finally, RSC inactivation or SOM-IN activation was sufficient to partially reverse the learning-induced changes in L2/3. Together, these results reveal a learning-dependent dynamic shift in the balance between bottom-up and top-down information streams and uncover a role of SOM-INs in controlling this process. PMID:26167904
White and gray matter damage in primary progressive MS
Chard, Declan; Altmann, Daniel R.; Tozer, Daniel; Miller, David H.; Thompson, Alan J.; Wheeler-Kingshott, Claudia; Ciccarelli, Olga
2016-01-01
Objective: The temporal relationship between white matter (WM) and gray matter (GM) damage in vivo in early primary progressive multiple sclerosis (PPMS) was investigated testing 2 hypotheses: (1) WM tract abnormalities predict subsequent changes in the connected cortex (“primary WM damage model”); and (2) cortical abnormalities predict later changes in connected WM tracts (“primary GM damage model”). Methods: Forty-seven patients with early PPMS and 18 healthy controls had conventional and magnetization transfer imaging at baseline; a subgroup of 35 patients repeated the protocol after 2 years. Masks of the corticospinal tracts, genu of the corpus callosum and optic radiations, and of connected cortical regions, were used for extracting the mean magnetization transfer ratio (MTR). Multiple regressions within each of 5 tract-cortex pairs were performed, adjusting for the dependent variable's baseline MTR; tract lesion load and MTR, spinal cord area, age, and sex were examined for potential confounding. Results: The baseline MTR of most regions was lower in patients than in healthy controls. The tract-cortex pair relationships in the primary WM damage model were significant for the bilateral motor pair and right visual pair, while those in the primary GM damage model were only significant for the right motor pair. Lower lesion MTR at baseline was associated with lower MTR in the same tract normal-appearing WM at 2 years in 3 tracts. Conclusion: These results are consistent with the hypothesis that in early PPMS, cortical damage is for the most part a sequela of normal-appearing WM pathology, which, in turn, is predicted by abnormalities within WM lesions. PMID:26674332
White and gray matter damage in primary progressive MS: The chicken or the egg?
Bodini, Benedetta; Chard, Declan; Altmann, Daniel R; Tozer, Daniel; Miller, David H; Thompson, Alan J; Wheeler-Kingshott, Claudia; Ciccarelli, Olga
2016-01-12
The temporal relationship between white matter (WM) and gray matter (GM) damage in vivo in early primary progressive multiple sclerosis (PPMS) was investigated testing 2 hypotheses: (1) WM tract abnormalities predict subsequent changes in the connected cortex ("primary WM damage model"); and (2) cortical abnormalities predict later changes in connected WM tracts ("primary GM damage model"). Forty-seven patients with early PPMS and 18 healthy controls had conventional and magnetization transfer imaging at baseline; a subgroup of 35 patients repeated the protocol after 2 years. Masks of the corticospinal tracts, genu of the corpus callosum and optic radiations, and of connected cortical regions, were used for extracting the mean magnetization transfer ratio (MTR). Multiple regressions within each of 5 tract-cortex pairs were performed, adjusting for the dependent variable's baseline MTR; tract lesion load and MTR, spinal cord area, age, and sex were examined for potential confounding. The baseline MTR of most regions was lower in patients than in healthy controls. The tract-cortex pair relationships in the primary WM damage model were significant for the bilateral motor pair and right visual pair, while those in the primary GM damage model were only significant for the right motor pair. Lower lesion MTR at baseline was associated with lower MTR in the same tract normal-appearing WM at 2 years in 3 tracts. These results are consistent with the hypothesis that in early PPMS, cortical damage is for the most part a sequela of normal-appearing WM pathology, which, in turn, is predicted by abnormalities within WM lesions. © 2015 American Academy of Neurology.
Hennessy, M J; Binnie, C D
2000-01-01
To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.
Korogi, Y; Takahashi, M; Hirai, T; Ikushima, I; Kitajima, M; Sugahara, T; Shigematsu, Y; Okajima, T; Mukuno, K
1997-01-01
To compare MR imaging findings of the striate cortex with visual field deficits in patients with Minamata disease and to reestimate the classical Holmes retinotopic map by using the data obtained from comparing visual field abnormalities with degree of visual cortex atrophy. MR imaging was performed in eight patients with Minamata disease who had been given a full neuroophthalmic examination, including Goldmann dynamic perimetry. The atrophic portions of the calcarine area were measured in the sagittal plane next to the midsagittal image and represented as a percentage of atrophy of the total length of the calcarine fissure. MR findings were compared with results of a visual field test. The visual field test revealed moderate to severe concentric constriction of the visual fields, with central vision ranging from 7 degrees to 42 degrees (mean, 19 degrees). The ventral portion of the calcarine sulcus was significantly dilated on MR images in all patients. A logarithmic correlation was found between the visual field defect and the extent of dilatation of the calcarine fissure. The central 10 degrees and 30 degrees of vision seemed to fill about 20% and 50% of the total surface area of the calcarine cortex, respectively. Visual field deficits in patients with Minamata disease correlated well with MR findings of the striate cortex. Our data were consistent with the classical Holmes retinotopic map.
Multimodal lexical processing in auditory cortex is literacy skill dependent.
McNorgan, Chris; Awati, Neha; Desroches, Amy S; Booth, James R
2014-09-01
Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others demonstrate recruitment of primary and associative auditory cortex during cross-modal processing. We sought to determine whether brain regions supporting phonological processing of larger lexical units (monosyllabic words) over larger time windows is sensitive to cross-modal information, and whether such effects are literacy dependent. Twenty-two children (age 8-14 years) made rhyming judgments for sequentially presented word and pseudoword pairs presented either unimodally (auditory- or visual-only) or cross-modally (audiovisual). Regression analyses examined the relationship between literacy and congruency effects (overlapping orthography and phonology vs. overlapping phonology-only). We extend previous findings by showing that higher literacy is correlated with greater congruency effects in auditory cortex (i.e., planum temporale) only for cross-modal processing. These skill effects were specific to known words and occurred over a large time window, suggesting that multimodal integration in posterior auditory cortex is critical for fluent reading. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Jack J. Q.; Welage, Nandana
2018-01-01
Objective To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed. Results A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex. Conclusions MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex. PMID:29853839
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.
Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R
2008-01-01
Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.
Shapley, Robert M.; Xing, Dajun
2012-01-01
Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cortex. Second, inhibition increases cortical feature selectivity: many studies of different sensory cortical areas have reported that suppressive mechanisms contribute to feature selectivity. Synaptic inhibition from the local microcircuit should be untuned (or broadly tuned) for stimulus features because of the microarchitecture of the cortical microcircuit. Untuned inhibition probably is the source of Untuned Suppression that enhances feature selectivity. We studied inhibition’s function in our experiments, guided by a neuronal network model, on orientation selectivity in the primary visual cortex, V1, of the Macaque monkey. Our results revealed that Untuned Suppression, generated by local circuit inhibition, is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:23036513
Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto
2018-01-01
The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838
Ashtari, Manzar; Zhang, Hui; Cook, Philip A; Cyckowski, Laura L; Shindler, Kenneth S; Marshall, Kathleen A; Aravand, Puya; Vossough, Arastoo; Gee, James C; Maguire, Albert M; Baker, Chris I; Bennett, Jean
2015-07-15
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber's congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. Copyright © 2015, American Association for the Advancement of Science.
Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R
2010-04-01
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Zeki, Semir
2016-10-01
Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Arc restores juvenile plasticity in adult mouse visual cortex
Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.
2017-01-01
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.
Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo
2016-10-20
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.
Songnian, Zhao; Qi, Zou; Chang, Liu; Xuemin, Liu; Shousi, Sun; Jun, Qiu
2014-04-23
How it is possible to "faithfully" represent a three-dimensional stereoscopic scene using Cartesian coordinates on a plane, and how three-dimensional perceptions differ between an actual scene and an image of the same scene are questions that have not yet been explored in depth. They seem like commonplace phenomena, but in fact, they are important and difficult issues for visual information processing, neural computation, physics, psychology, cognitive psychology, and neuroscience. The results of this study show that the use of plenoptic (or all-optical) functions and their dual plane parameterizations can not only explain the nature of information processing from the retina to the primary visual cortex and, in particular, the characteristics of the visual pathway's optical system and its affine transformation, but they can also clarify the reason why the vanishing point and line exist in a visual image. In addition, they can better explain the reasons why a three-dimensional Cartesian coordinate system can be introduced into the two-dimensional plane to express a real three-dimensional scene. 1. We introduce two different mathematical expressions of the plenoptic functions, Pw and Pv that can describe the objective world. We also analyze the differences between these two functions when describing visual depth perception, that is, the difference between how these two functions obtain the depth information of an external scene.2. The main results include a basic method for introducing a three-dimensional Cartesian coordinate system into a two-dimensional plane to express the depth of a scene, its constraints, and algorithmic implementation. In particular, we include a method to separate the plenoptic function and proceed with the corresponding transformation in the retina and visual cortex.3. We propose that size constancy, the vanishing point, and vanishing line form the basis of visual perception of the outside world, and that the introduction of a three-dimensional Cartesian coordinate system into a two dimensional plane reveals a corresponding mapping between a retinal image and the vanishing point and line.
2014-01-01
Background How it is possible to “faithfully” represent a three-dimensional stereoscopic scene using Cartesian coordinates on a plane, and how three-dimensional perceptions differ between an actual scene and an image of the same scene are questions that have not yet been explored in depth. They seem like commonplace phenomena, but in fact, they are important and difficult issues for visual information processing, neural computation, physics, psychology, cognitive psychology, and neuroscience. Results The results of this study show that the use of plenoptic (or all-optical) functions and their dual plane parameterizations can not only explain the nature of information processing from the retina to the primary visual cortex and, in particular, the characteristics of the visual pathway’s optical system and its affine transformation, but they can also clarify the reason why the vanishing point and line exist in a visual image. In addition, they can better explain the reasons why a three-dimensional Cartesian coordinate system can be introduced into the two-dimensional plane to express a real three-dimensional scene. Conclusions 1. We introduce two different mathematical expressions of the plenoptic functions, P w and P v that can describe the objective world. We also analyze the differences between these two functions when describing visual depth perception, that is, the difference between how these two functions obtain the depth information of an external scene. 2. The main results include a basic method for introducing a three-dimensional Cartesian coordinate system into a two-dimensional plane to express the depth of a scene, its constraints, and algorithmic implementation. In particular, we include a method to separate the plenoptic function and proceed with the corresponding transformation in the retina and visual cortex. 3. We propose that size constancy, the vanishing point, and vanishing line form the basis of visual perception of the outside world, and that the introduction of a three-dimensional Cartesian coordinate system into a two dimensional plane reveals a corresponding mapping between a retinal image and the vanishing point and line. PMID:24755246
Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY
2018-01-01
A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853
Experience-enabled enhancement of adult visual cortex function.
Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T
2013-03-20
We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon
2012-03-06
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde
2017-09-13
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.
The onset of visual experience gates auditory cortex critical periods
Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.
2016-01-01
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje
2017-11-22
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. Copyright © 2017 Seillier, Lorenz et al.
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Pourriahi, Paria
2017-01-01
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus (“noise-correlation”). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. PMID:29042433
Cumulative latency advance underlies fast visual processing in desynchronized brain state
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-01
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634
Natural image sequences constrain dynamic receptive fields and imply a sparse code.
Häusler, Chris; Susemihl, Alex; Nawrot, Martin P
2013-11-06
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex
Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.; Roland, Per E.
2016-01-01
Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual scenes. PMID:27582693
Cumulative latency advance underlies fast visual processing in desynchronized brain state.
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-07
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.