Science.gov

Sample records for primate cortical auditory

  1. Diverse cortical codes for scene segmentation in primate auditory cortex.

    PubMed

    Malone, Brian J; Scott, Brian H; Semple, Malcolm N

    2015-04-01

    The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isolated by presenting otherwise identical pure tones of differing durations. Cortical response patterns were diverse, including selective encoding of onset and offset transients, tonic firing, and sustained suppression. Spike train classification methods revealed that many neurons robustly encoded tone duration despite substantial diversity in the encoding process. Excellent discrimination performance was achieved by neurons whose responses were primarily phasic at tone offset and by those that responded robustly while the tone persisted. Although diverse cortical response patterns converged on effective duration discrimination, this diversity significantly constrained the utility of decoding models referenced to a spiking pattern averaged across all responses or averaged within the same response category. Using maximum likelihood-based decoding models, we demonstrated that the spike train recorded in a single trial could support direct estimation of stimulus onset and offset. Comparisons between different decoding models established the substantial contribution of bursts of activity at sound onset and offset to demarcating the temporal boundaries of gated tones. Our results indicate that relatively few neurons suffice to provide temporally precise estimates of such auditory "edges," particularly for models that assume and exploit the heterogeneity of neural responses in awake cortex.

  2. Auditory Cortical Responses Elicited in Awake Primates by Random Spectrum Stimuli

    PubMed Central

    Barbour, Dennis L.; Wang, Xiaoqin

    2007-01-01

    Contrary to findings in subcortical auditory nuclei, auditory cortex neurons have traditionally been described as spiking only at the onsets of simple sounds such as pure tones or bandpass noise and to acoustic transients in complex sounds. Furthermore, primary auditory cortex (A1) has traditionally been described as mostly tone responsive and the lateral belt area of primates as mostly noise responsive. The present study was designed to unify the study of these two cortical areas using random spectrum stimuli (RSS), a new class of parametric, wideband, stationary acoustic stimuli. We found that 60% of all neurons encountered in A1 and the lateral belt of awake marmoset monkeys (Callithrix jacchus) showed significant changes in firing rates in response to RSS. Of these, 89% showed sustained spiking in response to one or more individual RSS, a substantially greater percentage than would be expected from traditional studies, indicating that RSS are well suited for studying these two cortical areas. When firing rates elicited by RSS were used to construct linear estimates of frequency tuning for these sustained responders, the shape of the estimate function remained relatively constant throughout the stimulus interval and across the stimulus properties of mean sound level, spectral density, and spectral contrast. This finding indicates that frequency tuning computed from RSS reflects a robust estimate of the actual tuning of a neuron. Use of this estimate to predict rate responses to other RSS, however, yielded poor results, implying that auditory cortex neurons integrate information across frequency nonlinearly. No systematic difference in prediction quality between A1 and the lateral belt could be detected. PMID:12904480

  3. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  4. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  5. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  6. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  7. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  8. On cortical coding of vocal communication sounds in primates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    2000-10-01

    Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory-motor interactions between vocal production and perception systems.

  9. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    PubMed

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.

  10. The outer subventricular zone and primate-specific cortical complexification.

    PubMed

    Dehay, Colette; Kennedy, Henry; Kosik, Kenneth S

    2015-02-18

    Evolutionary expansion and complexification of the primate cerebral cortex are largely linked to the emergence of the outer subventricular zone (OSVZ), a uniquely structured germinal zone that generates the expanded primate supragranular layers. The primate OSVZ departs from rodent germinal zones in that it includes a higher diversity of precursor types, inter-related in bidirectional non-hierarchical lineages. In addition, primate-specific regulatory mechanisms are operating in primate cortical precursors via the occurrence of novel miRNAs. Here, we propose that the origin and evolutionary importance of the OSVZ is related to genetic changes in multiple regulatory loops and that cell-cycle regulation is a favored target for evolutionary adaptation of the cortex.

  11. Cooperative Nonlinearities in Auditory Cortical Neurons

    PubMed Central

    Atencio, Craig A.; Sharpee, Tatyana O.; Schreiner, Christoph E.

    2008-01-01

    SUMMARY Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron’s receptive field, it remains unclear which features of the acoustic environment are specifically represented by neurons in the primary auditory cortex (AI). We characterized cat AI spectrotemporal receptive fields (STRFs) by finding both the spike-triggered average (STA) and stimulus dimensions that maximized the mutual information between response and stimulus. We derived a nonlinearity relating spiking to stimulus projection onto two maximally informative dimensions (MIDs). The STA was highly correlated with the first MID. Generally, the nonlinearity for the first MID was asymmetric and often monotonic in shape, while the second MID nonlinearity was symmetric and non-monotonic. The joint nonlinearity for both MIDs revealed that most first and second MIDs were synergistic, and thus should be considered conjointly. The difference between the nonlinearities suggests different possible roles for the MIDs in auditory processing. PMID:18579084

  12. Comodulation Enhances Signal Detection via Priming of Auditory Cortical Circuits

    PubMed Central

    Sollini, Joseph

    2016-01-01

    Acoustic environments are composed of complex overlapping sounds that the auditory system is required to segregate into discrete perceptual objects. The functions of distinct auditory processing stations in this challenging task are poorly understood. Here we show a direct role for mouse auditory cortex in detection and segregation of acoustic information. We measured the sensitivity of auditory cortical neurons to brief tones embedded in masking noise. By altering spectrotemporal characteristics of the masker, we reveal that sensitivity to pure tone stimuli is strongly enhanced in coherently modulated broadband noise, corresponding to the psychoacoustic phenomenon comodulation masking release. Improvements in detection were largest following priming periods of noise alone, indicating that cortical segregation is enhanced over time. Transient opsin-mediated silencing of auditory cortex during the priming period almost completely abolished these improvements, suggesting that cortical processing may play a direct and significant role in detection of quiet sounds in noisy environments. SIGNIFICANCE STATEMENT Auditory systems are adept at detecting and segregating competing sound sources, but there is little direct evidence of how this process occurs in the mammalian auditory pathway. We demonstrate that coherent broadband noise enhances signal representation in auditory cortex, and that prolonged exposure to noise is necessary to produce this enhancement. Using optogenetic perturbation to selectively silence auditory cortex during early noise processing, we show that cortical processing plays a crucial role in the segregation of competing sounds. PMID:27927950

  13. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  14. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  15. Visual change detection recruits auditory cortices in early deafness.

    PubMed

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  16. Auditory cortex of bats and primates: managing species-specific calls for social communication.

    PubMed

    Kanwal, Jagmeet S; Rauschecker, Josef P

    2007-05-01

    Individuals of many animal species communicate with each other using sounds or "calls" that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use "combination-sensitivity" (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into "what" and "where" streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural "management" of species-specific calls in bats and primates can be tested by studying

  17. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  18. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  19. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  20. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  1. Visual-induced expectations modulate auditory cortical responses

    PubMed Central

    van Wassenhove, Virginie; Grzeczkowski, Lukasz

    2015-01-01

    Active sensing has important consequences on multisensory processing (Schroeder et al., 2010). Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient color changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the “where” and the “when” of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG) while maintaining the position of their eyes on the left, right, or center of the screen. Participants counted color changes of the fixation cross while neglecting sounds which could be presented to the left, right, or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants' attention directed to visual inputs. Second, color changes elicited robust modulations of auditory cortex responses (“when” prediction) seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of “when” a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that “where” predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds. PMID:25705174

  2. Lifespan Differences in Cortical Dynamics of Auditory Perception

    ERIC Educational Resources Information Center

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  3. Neuromagnetic evidence of broader auditory cortical tuning in schizophrenia

    PubMed Central

    Rojas, Donald C.; Slason, Erin; Teale, Peter D.; Reite, Martin L.

    2007-01-01

    Deficits in basic auditory perception have been described in schizophrenia. Previous electrophysiological imaging research has documented a structure-function disassociation in the auditory system and altered tonotopic mapping in schizophrenia. The present study examined auditory cortical tuning in patients with schizophrenia. Eighteen patients with schizophrenia and 15 comparison subjects were recorded in a magnetoencephalographic (MEG) experiment of auditory tuning. Auditory cortical tuning at 1 kHz was examined by delivering 1 kHz pure tones in conjunction with pure tones at 5 frequencies surrounding and including 1 kHz. Source reconstruction data were examined for evidence of frequency specificity for the M100 component. There was a significant broadening of tuning in the schizophrenia group evident for the source amplitude of the M100. The frequently reported reduction in anterior-posterior source asymmetry for individuals with schizophrenia was replicated in this experiment. No relationships between symptom severity ratings and MEG measures were observed. This finding suggests that the frequency specificity of the M100 auditory evoked field is disturbed in schizophrenia, and may help explain the relatively poor behavioral performance of schizophrenia patients on simple frequency discrimination tasks. PMID:17851045

  4. Dynamics of auditory cortical activity during behavioural engagement and auditory perception

    PubMed Central

    Carcea, Ioana; Insanally, Michele N.; Froemke, Robert C.

    2017-01-01

    Behavioural engagement can enhance sensory perception. However, the neuronal mechanisms by which behavioural states affect stimulus perception remain poorly understood. Here we record from single units in auditory cortex of rats performing a self-initiated go/no-go auditory task. Self-initiation transforms cortical tuning curves and bidirectionally modulates stimulus-evoked activity patterns and improves auditory detection and recognition. Trial self-initiation decreases the rate of spontaneous activity in the majority of recorded cells. Optogenetic disruption of cortical activity before and during tone presentation shows that these changes in evoked and spontaneous activity are important for sound perception. Thus, behavioural engagement can prepare cortical circuits for sensory processing by dynamically changing sound representation and by controlling the pattern of spontaneous activity. PMID:28176787

  5. Dynamics of auditory cortical activity during behavioural engagement and auditory perception.

    PubMed

    Carcea, Ioana; Insanally, Michele N; Froemke, Robert C

    2017-02-08

    Behavioural engagement can enhance sensory perception. However, the neuronal mechanisms by which behavioural states affect stimulus perception remain poorly understood. Here we record from single units in auditory cortex of rats performing a self-initiated go/no-go auditory task. Self-initiation transforms cortical tuning curves and bidirectionally modulates stimulus-evoked activity patterns and improves auditory detection and recognition. Trial self-initiation decreases the rate of spontaneous activity in the majority of recorded cells. Optogenetic disruption of cortical activity before and during tone presentation shows that these changes in evoked and spontaneous activity are important for sound perception. Thus, behavioural engagement can prepare cortical circuits for sensory processing by dynamically changing sound representation and by controlling the pattern of spontaneous activity.

  6. Spatial Stream Segregation by Auditory Cortical Neurons

    PubMed Central

    Bremen, Peter

    2013-01-01

    In a complex auditory scene, a “cocktail party” for example, listeners can disentangle multiple competing sequences of sounds. A recent psychophysical study in our laboratory demonstrated a robust spatial component of stream segregation showing ∼8° acuity. Here, we recorded single- and multiple-neuron responses from the primary auditory cortex of anesthetized cats while presenting interleaved sound sequences that human listeners would experience as segregated streams. Sequences of broadband sounds alternated between pairs of locations. Neurons synchronized preferentially to sounds from one or the other location, thereby segregating competing sound sequences. Neurons favoring one source location or the other tended to aggregate within the cortex, suggestive of modular organization. The spatial acuity of stream segregation was as narrow as ∼10°, markedly sharper than the broad spatial tuning for single sources that is well known in the literature. Spatial sensitivity was sharpest among neurons having high characteristic frequencies. Neural stream segregation was predicted well by a parameter-free model that incorporated single-source spatial sensitivity and a measured forward-suppression term. We found that the forward suppression was not due to post discharge adaptation in the cortex and, therefore, must have arisen in the subcortical pathway or at the level of thalamocortical synapses. A linear-classifier analysis of single-neuron responses to rhythmic stimuli like those used in our psychophysical study yielded thresholds overlapping those of human listeners. Overall, the results indicate that the ascending auditory system does the work of segregating auditory streams, bringing them to discrete modules in the cortex for selection by top-down processes. PMID:23825404

  7. The influence of natural scene dynamics on auditory cortical activity.

    PubMed

    Chandrasekaran, Chandramouli; Turesson, Hjalmar K; Brown, Charles H; Ghazanfar, Asif A

    2010-10-20

    The efficient cortical encoding of natural scenes is essential for guiding adaptive behavior. Because natural scenes and network activity in cortical circuits share similar temporal scales, it is necessary to understand how the temporal structure of natural scenes influences network dynamics in cortical circuits and spiking output. We examined the relationship between the structure of natural acoustic scenes and its impact on network activity [as indexed by local field potentials (LFPs)] and spiking responses in macaque primary auditory cortex. Natural auditory scenes led to a change in the power of the LFP in the 2-9 and 16-30 Hz frequency ranges relative to the ongoing activity. In contrast, ongoing rhythmic activity in the 9-16 Hz range was essentially unaffected by the natural scene. Phase coherence analysis showed that scene-related changes in LFP power were at least partially attributable to the locking of the LFP and spiking activity to the temporal structure in the scene, with locking extending up to 25 Hz for some scenes and cortical sites. Consistent with distributed place and temporal coding schemes, a key predictor of phase locking and power changes was the overlap between the spectral selectivity of a cortical site and the spectral structure of the scene. Finally, during the processing of natural acoustic scenes, spikes were locked to LFP phase at frequencies up to 30 Hz. These results are consistent with an idea that the cortical representation of natural scenes emerges from an interaction between network activity and stimulus dynamics.

  8. Cortical functional connectivity under different auditory attentional efforts.

    PubMed

    Hong, Xiangfei; Tong, Shanbao

    2012-01-01

    Auditory attentional effort (AAE) could be tuned to different levels in a top-down manner, while its neural correlates are still poorly understood. In this paper, we investigate the cortical connectivity under different levels of AAE. Multichannel EEG signals were recorded from nine subjects (male/female=6=3) in an auditory discrimination task under low or high AAE. Behavioral results showed that subjects paid more attention under high AAE and detected the probe stimuli better than low AAE. Partial directed coherence (PDC) was used to study the cortical functional connectivity within the first 300 ms post-stimulus period which includes the N100 and P200 components in the event-related potential (ERP). Majority of the cortical connections were strengthened with the increase of AAE. The right hemispheric dominance of connectivity in maintaining auditory attention was found under low AAE, which disappeared when the AAE was increased, indicating that the right hemispheric dominance previously reported might be due to a relatively lower AAE. Besides, most cortical connections under high AAE were found to be from the parietal cortex to the prefrontal cortex, which suggested the initiative role of parietal cortex in maintaining a high AAE.

  9. Level dependence of spatial processing in the primate auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2012-01-01

    Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ∼20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from “far” locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex. PMID:22592309

  10. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes.

    PubMed

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  11. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    PubMed Central

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  12. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  13. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  14. The cortical language circuit: from auditory perception to sentence comprehension.

    PubMed

    Friederici, Angela D

    2012-05-01

    Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit.

  15. The Electrically-Evoked Cortical Auditory Event-Related Potential in Children with Auditory Brainstem Implants

    PubMed Central

    He, Shuman; Holly, F.B. Teagle; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A.

    2014-01-01

    Objective This study explored the feasibility of measuring electrically-evoked cortical auditory event-related potentials (eERPs) in children with auditory brainstem implants (ABIs). Design Five children with unilateral ABIs ranging in age from2.8 to 10.2yrs (mean: 5.2yrs) participated in this study. The stimulus was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar stimulation mode. Electrophysiological recordings of the onset eERP were conducted in all subjects. Results The onset eERP was recorded in four subjects who demonstrated auditory perception. These eERP responses showed variations in waveform morphology across subjects and stimulating electrode locations. No eERPs were observed in one subject who received no auditory sensation from ABI stimulation. Conclusions eERPs can be recorded in children with ABIs who develop auditory perception. The morphology of the eERP can vary across subjects and also across stimulating electrode locations within subjects. PMID:25426662

  16. Frequency Changes in a Continuous Tone: Auditory Cortical Potentials

    PubMed Central

    Dimitrijevic, Andrew; Michalewski, Henry J.; Zeng, Fan-Gang; Pratt, Hillel; Starr, Arnold

    2009-01-01

    Objective We examined auditory cortical potentials in normal hearing subjects to spectral changes in continuous low and high frequency pure tones. Methods Cortical potentials were recorded to increments of frequency from continuous 250 Hz or 4000 Hz tones. The magnitude of change was random and varied from 0% to 50% above the base frequency. Results Potentials consisted of N100, P200 and a slow negative wave (SN). N100 amplitude, latency and dipole magnitude with frequency increments were significantly greater for low compared to high frequencies. Dipole amplitudes were greater in the right than left hemisphere for both base frequencies. The SN amplitude to frequency changes between 4 to 50% was not significantly related to the magnitude of spectral change. Conclusions Modulation of N100 amplitude and latency elicited by spectral change is more pronounced with low compared to high frequencies. Significance These data provide electrophysiological evidence that central processing of spectral changes in the cortex differs for low and high frequencies. Some of these differences may be related to both temporal- and spectral-based coding at the auditory periphery. Central representation of frequency change may be related to the different temporal windows of integration across frequencies. PMID:18635394

  17. Cortical alpha oscillations as a tool for auditory selective inhibition

    PubMed Central

    Strauß, Antje; Wöstmann, Malte; Obleser, Jonas

    2014-01-01

    Listening to speech is often demanding because of signal degradations and the presence of distracting sounds (i.e., “noise”). The question how the brain achieves the task of extracting only relevant information from the mixture of sounds reaching the ear (i.e., “cocktail party problem”) is still open. In analogy to recent findings in vision, we propose cortical alpha (~10 Hz) oscillations measurable using M/EEG as a pivotal mechanism to selectively inhibit the processing of noise to improve auditory selective attention to task-relevant signals. We review initial evidence of enhanced alpha activity in selective listening tasks, suggesting a significant role of alpha-modulated noise suppression in speech. We discuss the importance of dissociating between noise interference in the auditory periphery (i.e., energetic masking) and noise interference with more central cognitive aspects of speech processing (i.e., informational masking). Finally, we point out the adverse effects of age-related hearing loss and/or cognitive decline on auditory selective inhibition. With this perspective article, we set the stage for future studies on the inhibitory role of alpha oscillations for speech processing in challenging listening situations. PMID:24904385

  18. Longitudinal maturation of auditory cortical function during adolescence

    PubMed Central

    Fitzroy, Ahren B.; Krizman, Jennifer; Tierney, Adam; Agouridou, Manto; Kraus, Nina

    2015-01-01

    Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation. PMID:26539092

  19. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions.

    PubMed

    de la Mothe, Lisa A; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A

    2012-05-01

    The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.

  20. Modeling the representation of speech sounds in auditory cortical areas

    NASA Astrophysics Data System (ADS)

    Guenther, Frank H.; Tourville, Jason A.; Bohland, Jason W.

    2003-04-01

    Many studies have shown that sounds from near the center of a sound category (such as a phoneme from one's native language) are more difficult to discriminate from each other than sounds from near a category boundary. However, the neural processes underlying this phenomenon are not yet clearly understood. In this talk we describe neural models that have been developed to address experimental data from psychophysical and functional brain imaging experiments investigating sound representations in the cortex. Experiments investigating the effects of categorization and discrimination training with nonspeech sounds indicate that different training tasks have different effects on sound discriminability: discrimination training increases the discriminability of the training sounds, whereas learning a new sound category decreases the discriminability of the training sounds within the category. These results can be accounted for by a neural model in which categorization training causes a decrease in the size of the cortical representation of central sounds in the category, while discrimination training leads to an increase in the cortical representation of training sounds. This model is supported by brain imaging results for speech and nonspeech sounds. Experimental results further suggest preferential utilization of different auditory cortical regions when subjects perform identification versus discrimination tasks.

  1. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  2. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  3. Harmonic template neurons in primate auditory cortex underlying complex sound processing.

    PubMed

    Feng, Lei; Wang, Xiaoqin

    2017-01-31

    Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music.

  4. Predicting perception in noise using cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; McMillan, Garnett P; Penman, Tina M; Gille, Sun Mi

    2013-12-01

    Speech perception in background noise is a common challenge across individuals and health conditions (e.g., hearing impairment, aging, etc.). Both behavioral and physiological measures have been used to understand the important factors that contribute to perception-in-noise abilities. The addition of a physiological measure provides additional information about signal-in-noise encoding in the auditory system and may be useful in clarifying some of the variability in perception-in-noise abilities across individuals. Fifteen young normal-hearing individuals were tested using both electrophysiology and behavioral methods as a means to determine (1) the effects of signal-to-noise ratio (SNR) and signal level and (2) how well cortical auditory evoked potentials (CAEPs) can predict perception in noise. Three correlation/regression approaches were used to determine how well CAEPs predicted behavior. Main effects of SNR were found for both electrophysiology and speech perception measures, while signal level effects were found generally only for speech testing. These results demonstrate that when signals are presented in noise, sensitivity to SNR cues obscures any encoding of signal level cues. Electrophysiology and behavioral measures were strongly correlated. The best physiological predictors (e.g., latency, amplitude, and area of CAEP waves) of behavior (SNR at which 50 % of the sentence is understood) were N1 latency and N1 amplitude measures. In addition, behavior was best predicted by the 70-dB signal/5-dB SNR CAEP condition. It will be important in future studies to determine the relationship of electrophysiology and behavior in populations who experience difficulty understanding speech in noise such as those with hearing impairment or age-related deficits.

  5. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning

    PubMed Central

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2016-01-01

    As in human speech acquisition, songbird vocal learning depends on early auditory experience. During development, juvenile songbirds listen to and form auditory memories of adult tutor songs, which they use to shape their own vocalizations in later sensorimotor learning. The higher-level auditory cortex, called the caudomedial nidopallium (NCM), is a potential storage site for tutor song memory, but no direct electrophysiological evidence of tutor song memory has been found. Here, we identify the neuronal substrate for tutor song memory by recording single-neuron activity in the NCM of behaving juvenile zebra finches. After tutor song experience, a small subset of NCM neurons exhibit highly selective auditory responses to the tutor song. Moreover, blockade of GABAergic inhibition, and sleep decrease their selectivity. Taken together, these results suggest that experience-dependent recruitment of GABA-mediated inhibition shapes auditory cortical circuits, leading to sparse representation of tutor song memory in auditory cortical neurons. PMID:27327620

  6. Rapid cortical dynamics associated with auditory spatial attention gradients

    PubMed Central

    Mock, Jeffrey R.; Seay, Michael J.; Charney, Danielle R.; Holmes, John L.; Golob, Edward J.

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120–200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models. PMID:26082679

  7. Rapid cortical dynamics associated with auditory spatial attention gradients.

    PubMed

    Mock, Jeffrey R; Seay, Michael J; Charney, Danielle R; Holmes, John L; Golob, Edward J

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120-200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models.

  8. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  9. Auditory and visual cortex of primates: a comparison of two sensory systems

    PubMed Central

    Rauschecker, Josef P.

    2014-01-01

    A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177

  10. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    PubMed Central

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  11. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    NASA Astrophysics Data System (ADS)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  12. Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche

    PubMed Central

    Radonjić, Nevena V.; Ayoub, Albert E.; Memi, Fani; Yu, Xiaojing; Maroof, Asif; Jakovcevski, Igor; Anderson, Stewart A.; Rakic, Pasko; Zecevic, Nada

    2015-01-01

    Summary Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates. PMID:25497090

  13. Membrane potential dynamics of populations of cortical neurons during auditory streaming.

    PubMed

    Farley, Brandon J; Noreña, Arnaud J

    2015-10-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts.

  14. Familiarity with Speech Affects Cortical Processing of Auditory Distance Cues and Increases Acuity

    PubMed Central

    Wisniewski, Matthew G.; Mercado, Eduardo; Gramann, Klaus; Makeig, Scott

    2012-01-01

    Several acoustic cues contribute to auditory distance estimation. Nonacoustic cues, including familiarity, may also play a role. We tested participants’ ability to distinguish the distances of acoustically similar sounds that differed in familiarity. Participants were better able to judge the distances of familiar sounds. Electroencephalographic (EEG) recordings collected while participants performed this auditory distance judgment task revealed that several cortical regions responded in different ways depending on sound familiarity. Surprisingly, these differences were observed in auditory cortical regions as well as other cortical regions distributed throughout both hemispheres. These data suggest that learning about subtle, distance-dependent variations in complex speech sounds involves processing in a broad cortical network that contributes both to speech recognition and to how spatial information is extracted from speech. PMID:22911734

  15. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices.

    PubMed

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W

    2010-05-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects the influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl's gyrus) the onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30-35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory and 74 ms in the visual cortex, i.e., 3-21 ms after inputs from the two modalities converged.

  16. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices

    PubMed Central

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P.; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W.

    2010-01-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl’s gyrus) onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30–35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory, and 74 ms in the visual cortex, i.e., 3–21 ms after inputs from both modalities converged. PMID:20584181

  17. Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex.

    PubMed

    Meyer, Martin; Liem, Franziskus; Hirsiger, Sarah; Jäncke, Lutz; Hänggi, Jürgen

    2014-10-01

    This investigation provides an analysis of structural asymmetries in 5 anatomically defined regions (Heschl's gyrus, HG; Heschl's sulcus, HS; planum temporale, PT; planum polare, PP; superior temporal gyrus, STG) within the human auditory-related cortex. Volumetric 3-dimensional T1-weighted magnetic resonance imaging scans were collected from 104 participants (52 males). Cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) were calculated based on individual scans of these anatomical traits. This investigation demonstrates a leftward asymmetry for CV and CSA that is observed in the HG, STG, and PT regions. As regards CT, we note a rightward asymmetry in the HG and HS. A correlation analysis of asymmetry indices between measurements for distinct regions of interest (ROIs) yields significant correlations between CT and CV in 4 of 5 ROIs (HG, HS, PT, and STG). Significant correlation values between CSA and CV are observed for all 5 ROIs. The findings suggest that auditory-related cortical areas demonstrate larger leftward asymmetry with respect to the CSA, while a clear rightward asymmetry with respect to CT is salient in both the primary and the secondary auditory cortex only. In addition, we propose that CV is not an ideal neuromarker for anatomical measurements. CT and CSA should be considered independent traits of anatomical asymmetries in the auditory-related cortex.

  18. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  19. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    PubMed

    Ruusuvirta, Timo; Lipponen, Arto; Pellinen, Eeva; Penttonen, Markku; Astikainen, Piia

    2013-01-01

    Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN) of event-related potentials (ERPs) reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum) local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant) was interspersed with a repeated tone (standard). Two standard-to-standard (SSI) and standard-to-deviant (SDI) intervals (200 ms vs. 500 ms) were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses). Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical) manifestation of MMN.

  20. Auditory Cortical Activity During Cochlear Implant-Mediated Perception of Spoken Language, Melody, and Rhythm

    PubMed Central

    Molloy, Anne T.; Jiradejvong, Patpong; Braun, Allen R.

    2009-01-01

    Despite the significant advances in language perception for cochlear implant (CI) recipients, music perception continues to be a major challenge for implant-mediated listening. Our understanding of the neural mechanisms that underlie successful implant listening remains limited. To our knowledge, this study represents the first neuroimaging investigation of music perception in CI users, with the hypothesis that CI subjects would demonstrate greater auditory cortical activation than normal hearing controls. H215O positron emission tomography (PET) was used here to assess auditory cortical activation patterns in ten postlingually deafened CI patients and ten normal hearing control subjects. Subjects were presented with language, melody, and rhythm tasks during scanning. Our results show significant auditory cortical activation in implant subjects in comparison to control subjects for language, melody, and rhythm. The greatest activity in CI users compared to controls was seen for language tasks, which is thought to reflect both implant and neural specializations for language processing. For musical stimuli, PET scanning revealed significantly greater activation during rhythm perception in CI subjects (compared to control subjects), and the least activation during melody perception, which was the most difficult task for CI users. These results may suggest a possible relationship between auditory performance and degree of auditory cortical activation in implant recipients that deserves further study. PMID:19662456

  1. Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management.

    PubMed

    Herraiz, C; Diges, I; Cobo, P; Aparicio, J M

    2009-01-01

    Scientific evidence has proved reorganisation processes in the auditory cortex after sensorineural hearing loss and overstimulation of certain tonotopic cortical areas, as we see in auditory conditioning techniques. Acoustic rehabilitation reduces the impact of these reorganisation changes. Recent theories explain tinnitus mechanisms as a negative consequence of neural plasticity in the central nervous system after a peripheral aggression. Auditory discrimination training (ADT) could partially reverse the wrong changes in tonotopic representation and improve tinnitus. We discuss different studies and their efficacy on tinnitus perception and annoyance. Indications, method, dose and sound strategy need to be implemented.

  2. Perirhinal cortex relays auditory information to the frontal motor cortices in the rat.

    PubMed

    Kyuhou, Shin-ichi; Matsuzaki, Ryuichi; Gemba, Hisae

    2003-12-26

    Auditory evoked potentials (AEPs) were recorded in the motor cortices (MC) with chronically implanted electrodes in the rat. Some of the AEPs in the MC, namely negative potentials on the surface and positive ones at a depth of 2 mm at latencies of about 50-150 ms, were abolished by limited bilateral lesions of the anterior perirhinal cortex (PERa) which was responsive to auditory stimulus, indicating that the AEPs in the MC were at least partially relayed in the PERa. The auditory response in the MC was prominently enhanced when water was supplied or the medial forebrain bundle was stimulated after auditory stimulus. These results indicate that the MC receives the reward associated auditory information from the PERa.

  3. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  4. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  5. The Investigation of Cortical Auditory Evoked Potentials Responses in Young Adults Having Musical Education

    PubMed Central

    Polat, Zahra; Ataş, Ahmet

    2014-01-01

    Background: In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Aims: Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Study Design: Non-randomized controlled study. Methods: The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Results: Significant differences were found in the amplitude values of P1 and P2 (p<0.05). The differences among the latencies were not found to be significantly important (p>0.05). Conclusion: The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech. PMID:25667787

  6. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo

    2016-02-15

    Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans.

  7. Frequency preference and attention effects across cortical depths in the human primary auditory cortex.

    PubMed

    De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-12-29

    Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.

  8. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  9. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

    PubMed Central

    Willmore, Ben D. B.; Cui, Zhanfeng; Schnupp, Jan W. H.; King, Andrew J.

    2016-01-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1–7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context. PMID:27835647

  10. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.

    PubMed

    Harper, Nicol S; Schoppe, Oliver; Willmore, Ben D B; Cui, Zhanfeng; Schnupp, Jan W H; King, Andrew J

    2016-11-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.

  11. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    PubMed

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.

  12. Enhancement of auditory cortical development by musical experience in children.

    PubMed

    Shahin, Antoine; Roberts, Larry E; Trainor, Laurel J

    2004-08-26

    Auditory evoked potentials (AEPs) express the development of mature synaptic connections in the upper neocortical laminae known to occur between 4 and 15 years of age. AEPs evoked by piano, violin, and pure tones were measured twice in a group of 4- to 5-year-old children enrolled in Suzuki music lessons and in non-musician controls. P1 was larger in the Suzuki pupils for all tones whereas P2 was enhanced specifically for the instrument of practice (piano or violin). AEPs observed for the instrument of practice were comparable to those of non-musician children about 3 years older in chronological age. The findings set into relief a general process by which the neocortical synaptic matrix is shaped by an accumulation of specific auditory experiences.

  13. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    PubMed

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies.

  14. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks.

    PubMed

    Keitel, Anne; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2017-02-15

    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception.

  15. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  16. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  17. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  18. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  19. Meta-adaptation in the auditory midbrain under cortical influence

    PubMed Central

    Robinson, Benjamin L.; Harper, Nicol S.; McAlpine, David

    2016-01-01

    Neural adaptation is central to sensation. Neurons in auditory midbrain, for example, rapidly adapt their firing rates to enhance coding precision of common sound intensities. However, it remains unknown whether this adaptation is fixed, or dynamic and dependent on experience. Here, using guinea pigs as animal models, we report that adaptation accelerates when an environment is re-encountered—in response to a sound environment that repeatedly switches between quiet and loud, midbrain neurons accrue experience to find an efficient code more rapidly. This phenomenon, which we term meta-adaptation, suggests a top–down influence on the midbrain. To test this, we inactivate auditory cortex and find acceleration of adaptation with experience is attenuated, indicating a role for cortex—and its little-understood projections to the midbrain—in modulating meta-adaptation. Given the prevalence of adaptation across organisms and senses, meta-adaptation might be similarly common, with extensive implications for understanding how neurons encode the rapidly changing environments of the real world. PMID:27883088

  20. Knowledge About Sounds—Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice

    PubMed Central

    Geissler, Diana B.; Schmidt, H. Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition. PMID:27013959

  1. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice.

    PubMed

    Geissler, Diana B; Schmidt, H Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition.

  2. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well.

  3. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  4. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat.

    PubMed

    Nieto-Diego, Javier; Malmierca, Manuel S

    2016-03-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience.

  5. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars.

    PubMed

    Shanechi, Maryam M; Hu, Rollin C; Williams, Ziv M

    2014-01-01

    Motor paralysis is among the most disabling aspects of injury to the central nervous system. Here we develop and test a target-based cortical-spinal neural prosthesis that employs neural activity recorded from premotor neurons to control limb movements in functionally paralysed primate avatars. Given the complexity by which muscle contractions are naturally controlled, we approach the problem of eliciting goal-directed limb movement in paralysed animals by focusing on the intended targets of movement rather than their intermediate trajectories. We then match this information in real-time with spinal cord and muscle stimulation parameters that produce free planar limb movements to those intended target locations. We demonstrate that both the decoded activities of premotor populations and their adaptive responses can be used, after brief training, to effectively direct an avatar's limb to distinct targets variably displayed on a screen. These findings advance the future possibility of reconstituting targeted limb movement in paralysed subjects.

  6. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity

    PubMed Central

    Yurgil, Kate A.; Golob, Edward J.

    2014-01-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low vs. high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention control related to WMC and possibly higher-level cognition. PMID:24016201

  7. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment.

  8. Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas

    PubMed Central

    Pallas, Sarah L.

    2013-01-01

    Loss of sensory input from peripheral organ damage, sensory deprivation, or brain damage can result in adaptive or maladaptive changes in sensory cortex. In previous research, we found that auditory cortical tuning and tonotopy were impaired by cross-modal invasion of visual inputs. Sensory deprivation is typically associated with a loss of inhibition. To determine whether inhibitory plasticity is responsible for this process, we measured pre- and postsynaptic changes in inhibitory connectivity in ferret auditory cortex (AC) after cross-modal plasticity. We found that blocking GABAA receptors increased responsiveness and broadened sound frequency tuning in the cross-modal group more than in the normal group. Furthermore, expression levels of glutamic acid decarboxylase (GAD) protein were increased in the cross-modal group. We also found that blocking inhibition unmasked visual responses of some auditory neurons in cross-modal AC. Overall, our data suggest a role for increased inhibition in reducing the effectiveness of the abnormal visual inputs and argue that decreased inhibition is not responsible for compromised auditory cortical function after cross-modal invasion. Our findings imply that inhibitory plasticity may play a role in reorganizing sensory cortex after cross-modal invasion, suggesting clinical strategies for recovery after brain injury or sensory deprivation. PMID:24288625

  9. Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons.

    PubMed

    Rummell, Brian P; Klee, Jan L; Sigurdsson, Torfi

    2016-11-23

    Many of the sounds that we perceive are caused by our own actions, for example when speaking or moving, and must be distinguished from sounds caused by external events. Studies using macroscopic measurements of brain activity in human subjects have consistently shown that responses to self-generated sounds are attenuated in amplitude. However, the underlying manifestation of this phenomenon at the cellular level is not well understood. To address this, we recorded the activity of neurons in the auditory cortex of mice in response to sounds generated by their own behavior. We found that the responses of auditory cortical neurons to these self-generated sounds were consistently attenuated, compared with the same sounds generated independently of the animals' behavior. This effect was observed in both putative pyramidal neurons and in interneurons and was stronger in lower layers of auditory cortex. Downstream of the auditory cortex, we found that responses of hippocampal neurons to self-generated sounds were almost entirely suppressed. Responses to self-generated optogenetic stimulation of auditory thalamocortical terminals were also attenuated, suggesting a cortical contribution to this effect. Further analyses revealed that the attenuation of self-generated sounds was not simply due to the nonspecific effects of movement or behavioral state on auditory responsiveness. However, the strength of attenuation depended on the degree to which self-generated sounds were expected to occur, in a cell-type-specific manner. Together, these results reveal the cellular basis underlying attenuated responses to self-generated sounds and suggest that predictive processes contribute to this effect.

  10. Auditory cortical field coding long-lasting tonal offsets in mice

    PubMed Central

    Baba, Hironori; Tsukano, Hiroaki; Hishida, Ryuichi; Takahashi, Kuniyuki; Horii, Arata; Takahashi, Sugata; Shibuki, Katsuei

    2016-01-01

    Although temporal information processing is important in auditory perception, the mechanisms for coding tonal offsets are unknown. We investigated cortical responses elicited at the offset of tonal stimuli using flavoprotein fluorescence imaging in mice. Off-responses were clearly observed at the offset of tonal stimuli lasting for 7 s, but not after stimuli lasting for 1 s. Off-responses to the short stimuli appeared in a similar cortical region, when conditioning tonal stimuli lasting for 5–20 s preceded the stimuli. MK-801, an inhibitor of NMDA receptors, suppressed the two types of off-responses, suggesting that disinhibition produced by NMDA receptor-dependent synaptic depression might be involved in the off-responses. The peak off-responses were localized in a small region adjacent to the primary auditory cortex, and no frequency-dependent shift of the response peaks was found. Frequency matching of preceding tonal stimuli with short test stimuli was not required for inducing off-responses to short stimuli. Two-photon calcium imaging demonstrated significantly larger neuronal off-responses to stimuli lasting for 7 s in this field, compared with off-responses to stimuli lasting for 1 s. The present results indicate the presence of an auditory cortical field responding to long-lasting tonal offsets, possibly for temporal information processing. PMID:27687766

  11. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.

  12. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

    PubMed Central

    Otani, Tomoki; Marchetto, Maria C.; Gage, Fred H.; Simons, Benjamin D.; Livesey, Frederick J.

    2016-01-01

    Summary Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. PMID:27049876

  13. [Cortical processing of visual and auditory stimuli in depressive patients: a study with event related potentials].

    PubMed

    Ortiz, T; Pérez-Serrano, J M; Coullaut, J; Fudio, S; Coullaut, J; Criado, J

    1998-01-01

    Event related Potentials, which seem to be an objective parameter reflecting cognitive functions, have been examined in depression. To evaluate the influence of visual and auditory stimuli on the P300 latency we studied 42 patients with major depression and 21 normal subjects. The experimental tasks applied were first a series of 300 auditory stimuli [255 (85%) were tones of 1000 Hz, and considered the frequent stimulus, whereas 45 (15%) were tones of 2000 Hz and referred to as the rare stimulus and second a series of 300 visual stimuli 255 (85%) were black circles on a white background, and considered the frequent stimulus, 9 cm diameter, 200 ms duration whereas 45 (15%) were back squares on a white background and referred to as the rare stimulus, 9 cm diameter, 200 ms duration] in the center of a computer screen. The results shown an increase of P300 latency in depressive patients during auditory and visual tasks. Non differences were found in reaction time to visual or auditory stimuli. These results are consistent with an impairment in brain function in depressive patients that is associated with cortical hypoactivity and deficits in perceptive, auditory or visual, functions.

  14. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  15. Early acoustic discrimination experience ameliorates auditory processing deficits in male rats with cortical developmental disruption

    PubMed Central

    Threlkeld, Steven W.; Hill, Courtney A.; Rosen, Glenn D.; Fitch, R. Holly

    2014-01-01

    Auditory temporal processing deficits have been suggested to play a causal role in language learning impairments, and evidence of cortical developmental anomalies (microgyria (MG), ectopia) has been reported for language-impaired populations. Rodent models have linked these features, by showing deficits in auditory temporal discrimination for rats with neuronal migration anomalies (MG, ectopia). Since evidence from human studies suggests that training with both speech and non-speech acoustic stimuli may improve language performance in developmentally language-disabled populations, we were interested in whether/how maturation and early experience might influence auditory processing deficits seen in male rats with induced focal cortical MG. Results showed that for both simple (Normal single tone), as well as increasingly complex auditory discrimination tasks (Silent gap in white noise and FM sweep), prior experience significantly improved acoustic discrimination performance -- in fact, beyond improvements seen with maturation only. Further, we replicated evidence that young adult rats with MG were significantly impaired at discriminating FM sweeps compared to shams. However, these MG effects were no longer seen when experienced subjects were retested in adulthood (even though deficits in short duration FM sweep detection were seen for adult MG rats with no early experience). Thus while some improvements in auditory processing were seen with normal maturation, the effects of early experience were even more profound, in fact resulting in amelioration of MG effects seen at earlier ages. These findings support the clinical view that early training intervention with appropriate acoustic stimuli could similarly ameliorate long-term processing impairments seen in some language-impaired children. PMID:19460626

  16. Role of cortical neurodynamics for understanding the neural basis of motivated behavior - lessons from auditory category learning.

    PubMed

    Ohl, Frank W

    2015-04-01

    Rhythmic activity appears in the auditory cortex in both microscopic and macroscopic observables and is modulated by both bottom-up and top-down processes. How this activity serves both types of processes is largely unknown. Here we review studies that have recently improved our understanding of potential functional roles of large-scale global dynamic activity patterns in auditory cortex. The experimental paradigm of auditory category learning allowed critical testing of the hypothesis that global auditory cortical activity states are associated with endogenous cognitive states mediating the meaning associated with an acoustic stimulus rather than with activity states that merely represent the stimulus for further processing.

  17. Increased neural correlations in primate auditory cortex during slow-wave sleep.

    PubMed

    Issa, Elias B; Wang, Xiaoqin

    2013-06-01

    During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.

  18. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons.

    PubMed

    Lidow, M S; Song, Z M

    2001-07-02

    This study examined the effects of cocaine use during the second trimester of pregnancy on cerebral neocortical volume and density, and total number of neocortical neurons and glia in offspring. We also evaluated the extent of postnatal recovery of cytoarchitectural abnormalities previously observed in the neocortex of two-month-old primates born from cocaine-treated mothers (Lidow [1995] Synapse 21:332-334). Pregnant monkeys received cocaine orally (20 mg/kg/day) from the 40th to 102nd days of pregnancy (embryonic day [E]40-E102). On E64 and E65, the animals were injected with [(3)H]thymidine. Cerebral hemispheres of the offspring were examined at three years of age. We found a reduction in the neocortical volume and density and total number of neocortical neurons. The observed reduction in neuronal number within the neocortex was not accounted for by the increase in the number of neurons in the white matter of cocaine-exposed animals, because the number of these "extra" neurons was equal to only half that of missing neurons. We detected no significant changes in the number of neocortical glia. The cytoarchitectural abnormalities in the neocortex of prenatally cocaine-exposed three-year-old monkeys closely resembled previously described neocortical abnormalities in similarly exposed two-month-old animals: the neocortex lacked a discernible lamination; the majority of the cells labeled by [(3)H]thymidine injected during neocortical neurogenesis did not reach their proper position within the cortical plate. Therefore, postnatal maturation is not associated with significant improvement in neocortical organization in primates prenatally exposed to cocaine. There was, however, a postnatal recovery of low glial fibrillary acidic protein (GFAP) immunoreactivity previously observed in 2-month-old cocaine-exposed animals.

  19. Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals.

    PubMed

    Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L

    2015-09-01

    A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD.

  20. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons

    PubMed Central

    Atencio, Craig A.; Schreiner, Christoph E.

    2008-01-01

    Excitatory pyramidal neurons and inhibitory interneurons constitute the main elements of cortical circuitry and have distinctive morphologic and electrophysiological properties. Here, we differentiate them by analyzing the time course of their action potentials (APs) and characterizing their receptive field properties in auditory cortex. Pyramidal neurons have longer APs and discharge as Regular-Spiking Units (RSUs), while basket and chandelier cells, which are inhibitory interneurons, have shorter APs and are Fast-Spiking Units (FSUs). To compare these neuronal classes we stimulated cat primary auditory cortex neurons with a dynamic moving ripple stimulus and constructed single-unit spectrotemporal receptive fields (STRFs) and their associated nonlinearities. FSUs had shorter latencies, broader spectral tuning, greater stimulus specificity, and higher temporal precision than RSUs. The STRF structure of FSUs was more separable, suggesting more independence between spectral and temporal processing regimes. The nonlinearities associated with the two cell classes was indicative of higher feature selectivity for FSUs. These global functional differences between RSUs and FSUs suggest fundamental distinctions between putative excitatory and inhibitory neurons that shape auditory cortical processing. PMID:18400888

  1. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.

  2. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions

    PubMed Central

    Cardin, Velia

    2016-01-01

    Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss. PMID:27242405

  3. Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields.

    PubMed

    Lee, Christopher M; Osman, Ahmad F; Volgushev, Maxim; Escabí, Monty A; Read, Heather L

    2016-04-01

    Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences. Spike rate, relative synchrony, and first-spike latency metrics have previously been used to quantify neural sensitivities to temporal sound cues; however, such metrics do not measure absolute spike timing of sustained responses to sound shape. To address this, in this study we quantify two forms of spike-timing precision, jitter, and reliability. In all three fields, we find that jitter decreases logarithmically with increase in the basis spline (B-spline) cutoff frequency used to shape the sound envelope. In contrast, reliability decreases logarithmically with increase in sound envelope modulation frequency. In A1, jitter and reliability vary independently, whereas in ventral cortical fields, jitter and reliability covary. Jitter time scales increase (A1 < VAF < cSRAF) and modulation frequency upper cutoffs decrease (A1 > VAF > cSRAF) with ventral progression from A1. These results suggest a transition from independent encoding of shape and periodicity sound cues on short time scales in A1 to a joint encoding of these same cues on longer time scales in ventral nonprimary cortices.

  4. Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.

    PubMed

    Chambers, Anna R; Hancock, Kenneth E; Sen, Kamal; Polley, Daniel B

    2014-07-02

    Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory object. At higher levels of a sensory pathway, neurons may select for a restricted region of feature space defined by the intersection of multiple, independent stimulus dimensions. To further characterize how auditory cortical neurons decompose and integrate multiple facets of an isolated sound, we developed an automated procedure that manipulated five fundamental acoustic properties in real time based on single-unit feedback in awake mice. Within several minutes, the online approach converged on regions of the multidimensional stimulus manifold that reliably drove neurons at significantly higher rates than predefined stimuli. Optimized stimuli were cross-validated against pure tone receptive fields and spectrotemporal receptive field estimates in the inferior colliculus and primary auditory cortex. We observed, from midbrain to cortex, increases in both level invariance and frequency selectivity, which may underlie equivalent sparseness of responses in the two areas. We found that onset and steady-state spike rates increased proportionately as the stimulus was tailored to the multidimensional receptive field. By separately evaluating the amount of leverage each sound feature exerted on the overall firing rate, these findings reveal interdependencies between stimulus features as well as hierarchical shifts in selectivity and invariance that may go unnoticed with traditional approaches.

  5. Online Stimulus Optimization Rapidly Reveals Multidimensional Selectivity in Auditory Cortical Neurons

    PubMed Central

    Hancock, Kenneth E.; Sen, Kamal

    2014-01-01

    Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory object. At higher levels of a sensory pathway, neurons may select for a restricted region of feature space defined by the intersection of multiple, independent stimulus dimensions. To further characterize how auditory cortical neurons decompose and integrate multiple facets of an isolated sound, we developed an automated procedure that manipulated five fundamental acoustic properties in real time based on single-unit feedback in awake mice. Within several minutes, the online approach converged on regions of the multidimensional stimulus manifold that reliably drove neurons at significantly higher rates than predefined stimuli. Optimized stimuli were cross-validated against pure tone receptive fields and spectrotemporal receptive field estimates in the inferior colliculus and primary auditory cortex. We observed, from midbrain to cortex, increases in both level invariance and frequency selectivity, which may underlie equivalent sparseness of responses in the two areas. We found that onset and steady-state spike rates increased proportionately as the stimulus was tailored to the multidimensional receptive field. By separately evaluating the amount of leverage each sound feature exerted on the overall firing rate, these findings reveal interdependencies between stimulus features as well as hierarchical shifts in selectivity and invariance that may go unnoticed with traditional approaches. PMID:24990917

  6. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

    NASA Astrophysics Data System (ADS)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.

    2014-02-01

    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  7. The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants.

    PubMed

    Golding, Maryanne; Pearce, Wendy; Seymour, John; Cooper, Alison; Ching, Teresa; Dillon, Harvey

    2007-02-01

    Finding ways to evaluate the success of hearing aid fittings in young infants has increased in importance with the implementation of hearing screening programs. Cortical auditory evoked potentials (CAEP) can be recorded in infants and provides evidence for speech detection at the cortical level. The validity of this technique as a tool of hearing aid evaluation needs, however, to be demonstrated. The present study examined the relationship between the presence/absence of CAEPs to speech stimuli and the outcomes of a parental questionnaire in young infants who were fitted with hearing aids. The presence/absence of responses was determined by an experienced examiner as well as by a statistical measure, Hotelling's T(2). A statistically significant correlation between CAEPs and questionnaire scores was found using the examiner's grading (rs = 0.45) and using the statistical grading (rs = 0.41), and there was reasonably good agreement between traditional response detection methods and the statistical analysis.

  8. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.

    PubMed

    Kimura, A; Imbe, H; Donishi, T

    2010-04-14

    In the rat cortex, the two non-primary auditory areas, posterodorsal and ventral auditory areas, may constitute the two streams of auditory processing in their distinct projections to the posterior parietal and insular cortices. The posterior parietal cortex is considered crucial for auditory spatial processing and directed attention, while possible auditory function of the insular cortex is largely unclear. In this study, we electrophysiologically delineated an auditory area in the caudal part of the granular insular cortex (insular auditory area, IA) and examined efferent connections of IA with anterograde tracer biocytin to deduce the functional significance of IA. IA projected to the rostral agranular insular cortex, a component of the lateral prefrontal cortex. IA also projected to the adjacent dysgranular insular cortex and the caudal agranular insular cortex and sent feedback projections to cortical layer I of the primary and secondary somatosensory areas. Corticofugal projections terminated in auditory, somatosensory and visceral thalamic nuclei, and the bottom of the thalamic reticular nucleus that could overlap the visceral sector. The ventral part of the caudate putamen, the external cortex of the inferior colliculus and the central amygdaloid nucleus were also the main targets. IA exhibited neural response to transcutaneous electrical stimulation of the forepaw in addition to acoustic stimulation (noise bursts and pure tones). The results suggest that IA subserves diverse functions associated with somatosensory, nociceptive and visceral processing that may underlie sound-driven emotional and autonomic responses. IA, being potentially involved in such extensive cross-modal sensory interactions, could also be an important anatomical node of auditory processing linked to higher neural processing in the prefrontal cortex.

  9. Environmental Acoustic Enrichment Promotes Recovery from Developmentally Degraded Auditory Cortical Processing

    PubMed Central

    Zhu, Xiaoqing; Wang, Fang; Hu, Huifang; Sun, Xinde; Kilgard, Michael P.; Merzenich, Michael M.

    2014-01-01

    It has previously been shown that environmental enrichment can enhance structural plasticity in the brain and thereby improve cognitive and behavioral function. In this study, we reared developmentally noise-exposed rats in an acoustic-enriched environment for ∼4 weeks to investigate whether or not enrichment could restore developmentally degraded behavioral and neuronal processing of sound frequency. We found that noise-exposed rats had significantly elevated sound frequency discrimination thresholds compared with age-matched naive rats. Environmental acoustic enrichment nearly restored to normal the behavioral deficit resulting from early disrupted acoustic inputs. Signs of both degraded frequency selectivity of neurons as measured by the bandwidth of frequency tuning curves and decreased long-term potentiation of field potentials recorded in the primary auditory cortex of these noise-exposed rats also were reversed partially. The observed behavioral and physiological effects induced by enrichment were accompanied by recovery of cortical expressions of certain NMDA and GABAA receptor subunits and brain-derived neurotrophic factor. These studies in a rodent model show that environmental acoustic enrichment promotes recovery from early noise-induced auditory cortical dysfunction and indicate a therapeutic potential of this noninvasive approach for normalizing neurological function from pathologies that cause hearing and associated language impairments in older children and adults. PMID:24741032

  10. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1975-01-01

    Cortical-evoked potentials were recorded from human subjects performing an auditory detection task with confidence rating responses. Unlike earlier studies that used similar procedures, the observation interval during which the auditory signal could occur was clearly marked by a visual cue light. By precisely defining the observation interval and, hence, synchronizing all perceptual decisions to the evoked potential averaging epoch, it was possible to demonstrate that high-confidence false alarms are accompanied by late-positive P3 components equivalent to those for equally confident hits. Moreover the hit and false alarm evoked potentials were found to covary similarly with variations in confidence rating and to have similar amplitude distributions over the scalp. In a second experiment, it was demonstrated that correct rejections can be associated with a P3 component larger than that for hits. Thus it was possible to show, within the signal detection paradigm, how the two major factors of decision confidence and expectancy are reflected in the P3 component of the cortical-evoked potential.

  11. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.

    PubMed

    Haber, Suzanne N; Kim, Ki-Sok; Mailly, Philippe; Calzavara, Roberta

    2006-08-09

    The anterior cingulate and orbital cortices and the ventral striatum process different aspects of reward evaluation, whereas the dorsolateral prefrontal cortex and the dorsal striatum are involved in cognitive function. Collectively, these areas are critical to decision making. We mapped the striatal area that receives information about reward evaluation. We also explored the extent to which terminals from reward-related cortical areas converge in the striatum with those from cognitive regions. Using three-dimensional-rendered reconstructions of corticostriatal projection fields along with two-dimensional chartings, we demonstrate the reward and cognitive territories in the primate striatum and show the convergence between these cortical inputs. The results show two labeling patterns: a focal projection field that consists of densely distributed terminal patches, and a diffuse projection consisting of clusters of fibers, extending throughout a wide area of the striatum. Together, these projection fields demonstrate a remarkably large, rostral, reward-related striatal territory that reaches into the dorsal striatum. Fibers from different reward-processing and cognitive cortical areas occupy both separate and converging territories. Furthermore, the diffuse projection may serve a separate integrative function by broadly disseminating general cortical activity. These findings show that the rostral striatum is in a unique position to mediate different aspects of incentive learning. Furthermore, areas of convergence may be particularly sensitive to dopamine modulation during decision making and habit formation.

  12. Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia

    PubMed Central

    Rissling, Anthony J.; Miyakoshi, Makoto; Sugar, Catherine A.; Braff, David L.; Makeig, Scott; Light, Gregory A.

    2014-01-01

    Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. PMID:25379456

  13. Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns.

    PubMed

    Bonte, Milene; Hausfeld, Lars; Scharke, Wolfgang; Valente, Giancarlo; Formisano, Elia

    2014-03-26

    Selective attention to relevant sound properties is essential for everyday listening situations. It enables the formation of different perceptual representations of the same acoustic input and is at the basis of flexible and goal-dependent behavior. Here, we investigated the role of the human auditory cortex in forming behavior-dependent representations of sounds. We used single-trial fMRI and analyzed cortical responses collected while subjects listened to the same speech sounds (vowels /a/, /i/, and /u/) spoken by different speakers (boy, girl, male) and performed a delayed-match-to-sample task on either speech sound or speaker identity. Univariate analyses showed a task-specific activation increase in the right superior temporal gyrus/sulcus (STG/STS) during speaker categorization and in the right posterior temporal cortex during vowel categorization. Beyond regional differences in activation levels, multivariate classification of single trial responses demonstrated that the success with which single speakers and vowels can be decoded from auditory cortical activation patterns depends on task demands and subject's behavioral performance. Speaker/vowel classification relied on distinct but overlapping regions across the (right) mid-anterior STG/STS (speakers) and bilateral mid-posterior STG/STS (vowels), as well as the superior temporal plane including Heschl's gyrus/sulcus. The task dependency of speaker/vowel classification demonstrates that the informative fMRI response patterns reflect the top-down enhancement of behaviorally relevant sound representations. Furthermore, our findings suggest that successful selection, processing, and retention of task-relevant sound properties relies on the joint encoding of information across early and higher-order regions of the auditory cortex.

  14. Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch

    PubMed Central

    Lee, Adrian K. C.; Rajaram, Siddharth; Xia, Jing; Bharadwaj, Hari; Larson, Eric; Hämäläinen, Matti S.; Shinn-Cunningham, Barbara G.

    2012-01-01

    In order to extract information in a rich environment, we focus on different features that allow us to direct attention to whatever source is of interest. The cortical network deployed during spatial attention, especially in vision, is well characterized. For example, visuospatial attention engages a frontoparietal network including the frontal eye fields (FEFs), which modulate activity in visual sensory areas to enhance the representation of an attended visual object. However, relatively little is known about the neural circuitry controlling attention directed to non-spatial features, or to auditory objects or features (either spatial or non-spatial). Here, using combined magnetoencephalography (MEG) and anatomical information obtained from MRI, we contrasted cortical activity when observers attended to different auditory features given the same acoustic mixture of two simultaneous spoken digits. Leveraging the fine temporal resolution of MEG, we establish that activity in left FEF is enhanced both prior to and throughout the auditory stimulus when listeners direct auditory attention to target location compared to when they focus on target pitch. In contrast, activity in the left posterior superior temporal sulcus (STS), a region previously associated with auditory pitch categorization, is greater when listeners direct attention to target pitch rather than target location. This differential enhancement is only significant after observers are instructed which cue to attend, but before the acoustic stimuli begin. We therefore argue that left FEF participates more strongly in directing auditory spatial attention, while the left STS aids auditory object selection based on the non-spatial acoustic feature of pitch. PMID:23335874

  15. Thalamic stimulation largely elicits orthodromic, rather than antidromic, cortical activation in an auditory thalamocortical slice.

    PubMed

    Rose, H J; Metherate, R

    2001-01-01

    Stimulation of the medial geniculate body in an auditory thalamocortical slice elicits a short-latency current sink in the middle cortical layers, as would be expected following activation of thalamocortical relay neurons. However, corticothalamic neurons can have axon collaterals that project to the middle layers, thus, a middle-layer current sink could also result from antidromic activation of corticothalamic neurons and their axon collaterals. The likelihood of thalamic stimulation activating corticothalamic neurons would be reduced substantially if the corticothalamic pathway was not well preserved in the slice, and/or if the threshold for antidromic activation was significantly higher than for orthodromic activation. To determine the prevalence and threshold of antidromic activation, we recorded intracellularly from day 14-17 mouse brain slices containing infragranular cortical neurons while stimulating the medial geniculate or thalamocortical pathway. Antidromic spikes were confirmed by spike collision and characterized according to spike latency "jitter" and the ability to follow a high-frequency (100 Hz) stimulus train. The ability to follow a 100-Hz tetanus was a reliable indicator of antidromic activation, but both antidromic and orthodromic spikes could have low jitter. Thalamic stimulation produced antidromic activation in two of 69 infragranular cortical neurons (<3%), indicating the presence of antidromic activity, but implying a limited corticothalamic connection in the slice. Antidromic spikes in 13 additional neurons were obtained by stimulating axons in the thalamocortical pathway. The antidromic threshold averaged 214+/-40.6 microA (range 6-475 microA), over seven times the orthodromic threshold for medial geniculate-evoked responses in layer IV extracellular (28+/-5.4 microA) or intracellular (27+/-5.6 microA) recordings. We conclude that medial geniculate stimulation activates relatively few corticothalamic neurons. Conversely, low

  16. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  17. Auditory processing disorder in patients with language-learning impairment and correlation with malformation of cortical development.

    PubMed

    Boscariol, Mirela; Guimarães, Catarina Abraão; Hage, Simone R de Vasconcellos; Garcia, Vera Lucia; Schmutzler, Kátia M R; Cendes, Fernando; Guerreiro, Marilisa Mantovani

    2011-11-01

    Malformations of cortical development have been described in children and families with language-learning impairment. The objective of this study was to assess the auditory processing information in children with language-learning impairment in the presence or absence of a malformation of cortical development in the auditory processing areas. We selected 32 children (19 males), aged eight to 15 years, divided into three groups: Group I comprised 11 children with language-learning impairment and bilateral perisylvian polymicrogyria, Group II comprised 10 children with language-learning impairment and normal MRI, and Group III comprised 11 normal children. Behavioral auditory tests, such as the Random Gap Detection Test and Digits Dichotic Test were performed. Statistical analysis was performed using the Kruskal-Wallis test and Mann-Whitney test, with a level of significance of 0.05. The results revealed a statistically significant difference among the groups. Our data showed abnormalities in auditory processing of children in Groups I and II when compared with the control group, with children in Group I being more affected than children in Group II. Our data showed that the presence of a cortical malformation correlates with a worse performance in some tasks of auditory processing function.

  18. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    PubMed

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  19. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  20. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.

    PubMed

    Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K

    2012-04-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models.

  1. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates

    PubMed Central

    Feingold, Joseph; Desrochers, Theresa M.; Fujii, Naotaka; Harlan, Ray; Tierney, Patrick L.; Shimazu, Hideki; Amemori, Ken-ichi

    2012-01-01

    A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain. PMID:22170970

  2. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge.

  3. Learning strategy trumps motivational level in determining learning-induced auditory cortical plasticity.

    PubMed

    Bieszczad, Kasia M; Weinberger, Norman M

    2010-02-01

    Associative memory for auditory-cued events involves specific plasticity in the primary auditory cortex (A1) that facilitates responses to tones which gain behavioral significance, by modifying representational parameters of sensory coding. Learning strategy, rather than the amount or content of learning, can determine this learning-induced cortical (high order) associative representational plasticity (HARP). Thus, tone-contingent learning with signaled errors can be accomplished either by (1) responding only during tone duration ("tone-duration" strategy, T-Dur), or (2) responding from tone onset until receiving an error signal for responses made immediately after tone offset ("tone-onset-to-error", TOTE). While rats using both strategies achieve the same high level of performance, only those using the TOTE strategy develop HARP, viz., frequency-specific decreased threshold (increased sensitivity) and decreased bandwidth (increased selectivity) (Berlau & Weinberger, 2008). The present study challenged the generality of learning strategy by determining if high motivation dominates in the formation of HARP. Two groups of adult male rats were trained to bar-press during a 5.0kHz (10s, 70dB) tone for a water reward under either high (HiMot) or moderate (ModMot) levels of motivation. The HiMot group achieved a higher level of correct performance. However, terminal mapping of A1 showed that only the ModMot group developed HARP, i.e., increased sensitivity and selectivity in the signal-frequency band. Behavioral analysis revealed that the ModMot group used the TOTE strategy while HiMot subjects used the T-Dur strategy. Thus, type of learning strategy, not level of learning or motivation, is dominant for the formation of cortical plasticity.

  4. Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Tremblay, Kelly L; Souza, Pamela E; Binns, Malcolm A

    2007-01-01

    Hearing aid amplification can be used as a model for studying the effects of auditory stimulation on the central auditory system (CAS). We examined the effects of stimulus presentation level on the physiological detection of sound in unaided and aided conditions. P1, N1, P2, and N2 cortical evoked potentials were recorded in sound field from 13 normal-hearing young adults in response to a 1000-Hz tone presented at seven stimulus intensity levels. As expected, peak amplitudes increased and peak latencies decreased with increasing intensity for unaided and aided conditions. However, there was no significant effect of amplification on latencies or amplitudes. Taken together, these results demonstrate that 20 dB of hearing aid gain affects neural responses differently than 20 dB of stimulus intensity change. Hearing aid signal processing is discussed as a possible contributor to these results. This study demonstrates (1) the importance of controlling for stimulus intensity when evoking responses in aided conditions, and (2) the need to better understand the interaction between the hearing aid and the CAS.

  5. Complex Spectral Interactions Encoded by Auditory Cortical Neurons: Relationship Between Bandwidth and Pattern

    PubMed Central

    O'Connor, Kevin N.; Yin, Pingbo; Petkov, Christopher I.; Sutter, Mitchell L.

    2010-01-01

    The focus of most research on auditory cortical neurons has concerned the effects of rather simple stimuli, such as pure tones or broad-band noise, or the modulation of a single acoustic parameter. Extending these findings to feature coding in more complex stimuli such as natural sounds may be difficult, however. Generalizing results from the simple to more complex case may be complicated by non-linear interactions occurring between multiple, simultaneously varying acoustic parameters in complex sounds. To examine this issue in the frequency domain, we performed a parametric study of the effects of two global features, spectral pattern (here ripple frequency) and bandwidth, on primary auditory (A1) neurons in awake macaques. Most neurons were tuned for one or both variables and most also displayed an interaction between bandwidth and pattern implying that their effects were conditional or interdependent. A spectral linear filter model was able to qualitatively reproduce the basic effects and interactions, indicating that a simple neural mechanism may be able to account for these interdependencies. Our results suggest that the behavior of most A1 neurons is likely to depend on multiple parameters, and so most are unlikely to respond independently or invariantly to specific acoustic features. PMID:21152347

  6. Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis.

    PubMed

    Wilson, Tony W; Hernandez, Olivia O; Asherin, Ryan M; Teale, Peter D; Reite, Martin L; Rojas, Donald C

    2008-02-01

    Neurobiological theories of schizophrenia and related psychoses have increasingly emphasized impaired neuronal coordination (i.e., dysfunctional connectivity) as central to the pathophysiology. Although neuroimaging evidence has mostly corroborated these accounts, the basic mechanism(s) of reduced functional connectivity remains elusive. In this study, we examine the developmental trajectory and underlying mechanism(s) of dysfunctional connectivity by using gamma oscillatory power as an index of local and long-range circuit integrity. An early-onset psychosis group and a matched cohort of typically developing adolescents listened to monaurally presented click-trains, as whole-head magnetoencephalography data were acquired. Consistent with previous work, gamma-band power was significantly higher in right auditory cortices across groups and conditions. However, patients exhibited significantly reduced overall gamma power relative to controls, and showed a reduced ear-of-stimulation effect indicating that ipsi- versus contralateral presentation had less impact on hemispheric power. Gamma-frequency oscillations are thought to be dependent on gamma-aminobutyric acidergic interneuronal networks, thus these patients' impairment in generating and/or maintaining such activity may indicate that local circuit integrity is at least partially compromised early in the disease process. In addition, patients also showed abnormality in long-range networks (i.e., ear-of-stimulation effects) potentially suggesting that multiple stages along auditory pathways contribute to connectivity aberrations found in patients with psychosis.

  7. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    PubMed

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  8. Active engagement improves primary auditory cortical neurons' ability to discriminate temporal modulation.

    PubMed

    Niwa, Mamiko; Johnson, Jeffrey S; O'Connor, Kevin N; Sutter, Mitchell L

    2012-07-04

    The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measure of how well neurons temporally follow the stimulus' temporal modulation. When data were separated by nonsynchronized and synchronized responses, the firing rate of nonsynchronized responses best distinguished AM- noise from unmodulated noise, followed by VS for synchronized responses, with firing rate for synchronized neurons providing the poorest AM discrimination. Firing rate-based AM discrimination for synchronized neurons, however, improved most with task engagement, showing that the least sensitive code in the passive condition improves the most with task engagement. Rate coding improved due to larger increases in absolute firing rate at higher modulation depths than for lower depths and unmodulated sounds. Relative to spontaneous activity (which increased with engagement), the response to unmodulated sounds decreased substantially. The temporal coding improvement--responses more precisely temporally following a stimulus when animals were required to attend to it--expands the framework of possible mechanisms of attention to include increasing temporal precision of stimulus following. These findings provide a crucial step to understanding the coding of temporal modulation and support a model in which rate and temporal coding work in parallel, permitting a multiplexed code for temporal modulation, and for a complementary representation of rate and temporal coding.

  9. Abnormal auditory cortical activation in dyslexia 100 msec after speech onset.

    PubMed

    Helenius, Päivi; Salmelin, Riitta; Richardson, Ulla; Leinonen, Seija; Lyytinen, Heikki

    2002-05-15

    Reading difficulties are associated with problems in processing and manipulating speech sounds. Dyslexic individuals seem to have, for instance, difficulties in perceiving the length and identity of consonants. Using magnetoencephalography (MEG), we characterized the spatio-temporal pattern of auditory cortical activation in dyslexia evoked by three types of natural bisyllabic pseudowords (/ata/, /atta/, and /a a/), complex nonspeech sound pairs (corresponding to /atta/ and /a a/) and simple 1-kHz tones. The most robust difference between dyslexic and non-reading-impaired adults was seen in the left supratemporal auditory cortex 100 msec after the onset of the vowel /a/. This N100m response was abnormally strong in dyslexic individuals. For the complex nonspeech sounds and tone, the N100m response amplitudes were similar in dyslexic and nonimpaired individuals. The responses evoked by syllable /ta/ of the pseudoword /atta/ also showed modest latency differences between the two subject groups. The responses evoked by the corresponding nonspeech sounds did not differ between the two subject groups. Further, when the initial formant transition, that is, the consonant, was removed from the syllable /ta/, the N100m latency was normal in dyslexic individuals. Thus, it appears that dyslexia is reflected as abnormal activation of the auditory cortex already 100 msec after speech onset, manifested as abnormal response strengths for natural speech and as delays for speech sounds containing rapid frequency transition. These differences between the dyslexic and nonimpaired individuals also imply that the N100m response codes stimulus-specific features likely to be critical for speech perception. Which features of speech (or nonspeech stimuli) are critical in eliciting the abnormally strong N100m response in dyslexic individuals should be resolved in future studies.

  10. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness.

    PubMed

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2015-09-01

    Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.

  11. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    PubMed

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  12. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  13. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    PubMed

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality.

  14. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia.

    PubMed

    Huffaker, Stephen J; Chen, Jingshan; Nicodemus, Kristin K; Sambataro, Fabio; Yang, Feng; Mattay, Venkata; Lipska, Barbara K; Hyde, Thomas M; Song, Jian; Rujescu, Dan; Giegling, Ina; Mayilyan, Karine; Proust, Morgan J; Soghoyan, Armen; Caforio, Grazia; Callicott, Joseph H; Bertolino, Alessandro; Meyer-Lindenberg, Andreas; Chang, Jay; Ji, Yuanyuan; Egan, Michael F; Goldberg, Terry E; Kleinman, Joel E; Lu, Bai; Weinberger, Daniel R

    2009-05-01

    Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5' complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go-related K(+) channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K(+) current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.

  15. Cortical Auditory Evoked Potentials Recorded from Nucleus Hybrid Cochlear Implant Users

    PubMed Central

    Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue; Turner, Christopher; Abbas, Paul

    2015-01-01

    Objective Nucleus Hybrid CI users hear low-frequency sounds via acoustic stimulation and high frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine (1) if the evoked potential measures could predict which programming strategy resulted either in better outcome on the speech perception task or was preferred by the listener, and (2) whether CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. Design CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental MAPs that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal to noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise (SNR-50). Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 “onset” response and the auditory “change” or ACC response. Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Results Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the AAC response was not found to be sensitive enough to

  16. Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio).

    PubMed

    Atkinson, Elizabeth G; Rogers, Jeffrey; Mahaney, Michael C; Cox, Laura A; Cheverud, James M

    2015-06-01

    Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical-cortical connectivity, and gyrification's potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.

  17. Enhanced auditory evoked activity to self-generated sounds is mediated by primary and supplementary motor cortices.

    PubMed

    Reznik, Daniel; Ossmy, Ori; Mukamel, Roy

    2015-02-04

    Accumulating evidence demonstrates that responses in auditory cortex to auditory consequences of self-generated actions are modified relative to the responses evoked by identical sounds generated by an external source. Such modifications have been suggested to occur through a corollary discharge sent from the motor system, although the exact neuroanatomical origin is unknown. Furthermore, since tactile input has also been shown to modify responses in auditory cortex, it is not even clear whether the source of such modifications is motor output or somatosensory feedback. We recorded functional magnetic resonance imaging (fMRI) data from healthy human subjects (n = 11) while manipulating the rate at which they performed sound-producing actions with their right hand. In addition, we manipulated the amount of tactile feedback to examine the relative roles of motor and somatosensory cortices in modifying evoked activity in auditory cortex (superior temporal gyrus). We found an enhanced fMRI signal in left auditory cortex during perception of self-generated sounds relative to passive listening to identical sounds. Moreover, the signal difference between active and passive conditions in left auditory cortex covaried with the rate of sound-producing actions and was invariant to the amount of tactile feedback. Together with functional connectivity analysis, our results suggest motor output from supplementary motor area and left primary motor cortex as the source of signal modification in auditory cortex during perception of self-generated sounds. Motor signals from these regions could represent a predictive signal of the expected auditory consequences of the performed action.

  18. Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise.

    PubMed

    Warrier, Catherine M; Johnson, Krista L; Hayes, Erin A; Nicol, Trent; Kraus, Nina

    2004-08-01

    The physiological mechanisms that contribute to abnormal encoding of speech in children with learning problems are yet to be well understood. Furthermore, speech perception problems appear to be particularly exacerbated by background noise in this population. This study compared speech-evoked cortical responses recorded in a noisy background to those recorded in quiet in normal children (NL) and children with learning problems (LP). Timing differences between responses recorded in quiet and in background noise were assessed by cross-correlating the responses with each other. Overall response magnitude was measured with root-mean-square (RMS) amplitude. Cross-correlation scores indicated that 23% of LP children exhibited cortical neural timing abnormalities such that their neurophysiological representation of speech sounds became distorted in the presence of background noise. The latency of the N2 response in noise was isolated as being the root of this distortion. RMS amplitudes in these children did not differ from NL children, indicating that this result was not due to a difference in response magnitude. LP children who participated in a commercial auditory training program and exhibited improved cortical timing also showed improvements in phonological perception. Consequently, auditory pathway timing deficits can be objectively observed in LP children, and auditory training can diminish these deficits.

  19. Pharmaco-MEG evidence for attention related hyper-connectivity between auditory and prefrontal cortices in ADHD

    PubMed Central

    Heinrichs-Graham, Elizabeth; Franzen, John D.; Knott, Nichole L.; White, Matthew L.; Wetzel, Martin W.; Wilson, Tony W.

    2014-01-01

    The ability to attend to particular stimuli while ignoring others is crucial in goal-directed activities and has been linked with prefrontal cortical regions, including the dorsolateral prefrontal cortex (DLPFC). Both hyper- and hypo-activation in the DLPFC has been reported in patients with attention-deficit/hyperactivity disorder (ADHD) during many different cognitive tasks, but the network-level effects of such aberrant activity remain largely unknown. Using magnetoencephalography (MEG), we examined functional connectivity between regions of the DLPFC and the modality-specific auditory cortices during an auditory attention task in medicated and un-medicated adults with ADHD, and those without ADHD. Participants completed an attention task in two separate sessions (medicated/un-medicated), and each session consisted of two blocks (attend and no-attend). All MEG data were coregistered to structural MRI, corrected for head motion, and projected into source space. Subsequently, we computed the phase coherence (i.e., functional connectivity) between DLPFC regions and the auditory cortices. We found that un-medicated adults with ADHD exhibited greater phase coherence in the beta (14–30Hz) and gamma frequency (30–56 Hz) range in attend and no-attend conditions compared to controls. Stimulant medication attenuated these differences, but did not fully eliminate them. These results suggest that aberrant bottom-up processing may engulf executive resources in ADHD. PMID:24495532

  20. A cortical network underpinning the perceptual priority for rising intensity and auditory ``looming.''

    NASA Astrophysics Data System (ADS)

    Neuhoff, John G.; Bilecen, Deniz; Mustovic, Henrietta; Schachinger, Hartmut; Seifritz, Erich; Scheffler, Klaus; di Salle, Francesco

    2002-05-01

    Relative motion between a sound source and a listener creates a change in acoustic intensity that can be used to anticipate the source's approach. Humans have been shown to overestimate the intensity change of rising compared to falling intensity sounds and underestimate the time-to-contact of approaching sound sources. From an evolutionary perspective, this perceptual priority for looming sounds may represent an adaptive advantage that provides an increased margin of safety for responding to approaching auditory objects. Here, using functional magnetic resonance imaging, we show that the prioritization of rising contrasted with falling intensity sine-tones is grounded in a specific neural network. This network is predominantly composed of the superior temporal sulci, the middle temporal gyri, the right temporo-parietal junction, the motor and premotor cortices mainly on the right hemisphere, the left frontal operculum, and the left superior posterior cerebellar cortex. These regions are critical for the allocation of attention, the analysis of space, object recognition, and neurobehavioral preparation for action. Our results identify a widespread neural network underpinning the perceptual priority for looming sounds that can be used in translating sensory information into preparedness for adverse events and appropriate action. [Work supported by the Swiss and the American NSFs.

  1. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults

    PubMed Central

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-01-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  2. Cross-modal recruitment of primary visual cortex by auditory stimuli in the nonhuman primate brain: a molecular mapping study.

    PubMed

    Hirst, Priscilla; Javadi Khomami, Pasha; Gharat, Amol; Zangenehpour, Shahin

    2012-01-01

    Recent studies suggest that exposure to only one component of audiovisual events can lead to cross-modal cortical activation. However, it is not certain whether such crossmodal recruitment can occur in the absence of explicit conditioning, semantic factors, or long-term associations. A recent study demonstrated that crossmodal cortical recruitment can occur even after a brief exposure to bimodal stimuli without semantic association. In addition, the authors showed that the primary visual cortex is under such crossmodal influence. In the present study, we used molecular activity mapping of the immediate early gene zif268. We found that animals, which had previously been exposed to a combination of auditory and visual stimuli, showed increased number of active neurons in the primary visual cortex when presented with sounds alone. As previously implied, this crossmodal activation appears to be the result of implicit associations of the two stimuli, likely driven by their spatiotemporal characteristics; it was observed after a relatively short period of exposure (~45 min) and lasted for a relatively long period after the initial exposure (~1 day). These results suggest that the previously reported findings may be directly rooted in the increased activity of the neurons occupying the primary visual cortex.

  3. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment.

    PubMed

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  4. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex

    PubMed Central

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    We recorded from single neurons of the primary auditory cortex (A1), while trained monkeys reported a decision based on the comparison of 2 acoustic flutter stimuli. Crucially, to form the decision, monkeys had to compare the second stimulus rate to the memory trace of the first stimulus rate. We found that the responses of A1 neurons encode stimulus rates both through their periodicity and through their firing rates during the stimulation periods, but not during the working memory and decision components of this task. Neurometric thresholds based on firing rate were very similar to the monkey's discrimination thresholds, whereas neurometric thresholds based on periodicity were lower than the experimental thresholds. Thus, an observer could solve this task with a precision similar to that of the monkey based only on the firing rates evoked by the stimuli. These results suggest that the A1 is exclusively associated with the sensory and not with the cognitive components of this task. PMID:19458263

  5. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates

    PubMed Central

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit “map” of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber–based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  6. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  7. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history.

    PubMed

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-09-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-microm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on

  8. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history

    PubMed Central

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-01-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-µm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on the

  9. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus.

    PubMed

    Ghazaleh, Naghmeh; Zwaag, Wietske van der; Clarke, Stephanie; Ville, Dimitri Van De; Maire, Raphael; Saenz, Melissa

    2017-02-06

    Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity in the primary auditory cortex. The high spatial resolution afforded by 7 T imaging allowed tonotopic mapping of primary auditory cortex on an individual subject basis. Eleven patients with unilateral hearing loss and tinnitus were compared to normal-hearing controls. Patients showed an over-representation and hyperactivity in a region of the cortical map corresponding to low frequencies sounds, irrespective of the hearing loss and tinnitus range, which in most cases affected higher frequencies. This finding of hyperactivity in low frequency map regions, irrespective of hearing loss range, is consistent with some previous studies in animal models and corroborates a previous study of human tinnitus. Thus these findings contribute to accumulating evidence that gross cortical tonotopic map reorganization is not a causal factor of tinnitus.

  10. Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss

    PubMed Central

    Fan, Wenliang; Zhang, Wenjuan; Li, Jing; Zhao, Xueyan; Mella, Grace; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong; Xu, Haibo

    2015-01-01

    Objective: To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. Study Design: Prospective case study. Setting: Tertiary class A teaching hospital. Patients: Thirty-nine patients with left-side unilateral sudden sensorineural hearing loss and 47 patients with right-side unilateral sudden sensorineural hearing loss. Intervention: Diagnostic. Main Outcome Measure: To compare the regional gray matter of unilateral sudden sensorineural hearing loss patients and healthy control participants. Results: Compared with control groups, patients with left side unilateral sudden sensorineural hearing loss had significant gray matter reductions in the right middle temporal gyrus and right superior temporal gyrus, whereas patients with right side unilateral sudden sensorineural hearing loss showed gray matter decreases in the left superior temporal gyrus and left middle temporal gyrus. A significant negative correlation with the duration of the sudden sensorineural hearing loss (R = −0.427, p = 0.012 for left-side unilateral SSNHL and R = −0.412, p = 0.013 for right-side unilateral SSNHL) was also found in these brain areas. There was no region with increased gray matter found in both groups of unilateral sudden sensorineural hearing loss patients. Conclusions: This study confirms that detectable decreased contralateral auditory cortical morphological changes have occurred in unilateral SSNHL patients within the acute period by voxel-based morphometry methods. The gray matter volumes of these brain areas also perform a negative correlation with the duration of the disease, which suggests a gradual brain structural impairment after the progression of the disease. PMID:26595717

  11. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-10-15

    Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the PAF unilaterally, to label cortical and thalamic afferents. Following early deafness, there was a significant decrease in callosal projections from the contralateral PAF. Late-deaf animals showed small-scale changes in projections from one visual cortical area, the posterior ectosylvian field (EPp), and the multisensory zone (MZ). With the exception of these minor differences, connectivity to the PAF was largely similar between groups, with the principle projections arising from the primary auditory cortex (A1) and the ventral division of the medial geniculate body (MGBv). This absence of large-scale connectional change suggests that the functional reorganization that follows sensory loss results from changes in synaptic strength and/or unmasking of subthreshold intermodal connections. J. Comp. Neurol. 524:3042-3063, 2016. © 2016 Wiley Periodicals, Inc.

  12. Predicting the Multisensory Consequences of One’s Own Action: BOLD Suppression in Auditory and Visual Cortices

    PubMed Central

    van Kemenade, Bianca M.; Arikan, B. Ezgi; Fiehler, Katja; Leube, Dirk T.; Harris, Laurence R.; Kircher, Tilo

    2017-01-01

    Predictive mechanisms are essential to successfully interact with the environment and to compensate for delays in the transmission of neural signals. However, whether and how we predict multisensory action outcomes remains largely unknown. Here we investigated the existence of multisensory predictive mechanisms in a context where actions have outcomes in different modalities. During fMRI data acquisition auditory, visual and auditory-visual stimuli were presented in active and passive conditions. In the active condition, a self-initiated button press elicited the stimuli with variable short delays (0-417ms) between action and outcome, and participants had to detect the presence of a delay for auditory or visual outcome (task modality). In the passive condition, stimuli appeared automatically, and participants had to detect the number of stimulus modalities (unimodal/bimodal). For action consequences compared to identical but unpredictable control stimuli we observed suppression of the blood oxygen level depended (BOLD) response in a broad network including bilateral auditory and visual cortices. This effect was independent of task modality or stimulus modality and strongest for trials where no delay was detected (undetected

  13. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity

    PubMed Central

    Meredith, M. Alex; Clemo, H. Ruth; Corley, Sarah B.; Chabot, Nicole; Lomber, Stephen G.

    2016-01-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were ‘unmasked.’ These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  14. Effects of musical training on the early auditory cortical representation of pitch transitions as indexed by change-N1.

    PubMed

    Itoh, Kosuke; Okumiya-Kanke, Yoko; Nakayama, Yoh; Kwee, Ingrid L; Nakada, Tsutomu

    2012-12-01

    The effects of musical training on the early auditory cortical response to pitch transitions in music were investigated by use of the change-N1 component of auditory event-related potentials. Musicians and non-musicians were presented with music stimuli comprising a melody and a harmony under various listening conditions. First, when the subjects played a video game and were instructed to ignore the auditory stimuli, the onset of stimuli elicited a typical, fronto-central onset-N1, whereas melodic and harmonic pitch transitions within the stimuli elicited so-called change-N1s that were more posterior in scalp distribution. The pitch transition change-N1s, but not onset-N1, were enhanced in musicians. Second, when the listeners attended to the same stimuli as above to detect infrequently occurring target stimuli, the change-N1 elicited by pitch changes (in non-target stimuli) was augmented, in non-musicians only when the target was easily detectable, and in both musicians and non-musicians when it was difficult to detect. Thus, the early, obligatory cortical response to pitch transitions during passive listening was chronically enhanced by training in musicians, and, reflecting this training-induced enhancement, the task-related modulation of this response was also different between musicians and non-musicians. These results are the first to demonstrate the long-term effects of training, short-term effects of task and the effects of their interaction on the early (~100-ms) cortical processing of pitch transitions in music. The scalp distributions of these enhancement effects were generally right dominant at temporal electrode sites, suggesting contributions from the radially oriented subcomponent of change-N1, namely, the Tb (N1c) wave of the T-complex.

  15. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  16. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Tim; Ledochowitsch, Peter; Maharabiz, Michel M.; Sabes, Philip N.

    2015-03-01

    Although several studies have shown the feasibility of using optogenetics in non-human primates (NHP), reliable largescale chronic interfaces have not yet been reported for such studies in NHP. Here we introduce a chronic setup that permits repeated, daily optogenetic stimulation and large-scale recording from the same sites in NHP cortex. The setup combines optogenetics with a transparent artificial dura (AD) and high-density micro-electrocorticography (μECoG). To obtain expression across large areas of cortex, we infused AAV5-CamKIIa-C1V1-EYFP viral vector using an infusion technique based on convection-enhanced delivery (CED) in primary somatosensory (S1) and motor (M1) cortices. By epifluorescent imaging through AD we were able to confirm high levels of expression covering about 110 mm2 of S1 and M1. We then incorporated a 192-channel μECoG array spanning 192 mm2 into the AD for simultaneous electrophysiological recording during optical stimulation. The array consists of patterned Pt-Au-Pt metal traces embedded in ~10 μm Parylene-C insulator. The parylene is sufficiently transparent to allow minimally attenuated optical access for optogenetic stimulation. The array was chronically implanted over the opsin-expressing areas in M1 and S1 for over two weeks. Optical stimulation was delivered via a fiber optic placed on the surface of the AD. With this setup, we recorded reliable evoked activity following light stimulation at several locations. Similar responses were recorded across tens of days, however a decline in the light-evoked signal amplitude was observed during this period due to the growth of dural tissue over the array. These results show the feasibility of a chronic interface for combined largescale optogenetic stimulation and cortical recordings across days.

  17. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  18. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  19. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    PubMed

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  20. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d

  1. Context-dependent changes in functional connectivity of auditory cortices during the perception of object words.

    PubMed

    van Dam, Wessel O; van Dongen, Eelco V; Bekkering, Harold; Rueschemeyer, Shirley-Ann

    2012-10-01

    Embodied theories hold that cognitive concepts are grounded in our sensorimotor systems. Specifically, a number of behavioral and neuroimaging studies have buttressed the idea that language concepts are represented in areas involved in perception and action [Pulvermueller, F. Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576-582, 2005; Barsalou, L. W. Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-660, 1999]. Proponents of a strong embodied account argue that activity in perception/action areas is triggered automatically upon encountering a word and reflect static semantic representations. In contrast to what would be expected if lexical semantic representations are automatically triggered upon encountering a word, a number of studies failed to find motor-related activity for words with a putative action-semantic component [Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47, 388-396, 2009; Rueschemeyer, S.-A., Brass, M., & Friederici, A. D. Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19, 855-865, 2007]. In a recent fMRI study, Van Dam and colleagues [Van Dam, W. O., Van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, in press] showed that the degree to which a modality-specific region contributes to a representation considerably changes as a function of context. In the current study, we presented words for which both motor and visual properties (e.g., tennis ball, boxing glove) were important in constituting the concept. Our aim was to corroborate on earlier findings of flexible and context-dependent language representations by testing whether functional integration between auditory brain regions and perception/action areas is modulated by context

  2. The brain's router: a cortical network model of serial processing in the primate brain.

    PubMed

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R; Dehaene, Stanislas; Sigman, Mariano

    2010-04-29

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.

  3. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet

    PubMed Central

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael

    2016-01-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  4. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    PubMed Central

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  5. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants

    PubMed Central

    Barlow, Nathan; Purdy, Suzanne C.; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-01-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs. PMID:27587925

  6. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.

    PubMed

    Kuriki, Shinya; Ohta, Keisuke; Koyama, Sachiko

    2007-11-01

    Long-latency auditory-evoked magnetic field and potential show strong attenuation of N1m/N1 responses when an identical stimulus is presented repeatedly due to adaptation of auditory cortical neurons. This adaptation is weak in subsequently occurring P2m/P2 responses, being weaker for piano chords than single piano notes. The adaptation of P2m is more suppressed in musicians having long-term musical training than in nonmusicians, whereas the amplitude of P2 is enhanced preferentially in musicians as the spectral complexity of musical tones increases. To address the key issues of whether such high responsiveness of P2m/P2 responses to complex sounds is intrinsic and common to nonmusical sounds, we conducted a magnetoencephalographic study on participants who had no experience of musical training, using consecutive trains of piano and vowel sounds. The dipole moment of the P2m sources located in the auditory cortex indicated significantly suppressed adaptation in the right hemisphere both to piano and vowel sounds. Thus, the persistent responsiveness of the P2m activity may be inherent, not induced by intensive training, and common to spectrally complex sounds. The right hemisphere dominance of the responsiveness to musical and speech sounds suggests analysis of acoustic features of object sounds to be a significant function of P2m activity.

  7. Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia.

    PubMed

    Shim, Miseon; Kim, Do-Won; Lee, Seung-Hwan; Im, Chang-Hwan

    2014-07-01

    P300 deficits in patients with schizophrenia have previously been investigated using EEGs recorded during auditory oddball tasks. However, small-world cortical functional networks during auditory oddball tasks and their relationships with symptom severity scores in schizophrenia have not yet been investigated. In this study, the small-world characteristics of source-level functional connectivity networks of EEG responses elicited by an auditory oddball paradigm were evaluated using two representative graph-theoretical measures, clustering coefficient and path length. EEG signals from 34 patients with schizophrenia and 34 healthy controls were recorded while each subject was asked to attend to oddball tones. The results showed reduced clustering coefficients and increased path lengths in patients with schizophrenia, suggesting that the small-world functional network is disrupted in patients with schizophrenia. In addition, the negative and cognitive symptom components of positive and negative symptom scales were negatively correlated with the clustering coefficient and positively correlated with path length, demonstrating that both indices are indicators of symptom severity in patients with schizophrenia. Our study results suggest that disrupted small-world characteristics are potential biomarkers for patients with schizophrenia.

  8. Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: electrophysiological evidence.

    PubMed

    Folland, Nicole A; Butler, Blake E; Payne, Jennifer E; Trainor, Laurel J

    2015-05-01

    Sound waves emitted by two or more simultaneous sources reach the ear as one complex waveform. Auditory scene analysis involves parsing a complex waveform into separate perceptual representations of the sound sources [Bregman, A. S. Auditory scene analysis: The perceptual organization of sounds. London: MIT Press, 1990]. Harmonicity provides an important cue for auditory scene analysis. Normally, harmonics at integer multiples of a fundamental frequency are perceived as one sound with a pitch corresponding to the fundamental frequency. However, when one harmonic in such a complex, pitch-evoking sound is sufficiently mistuned, that harmonic emerges from the complex tone and is perceived as a separate auditory object. Previous work has shown that the percept of two objects is indexed in both children and adults by the object-related negativity component of the ERP derived from EEG recordings [Alain, C., Arnott, S. T., & Picton, T. W. Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27, 1072-1089, 2001]. Here we examine the emergence of object-related responses to an 8% harmonic mistuning in infants between 2 and 12 months of age. Two-month-old infants showed no significant object-related response. However, in 4- to 12-month-old infants, a significant frontally positive component was present, and by 8-12 months, a significant frontocentral object-related negativity was present, similar to that seen in older children and adults. This is in accordance with previous research demonstrating that infants younger than 4 months of age do not integrate harmonic information to perceive pitch when the fundamental is missing [He, C., Hotson, L., & Trainor, L. J. Maturation of cortical mismatch mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 47, 218-229, 2009]. The

  9. Cortical contributions to the auditory frequency-following response revealed by MEG

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  10. Cortical contributions to the auditory frequency-following response revealed by MEG.

    PubMed

    Coffey, Emily B J; Herholz, Sibylle C; Chepesiuk, Alexander M P; Baillet, Sylvain; Zatorre, Robert J

    2016-03-24

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation.

  11. Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets.

    PubMed

    Leach, Nicholas D; Nodal, Fernando R; Cordery, Patricia M; King, Andrew J; Bajo, Victoria M

    2013-04-10

    The nucleus basalis (NB) in the basal forebrain provides most of the cholinergic input to the neocortex and has been implicated in a variety of cognitive functions related to the processing of sensory stimuli. However, the role that cortical acetylcholine release plays in perception remains unclear. Here we show that selective loss of cholinergic NB neurons that project to the cortex reduces the accuracy with which ferrets localize brief sounds and prevents them from adaptively reweighting auditory localization cues in response to chronic occlusion of one ear. Cholinergic input to the cortex was disrupted by making bilateral injections of the immunotoxin ME20.4-SAP into the NB. This produced a substantial loss of both p75 neurotrophin receptor (p75(NTR))-positive and choline acetyltransferase-positive cells in this region and of acetylcholinesterase-positive fibers throughout the auditory cortex. These animals were significantly impaired in their ability to localize short broadband sounds (40-500 ms in duration) in the horizontal plane, with larger cholinergic cell lesions producing greater performance impairments. Although they localized longer sounds with normal accuracy, their response times were significantly longer than controls. Ferrets with cholinergic forebrain lesions were also less able to relearn to localize sound after plugging one ear. In contrast to controls, they exhibited little recovery of localization performance after behavioral training. Together, these results show that cortical cholinergic inputs contribute to the perception of sound source location under normal hearing conditions and play a critical role in allowing the auditory system to adapt to changes in the spatial cues available.

  12. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    PubMed

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.

  13. Auditory processing in schizophrenia during the middle latency period (10–50 ms): high-density electrical mapping and source analysis reveal subcortical antecedents to early cortical deficits

    PubMed Central

    Leavitt, Victoria M.; Molholm, Sophie; Ritter, Walter; Shpaner, Marina; Foxe, John J.

    2007-01-01

    Introduction Auditory sensory processing dysfunction is a core component of schizophrenia, with deficits occurring at 50 ms post-stimulus firmly established in the literature. Given that the initial afference of primary auditory cortex occurs at least 35 ms earlier, however, an essential question remains: how early in sensory processing do such deficits arise, and do they occur during initial cortical afference or earlier, which would implicate subcortical auditory dysfunction. Objective To establish the onset of the earliest deficits in auditory processing, we examined the time window demarcating the transition from subcortical to cortical processing: 10 ms to 50 ms during the so-called middle latency responses (MLRs). These remain to be adequately characterized in patients with schizophrenia. Methods We recorded auditory evoked potentials (AEPs) to simple tone-pips from 15 control subjects and 21 medicated patients with longer-term schizophrenia or schizoaffective disorder (illness duration 16 yr, standard deviation [SD] 9.4 yr), using high-density electrical scalp recordings. Between-group analyses assessed the integrity of the MLRs across groups. In addition, 2 source-localization models were conducted to address whether a distinction between subcortical and cortical generators of the MLRs can be made and whether evidence for differential dorsal and ventral pathway contributions to auditory processing deficits can be established. Results Robust auditory processing deficits were found for patients as early as 15 ms. Evidence for subcortical generators of the earliest MLR component (P20) was provided by source analysis. Topographical mapping and source localization also pointed to greater decrements in processing in the dorsal auditory pathway of patients, providing support for a theory of pervasive deficits that are organized along the lines of a dorsal–ventral distinction. Conclusions Auditory sensory dysfunction in schizophrenia begins extremely early in

  14. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  15. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    PubMed Central

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  16. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.

    PubMed

    Petrus, Emily; Rodriguez, Gabriela; Patterson, Ryan; Connor, Blaine; Kanold, Patrick O; Lee, Hey-Kyoung

    2015-06-10

    Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1-L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1-L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1-L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1-L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation.

  17. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS)

    PubMed Central

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception. PMID:27042360

  18. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    PubMed

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  19. Dynamics of auditory-vocal interaction in monkey auditory cortex.

    PubMed

    Eliades, Steven J; Wang, Xiaoqin

    2005-10-01

    Single neurons in the primate auditory cortex exhibit vocalization-related modulations (excitatory or inhibitory) during self-initiated vocal production. Previous studies have shown that these modulations of cortical activity are variable in individual neurons' responses to multiple instances of vocalization and diverse between different cortical neurons. The present study investigated dynamic patterns of vocalization-related modulations and demonstrated that much of the variability in cortical modulations was related to the acoustic structures of self-produced vocalization. We found that suppression of single unit activity during multi-phrased vocalizations was temporally specific in that it was maintained during each phrase, but was released between phrases. Furthermore, the degree of suppression or excitation was correlated to the mean energy and frequency of the produced vocalizations, accounting for much of the response variability between multiple instances of vocalization. Simultaneous recordings of pairs of neurons from a single electrode revealed that the modulations by self-produced vocalizations in nearby neurons were largely uncorrelated. Additionally, vocalization-induced suppression was found to be preferentially distributed to upper cortical layers. Finally, we showed that the summation of all auditory cortical activity during vocalization, including both single and multi-unit responses, was weakly excitatory, consistent with observations from studies of the human brain during speech.

  20. Using neuroimaging to understand the cortical mechanisms of auditory selective attention

    PubMed Central

    Lee, Adrian KC; Larson, Eric; Maddox, Ross K; Shinn-Cunningham, Barbara G

    2013-01-01

    Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the “cocktail party” problem. PMID:23850664

  1. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes.

    PubMed

    Lewis, James W; Talkington, William J; Tallaksen, Katherine C; Frum, Chris A

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and "auditory objects" can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more "object-like," independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds-a quantitative measure of change in entropy of the acoustic signals over time-and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the

  2. Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing

    PubMed Central

    Teschner, Magnus J.; Seybold, Bryan A.; Malone, Brian J.; Hüning, Jana

    2016-01-01

    The neural mechanisms that support the robust processing of acoustic signals in the presence of background noise in the auditory system remain largely unresolved. Psychophysical experiments have shown that signal detection is influenced by the signal-to-noise ratio (SNR) and the overall stimulus level, but this relationship has not been fully characterized. We evaluated the neural representation of frequency in rat primary auditory cortex by constructing tonal frequency response areas (FRAs) in primary auditory cortex for different SNRs, tone levels, and noise levels. We show that response strength and selectivity for frequency and sound level depend on interactions between SNRs and tone levels. At low SNRs, jointly increasing the tone and noise levels reduced firing rates and narrowed FRA bandwidths; at higher SNRs, however, increasing the tone and noise levels increased firing rates and expanded bandwidths, as is usually seen for FRAs obtained without background noise. These changes in frequency and intensity tuning decreased tone level and tone frequency discriminability at low SNRs. By contrast, neither response onset latencies nor noise-driven steady-state firing rates meaningfully interacted with SNRs or overall sound levels. Speech detection performance in humans was also shown to depend on the interaction between overall sound level and SNR. Together, these results indicate that signal processing difficulties imposed by high noise levels are quite general and suggest that the neurophysiological changes we see for simple sounds generalize to more complex stimuli. SIGNIFICANCE STATEMENT Effective processing of sounds in background noise is an important feature of the mammalian auditory system and a necessary feature for successful hearing in many listening conditions. Even mild hearing loss strongly affects this ability in humans, seriously degrading the ability to communicate. The mechanisms involved in achieving high performance in background noise are not

  3. Cortical Response Variability as a Developmental Index of Selective Auditory Attention

    ERIC Educational Resources Information Center

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory…

  4. Interacting parallel pathways associate sounds with visual identity in auditory cortices.

    PubMed

    Ahveninen, Jyrki; Huang, Samantha; Ahlfors, Seppo P; Hämäläinen, Matti; Rossi, Stephanie; Sams, Mikko; Jääskeläinen, Iiro P

    2016-01-01

    Spatial and non-spatial information of sound events is presumably processed in parallel auditory cortex (AC) "what" and "where" streams, which are modulated by inputs from the respective visual-cortex subsystems. How these parallel processes are integrated to perceptual objects that remain stable across time and the source agent's movements is unknown. We recorded magneto- and electroencephalography (MEG/EEG) data while subjects viewed animated video clips featuring two audiovisual objects, a black cat and a gray cat. Adaptor-probe events were either linked to the same object (the black cat meowed twice in a row in the same location) or included a visually conveyed identity change (the black and then the gray cat meowed with identical voices in the same location). In addition to effects in visual (including fusiform, middle temporal or MT areas) and frontoparietal association areas, the visually conveyed object-identity change was associated with a release from adaptation of early (50-150ms) activity in posterior ACs, spreading to left anterior ACs at 250-450ms in our combined MEG/EEG source estimates. Repetition of events belonging to the same object resulted in increased theta-band (4-8Hz) synchronization within the "what" and "where" pathways (e.g., between anterior AC and fusiform areas). In contrast, the visually conveyed identity changes resulted in distributed synchronization at higher frequencies (alpha and beta bands, 8-32Hz) across different auditory, visual, and association areas. The results suggest that sound events become initially linked to perceptual objects in posterior AC, followed by modulations of representations in anterior AC. Hierarchical what and where pathways seem to operate in parallel after repeating audiovisual associations, whereas the resetting of such associations engages a distributed network across auditory, visual, and multisensory areas.

  5. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    PubMed Central

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  6. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework.

  7. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations

    PubMed Central

    Scharinger, Mathias; Monahan, Philip J.; Idsardi, William J.

    2016-01-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in ‘bet’) exert less top-down effects than the high-vowels (as in ‘bit’) because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in ‘bat’). We tested this assumption in a Magnetoencephalographic (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch-negativity (MMN) responses between 200 and 300 ms post stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18–26 Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. PMID:26780574

  8. Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection

    PubMed Central

    Chandrasekaran, Chandramouli; Lemus, Luis; Ghazanfar, Asif A.

    2013-01-01

    How low-level sensory areas help mediate the detection and discrimination advantages of integrating faces and voices is the subject of intense debate. To gain insights, we investigated the role of the auditory cortex in face/voice integration in macaque monkeys performing a vocal-detection task. Behaviorally, subjects were slower to detect vocalizations as the signal-to-noise ratio decreased, but seeing mouth movements associated with vocalizations sped up detection. Paralleling this behavioral relationship, as the signal to noise ratio decreased, the onset of spiking responses were delayed and magnitudes were decreased. However, when mouth motion accompanied the vocalization, these responses were uniformly faster. Conversely, and at odds with previous assumptions regarding the neural basis of face/voice integration, changes in the magnitude of neural responses were not related consistently to audiovisual behavior. Taken together, our data reveal that facilitation of spike latency is a means by which the auditory cortex partially mediates the reaction time benefits of combining faces and voices. PMID:24218574

  9. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory.

  10. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template.

    PubMed

    Majka, Piotr; Chaplin, Tristan A; Yu, Hsin-Hao; Tolpygo, Alexander; Mitra, Partha P; Wójcik, Daniel K; Rosa, Marcello G P

    2016-08-01

    The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  11. Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials.

    PubMed

    Li, Shu-Chen; Passow, Susanne; Nietfeld, Wilfried; Schröder, Julia; Bertram, Lars; Heekeren, Hauke R; Lindenberger, Ulman

    2013-07-01

    Using a specific variant of the dichotic listening paradigm, we studied the influence of dopamine on attentional modulation of auditory perception by assessing effects of allelic variation of a single-nucleotide polymorphism (SNP) rs907094 in the DARPP-32 gene (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein 32 kilodations; also known as PPP1R1B) on behavior and cortical evoked potentials. A frequent DARPP-32 haplotype that includes the A allele of this SNP is associated with higher mRNA expression of DARPP-32 protein isoforms, striatal dopamine receptor function, and frontal-striatal connectivity. As we hypothesized, behaviorally the A homozygotes were more flexible in selectively attending to auditory inputs than any G carriers. Moreover, this genotype also affected auditory evoked cortical potentials that reflect early sensory and late attentional processes. Specifically, analyses of event-related potentials (ERPs) revealed that amplitudes of an early component of sensory selection (N1) and a late component (N450) reflecting attentional deployment for conflict resolution were larger in A homozygotes than in any G carriers. Taken together, our data lend support for dopamine's role in modulating auditory attention both during the early sensory selection and late conflict resolution stages.

  12. Synaptic Properties of Thalamic Input to the Subgranular Layers of Primary Somatosensory and Auditory Cortices in the Mouse

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2011-01-01

    The classification of synaptic inputs is an essential part of understanding brain circuitry. In the present study, we examined the synaptic properties of thalamic inputs to pyramidal neurons in layers 5a, 5b, and 6 of primary somatosensory (S1) and auditory (A1) cortices in mouse thalamocortical slices. Stimulation of the ventral posterior medial nucleus (VPM) and the ventral division of the medial geniculate body (MGBv) resulted in three distinct response classes, two of which have never been described before in thalamocortical projections. Class 1A responses included synaptic depression and all-or-none responses while Class 1B responses exhibited synaptic depression and graded responses. Class 1C responses are characterized by mixed facilitation and depression as well as graded responses. Activation of metabotropic glutamate receptors was not observed in any of the response classes. We conclude that Class 1 responses can be broken up into three distinct subclasses, and that thalamic inputs to the subgranular layers of cortex may combine with other, intracortical inputs to drive their postsynaptic target cells. We also integrate these results with our recent, analogous study of thalamocortical inputs to granular and supragranular layers (Viaene et al., 2011). PMID:21900553

  13. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured.

  14. Two cortical mechanisms support the integration of visual and auditory speech: a hypothesis and preliminary data.

    PubMed

    Okada, Kayoko; Hickok, Gregory

    2009-03-20

    Visual speech (lip-reading) influences the perception of heard speech. The literature suggests at least two possible mechanisms for this influence: "direct" sensory-sensory interaction, whereby sensory signals from auditory and visual modalities are integrated directly, likely in the superior temporal sulcus, and "indirect" sensory-motor interaction, whereby visual speech is first mapped onto motor-speech representations in the frontal lobe, which in turn influences sensory perception via sensory-motor integration networks. We hypothesize that both mechanisms exist, and further that previous demonstrations of lip-reading functional activations in Broca's region and the posterior planum temporale reflect the sensory-motor mechanism. We tested one prediction of this hypothesis using fMRI. We assessed whether viewing visual speech (contrasted with facial gestures) activates the same network as a speech sensory-motor integration task (listen to and then silently rehearse speech). Both tasks activated locations within Broca's area, dorsal premotor cortex, and the posterior planum temporal (Spt), and focal regions of the STS, all of which have previously been implicated in sensory-motor integration for speech. This finding is consistent with the view that visual speech influences heard speech via sensory-motor networks. Lip-reading also activated a much wider network in the superior temporal lobe than the sensory-motor task, possibly reflecting a more direct cross-sensory integration network.

  15. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding

    PubMed Central

    Malmierca, Manuel S.; Anderson, Lucy A.; Antunes, Flora M.

    2015-01-01

    To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex. PMID:25805974

  16. Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank

    2011-09-01

    The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.

  17. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm.

    PubMed

    Jenson, David; Harkrider, Ashley W; Thornton, David; Bowers, Andrew L; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required "active" discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral "auditory" alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.

  18. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG.

  19. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates

    PubMed Central

    Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C.; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-01-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class. PMID:27441598

  20. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral

  1. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm

    PubMed Central

    Jenson, David; Harkrider, Ashley W.; Thornton, David; Bowers, Andrew L.; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required “active” discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral “auditory” alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. PMID

  2. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    PubMed

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  3. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    PubMed

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  4. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network.

    PubMed

    Mayhew, Stephen D; Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2013-08-01

    The human brain is continually, dynamically active and spontaneous fluctuations in this activity play a functional role in affecting both behavioural and neuronal responses. However, the mechanisms through which this occurs remain poorly understood. Simultaneous EEG-fMRI is a promising technique to study how spontaneous activity modulates the brain's response to stimulation, as temporal indices of ongoing cortical excitability can be integrated with spatially localised evoked responses. Here we demonstrate an interaction between the ongoing power of the electrophysiological alpha oscillation and the magnitude of both positive (PBR) and negative (NBR) fMRI responses to two contrasts of visual checkerboard reversal. Furthermore, the amplitude of pre-stimulus EEG alpha-power significantly modulated the amplitude and shape of subsequent PBR and NBR to the visual stimulus. A nonlinear reduction of visual PBR and an enhancement of auditory NBR and default-mode network NBR were observed in trials preceded by high alpha-power. These modulated areas formed a functionally connected network during a separate resting-state recording. Our findings suggest that the "baseline" state of the brain exhibits considerable trial-to-trial variability which arises from fluctuations in the balance of cortical inhibition/excitation that are represented by respective increases/decreases in the power of the EEG alpha oscillation. The consequence of this spontaneous electrophysiological variability is modulated amplitudes of both PBR and NBR to stimulation. Fluctuations in alpha-power may subserve a functional relationship in the visual-auditory network, acting as mediator for both short and long-range cortical inhibition, the strength of which is represented in part by NBR.

  5. Cortical pathways to the mammalian amygdala.

    PubMed

    McDonald, A J

    1998-06-01

    The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.

  6. Disruptions in Serotonergic Regulation of Cortical Glutamate Release in Primate Insular Cortex in Response to Chronic Ethanol and Nursery Rearing

    PubMed Central

    Alexander, Georgia M.; Graef, John D.; Hammarback, James A.; Nordskog, Brian K.; Burnett, Elizabeth J.; Daunais, James B.; Bennett, Allyson J.; Friedman, David P.; Suomi, Stephen J.; Godwin, Dwayne W.

    2015-01-01

    Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. We therefore investigated changes in both serotonin receptor expression and glutamatergic synaptic activity in the AIC of alcohol-drinking rhesus monkeys. We studied tissues from male rhesus monkeys raised under two conditions: Male rhesus monkeys 1) “Mother reared” (MR) by adult females (n=9), or; 2) “Nursery reared” (NR), i.e., separated from their mothers and reared as a separate group under surrogate/peer-reared conditions (n=9). The NR condition represents a long-standing and well-validated nonhuman primate model of early life stress. All monkeys were trained to self-administer ethanol (4% w/v) or an isocaloric maltose-dextrin control solution. Subsets from each rearing condition were then given daily access to either ethanol, water or maltose dextrin for 12 months. Tissues were collected at necropsy and were further analyzed. Using real time RT-PCR we found that ethanol-naïve, NR monkeys had lower AIC levels of 5-HT1A and 5-HT2A receptor mRNA compared to ethanol-naïve, MR animals. While NR monkeys consumed more ethanol over the 12-month period compared to MR animals, both MR and NR animals expressed greater 5-HT1A and 5-HT2A receptor mRNA levels following chronic alcohol self-administration. The interaction between nursery-rearing conditions and alcohol consumption resulted in a significant enhancement of both 5-HT1A and 5-HT2A receptor mRNA levels such that lower expression levels observed in nursery rearing conditions were not found in the alcohol self-administration group. Using voltage clamp recordings in the whole cell configuration we recorded excitatory postsynaptic currents in both ethanol-naïve and chronic self

  7. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.

    PubMed

    Malhotra, Shveta; Lomber, Stephen G

    2007-01-01

    Although the contributions of primary auditory cortex (AI) to sound localization have been extensively studied in a large number of mammals, little is known of the contributions of nonprimary auditory cortex to sound localization. Therefore the purpose of this study was to examine the contributions of both primary and all the recognized regions of acoustically responsive nonprimary auditory cortex to sound localization during both bilateral and unilateral reversible deactivation. The cats learned to make an orienting response (head movement and approach) to a 100-ms broad-band noise stimulus emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90 degrees to right 90 degrees , at 15 degrees intervals) along the horizontal plane after attending to a central visual stimulus. Twenty-one cats had one or two bilateral pairs of cryoloops chronically implanted over one of ten regions of auditory cortex. We examined AI [which included the dorsal zone (DZ)], the three other tonotopic fields [anterior auditory field (AAF), posterior auditory field (PAF), ventral posterior auditory field (VPAF)], as well as six nontonotopic regions that included second auditory cortex (AII), the anterior ectosylvian sulcus (AES), the insular (IN) region, the temporal (T) region [which included the ventral auditory field (VAF)], the dorsal posterior ectosylvian (dPE) gyrus [which included the intermediate posterior ectosylvian (iPE) gyrus], and the ventral posterior ectosylvian (vPE) gyrus. In accord with earlier studies, unilateral deactivation of AI/DZ caused sound localization deficits in the contralateral field. Bilateral deactivation of AI/DZ resulted in bilateral sound localization deficits throughout the 180 degrees field examined. Of the three other tonotopically organized fields, only deactivation of PAF resulted in sound localization deficits. These deficits were virtually identical to the unilateral and bilateral deactivation results

  8. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey.

    PubMed

    Romanski, L M; Bates, J F; Goldman-Rakic, P S

    1999-01-11

    Recent anatomical and electrophysiological studies have expanded our knowledge of the auditory cortical system in primates and have described its organization as a series of concentric circles with a central or primary auditory core, surrounded by a lateral and medial belt of secondary auditory cortex with a tertiary parabelt cortex just lateral to this belt. Because recent studies have shown that rostral and caudal belt and parabelt cortices have distinct patterns of connections and acoustic responsivity, we hypothesized that these divergent auditory regions might have distinct targets in the frontal lobe. We, therefore, placed discrete injections of wheat germ agglutinin-horseradish peroxidase or fluorescent retrograde tracers into the prefrontal cortex of macaque monkeys and analyzed the anterograde and retrograde labeling in the aforementioned auditory areas. Injections that included rostral and orbital prefrontal areas (10, 46 rostral, 12) labeled the rostral belt and parabelt most heavily, whereas injections including the caudal principal sulcus (area 46), periarcuate cortex (area 8a), and ventrolateral prefrontal cortex (area12vl) labeled the caudal belt and parabelt. Projections originating in the parabelt cortex were denser than those arising from the lateral or medial belt cortices in most cases. In addition, the anterior third of the superior temporal gyrus and the dorsal bank of the superior temporal sulcus were also labeled after prefrontal injections, confirming previous studies. The present topographical results suggest that acoustic information diverges into separate streams that target distinct rostral and caudal domains of the prefrontal cortex, which may serve different acoustic functions.

  9. No effects of mobile phone use on cortical auditory change-detection in children: an ERP study.

    PubMed

    Kwon, Myoung Soo; Huotilainen, Minna; Shestakova, Anna; Kujala, Teija; Näätänen, Risto; Hämäläinen, Heikki

    2010-04-01

    We investigated the effect of mobile phone use on the auditory sensory memory in children. Auditory event-related potentials (ERPs), P1, N2, mismatch negativity (MMN), and P3a, were recorded from 17 children, aged 11-12 years, in the recently developed multi-feature paradigm. This paradigm allows one to determine the neural change-detection profile consisting of several different types of acoustic changes. During the recording, an ordinary GSM (Global System for Mobile Communications) mobile phone emitting 902 MHz (pulsed at 217 Hz) electromagnetic field (EMF) was placed on the ear, over the left or right temporal area (SAR(1g) = 1.14 W/kg, SAR(10g) = 0.82 W/kg, peak value = 1.21 W/kg). The EMF was either on or off in a single-blind manner. We found that a short exposure (two 6 min blocks for each side) to mobile phone EMF has no statistically significant effects on the neural change-detection profile measured with the MMN. Furthermore, the multi-feature paradigm was shown to be well suited for studies of perception accuracy and sensory memory in children. However, it should be noted that the present study only had sufficient statistical power to detect a large effect size.

  10. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  11. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment

    PubMed Central

    Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo

    2016-01-01

    We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems. PMID:27708745

  12. Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction.

    PubMed

    Shelley, A M; Silipo, G; Javitt, D C

    1999-05-04

    Event-related potentials (ERPs) were recorded from 15 schizophrenic patients and 17 normal controls in an auditory oddball paradigm in order to investigate the effects of stimulus probability and interstimulus interval (ISI) on deficits in mismatch negativity (MMN) generation in schizophrenia. MMN amplitude was reduced for schizophrenics overall, with the degree of deficit increasing as deviant probability decreased. In contrast, schizophrenic subjects were no more affected by alterations in ISI than controls. The experimental design also permitted evaluation of N1 generation as a function of ISI in schizophrenia. Schizophrenic subjects showed decreased N1 amplitude across conditions, with the degree of deficit increasing with increasing ISI. For both MMN and N1, therefore, the degree of deficit increased with increasing component amplitude in normals, implying that the deficit in ERP generation in schizophrenia may reflect a decrease in maximal current flow through underlying neuronal ensembles. The observed pattern of dysfunction is consistent both with observations of impaired precision of processing in schizophrenia, and with predictions of the PCP/NMDA model.

  13. Phase-amplitude cross-frequency coupling in EEG-derived cortical time series upon an auditory perception task.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2015-01-01

    Recent evidence suggests that cross-frequency coupling (CFC) plays an essential role in multi-scale communication across the brain. The amplitude of the high frequency oscillations, responsible for local activity, is modulated by the phase of the lower frequency activity, in a task and region-relevant way. In this paper, we examine this phase-amplitude coupling in a two-tone oddball paradigm for the low frequency bands (delta, theta, alpha, and beta) and determine the most prominent CFCs. Data consisted of cortical time series, extracted by applying three-dimensional vector field tomography (3D-VFT) to high density (256 channels) electroencephalography (HD-EEG), and CFC analysis was based on the phase-amplitude coupling metric, namely PAC. Our findings suggest CFC spanning across all brain regions and low frequencies. Stronger coupling was observed in the delta band, that is closely linked to sensory processing. However, theta coupling was reinforced in the target tone response, revealing a task-dependent CFC and its role in brain networks communication.

  14. The evolution of neocortex in primates.

    PubMed

    Kaas, Jon H

    2012-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved.

  15. Effects of Acoustic Complexity on Processing Sound Intensity in 10- to 11-Year-Old Children: Evidence From Cortical Auditory Evoked Potentials

    PubMed Central

    Dinces, Elizabeth; Sussman, Elyse

    2012-01-01

    Objectives/Hypothesis The environmental complexity that sounds are presented in, as well as the stimulus presentation rate, influences how sound intensity is centrally encoded with differences between children and adults. Study Design Cortical auditory evoked potential (CAEP) comparison study in children and adults examining two stimulus rates and three different stimulus contexts. Methods Twelve 10 and 11 year olds and 11 adults were studied in two experiments examining the CAEP to a 1-KHz, 50-ms tone. A Slow-Rate experiment at 750-ms stimulus onset asynchrony (SOA) compared the CAEPs of 78 dB to 86 dB SPL in 2 complexity conditions. A Fast-Rate experiment was performed at 125 ms SOA with the same conditions plus an additional complexity condition. Repeated measures and mixed-model analysis of variance (ANOVA) was used to examine the latency and amplitude of the CAEP components. Results CAEP amplitudes and latencies were significantly affected by rate, intensity, and age with complexity interacting in multiple mixed-mode ANOVAs. P1 was the only CAEP component present at the Fast Rate. There were main effects of rate, age, and stimulus intensity level on the CAEP amplitudes and latencies. Maturational differences were seen in the interactions of intensity with complexity for the different CAEP components. Conclusions Complexity of the sound environment was reflected in the relative amplitude of the CAEPs evoked by sound intensity. The effect of stimulus intensity depended on the complexity of the surrounding environment. Effects of the surrounding sounds were different in children than in adults. PMID:21792970

  16. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study.

  17. In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    PubMed Central

    Dick, Frederic; Tierney, Adam Taylor; Lutti, Antoine; Josephs, Oliver; Sereno, Martin I.; Weiskopf, Nikolaus

    2012-01-01

    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with post mortem cyto- or myelo-architectonics from the same individual. We combined high-resolution (800 μm) quantitative T1 mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the ‘auditory core’ of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to post-mortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two ‘mirror-image‘ tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that thee two maps within the core are the human analogues of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multi-modal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies. PMID:23152594

  18. Functional organization of human auditory cortex: Investigation of response latencies through direct recordings

    PubMed Central

    McMurray, Bob; Kovach, Christopher K.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl’s gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. PMID:25019680

  19. Primate cognition.

    PubMed

    Seed, Amanda; Tomasello, Michael

    2010-07-01

    As the cognitive revolution was slow to come to the study of animal behavior, the vast majority of what we know about primate cognition has been discovered in the last 30 years. Building on the recognition that the physical and social worlds of humans and their living primate relatives pose many of the same evolutionary challenges, programs of research have established that the most basic cognitive skills and mental representations that humans use to navigate those worlds are already possessed by other primates. There may be differences between humans and other primates, however, in more complex cognitive skills, such as reasoning about relations, causality, time, and other minds. Of special importance, the human primate seems to possess a species-unique set of adaptations for "cultural intelligence," which are broad reaching in their effects on human cognition.

  20. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  1. Evolution of the brain and intelligence in primates.

    PubMed

    Roth, Gerhard; Dicke, Ursula

    2012-01-01

    Primates are, on average, more intelligent than other mammals, with great apes and finally humans on top. They generally have larger brains and cortices, and because of higher relative cortex volume and neuron packing density (NPD), they have much more cortical neurons than other mammalian taxa with the same brain size. Likewise, information processing capacity is generally higher in primates due to short interneuronal distance and high axonal conduction velocity. Across primate taxa, differences in intelligence correlate best with differences in number of cortical neurons and synapses plus information processing speed. The human brain stands out by having a large cortical volume with relatively high NPD, high conduction velocity, and high cortical parcellation. All aspects of human intelligence are present at least in rudimentary form in nonhuman primates or some mammals or vertebrates except syntactical language. The latter can be regarded as a very potent "intelligence amplifier."

  2. Using neural modeling and functional neuroimaging to study the neural basis of auditory object processing

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry; Husain, Fatima T.

    2003-04-01

    The neural basis of auditory object processing in the human cerebral cortex was investigated by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates neuronal dynamics of cortical auditory processing of frequency-modulated (FM) sweeps to functional neuroimaging data obtained using functional magnetic resonance imaging (fMRI). FM sweeps are ubiquitous in animal communication. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the model neuronal units were constrained to agree with data from the neurophysiological literature regarding FM sweep perception. A fMRI experiment using stimuli and tasks similar to those used in our simulations was performed. The regional integrated synaptic activities of the model were used to determine simulated regional fMRI activities, and generally agreed with the experimentally observed fMRI data. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex. This type of approach offers the potential for understanding the neural basis of human speech perception.

  3. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways.

    PubMed

    Clarke, S; Bellmann, A; Meuli, R A; Assal, G; Steck, A J

    2000-01-01

    Auditory recognition and auditory spatial functions were studied in four patients with circumscribed left hemispheric lesions. Patient FD was severely deficient in recognition of environmental sounds but normal in auditory localisation and auditory motion perception. The lesion included the left superior, middle and inferior temporal gyri and lateral auditory areas (as identified in previous anatomical studies), but spared Heschl's gyrus, the acoustic radiation and the thalamus. Patient SD had the same profile as FD, with deficient recognition of environmental sounds but normal auditory localisation and motion perception. The lesion comprised the postero-inferior part of the frontal convexity and the anterior third of the temporal lobe; data from non-human primates indicate that the latter are interconnected with lateral auditory areas. Patient MA was deficient in recognition of environmental sounds, auditory localisation and auditory motion perception, confirming that auditory spatial functions can be disturbed by left unilateral damage; the lesion involved the supratemporal region as well as the temporal, postero-inferior frontal and antero-inferior parietal convexities. Patient CZ was severely deficient in auditory motion perception and partially deficient in auditory localisation, but normal in recognition of environmental sounds; the lesion involved large parts of the parieto-frontal convexity and the supratemporal region. We propose that auditory information is processed in the human auditory cortex along two distinct pathways, one lateral devoted to auditory recognition and one medial and posterior devoted to auditory spatial functions.

  4. Subcortical processing in auditory communication.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2015-10-01

    The voice is a rich source of information, which the human brain has evolved to decode and interpret. Empirical observations have shown that the human auditory system is especially sensitive to the human voice, and that activity within the voice-sensitive regions of the primary and secondary auditory cortex is modulated by the emotional quality of the vocal signal, and may therefore subserve, with frontal regions, the cognitive ability to correctly identify the speaker's affective state. So far, the network involved in the processing of vocal affect has been mainly characterised at the cortical level. However, anatomical and functional evidence suggests that acoustic information relevant to the affective quality of the auditory signal might be processed prior to the auditory cortex. Here we review the animal and human literature on the main subcortical structures along the auditory pathway, and propose a model whereby the distinction between different types of vocal affect in auditory communication begins at very early stages of auditory processing, and relies on the analysis of individual acoustic features of the sound signal. We further suggest that this early feature-based decoding occurs at a subcortical level along the ascending auditory pathway, and provides a preliminary coarse (but fast) characterisation of the affective quality of the auditory signal before the more refined (but slower) cortical processing is completed.

  5. Activity in a Premotor Cortical Nucleus of Zebra Finches Is Locally Organized and Exhibits Auditory Selectivity in Neurons but Not in Glia

    PubMed Central

    Graber, Michael H.; Helmchen, Fritjof; Hahnloser, Richard H. R.

    2013-01-01

    Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS) compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations. PMID:24312533

  6. Using naturalistic utterances to investigate vocal communication processing and development in human and non-human primates.

    PubMed

    Talkington, William J; Taglialatela, Jared P; Lewis, James W

    2013-11-01

    Humans and several non-human primates possess cortical regions that are most sensitive to vocalizations produced by their own kind (conspecifics). However, the use of speech and other broadly defined categories of behaviorally relevant natural sounds has led to many discrepancies regarding where voice-sensitivity occurs, and more generally the identification of cortical networks, "proto-networks" or protolanguage networks, and pathways that may be sensitive or selective for certain aspects of vocalization processing. In this prospective review we examine different approaches for exploring vocal communication processing, including pathways that may be, or become, specialized for conspecific utterances. In particular, we address the use of naturally produced non-stereotypical vocalizations (mimicry of other animal calls) as another category of vocalization for use with human and non-human primate auditory systems. We focus this review on two main themes, including progress and future ideas for studying vocalization processing in great apes (chimpanzees) and in very early stages of human development, including infants and fetuses. Advancing our understanding of the fundamental principles that govern the evolution and early development of cortical pathways for processing non-verbal communication utterances is expected to lead to better diagnoses and early intervention strategies in children with communication disorders, improve rehabilitation of communication disorders resulting from brain injury, and develop new strategies for intelligent hearing aid and implant design that can better enhance speech signals in noisy environments. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".

  7. Using naturalistic utterances to investigate vocal communication processing and development in human and non-human primates

    PubMed Central

    Talkington, William J.; Taglialatela, Jared P.; Lewis, James W.

    2013-01-01

    Humans and several non-human primates possess cortical regions that are most sensitive to vocalizations produced by their own kind (conspecifics). However, the use of speech and other broadly defined categories of behaviorally relevant natural sounds has led to many discrepancies regarding where voice-sensitivity occurs, and more generally the identification of cortical networks, “proto-networks” or protolanguage networks, and pathways that may be sensitive or selective for certain aspects of vocalization processing. In this prospective review we examine different approaches for exploring vocal communication processing, including pathways that may be, or become, specialized for conspecific utterances. In particular, we address the use of naturally produced non-stereotypical vocalizations (mimicry of other animal calls) as another category of vocalization for use with human and non-human primate auditory systems. We focus this review on two main themes, including progress and future ideas for studying vocalization processing in great apes (chimpanzees) and in very early stages of human development, including infants and fetuses. Advancing our understanding of the fundamental principles that govern the evolution and early development of cortical pathways for processing non-verbal communication utterances is expected to lead to better diagnoses and early intervention strategies in children with communication disorders, improve rehabilitation of communication disorders resulting from brain injury, and develop new strategies for intelligent hearing aid and implant design that can better enhance speech signals in noisy environments. PMID:23994296

  8. Auditory effects on the motor responses after magnetic cortical stimulation and on the H-reflexes in patients with Parkinson's disease.

    PubMed

    Nakashima, K; Wang, Y; Shimoda, M; Shimoyama, R; Yokoyama, Y; Takahashi, K

    1994-03-01

    The effects of sound on the responses in teh abductor pollicis brevis muscle after magnetic cortical stimulation and on the H-reflexes in the wrist and finger flexor muscles were examined. Magnetic cortical stimulation and electrical stimulation eliciting H-reflexes were conditioned by sound stimulation. This sound stimulation did not produce the electromyographic response by itself. In the control subjects, sound stimulation produced an increase of the motor responses after cortical stimulation at intervals of 100, 150, 200 and 250 ms. The increase was greater in the patients with Parkinson's disease (PD). In the control subjects, sound stimulation produced an increase of the H-reflexes at intervals of 50, 100, 150 and 200 ms. This H-reflex increase in the PD patients was less than in the normal subjects. The reticular system might play a role in the abnormal motor control system in PD patients.

  9. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    PubMed

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p < 0.05). In conclusion, the bilateral visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices.

  10. Behind the scenes of auditory perception.

    PubMed

    Shamma, Shihab A; Micheyl, Christophe

    2010-06-01

    'Auditory scenes' often contain contributions from multiple acoustic sources. These are usually heard as separate auditory 'streams', which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the past two years indicate that both cortical and subcortical processes contribute to the formation of auditory streams, and they raise important questions concerning the roles of primary and secondary areas of auditory cortex in this phenomenon. In addition, these findings underline the importance of taking into account the relative timing of neural responses, and the influence of selective attention, in the search for neural correlates of the perception of auditory streams.

  11. Perceptual learning in the developing auditory cortex.

    PubMed

    Bao, Shaowen

    2015-03-01

    A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant. How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the most important classes of sounds, animal vocalizations? How does naturalistic acoustic experience shape cortical sound representation and perception? To answer these questions, we need to consider an unusual strategy, statistical learning, where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain statistical structures of natural animal vocalizations shape auditory cortical acoustic representations, and how cortical plasticity may underlie learned categorical sound perception. These results will be discussed in the context of human speech perception.

  12. Spectral and spatial tuning of onset and offset response functions in auditory cortical fields A1 and CL of rhesus macaques.

    PubMed

    Ramamurthy, Deepa L; Recanzone, Gregg H

    2016-12-07

    The mammalian auditory cortex is necessary for spectral and spatial processing of acoustic stimuli. Most physiological studies of single neurons in the auditory cortex have focused on the onset and sustained portions of evoked responses, but there have been far fewer studies on the relationship between onset and offset responses. In the current study, we compared spectral and spatial tuning of onset and offset responses of neurons in primary auditory cortex (A1) and the caudolateral (CL) belt area of awake macaque monkeys. Several different metrics were used to determine the relationship between onset and offset response profiles in both frequency and space domains. In the frequency domain, a substantial proportion of neurons in A1 and CL displayed highly dissimilar best stimuli for onset- and offset-evoked responses, though even for these neurons, there was usually a large overlap in the range of frequencies that elicited onset and offset responses and distributions of tuning overlap metrics were mostly unimodal. In the spatial domain, the vast majority of neurons displayed very similar best locations for onset- and offset-evoked responses, along with unimodal distributions of all tuning overlap metrics considered. Finally, for both spectral and spatial tuning, a slightly larger fraction of neurons in A1 displayed non-overlapping onset and offset response profiles, relative to CL, which supports hierarchical differences in the processing of sounds in the two areas. However, these differences are small compared to differences in proportions of simple cells (low overlap) and complex cells (high overlap) in primary and secondary visual areas.

  13. Central auditory imperception.

    PubMed

    Snow, J B; Rintelmann, W F; Miller, J M; Konkle, D F

    1977-09-01

    The development of clinically applicable techniques for the evaluation of hearing impairment caused by lesions of the central auditory pathways has increased clinical interest in the anatomy and physiology of these pathways. A conceptualization of present understanding of the anatomy and physiology of the central auditory pathways is presented. Clinical tests based on reduction of redundancy of the speech message, degradation of speech and binaural interations are presented. Specifically performance-intensity functions, filtered speech tests, competing message tests and time-compressed speech tests are presented with the emphasis on our experience with time-compressed speech tests. With proper use of these tests not only can central auditory impairments by detected, but brain stem lesions can be distinguished from cortical lesions.

  14. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  15. Stimulus control and auditory discrimination learning sets in the bottlenose dolphin1

    PubMed Central

    Herman, Louis M.; Arbeit, William R.

    1973-01-01

    The learning efficiency of an Atlantic bottlenose dolphin was evaluated using auditory discrimination learning-set tasks. Efficiency, as measured by the probability of a correct response on Trial 2 of a new discrete-trial, two-choice auditory discrimination problem, reached levels comparable to those attained by advanced species of nonhuman primates. Runs of errorless problems in some cases rivaled those reported for individual rhesus monkeys in visual discrimination learning-set tasks. This level of stimulus control of responses to new auditory discriminanda was attained through (a) the development of a sequential within-trial method for presentation of a pair of auditory discriminanda; (b) the extensive use of fading methods to train initial discriminations, followed by the fadeout of the use of fading; (c) the development of listening behavior through control of the animal's responses during projection of the auditory discriminanda; and (d) the use of highly discriminable auditory stimuli, by applying results of a parametric evaluation of discriminability of selected acoustic variables. Learning efficiency was tested using a cueing method on Trial 1 of each new discrimination, to allow the animal to identify the positive stimulus before its response. Efficiency was also tested with the more common blind baiting method, in which the Trial 1 response was reinforced on only a random half of the problems. Efficiency was high for both methods. The overall results were generally in keeping with exceptations of learning capacity based on the large size and high degree of cortical complexity of the brain of the bottlenose dolphin. PMID:16811670

  16. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  17. Studying Auditory Verbal Hallucinations Using the RDoC framework

    PubMed Central

    Ford, Judith M.

    2016-01-01

    In this paper, I explain why I adopted an RDoC approach to study the neurobiology of auditory verbal hallucinations (AVH), or voices. I explain that the RDoC construct of “Agency” fits well with AVH phenomenology. To the extent that voices sound non-self, voice hearers lack a sense of agency over the voices. Using a vocalization paradigm like those used with non-human primates to study mechanisms subserving the sense of agency, we find that the auditory N1 ERP is suppressed during vocalization, that EEG synchrony preceding speech onset is related to N1 suppression, and that both are reduced in patients with schizophrenia. Reduced cortical suppression is also seen across multiple psychotic disorders and in clinically high-risk youth. The motor activity preceding talking and connectivity between frontal and temporal lobes during talking have both proved sensitive to AVH, suggesting neural activity and connectivity associated with intentions to act may be a better way to study agency and predictions based on agency. PMID:26877116

  18. Dual temporal encoding mechanisms in human auditory cortex: Evidence from MEG and EEG.

    PubMed

    Tang, Huizhen; Crain, Stephen; Johnson, Blake W

    2016-03-01

    Current hypotheses about language processing advocate an integral relationship between encoding of temporal information and linguistic processing in the brain. All such explanations must accommodate the evident ability of the perceptual system to process both slow and fast time scales in speech. However most cortical neurons are limited in their capability to precisely synchronise to temporal modulations at rates faster than about 50Hz. Hence, a central question in auditory neurophysiology concerns how the full range of perceptually relevant modulation rates might be encoded in the cerebral cortex. Here we show with concurrent noninvasive magnetoencephalography (MEG) and electroencephalography (EEG) measurements that the human auditory cortex transitions between a phase-locked (PL) mode of responding to modulation rates below about 50Hz, and a non-phase-locked (NPL) mode at higher rates. Precisely such dual response modes are predictable from the behaviours of single neurons in auditory cortices of non-human primates. Our data point to a common mechanistic explanation for the single neuron and MEG/EEG results and support the hypothesis that two distinct types of neuronal encoding mechanisms are employed by the auditory cortex to represent a wide range of temporal modulation rates. This dual encoding model allows slow and fast modulations in speech to be processed in parallel and is therefore consistent with theoretical frameworks in which slow temporal modulations (such as rhythm or syllabic structure) are akin to the contours or edges of visual objects, whereas faster modulations (such as periodicity pitch or phonemic structure) are more like visual texture.

  19. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life.

    PubMed

    Hogsden, Jennifer L; Dringenberg, Hans C

    2009-08-01

    The composition of N-methyl-D-aspartate (NMDA) receptor subunits influences the degree of synaptic plasticity expressed during development and into adulthood. Here, we show that theta-burst stimulation of the medial geniculate nucleus reliably induced NMDA receptor-dependent long-term potentiation (LTP) of field postsynaptic potentials recorded in the primary auditory cortex (A1) of urethane-anesthetized rats. Furthermore, substantially greater levels of LTP were elicited in juvenile animals (30-37 days old; approximately 55% maximal potentiation) than in adult animals (approximately 30% potentiation). Masking patterned sound via continuous white noise exposure during early postnatal life (from postnatal day 5 to postnatal day 50-60) resulted in enhanced, juvenile-like levels of LTP (approximately 70% maximal potentiation) relative to age-matched controls reared in unaltered acoustic environments (approximately 30%). Rats reared in white noise and then placed in unaltered acoustic environments for 40-50 days showed levels of LTP comparable to those of adult controls, indicating that white noise rearing results in a form of developmental arrest that can be overcome by subsequent patterned sound exposure. We explored the mechanisms mediating white noise-induced plasticity enhancements by local NR2B subunit antagonist application in A1. NR2B subunit antagonists (Ro 25-6981 or ifenprodil) completely reversed white noise-induced LTP enhancement at concentrations that did not affect LTP in adult or age-matched controls. We conclude that white noise exposure during early postnatal life results in the maintenance of juvenile-like, higher levels of plasticity in A1, an effect that appears to be critically dependent on NR2B subunit activation.

  20. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition.

  1. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    PubMed

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  2. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri)

    PubMed Central

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2012-01-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews. PMID:23124770

  3. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri).

    PubMed

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2013-05-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.

  4. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    PubMed

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  5. Auditory processing disorder in perisylvian syndrome.

    PubMed

    Boscariol, Mirela; Garcia, Vera Lúcia; Guimarães, Catarina Abraão; Montenegro, Maria Augusta; Hage, Simone Rocha Vasconcelos; Cendes, Fernando; Guerreiro, Marilisa Mantovani

    2010-04-01

    We hypothesized that the processing of auditory information by the perisylvian polymicrogyric cortex may be different from the normal cortex. To characterize the auditory processing in bilateral perisylvian syndrome, we examined ten patients with perisylvian polymicrogyria (Group I) and seven control children (Group II). Group I was composed by four children with bilateral perisylvian polymicrogyria and six children with bilateral posterior perisylvian polymicrogyria. The evaluation included neurological and neuroimaging investigation, intellectual quotient and audiological assessment (audiometry and behavior auditory tests). The results revealed a statistically significant difference between the groups in the behavioral auditory tests, such as, digits dichotic test, nonverbal dichotic test (specifically in right attention), and random gap detection/random gap detection expanded tests. Our data showed abnormalities in the auditory processing of children with perisylvian polymicrogyria, suggesting that perisylvian polymicrogyric cortex is functionally abnormal. We also found a correlation between the severity of our auditory findings and the extent of the cortical abnormality.

  6. Auditory Imagination.

    ERIC Educational Resources Information Center

    Croft, Martyn

    Auditory imagination is used in this paper to describe a number of issues and activities related to sound and having to do with listening, thinking, recalling, imagining, reshaping, creating, and uttering sounds and words. Examples of auditory imagination in religious and literary works are cited that indicate a belief in an imagined, expected, or…

  7. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes.

  8. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.

  9. Two organizing principles of vocal production: Implications for nonhuman and human primates.

    PubMed

    Owren, Michael J; Amoss, R Toby; Rendall, Drew

    2011-06-01

    Vocal communication in nonhuman primates receives considerable research attention, with many investigators arguing for similarities between this calling and speech in humans. Data from development and neural organization show a central role of affect in monkey and ape sounds, however, suggesting that their calls are homologous to spontaneous human emotional vocalizations while having little relation to spoken language. Based on this evidence, we propose two principles that can be useful in evaluating the many and disparate empirical findings that bear on the nature of vocal production in nonhuman and human primates. One principle distinguishes production-first from reception-first vocal development, referring to the markedly different role of auditory-motor experience in each case. The second highlights a phenomenon dubbed dual neural pathways, specifically that when a species with an existing vocal system evolves a new functionally distinct vocalization capability, it occurs through emergence of a second parallel neural pathway rather than through expansion of the extant circuitry. With these principles as a backdrop, we review evidence of acoustic modification of calling associated with background noise, conditioning effects, audience composition, and vocal convergence and divergence in nonhuman primates. Although each kind of evidence has been interpreted to show flexible cognitively mediated control over vocal production, we suggest that most are more consistent with affectively grounded mechanisms. The lone exception is production of simple, novel sounds in great apes, which is argued to reveal at least some degree of volitional vocal control. If also present in early hominins, the cortically based circuitry surmised to be associated with these rudimentary capabilities likely also provided the substrate for later emergence of the neural pathway allowing volitional production in modern humans.

  10. Auditory Dysfunction in Patients with Cerebrovascular Disease

    PubMed Central

    2014-01-01

    Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD) is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked. PMID:25401133

  11. Mental concerts: musical imagery and auditory cortex.

    PubMed

    Zatorre, Robert J; Halpern, Andrea R

    2005-07-07

    Most people intuitively understand what it means to "hear a tune in your head." Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.

  12. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  13. Auditory neglect.

    PubMed Central

    De Renzi, E; Gentilini, M; Barbieri, C

    1989-01-01

    Auditory neglect was investigated in normal controls and in patients with a recent unilateral hemispheric lesion, by requiring them to detect the interruptions that occurred in one ear in a sound delivered through earphones either mono-aurally or binaurally. Control patients accurately detected interruptions. One left brain damaged (LBD) patient missed only once in the ipsilateral ear while seven of the 30 right brain damaged (RBD) patients missed more than one signal in the monoaural test and nine patients did the same in the binaural test. Omissions were always more marked in the left ear and in the binaural test with a significant ear by test interaction. The lesion of these patients was in the parietal lobe (five patients) and the thalamus (four patients). The relation of auditory neglect to auditory extinction was investigated and found to be equivocal, in that there were seven RBD patients who showed extinction, but not neglect and, more importantly, two patients who exhibited the opposite pattern, thus challenging the view that extinction is a minor form of neglect. Also visual and auditory neglect were not consistently correlated, the former being present in nine RBD patients without auditory neglect and the latter in two RBD patients without visual neglect. The finding that in some RBD patients with auditory neglect omissions also occurred, though with less frequency, in the right ear, points to a right hemisphere participation in the deployment of attention not only to the contralateral, but also to the ipsilateral space. PMID:2732732

  14. Octave effect in auditory attention.

    PubMed

    Borra, Tobias; Versnel, Huib; Kemner, Chantal; van Opstal, A John; van Ee, Raymond

    2013-09-17

    After hearing a tone, the human auditory system becomes more sensitive to similar tones than to other tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone. Intriguingly, this "octave effect" not only occurs for physically presented tones, but even persists for the missing fundamental in complex tones, and for imagined tones. Our results suggest neural interactions combining octave-related frequencies, likely located in nonprimary cortical regions. We speculate that this connectivity scheme evolved from exposure to natural vibrations containing octave-related spectral peaks, e.g., as produced by vocal cords.

  15. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  16. Injury- and Use-Related Plasticity in the Adult Auditory System.

    ERIC Educational Resources Information Center

    Irvine, Dexter R. F.

    2000-01-01

    This article discusses findings concerning the plasticity of auditory cortical processing mechanisms in adults, including the effects of restricted cochlear damage or behavioral training with acoustic stimuli on the frequency selectivity of auditory cortical neurons and evidence for analogous injury- and use-related plasticity in the adult human…

  17. Extrathalamic Modulation of Cortical Function

    DTIC Science & Technology

    1990-07-27

    and c7rtico-cortical systems. For example, we have shown that primate LC-NA neurons are more acti during waking than sleep and exhibit bursts of...infusion needle. Infusion of the alpha-adrenergic agonist clonidine (CLON), in concentrations ranging from 5-20 uM (67-270pg/50 nl injection...ind hippocampal EEG (HEEG) typically exhibit activity similar to that of a lightly sleeping animal. However, periods of "waking" EEG are sometimes

  18. Social drive and the evolution of primate hearing.

    PubMed

    Ramsier, Marissa A; Cunningham, Andrew J; Finneran, James J; Dominy, Nathaniel J

    2012-07-05

    The structure and function of primate communication have attracted much attention, and vocal signals, in particular, have been studied in detail. As a general rule, larger social groups emit more types of vocal signals, including those conveying the presence of specific types of predators. The adaptive advantages of receiving and responding to alarm calls are expected to exert a selective pressure on the auditory system. Yet, the comparative biology of primate hearing is limited to select species, and little attention has been paid to the effects of social and vocal complexity on hearing. Here, we use the auditory brainstem response method to generate the largest number of standardized audiograms available for any primate radiation. We compared the auditory sensitivities of 11 strepsirrhine species with and without independent contrasts and show that social complexity explains a significant amount of variation in two audiometric parameters-overall sensitivity and high-frequency limit. We verified the generality of this latter result by augmenting our analysis with published data from nine species spanning the primate order. To account for these findings, we develop and test a model of social drive. We hypothesize that social complexity has favoured enhanced hearing sensitivities, especially at higher frequencies.

  19. Orthogonal acoustic dimensions define auditory field maps in human cortex.

    PubMed

    Barton, Brian; Venezia, Jonathan H; Saberi, Kourosh; Hickok, Gregory; Brewer, Alyssa A

    2012-12-11

    The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.

  20. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  1. Property in Nonhuman Primates

    ERIC Educational Resources Information Center

    Brosnan, Sarah F.

    2011-01-01

    Property is rare in most nonhuman primates, most likely because their lifestyles are not conducive to it. Nonetheless, just because these species do not frequently maintain property does not mean that they lack the propensity to do so. Primates show respect for possession, as well as behaviors related to property, such as irrational decision…

  2. Raptors and primate evolution.

    PubMed

    McGraw, W Scott; Berger, Lee R

    2013-01-01

    Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review.

  3. Auditory map plasticity: Diversity in causes and consequences

    PubMed Central

    Schreiner, Christoph E.; Polley, Daniel B.

    2014-01-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remains a key-aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  4. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  5. Cortical complexity in cetacean brains.

    PubMed

    Hof, Patrick R; Chanis, Rebecca; Marino, Lori

    2005-11-01

    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55-60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin.

  6. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex

    PubMed Central

    Zhuo, Ran; Xue, Hongbo; Chambers, Anna R.; Kolaczyk, Eric; Polley, Daniel B.

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  7. Dynamics of Propofol-Induced Loss of Consciousness Across Primate Neocortex

    PubMed Central

    Ahmed, Omar J.; Patel, Shaun R.; Gale, John T.; Sierra-Mercado, Demetrio; Brown, Emery N.; Eskandar, Emad N.

    2016-01-01

    frontal premotor area) during the loss of consciousness (LOC) induced by propofol in nonhuman primates. Coherent beta oscillations between these regions are disrupted before LOC. Pronounced but brief gamma-band oscillations appear to correspond to LOC. In addition, neurons in both of these cortices transition from responding to both tactile and auditory stimulation before LOC to only tactile modality during unconsciousness. We demonstrate that propofol-induced LOC is accompanied by spatiotemporally distinctive neuronal dynamics in this network with concurrent changes in multisensory processing. PMID:27445148

  8. Local versus global scales of organization in auditory cortex

    PubMed Central

    Kanold, Patrick O.; Nelken, Israel; Polley, Daniel B.

    2014-01-01

    Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over forty years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property. PMID:25002236

  9. [Cortical blindness].

    PubMed

    Chokron, S

    2014-02-01

    Cortical blindness refers to a visual loss induced by a bilateral occipital lesion. The very strong cooperation between psychophysics, cognitive psychology, neurophysiology and neuropsychology these latter twenty years as well as recent progress in cerebral imagery have led to a better understanding of neurovisual deficits, such as cortical blindness. It thus becomes possible now to propose an earlier diagnosis of cortical blindness as well as new perspectives for rehabilitation in children as well as in adults. On the other hand, studying complex neurovisual deficits, such as cortical blindness is a way to infer normal functioning of the visual system.

  10. Activation of Heschl's gyrus during auditory hallucinations.

    PubMed

    Dierks, T; Linden, D E; Jandl, M; Formisano, E; Goebel, R; Lanfermann, H; Singer, W

    1999-03-01

    Apart from being a common feature of mental illness, auditory hallucinations provide an intriguing model for the study of internally generated sensory perceptions that are attributed to external sources. Until now, the knowledge about the cortical network that supports such hallucinations has been restricted by methodological limitations. Here, we describe an experiment with paranoid schizophrenic patients whose on- and offset of auditory hallucinations could be monitored within one functional magnetic resonance imaging (fMRI) session. We demonstrate an increase of the blood oxygen level-dependent (BOLD) signal in Heschl's gyrus during the patients' hallucinations. Our results provide direct evidence of the involvement of primary auditory areas in auditory verbal hallucinations and establish novel constraints for psychopathological models.

  11. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    PubMed

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  12. Multisensory Integration in Non-Human Primates during a Sensory-Motor Task.

    PubMed

    Lanz, Florian; Moret, Véronique; Rouiller, Eric Michel; Loquet, Gérard

    2013-01-01

    Daily our central nervous system receives inputs via several sensory modalities, processes them and integrates information in order to produce a suitable behavior. The amazing part is that such a multisensory integration brings all information into a unified percept. An approach to start investigating this property is to show that perception is better and faster when multimodal stimuli are used as compared to unimodal stimuli. This forms the first part of the present study conducted in a non-human primate's model (n = 2) engaged in a detection sensory-motor task where visual and auditory stimuli were displayed individually or simultaneously. The measured parameters were the reaction time (RT) between stimulus and onset of arm movement, successes and errors percentages, as well as the evolution as a function of time of these parameters with training. As expected, RTs were shorter when the subjects were exposed to combined stimuli. The gains for both subjects were around 20 and 40 ms, as compared with the auditory and visual stimulus alone, respectively. Moreover the number of correct responses increased in response to bimodal stimuli. We interpreted such multisensory advantage through redundant signal effect which decreases perceptual ambiguity, increases speed of stimulus detection, and improves performance accuracy. The second part of the study presents single-unit recordings derived from the premotor cortex (PM) of the same subjects during the sensory-motor task. Response patterns to sensory/multisensory stimulation are documented and specific type proportions are reported. Characterization of bimodal neurons indicates a mechanism of audio-visual integration possibly through a decrease of inhibition. Nevertheless the neural processing leading to faster motor response from PM as a polysensory association cortical area remains still unclear.

  13. McGurk illusion recalibrates subsequent auditory perception.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-09-09

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as 'ada'. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as 'ada', activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input.

  14. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  15. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  16. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    PubMed Central

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  17. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  18. Cortical Memory Mechanisms and Language Origins

    ERIC Educational Resources Information Center

    Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo

    2006-01-01

    We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…

  19. Cortical correlates of acquired deafness to dissonance.

    PubMed

    Brattico, Elvira; Tervaniemi, Mari; Valimaki, Vesa; Van Zuijen, Titia; Peretz, Isabelle

    2003-11-01

    Patient I.R., who had bilateral lesions in the auditory cortex but intact hearing, did not distinguish dissonant from consonant musical excerpts in behavioral testing. We additionally found that the electrical brain responses did not differentiate musical intervals in terms of their dissonance/consonance, consistent with the idea that this phenomenon depends on the integrity of cortical functions.

  20. A case of cortical deafness and anarthria.

    PubMed

    Kaga, Kimitaka; Nakamura, Masako; Takayama, Yoshihiro; Momose, Hiromitsu

    2004-03-01

    Generally, cortical deafness is not complicated by anarthria and cortical anarthria does not affect auditory perception. We report a case of simultaneous progressive cortical deafness and anarthria. At the age of 70 years, the patient, a woman, noticed hearing problems when using the telephone, which worsened rapidly over the next 2 years. She was then referred to our hospital for further examinations of her hearing problems. Auditory tests revealed threshold elevation in the low and middle frequencies on pure-tone audiometry, a maximum speech discrimination of 25% and normal otoacoustic emissions and auditory brainstem, middle- and long-latency responses. An articulation test revealed abnormal pronunciation. Because of these problems only written and not verbal communication was possible; her ability to read and write was unimpaired. She showed no other neurological problems. Brain MRI demonstrated atrophic changes of the auditory cortex and Wernicke's language center and PET suggested low uptake of (18F) 2-fluoro-2-deoxy-d-glucose around the Sylvian fissures in both hemispheres. Neurologically, the patient was suspected of having progressive aphasia or frontotemporal dementia. Her cortical deafness and anarthria are believed to be early signs of this entity.

  1. Auditory scene analysis and sensory memory: the role of the auditory N100m.

    PubMed

    May, P J C; Tiitinen, H

    2004-11-30

    We consider the neural dynamics underlying auditory streaming, the perceptual grouping of transient auditory events, by using neural modeling and magnetoencephalographic (MEG) measurements in humans. We demonstrate that spatial variations in the strength of feedback inhibition leads to differential amplitude modulation (AM) tuning resembling that found in animal models. In our model, neurons respond selectively to stimuli presented at different onset-to-onset interstimulus intervals (ISIs), and their summed activity (corresponding to the MEG signal) exhibits both transient and sustained responses (SRs) at fast ISIs. In MEG measurements utilizing 2-s trains of 50-ms stimuli presented at 0-1950 ms ISIs, we observed the transient N100m and SRs predicted by the model, with a prominent SR emerging for discrete stimuli at ISIs below 200 ms. Our results explain why, at fast stimulus rates, the amplitude of the auditory N100m appears to be strongly attenuated even though auditory cortex continues to respond vigorously to the stimuli. The results suggest that the longer and shorter forms of auditory sensory memory may be reflected in the N100m and the SR, respectively. As the emergence of the SR coincides with the stimuli being perceived as auditory streams, our study suggests that auditory sensory memory as indexed by transient and sustained cortical activity might underlie auditory scene analysis.

  2. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  3. Synaptic Plasticity as a Cortical Coding Scheme

    PubMed Central

    Froemke, Robert C.; Schreiner, Christoph E.

    2015-01-01

    Processing of auditory information requires constant adjustment due to alterations of the environment and changing conditions in the nervous system with age, health, and experience. Consequently, patterns of activity in cortical networks have complex dynamics over a wide range of timescales, from milliseconds to days and longer. In the primary auditory cortex (AI), multiple forms of adaptation and plasticity shape synaptic input and action potential output. However, the variance of neuronal responses has made it difficult to characterize AI receptive fields and to determine the function of AI in processing auditory information such as vocalizations. Here we describe recent studies on the temporal modulation of cortical responses and consider the relation of synaptic plasticity to neural coding. PMID:26497430

  4. Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

    PubMed Central

    Marlin, Bianca J.; Mitre, Mariela; D’amour, James A.; Chao, Moses V.; Froemke, Robert C.

    2015-01-01

    Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  5. Hands of early primates.

    PubMed

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  6. Multisensory interactions between auditory and haptic object recognition.

    PubMed

    Kassuba, Tanja; Menz, Mareike M; Röder, Brigitte; Siebner, Hartwig R

    2013-05-01

    Object manipulation produces characteristic sounds and causes specific haptic sensations that facilitate the recognition of the manipulated object. To identify the neural correlates of audio-haptic binding of object features, healthy volunteers underwent functional magnetic resonance imaging while they matched a target object to a sample object within and across audition and touch. By introducing a delay between the presentation of sample and target stimuli, it was possible to dissociate haptic-to-auditory and auditory-to-haptic matching. We hypothesized that only semantically coherent auditory and haptic object features activate cortical regions that host unified conceptual object representations. The left fusiform gyrus (FG) and posterior superior temporal sulcus (pSTS) showed increased activation during crossmodal matching of semantically congruent but not incongruent object stimuli. In the FG, this effect was found for haptic-to-auditory and auditory-to-haptic matching, whereas the pSTS only displayed a crossmodal matching effect for congruent auditory targets. Auditory and somatosensory association cortices showed increased activity during crossmodal object matching which was, however, independent of semantic congruency. Together, the results show multisensory interactions at different hierarchical stages of auditory and haptic object processing. Object-specific crossmodal interactions culminate in the left FG, which may provide a higher order convergence zone for conceptual object knowledge.

  7. Impairments of auditory scene analysis in Alzheimer's disease.

    PubMed

    Goll, Johanna C; Kim, Lois G; Ridgway, Gerard R; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling H; Crutch, Sebastian J; Warren, Jason D

    2012-01-01

    Parsing of sound sources in the auditory environment or 'auditory scene analysis' is a computationally demanding cognitive operation that is likely to be vulnerable to the neurodegenerative process in Alzheimer's disease. However, little information is available concerning auditory scene analysis in Alzheimer's disease. Here we undertook a detailed neuropsychological and neuroanatomical characterization of auditory scene analysis in a cohort of 21 patients with clinically typical Alzheimer's disease versus age-matched healthy control subjects. We designed a novel auditory dual stream paradigm based on synthetic sound sequences to assess two key generic operations in auditory scene analysis (object segregation and grouping) in relation to simpler auditory perceptual, task and general neuropsychological factors. In order to assess neuroanatomical associations of performance on auditory scene analysis tasks, structural brain magnetic resonance imaging data from the patient cohort were analysed using voxel-based morphometry. Compared with healthy controls, patients with Alzheimer's disease had impairments of auditory scene analysis, and segregation and grouping operations were comparably affected. Auditory scene analysis impairments in Alzheimer's disease were not wholly attributable to simple auditory perceptual or task factors; however, the between-group difference relative to healthy controls was attenuated after accounting for non-verbal (visuospatial) working memory capacity. These findings demonstrate that clinically typical Alzheimer's disease is associated with a generic deficit of auditory scene analysis. Neuroanatomical associations of auditory scene analysis performance were identified in posterior cortical areas including the posterior superior temporal lobes and posterior cingulate. This work suggests a basis for understanding a class of clinical symptoms in Alzheimer's disease and for delineating cognitive mechanisms that mediate auditory scene analysis

  8. Exploring functions for the non-lemniscal auditory thalamus

    PubMed Central

    Lee, Charles C.

    2015-01-01

    The functions of the medial geniculate body (MGB) in normal hearing still remain somewhat enigmatic, in part due to the relatively unexplored properties of the non-lemniscal MGB nuclei. Indeed, the canonical view of the thalamus as a simple relay for transmitting ascending information to the cortex belies a role in higher-order forebrain processes. However, recent anatomical and physiological findings now suggest important information and affective processing roles for the non-primary auditory thalamic nuclei. The non-lemniscal nuclei send and receive feedforward and feedback projections among a wide constellation of midbrain, cortical, and limbic-related sites, which support potential conduits for auditory information flow to higher auditory cortical areas, mediators for transitioning among arousal states, and synchronizers of activity across expansive cortical territories. Considered here is a perspective on the putative and unresolved functional roles of the non-lemniscal nuclei of the MGB. PMID:26582978

  9. Vestibular influence on auditory metrical interpretation.

    PubMed

    Phillips-Silver, Jessica; Trainor, Laurel J

    2008-06-01

    When we move to music we feel the beat, and this feeling can shape the sound we hear. Previous studies have shown that when people listen to a metrically ambiguous rhythm pattern, moving the body on a certain beat--adults, by actively bouncing themselves in synchrony with the experimenter, and babies, by being bounced passively in the experimenter's arms--can bias their auditory metrical representation so that they interpret the pattern in a corresponding metrical form [Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 1430; Phillips-Silver, J., & Trainor, L. J. (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533-546]. The present studies show that in adults, as well as in infants, metrical encoding of rhythm can be biased by passive motion. Furthermore, because movement of the head alone affected auditory encoding whereas movement of the legs alone did not, we propose that vestibular input may play a key role in the effect of movement on auditory rhythm processing. We discuss possible cortical and subcortical sites for the integration of auditory and vestibular inputs that may underlie the interaction between movement and auditory metrical rhythm perception.

  10. Auditory processing in fragile x syndrome.

    PubMed

    Rotschafer, Sarah E; Razak, Khaleel A

    2014-01-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.

  11. Scaling of cerebral blood perfusion in primates and marsupials.

    PubMed

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates.

  12. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning.

    PubMed

    Suga, Nobuo

    2012-02-01

    The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.

  13. Nonhuman Primate Ocular Biometry

    PubMed Central

    Augusteyn, Robert C.; Maceo Heilman, Bianca; Ho, Arthur; Parel, Jean-Marie

    2016-01-01

    Purpose To examine ocular growth in nonhuman primates (NHPs) from measurements on ex vivo eyes. Methods We obtained NHP eyes from animals that had been killed as part of other studies or because of health-related issues. Digital calipers were used to measure the horizontal, vertical, and anteroposterior globe diameters as well as corneal horizontal and vertical diameters of excised globes from 98 hamadryas baboons, 551 cynomolgus monkeys, and 112 rhesus monkeys, at ages ranging from 23 to 360 months. Isolated lens sagittal thickness and equatorial diameter were measured by shadowphotogrammetry. Wet and fixed dry weights were obtained for lenses. Results Nonhuman primate globe growth continues throughout life, slowing toward an asymptotic maximum. The final globe size scales with negative allometry to adult body size. Corneal growth ceases at around 20 months. Lens diameter increases but thickness decreases with increasing age. Nonhuman primate lens wet and dry weight accumulation is monophasic, continuing throughout life toward asymptotic maxima. The dry/wet weight ratio reaches a maximum of 0.33. Conclusions Nonhuman primate ocular globe and lens growth differ in several respects from those in humans. Although age-related losses of lens power and accommodative amplitude are similar, lens growth and properties are different indicating care should be taken in extrapolating NHP observations to the study of human accommodation. PMID:26780314

  14. What Is a Primate?

    ERIC Educational Resources Information Center

    McGee, Elizabeth

    2003-01-01

    Describes a series of hands-on experiments that engage students in hypothesis testing and promotes active learning of the concepts of evolution and adaptation. Laboratory exercises demonstrate how features of the hands and eyes distinguish primates from other mammals. (SOE)

  15. A hierarchy of intrinsic timescales across primate cortex

    PubMed Central

    Murray, John D.; Bernacchia, Alberto; Freedman, David J.; Romo, Ranulfo; Wallis, Jonathan D.; Cai, Xinying; Padoa-Schioppa, Camillo; Pasternak, Tatiana; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2014-01-01

    Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas, and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. Based on our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges. PMID:25383900

  16. [Auditory perception and language: functional imaging of speech sensitive auditory cortex].

    PubMed

    Samson, Y; Belin, P; Thivard, L; Boddaert, N; Crozier, S; Zilbovicius, M

    2001-09-01

    Since the description of cortical deafness, it has been known that the superior temporal cortex is bilaterally involved in the initial stages of language auditory perception but the precise anatomical limits and the function of this area remain debated. Here we reviewed more than 40 recent papers of positron emission tomography and functional magnetic resonance imaging related to language auditory perception, and we performed a meta-analysis of the localization of the peaks of activation in the Talairach's space. We found 8 studies reporting word versus non-word listening contrasts with 54 activation peaks in the temporal lobes. These peaks clustered in a bilateral and well-limited area of the temporal superior cortex, which is here operationally defined as the speech sensitive auditory cortex. This area is more than 4cm long, located in the superior temporal gyrus and the superior temporal sulcus, both anterior and posterior to Heschl's gyrus. It do not include the primary auditory cortex nor the ascending part of the planum temporale. The speech sensitive auditory cortex is not activated by pure tones, environmental sounds, or attention directed toward elementary components of a sound such as intensity, pitch, or duration, and thus has some specificity for speech signals. The specificity is not perfect, since we found a number of non-speech auditory stimuli activating the speech sensitive auditory cortex. Yet the latter studies always involve auditory perception mechanisms which are also relevant to speech perception either at the level of primitive auditory scene analysis processes, or at the level of specific schema-based recognition processes. The dorsal part of the speech sensitive auditory cortex may be involved in primitive scene analysis processes, whereas distributed activation of this area may contribute to the emergence of a broad class of "voice" schemas and of more specific "speech schemas/phonetic modules" related to different languages. In addition

  17. Temporal asymmetries in auditory coding and perception reflect multi-layered nonlinearities

    PubMed Central

    Deneux, Thomas; Kempf, Alexandre; Daret, Aurélie; Ponsot, Emmanuel; Bathellier, Brice

    2016-01-01

    Sound recognition relies not only on spectral cues, but also on temporal cues, as demonstrated by the profound impact of time reversals on perception of common sounds. To address the coding principles underlying such auditory asymmetries, we recorded a large sample of auditory cortex neurons using two-photon calcium imaging in awake mice, while playing sounds ramping up or down in intensity. We observed clear asymmetries in cortical population responses, including stronger cortical activity for up-ramping sounds, which matches perceptual saliency assessments in mice and previous measures in humans. Analysis of cortical activity patterns revealed that auditory cortex implements a map of spatially clustered neuronal ensembles, detecting specific combinations of spectral and intensity modulation features. Comparing different models, we show that cortical responses result from multi-layered nonlinearities, which, contrary to standard receptive field models of auditory cortex function, build divergent representations of sounds with similar spectral content, but different temporal structure. PMID:27580932

  18. Cerebral glucose consumption following verbal auditory stimulation.

    PubMed

    Kushner, M J; Schwartz, R; Alavi, A; Dann, R; Rosen, M; Silver, F; Reivich, M

    1987-04-14

    We studied the effect of auditory stimulation upon cerebral glucose metabolism in young normals. The stimulus consisted of a non-English discourse which was presented monaurally to 10 normal blindfolded subjects (5 left ear, 5 right); the opposite ear was plugged. Six subjects studied blindfolded and with ears plugged served as controls. Sixteen discrete homologous cortical and subcortical regions of interest were examined. Regional glucose consumption and side-to-side differences in glucose metabolism were analyzed. Monaural stimulation produced significant increases in temporal metabolism contralateral to the side of stimulation. Significant asymmetries in metabolism were found at the temporoparietal junction, inferior parietal region, insula and corpus collosum. The left frontal speech areas remained unaffected. These findings demonstrate that in man the primary auditory pathways retain a contralateral organization. Further, cerebral activation induced by non-meaningful verbal stimulation is widespread within the left temporal and parietal regions but does not impact upon the frontal speech cortices.

  19. Studying brain functions with mesoscopic measurements: advances in electrocorticography for non-human primates

    PubMed Central

    Fukushima, Makoto; Chao, Zenas C.

    2015-01-01

    Our brain is organized in a modular structure. Information in different modalities is processed within distinct cortical areas. However, individual cortical areas cannot enable complex cognitive functions without interacting with other cortical areas. Electrocorticography (ECoG) has recently become an important tool for studying global network activity across cortical areas in animal models. With stable recordings of electrical field potentials from multiple cortical areas, ECoG provides an opportunity to systematically study large-scale cortical activity at a mesoscopic spatiotemporal resolution under various experimental conditions. Recent developments in thin, flexible ECoG electrodes permit recording field potentials from not only gyral but intrasulcal cortical surfaces. Our review here focuses on the recent advances of ECoG applications to non-human primates. PMID:25889531

  20. Impending extinction crisis of the world's primates: Why primates matter.

    PubMed

    Estrada, Alejandro; Garber, Paul A; Rylands, Anthony B; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K Anne-Isola; Nijman, Vincent; Heymann, Eckhard W; Lambert, Joanna E; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M; Gillespie, Thomas R; Mittermeier, Russell A; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A; Fuentes, Agustin; MacKinnon, Katherine C; Amato, Katherine R; Meyer, Andreas L S; Wich, Serge; Sussman, Robert W; Pan, Ruliang; Kone, Inza; Li, Baoguo

    2017-01-01

    Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.

  1. Biological changes in auditory function following training in children with autism spectrum disorders

    PubMed Central

    2010-01-01

    Background Children with pervasive developmental disorders (PDD), such as children with autism spectrum disorders (ASD), often show auditory processing deficits related to their overarching language impairment. Auditory training programs such as Fast ForWord Language may potentially alleviate these deficits through training-induced improvements in auditory processing. Methods To assess the impact of auditory training on auditory function in children with ASD, brainstem and cortical responses to speech sounds presented in quiet and noise were collected from five children with ASD who completed Fast ForWord training. Results Relative to six control children with ASD who did not complete Fast ForWord, training-related changes were found in brainstem response timing (three children) and pitch-tracking (one child), and cortical response timing (all five children) after Fast ForWord use. Conclusions These results provide an objective indication of the benefit of training on auditory function for some children with ASD. PMID:20950487

  2. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity.

    PubMed

    Corina, David P; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians' best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2-8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1-N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children's early auditory and visual ERP

  3. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity

    PubMed Central

    Corina, David P.; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A.; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians’ best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2–8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1–N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children’s early auditory and visual

  4. Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex.

    PubMed

    Poeppel, David; Guillemin, Andre; Thompson, Jennifer; Fritz, Jonathan; Bavelier, Daphne; Braun, Allen R

    2004-01-01

    Recent neuroimaging and neuropsychological data suggest that speech perception is supported in bilaterally auditory areas. We evaluate this issue building on well-known behavioral effects. While undergoing positron emission tomography (PET), subjects performed standard auditory tasks: direction discrimination of frequency-modulated (FM) tones, categorical perception (CP) of consonant-vowel (CV) syllables, and word/non-word judgments (lexical decision, LD). Compared to rest, the three conditions led to bilateral activation of the auditory cortices. However, lateralization patterns differed as a function of stimulus type: the LD task generated stronger responses in the left, the FM task a stronger response in the right hemisphere. Contrasts between either words or syllables versus FM were associated with significantly greater activity bilaterally in superior temporal gyrus (STG) ventro-lateral to Heschl's gyrus. These activations extended into the superior temporal sulcus (STS) and the middle temporal gyrus (MTG) and were greater in the left. The same areas were more active in the LD than the CP task. In contrast, the FM task was associated with significantly greater activity in the right lateral-posterior STG and lateral MTG. The findings argue for a view in which speech perception is mediated bilaterally in the auditory cortices and that the well-documented lateralization is likely associated with processes subsequent to the auditory analysis of speech.

  5. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system.

  6. Central Auditory Development: Evidence from CAEP Measurements in Children Fit with Cochlear Implants

    ERIC Educational Resources Information Center

    Dorman, Michael F.; Sharma, Anu; Gilley, Phillip; Martin, Kathryn; Roland, Peter

    2007-01-01

    In normal-hearing children the latency of the P1 component of the cortical evoked response to sound varies as a function of age and, thus, can be used as a biomarker for maturation of central auditory pathways. We assessed P1 latency in 245 congenitally deaf children fit with cochlear implants following various periods of auditory deprivation. If…

  7. Area 4 has layer IV in adult primates

    PubMed Central

    García-Cabezas, Miguel Ángel; Barbas, Helen

    2014-01-01

    There are opposing views about the status of layer IV in primary motor cortex (area 4). Cajal described a layer IV in area 4 of adult humans. In contrast, Brodmann found layer IV in development but not in adult primates and called area 4 ‘agranular’. We addressed this issue in rhesus monkeys using the neural marker SMI-32, which labels neurons in lower layer III and upper V, but not in layer IV. SMI-32 delineated a central unlabeled cortical stripe in area 4 that corresponds to layer IV, which was populated with small interneurons also found in layer IV in ‘granular’ areas (such as area 46). We distinguished layer IV interneurons from projection neurons in the layers above and below using cellular criteria. The commonly used term ‘agranular’ for area 4 is also used for the phylogenetically ancient limbic cortices, confusing areas that differ markedly in laminar structure. This issue pertains to the systematic variation in the architecture across cortices, traced from limbic cortices through areas with increasingly more elaborate laminar structure. The principle of systematic variation can be used to predict laminar patterns of connections across cortical systems. This principle places area 4 and agranular anterior cingulate cortices at opposite poles of the graded laminar differentiation of motor cortices. The status of layer IV in area 4 thus pertains to core organizational features of the cortex, its connections and evolution. PMID:24735460

  8. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  9. Capuchin monkeys (Cebus apella) use positive, but not negative, auditory cues to infer food location.

    PubMed

    Heimbauer, Lisa A; Antworth, Rebecca L; Owren, Michael J

    2012-01-01

    Nonhuman primates appear to capitalize more effectively on visual cues than corresponding auditory versions. For example, studies of inferential reasoning have shown that monkeys and apes readily respond to seeing that food is present ("positive" cuing) or absent ("negative" cuing). Performance is markedly less effective with auditory cues, with many subjects failing to use this input. Extending recent work, we tested eight captive tufted capuchins (Cebus apella) in locating food using positive and negative cues in visual and auditory domains. The monkeys chose between two opaque cups to receive food contained in one of them. Cup contents were either shown or shaken, providing location cues from both cups, positive cues only from the baited cup, or negative cues from the empty cup. As in previous work, subjects readily used both positive and negative visual cues to secure reward. However, auditory outcomes were both similar to and different from those of earlier studies. Specifically, all subjects came to exploit positive auditory cues, but none responded to negative versions. The animals were also clearly different in visual versus auditory performance. Results indicate that a significant proportion of capuchins may be able to use positive auditory cues, with experience and learning likely playing a critical role. These findings raise the possibility that experience may be significant in visually based performance in this task as well, and highlight that coming to grips with evident differences between visual versus auditory processing may be important for understanding primate cognition more generally.

  10. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  11. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  12. Theoretical and experimental studies of auditory processing

    NASA Astrophysics Data System (ADS)

    Shamma, Shihab; Krishnaprasad, P. S.

    1994-03-01

    Over the last year, work has progressed in the three basic areas that are emphasized in this proposal: (1) Peripheral auditory implementations; (2) Auditory cortical processing; and (3) Theoretical analysis of neural network architectures. In the first topic, we have completed a detailed analysis and implementation of the early auditory model originally formulated in the previous grant period. Specifically, we have determined the underlying mechanisms that give rise to noise robustness and self-normalization in the early auditory spectra. A patented VLSI implementation of the model has been accomplished. In the second area of research, we have completed a survey of response properties in the anterior auditory field, especially with regard to the cells' responses to FM and single tone stimuli. Finally, in the third focus area, we have developed new recursive algorithms (mimicing recursive neural network architectures) for building systematically, approximate basis function representations. The new algorithms known as orthogonal matching pursuit algorithms are applicable to a wide class of problems, ranging from fitting radial basis function approximations to wavelet-bases models for transfer functions of linear systems.

  13. Auditory Training for Central Auditory Processing Disorder

    PubMed Central

    Weihing, Jeffrey; Chermak, Gail D.; Musiek, Frank E.

    2015-01-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  14. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  15. Interhemispheric auditory connectivity: structure and function related to auditory verbal hallucinations

    PubMed Central

    Steinmann, Saskia; Leicht, Gregor; Mulert, Christoph

    2014-01-01

    Auditory verbal hallucinations (AVH) are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that “hearing voices” is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI) measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA) in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL) task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH. PMID:24574995

  16. Interhemispheric auditory connectivity: structure and function related to auditory verbal hallucinations.

    PubMed

    Steinmann, Saskia; Leicht, Gregor; Mulert, Christoph

    2014-01-01

    Auditory verbal hallucinations (AVH) are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that "hearing voices" is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI) measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA) in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL) task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.

  17. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  18. The Cortical Computations Underlying Feedback Control in Vocal Production

    PubMed Central

    Houde, John F.; Chang, Edward F.

    2015-01-01

    Recent neurophysiological studies of speaking are beginning to elucidate the neural mechanisms underlying auditory feedback processing during vocalizations. Here we review how research findings impact our state feedback control (SFC) model of speech motor control. We will discuss the evidence for cortical computations that compare incoming feedback with predictions derived from motor efference copy. We will also review observations from auditory feedback perturbation studies that demonstrate clear evidence for a state estimate correction process, which drives compensatory motor behavioral responses. While there is compelling support for cortical computations in the SFC model, there are still several outstanding questions that await resolution by future neural investigations. PMID:25989242

  19. Postradiation regional cerebral blood flow in primates

    SciTech Connect

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-06-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine.

  20. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  1. A case of generalized auditory agnosia with unilateral subcortical brain lesion.

    PubMed

    Suh, Hyee; Shin, Yong-Il; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-12-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia.

  2. Modified areal cartography in auditory cortex following early- and late-onset deafness.

    PubMed

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2014-07-01

    Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography.

  3. Involvement of the human midbrain and thalamus in auditory deviance detection.

    PubMed

    Cacciaglia, Raffaele; Escera, Carles; Slabu, Lavinia; Grimm, Sabine; Sanjuán, Ana; Ventura-Campos, Noelia; Ávila, César

    2015-02-01

    Prompt detection of unexpected changes in the sensory environment is critical for survival. In the auditory domain, the occurrence of a rare stimulus triggers a cascade of neurophysiological events spanning over multiple time-scales. Besides the role of the mismatch negativity (MMN), whose cortical generators are located in supratemporal areas, cumulative evidence suggests that violations of auditory regularities can be detected earlier and lower in the auditory hierarchy. Recent human scalp recordings have shown signatures of auditory mismatch responses at shorter latencies than those of the MMN. Moreover, animal single-unit recordings have demonstrated that rare stimulus changes cause a release from stimulus-specific adaptation in neurons of the primary auditory cortex, the medial geniculate body (MGB), and the inferior colliculus (IC). Although these data suggest that change detection is a pervasive property of the auditory system which may reside upstream cortical sites, direct evidence for the involvement of subcortical stages in the human auditory novelty system is lacking. Using event-related functional magnetic resonance imaging during a frequency oddball paradigm, we here report that auditory deviance detection occurs in the MGB and the IC of healthy human participants. By implementing a random condition controlling for neural refractoriness effects, we show that auditory change detection in these subcortical stations involves the encoding of statistical regularities from the acoustic input. These results provide the first direct evidence of the existence of multiple mismatch detectors nested at different levels along the human ascending auditory pathway.

  4. Auditory Long Latency Responses to Tonal and Speech Stimuli

    ERIC Educational Resources Information Center

    Swink, Shannon; Stuart, Andrew

    2012-01-01

    Purpose: The effects of type of stimuli (i.e., nonspeech vs. speech), speech (i.e., natural vs. synthetic), gender of speaker and listener, speaker (i.e., self vs. other), and frequency alteration in self-produced speech on the late auditory cortical evoked potential were examined. Method: Young adult men (n = 15) and women (n = 15), all with…

  5. Integrating information from different senses in the auditory cortex.

    PubMed

    King, Andrew J; Walker, Kerry M M

    2012-12-01

    Multisensory integration was once thought to be the domain of brain areas high in the cortical hierarchy, with early sensory cortical fields devoted to unisensory processing of inputs from their given set of sensory receptors. More recently, a wealth of evidence documenting visual and somatosensory responses in auditory cortex, even as early as the primary fields, has changed this view of cortical processing. These multisensory inputs may serve to enhance responses to sounds that are accompanied by other sensory cues, effectively making them easier to hear, but may also act more selectively to shape the receptive field properties of auditory cortical neurons to the location or identity of these events. We discuss the new, converging evidence that multiplexing of neural signals may play a key role in informatively encoding and integrating signals in auditory cortex across multiple sensory modalities. We highlight some of the many open research questions that exist about the neural mechanisms that give rise to multisensory integration in auditory cortex, which should be addressed in future experimental and theoretical studies.

  6. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.

    PubMed

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-03-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.

  7. Auditory perceptual restoration and illusory continuity correlates in the human brainstem.

    PubMed

    Bidelman, Gavin M; Patro, Chhayakanta

    2016-09-01

    When noise obstructs portions of target sounds the auditory system fills in missing information, a phenomenon known as auditory restoration or induction. Previous work in animal models demonstrates that neurons in primary auditory cortex (A1) are capable of restoring occluded target signals suggesting that early auditory cortex is capable of inducing continuity in discontinuous signals (i.e., endogenous restoration). Current consensus is that the neural correlates of auditory induction and perceptual restoration emerge no earlier than A1. Moreover, the neural mechanisms supporting induction in humans are poorly understood. Here, we show that in human listeners, auditory brainstem nuclei support illusory auditory continuity well before engagement of cerebral cortex. We recorded brainstem responses to modulated target tones that did or did not promote illusory auditory percepts. Auditory continuity was manipulated by introducing masking noise or brief temporal interruptions in otherwise continuous tones. We found that auditory brainstem responses paralleled illusory continuity by tagging target sounds even when they were occluded by the auditory scene. Our results reveal (i) a pre-attentive, subcortical origin to a presumed cortical function and (ii) that brainstem signal processing helps partially cancel the negative effects of masking by restoring missing portions of auditory objects that are fragmented in the soundscape.

  8. Integrated processing of spatial cues in human auditory cortex.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville

    2015-09-01

    Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex.

  9. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    PubMed

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making.

  10. Development and evolution of cortical fields.

    PubMed

    Arai, Yoko; Pierani, Alessandra

    2014-09-01

    The neocortex is the brain structure that has been subjected to a major size expansion, in its relative size, during mammalian evolution. It arises from the cortical primordium through coordinated growth of neural progenitor cells along both the tangential and radial axes and their patterning providing spatial coordinates. Functional neocortical areas are ultimately consolidated by environmental influences such as peripheral sensory inputs. Throughout neocortical evolution, cortical areas have become more sophisticated and numerous. This increase in number is possibly involved in the complexification of neocortical function in primates. Whereas extensive divergence of functional cortical fields is observed during evolution, the fundamental mechanisms supporting the allocation of cortical areas and their wiring are conserved, suggesting the presence of core genetic mechanisms operating in different species. We will discuss some of the basic molecular mechanisms including morphogen-dependent ones involved in the precise orchestration of neurogenesis in different cortical areas, elucidated from studies in rodents. Attention will be paid to the role of Cajal-Retzius neurons, which were recently proposed to be migrating signaling units also involved in arealization, will be addressed. We will further review recent works on molecular mechanisms of cortical patterning resulting from comparative analyses between different species during evolution.

  11. Emergent selectivity for task-relevant stimuli in higher-order auditory cortex.

    PubMed

    Atiani, Serin; David, Stephen V; Elgueda, Diego; Locastro, Michael; Radtke-Schuller, Susanne; Shamma, Shihab A; Fritz, Jonathan B

    2014-04-16

    A variety of attention-related effects have been demonstrated in primary auditory cortex (A1). However, an understanding of the functional role of higher auditory cortical areas in guiding attention to acoustic stimuli has been elusive. We recorded from neurons in two tonotopic cortical belt areas in the dorsal posterior ectosylvian gyrus (dPEG) of ferrets trained on a simple auditory discrimination task. Neurons in dPEG showed similar basic auditory tuning properties to A1, but during behavior we observed marked differences between these areas. In the belt areas, changes in neuronal firing rate and response dynamics greatly enhanced responses to target stimuli relative to distractors, allowing for greater attentional selection during active listening. Consistent with existing anatomical evidence, the pattern of sensory tuning and behavioral modulation in auditory belt cortex links the spectrotemporal representation of the whole acoustic scene in A1 to a more abstracted representation of task-relevant stimuli observed in frontal cortex.

  12. Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.

    PubMed

    Stothart, George; Kazanina, Nina

    2016-11-01

    Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing.

  13. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  14. Visual influences on primate encephalization.

    PubMed

    Kirk, E Christopher

    2006-07-01

    Primates differ from most other mammals in having relatively large brains. As a result, numerous comparative studies have attempted to identify the selective variables influencing primate encephalization. However, none have examined the effect of the total amount of visual input on relative brain size. According to Jerison's principle of proper mass, functional areas of the brain devoted primarily to processing visual information should exhibit increases in size when the amount of visual input to those areas increases. As a result, the total amount of visual input to the brain could exert a large influence on encephalization because visual areas comprise a large proportion of total brain mass in primates. The goal of this analysis is to test the expectation of a direct relationship between visual input and encephalization using optic foramen size and optic nerve size as proxies for total visual input. Data were collected for a large comparative sample of primates and carnivorans, and three primary analyses were undertaken. First, the relationship between relative proxies for visual input and relative endocranial volume were examined using partial correlations and phylogenetic comparative methods. Second, to examine the generality of the results derived for extant primates, a parallel series of partial correlation and comparative analyses were undertaken using data for carnivorans. Third, data for various Eocene and Oligocene primates were compared with those for living primates in order to determine whether the fossil taxa demonstrate a similar relationship between relative brain size and visual input. All three analyses confirm the expectations of proper mass and favor the conclusion that the amount of visual input has been a major influence on the evolution of relative brain size in both primates and carnivorans. Furthermore, this study suggests that differences in visual input may partly explain (1) the high encephalization of primates relative to the primitive

  15. A unique cellular scaling rule in the avian auditory system.

    PubMed

    Corfield, Jeremy R; Long, Brendan; Krilow, Justin M; Wylie, Douglas R; Iwaniuk, Andrew N

    2016-06-01

    Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates.

  16. Visual speech gestures modulate efferent auditory system.

    PubMed

    Namasivayam, Aravind Kumar; Wong, Wing Yiu Stephanie; Sharma, Dinaay; van Lieshout, Pascal

    2015-03-01

    Visual and auditory systems interact at both cortical and subcortical levels. Studies suggest a highly context-specific cross-modal modulation of the auditory system by the visual system. The present study builds on this work by sampling data from 17 young healthy adults to test whether visual speech stimuli evoke different responses in the auditory efferent system compared to visual non-speech stimuli. The descending cortical influences on medial olivocochlear (MOC) activity were indirectly assessed by examining the effects of contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) at 1, 2, 3 and 4 kHz under three conditions: (a) in the absence of any contralateral noise (Baseline), (b) contralateral noise + observing facial speech gestures related to productions of vowels /a/ and /u/ and (c) contralateral noise + observing facial non-speech gestures related to smiling and frowning. The results are based on 7 individuals whose data met strict recording criteria and indicated a significant difference in TEOAE suppression between observing speech gestures relative to the non-speech gestures, but only at the 1 kHz frequency. These results suggest that observing a speech gesture compared to a non-speech gesture may trigger a difference in MOC activity, possibly to enhance peripheral neural encoding. If such findings can be reproduced in future research, sensory perception models and theories positing the downstream convergence of unisensory streams of information in the cortex may need to be revised.

  17. Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration

    PubMed Central

    Mercier, Manuel R.; Foxe, John J.; Fiebelkorn, Ian C.; Butler, John S.; Schwartz, Theodore H.; Molholm, Sophie

    2013-01-01

    Findings in animal models demonstrate that activity within hierarchically early sensory cortical regions can be modulated by cross-sensory inputs through resetting of the phase of ongoing intrinsic neural oscillations. Here, subdural recordings evaluated whether phase resetting by auditory inputs would impact multisensory integration processes in human visual cortex. Results clearly showed auditory-driven phase reset in visual cortices and, in some cases, frank auditory event-related potentials (ERP) were also observed over these regions. Further, when audiovisual bisensory stimuli were presented, this led to robust multisensory integration effects which were observed in both the ERP and in measures of phase concentration. These results extend findings from animal models to human visual cortices, and highlight the impact of cross-sensory phase resetting by a non-primary stimulus on multisensory integration in ostensibly unisensory cortices. PMID:23624493

  18. Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants

    PubMed Central

    Baumhoff, Peter; Tillein, Jochen; Lomber, Stephen G.; Hubka, Peter; Kral, Andrej

    2016-01-01

    Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the “original“ inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of “deaf” higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the “unused” auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes

  19. A cortical-hippocampal-cortical loop of information processing during memory consolidation.

    PubMed

    Rothschild, Gideon; Eban, Elad; Frank, Loren M

    2017-02-01

    Hippocampal replay during sharp-wave ripple events (SWRs) is thought to drive memory consolidation in hippocampal and cortical circuits. Changes in neocortical activity can precede SWR events, but whether and how these changes influence the content of replay remains unknown. Here we show that during sleep there is a rapid cortical-hippocampal-cortical loop of information flow around the times of SWRs. We recorded neural activity in auditory cortex (AC) and hippocampus of rats as they learned a sound-guided task and during sleep. We found that patterned activation in AC precedes and predicts the subsequent content of hippocampal activity during SWRs, while hippocampal patterns during SWRs predict subsequent AC activity. Delivering sounds during sleep biased AC activity patterns, and sound-biased AC patterns predicted subsequent hippocampal activity. These findings suggest that activation of specific cortical representations during sleep influences the identity of the memories that are consolidated into long-term stores.

  20. Auditory, Somatosensory, and Multisensory Insular Cortex in the Rat

    PubMed Central

    Rodgers, Krista M.; Benison, Alexander M.; Klein, Andrea

    2008-01-01

    Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning. PMID:18424777

  1. Comparative primate neurobiology and the evolution of brain language systems.

    PubMed

    Rilling, James K

    2014-10-01

    Human brain specializations supporting language can be identified by comparing human with non-human primate brains. Comparisons with chimpanzees are critical in this endeavor. Human brains are much larger than non-human primate brains, but human language capabilities cannot be entirely explained by brain size. Human brain specializations that potentially support our capacity for language include firstly, wider cortical minicolumns in both Broca's and Wernicke's areas compared with great apes; secondly, leftward asymmetries in Broca's area volume and Wernicke's area minicolumn width that are not found in great apes; and thirdly, arcuate fasciculus projections beyond Wernicke's area to a region of expanded association cortex in the middle and inferior temporal cortex involved in processing word meaning.

  2. A Predictive Structural Model of the Primate Connectome

    PubMed Central

    Beul, Sarah F.; Barbas, Helen; Hilgetag, Claus C.

    2017-01-01

    Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data, we tested the power of three factors to predict connections of the primate cerebral cortex: architectonic similarity (structural model), spatial proximity (distance model) and thickness similarity (thickness model). Architectonic similarity showed the strongest and most consistent influence on connection features. This parameter was strongly associated with the presence or absence of inter-areal connections and when integrated with spatial distance, the factor allowed predicting the existence of projections with very high accuracy. Moreover, architectonic similarity was strongly related to the laminar pattern of projection origins, and the absolute number of cortical connections of an area. By contrast, cortical thickness similarity and distance were not systematically related to connection features. These findings suggest that cortical architecture provides a general organizing principle for connections in the primate brain, providing further support for the well-corroborated structural model. PMID:28256558

  3. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    PubMed

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general.

  4. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  5. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'.

  6. Cortical Visual Impairment

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  7. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  8. Ethics of primate use

    NASA Astrophysics Data System (ADS)

    Prescott, M. J.

    2010-11-01

    This article provides an overview of the ethical issues raised by the use of non-human primates (NHPs) in research involving scientific procedures which may cause pain, suffering, distress or lasting harm. It is not an exhaustive review of the literature and views on this subject, and it does not present any conclusions about the moral acceptability or otherwise of NHP research. Rather the aim has been to identify the ethical issues involved and to provide guidance on how these might be addressed, in particular by carefully examining the scientific rationale for NHP use, implementing fully the 3Rs principle of Russell and Burch (1959) and applying a robust "harm-benefit assessment" to research proposals involving NHPs.

  9. Multivariate sensitivity to voice during auditory categorization.

    PubMed

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex.

  10. Abnormal Effective Connectivity in the Brain is Involved in Auditory Verbal Hallucinations in Schizophrenia.

    PubMed

    Li, Baojuan; Cui, Long-Biao; Xi, Yi-Bin; Friston, Karl J; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Bai, Yuan-Han; Tan, Qing-Rong; Yin, Hong; Lu, Hongbing

    2017-02-21

    Information flow among auditory and language processing-related regions implicated in the pathophysiology of auditory verbal hallucinations (AVHs) in schizophrenia (SZ) remains unclear. In this study, we used stochastic dynamic causal modeling (sDCM) to quantify connections among the left dorsolateral prefrontal cortex (inner speech monitoring), auditory cortex (auditory processing), hippocampus (memory retrieval), thalamus (information filtering), and Broca's area (language production) in 17 first-episode drug-naïve SZ patients with AVHs, 15 without AVHs, and 19 healthy controls using resting-state functional magnetic resonance imaging. Finally, we performed receiver operating characteristic (ROC) analysis and correlation analysis between image measures and symptoms. sDCM revealed an increased sensitivity of auditory cortex to its thalamic afferents and a decrease in hippocampal sensitivity to auditory inputs in SZ patients with AVHs. The area under the ROC curve showed the diagnostic value of these two connections to distinguish SZ patients with AVHs from those without AVHs. Furthermore, we found a positive correlation between the strength of the connectivity from Broca's area to the auditory cortex and the severity of AVHs. These findings demonstrate, for the first time, augmented AVH-specific excitatory afferents from the thalamus to the auditory cortex in SZ patients, resulting in auditory perception without external auditory stimuli. Our results provide insights into the neural mechanisms underlying AVHs in SZ. This thalamic-auditory cortical-hippocampal dysconnectivity may also serve as a diagnostic biomarker of AVHs in SZ and a therapeutic target based on direct in vivo evidence.

  11. Cortical Basis for Dichotic Pitch Perception in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Partanen, Marita; Fitzpatrick, Kevin; Madler, Burkhard; Edgell, Dorothy; Bjornson, Bruce; Giaschi, Deborah E.

    2012-01-01

    The current study examined auditory processing deficits in dyslexia using a dichotic pitch stimulus and functional MRI. Cortical activation by the dichotic pitch task occurred in bilateral Heschl's gyri, right planum temporale, and right superior temporal sulcus. Adolescents with dyslexia, relative to age-matched controls, illustrated greater…

  12. Primate Models in Organ Transplantation

    PubMed Central

    Anderson, Douglas J.; Kirk, Allan D.

    2013-01-01

    Large animal models have long served as the proving grounds for advances in transplantation, bridging the gap between inbred mouse experimentation and human clinical trials. Although a variety of species have been and continue to be used, the emergence of highly targeted biologic- and antibody-based therapies has required models to have a high degree of homology with humans. Thus, the nonhuman primate has become the model of choice in many settings. This article will provide an overview of nonhuman primate models of transplantation. Issues of primate genetics and care will be introduced, and a brief overview of technical aspects for various transplant models will be discussed. Finally, several prominent immunosuppressive and tolerance strategies used in primates will be reviewed. PMID:24003248

  13. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing

    PubMed Central

    Casanova, Manuel F.

    2014-01-01

    The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer’s and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders. PMID:24531625

  14. No relative expansion of the number of prefrontal neurons in primate and human evolution

    PubMed Central

    Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H.; Herculano-Houzel, Suzana

    2016-01-01

    Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume. PMID:27503881

  15. Captivity humanizes the primate microbiome

    PubMed Central

    Vangay, Pajau; Huang, Hu; Ward, Tonya; Hillmann, Benjamin M.; Al-Ghalith, Gabriel A.; Travis, Dominic A.; Long, Ha Thang; Tuan, Bui Van; Minh, Vo Van; Cabana, Francis; Nadler, Tilo; Toddes, Barbara; Murphy, Tami; Glander, Kenneth E.; Johnson, Timothy J.; Knights, Dan

    2016-01-01

    The primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome. PMID:27573830

  16. Branched Projections in the Auditory Thalamocortical and Corticocortical Systems

    PubMed Central

    Kishan, Amar U.; Lee, Charles C.; Winer, Jeffery A.

    2008-01-01

    Branched axons (BAs) projecting to different areas of the brain can create multiple feature-specific maps or synchronize processing in remote targets. We examined the organization of BAs in the cat auditory forebrain using two sensitive retrograde tracers. In one set of experiments (n=4), the tracers were injected into different frequency-matched loci in the primary auditory area (AI) and the anterior auditory field (AAF). In the other set (n=4), we injected primary, non-primary, or limbic cortical areas. After mapped injections, percentages of double labeled cells (PDLs) in the medial geniculate body (MGB) ranged from 1.4% (ventral division) to 2.8% (rostral pole). In both ipsilateral and contralateral areas AI and AAF, the average PDLs were <1%. In the unmapped cases, the MGB PDLs ranged from 0.6% (ventral division) after insular cortex injections to 6.7% (dorsal division) after temporal cortex injections. Cortical PDLs ranged from 0.1% (ipsilateral AI injections) to 3.7% AII (contralateral AII injections). PDLs within the smaller (minority) projection population were significantly higher than those in the overall population. About 2% of auditory forebrain projection cells have BAs and such cells are organized differently than those in the subcortical auditory system, where BAs can be far more numerous. Forebrain branched projections follow different organizational rules than their unbranched counterparts. Finally, the relatively larger proportion of visual and somatic sensory forebrain BAs suggests modality specific rules for BA organization. PMID:18294776

  17. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    PubMed

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices.

  18. A cocktail party with a cortical twist: How cortical mechanisms contribute to sound segregation

    PubMed Central

    Elhilali, Mounya; Shamma, Shihab A.

    2008-01-01

    Sound systems and speech technologies can benefit greatly from a deeper understanding of how the auditory system, and particularly the auditory cortex, is able to parse complex acoustic scenes into meaningful auditory objects and streams under adverse conditions. In the current work, a biologically plausible model of this process is presented, where the role of cortical mechanisms in organizing complex auditory scenes is explored. The model consists of two stages: (i) a feature analysis stage that maps the acoustic input into a multidimensional cortical representation and (ii) an integrative stage that recursively builds up expectations of how streams evolve over time and reconciles its predictions with the incoming sensory input by sorting it into different clusters. This approach yields a robust computational scheme for speaker separation under conditions of speech or music interference. The model can also emulate the archetypal streaming percepts of tonal stimuli that have long been tested in human subjects. The implications of this model are discussed with respect to the physiological correlates of streaming in the cortex as well as the role of attention and other top-down influences in guiding sound organization. PMID:19206802

  19. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  20. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation

    PubMed Central

    Meyer, Martin; Baumann, Simon; Marchina, Sarah; Jancke, Lutz

    2007-01-01

    Background Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control) habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control) habituation phase they heard brief telephone ringing. In the third (conditioning) phase we coincidently presented the visual stimulus (CS) paired with the auditory stimulus (UCS). In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS-) or viewed the visual stimulus in isolation (extinction, CS+) according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button. Results During unpaired visual presentations (preceding and following the paired presentation) we observed significant brain responses beyond primary visual cortex in the bilateral posterior auditory association cortex (planum temporale, planum parietale) and in the right superior temporal sulcus whereas the primary auditory regions were not involved. By contrast, the activity in auditory core regions was markedly larger when participants were presented with auditory stimuli. Conclusion These results demonstrate involvement of multisensory and auditory association areas in perception of unimodal visual stimulation which may reflect the instantaneous forming of multisensory associations and cannot be attributed to sensation of an auditory event. More importantly, we are able to show that brain

  1. Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway

    PubMed Central

    Yao, Justin D.; Bremen, Peter

    2015-01-01

    Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in

  2. Theta, beta and gamma rate modulations in the developing auditory system.

    PubMed

    Vanvooren, Sophie; Hofmann, Michael; Poelmans, Hanne; Ghesquière, Pol; Wouters, Jan

    2015-09-01

    In the brain, the temporal analysis of many important auditory features relies on the synchronized firing of neurons to the auditory input rhythm. These so-called neural oscillations play a crucial role in sensory and cognitive processing and deviances in oscillatory activity have shown to be associated with neurodevelopmental disorders. Given the importance of neural auditory oscillations in normal and impaired sensory and cognitive functioning, there has been growing interest in their developmental trajectory from early childhood on. In the present study, neural auditory processing was investigated in typically developing young children (n = 40) and adults (n = 27). In all participants, auditory evoked theta, beta and gamma responses were recorded. The results of this study show maturational differences between children and adults in neural auditory processing at cortical as well as at brainstem level. Neural background noise at cortical level was shown to be higher in children compared to adults. In addition, higher theta response amplitudes were measured in children compared to adults. For beta and gamma rate modulations, different processing asymmetry patterns were observed between both age groups. The mean response phase was also shown to differ significantly between children and adults for all rates. Results suggest that cortical auditory processing of beta develops from a general processing pattern into a more specialized asymmetric processing preference over age. Moreover, the results indicate an enhancement of bilateral representation of monaural sound input at brainstem with age. A dissimilar efficiency of auditory signal transmission from brainstem to cortex along the auditory pathway between children and adults is suggested. These developmental differences might be due to both functional experience-dependent as well as anatomical changes. The findings of the present study offer important information about maturational differences between children

  3. Auditory tracts identified with combined fMRI and diffusion tractography.

    PubMed

    Javad, Faiza; Warren, Jason D; Micallef, Caroline; Thornton, John S; Golay, Xavier; Yousry, Tarek; Mancini, Laura

    2014-01-01

    The auditory tracts in the human brain connect the inferior colliculus (IC) and medial geniculate body (MGB) to various components of the auditory cortex (AC). While in non-human primates and in humans, the auditory system is differentiated in core, belt and parabelt areas, the correspondence between these areas and anatomical landmarks on the human superior temporal gyri is not straightforward, and at present not completely understood. However it is not controversial that there is a hierarchical organization of auditory stimuli processing in the auditory system. The aims of this study were to demonstrate that it is possible to non-invasively and robustly identify auditory projections between the auditory thalamus/brainstem and different functional levels of auditory analysis in the cortex of human subjects in vivo combining functional magnetic resonance imaging (fMRI) with diffusion MRI, and to investigate the possibility of differentiating between different components of the auditory pathways (e.g. projections to areas responsible for sound, pitch and melody processing). We hypothesized that the major limitation in the identification of the auditory pathways is the known problem of crossing fibres and addressed this issue acquiring DTI with b-values higher than commonly used and adopting a multi-fibre ball-and-stick analysis model combined with probabilistic tractography. Fourteen healthy subjects were studied. Auditory areas were localized functionally using an established hierarchical pitch processing fMRI paradigm. Together fMRI and diffusion MRI allowed the successful identification of tracts connecting IC with AC in 64 to 86% of hemispheres and left sound areas with homologous areas in the right hemisphere in 86% of hemispheres. The identified tracts corresponded closely with a three-dimensional stereotaxic atlas based on postmortem data. The findings have both neuroscientific and clinical implications for delineation of the human auditory system in vivo.

  4. Auditory Processing Disorder (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Auditory Processing Disorder KidsHealth > For Parents > Auditory Processing Disorder Print A A A What's in this ... Speech Symptoms Causes Diagnosis Helping Your Child Auditory processing disorder (APD), also known as central auditory processing ...

  5. Retinogeniculostriate pathway components scale with orbit convergence only in primates and not in other mammals.

    PubMed

    Heesy, Christopher P; Kamilar, Jason M; Willms, Jonathan

    2011-01-01

    Studies of the relative sizes of brain components in mammals suggest that areas responsible for sensory processing, including visual processing, are correlated with aspects of ecology, especially activity pattern. Some studies suggest that primate orbit convergence and binocular vision are correlated with the overall size of the brain as well as components of the visual pathway, such as the lateral geniculate nucleus. However, the question remains whether components of the visual pathway are correlated with orbit convergence and binocular visual field overlap in nonprimate mammals. Here, we examine the relationship between orbit convergence and the volumes of components of the visual pathway (optic tract, dorsal lateral geniculate nucleus and primary visual cortex). Data on orbit orientation are combined with those on overall brain volume as well as brain component volumes in a taxonomically diverse sample of mammals. Our results demonstrate that nonprimate mammals scale isometrically for component volumes along the visual pathway, whereas primates display negatively allometric relationships. However, only among primates is higher orbit convergence correlated with volumetrically larger lateral geniculate nuclei and visual cortices. Diurnal primates exhibit statistically larger visual pathway components when compared to nocturnal primates. Nonprimate mammals do not display activity pattern differences with the single exception of optic tract sizes. We conclude that binocular vision was a much stronger factor in the evolution of the visual system in primates than in other mammals.

  6. Cortical maturation in children with cochlear implants: Correlation between electrophysiological and behavioral measurement

    PubMed Central

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Magliaro, Fernanda C. L.; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2017-01-01

    Central auditory pathway maturation in children depends on auditory sensory stimulation. The objective of the present study was to monitor the cortical maturation of children with cochlear implants using electrophysiological and auditory skills measurements. The study was longitudinal and consisted of 30 subjects, 15 (8 girls and 7 boys) of whom had a cochlear implant, with a mean age at activation time of 36.4 months (minimum, 17 months; maximum, 66 months), and 15 of whom were normal-hearing children who were matched based on gender and chronological age. The auditory and speech skills of the children with cochlear implants were evaluated using GASP, IT-MAIS and MUSS measures. Both groups underwent electrophysiological evaluation using long-latency auditory evoked potentials. Each child was evaluated at three and nine months after cochlear implant activation, with the same time interval adopted for the hearing children. The results showed improvements in auditory and speech skills as measured by IT-MAIS and MUSS. Similarly, the long-latency auditory evoked potential evaluation revealed a decrease in P1 component latency; however, the latency remained significantly longer than that of the hearing children, even after nine months of cochlear implant use. It was observed that a shorter P1 latency corresponded to more evident development of auditory skills. Regarding auditory behavior, it was observed that children who could master the auditory skill of discrimination showed better results in other evaluations, both behavioral and electrophysiological, than those who had mastered only the speech-detection skill. Therefore, cochlear implant auditory stimulation facilitated auditory pathway maturation, which decreased the latency of the P1 component and advanced the development of auditory and speech skills. The analysis of the long-latency auditory evoked potentials revealed that the P1 component was an important biomarker of auditory development during the

  7. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf.

    PubMed

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z; Zhang, Fan; Gonçalves, Óscar F; Fang, Fang; Bi, Yanchao

    2015-11-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus-a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex.

  8. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    PubMed Central

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  9. Different forms of effective connectivity in primate frontotemporal pathways.

    PubMed

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-23

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.

  10. Different forms of effective connectivity in primate frontotemporal pathways

    PubMed Central

    Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  11. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex

    PubMed Central

    Martins, Ana Raquel O.; Froemke, Robert C.

    2015-01-01

    The cerebral cortex is plastic and represents the world according to the significance of sensory stimuli. However, cortical networks are embodied within complex circuits including neuromodulatory systems such as the noradrenergic locus coeruleus, providing information about internal state and behavioral relevance. While norepinephrine is important for cortical plasticity, it is unknown how modulatory neurons themselves respond to changes of sensory input. Here we examine how locus coeruleus neurons are modified by experience, and the consequences of locus coeruleus plasticity on cortical representations and sensory perception. We made whole-cell recordings from rat locus coeruleus and primary auditory cortex (AI), pairing sounds with locus coeruleus activation. Although initially unresponsive, locus coeruleus neurons developed and maintained auditory responses afterwards. Locus coeruleus plasticity induced changes in AI responses lasting at least hours and improved auditory perception for days to weeks. Our results demonstrate that locus coeruleus is highly plastic, leading to substantial changes in regulation of brain state by norepinephrine. PMID:26301326

  12. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations.

    PubMed

    Kim, Tae; Thankachan, Stephen; McKenna, James T; McNally, James M; Yang, Chun; Choi, Jee Hyun; Chen, Lichao; Kocsis, Bernat; Deisseroth, Karl; Strecker, Robert E; Basheer, Radhika; Brown, Ritchie E; McCarley, Robert W

    2015-03-17

    Cortical gamma band oscillations (GBO, 30-80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia.

  13. Cortical differentiation of speech and nonspeech sounds at 100 ms: implications for dyslexia.

    PubMed

    Parviainen, Tiina; Helenius, Päivi; Salmelin, Riitta

    2005-07-01

    Neurophysiological measures indicate cortical sensitivity to speech sounds by 150 ms after stimulus onset. In this time window dyslexic subjects start to show abnormal cortical processing. We investigated whether phonetic analysis is reflected in the robust auditory cortical activation at approximately 100 ms (N100m), and whether dyslexic subjects show abnormal N100m responses to speech or nonspeech sounds. We used magnetoencephalography to record auditory responses of 10 normally reading and 10 dyslexic adults. The speech stimuli were synthetic Finnish speech sounds (/a/, /u/, /pa/, /ka/). The nonspeech stimuli were complex nonspeech sounds and simple sine wave tones, composed of the F1+F2+F3 and F2 formant frequencies of the speech sounds, respectively. All sounds evoked a prominent N100m response in the bilateral auditory cortices. The N100m activation was stronger to speech than nonspeech sounds in the left but not in the right auditory cortex, in both subject groups. The leftward shift of hemispheric balance for speech sounds is likely to reflect analysis at the phonetic level. In dyslexic subjects the overall interhemispheric amplitude balance and timing were altered for all sound types alike. Dyslexic individuals thus seem to have an unusual cortical organization of general auditory processing in the time window of speech-sensitive analysis.

  14. Maturation of the Central Auditory Nervous System in Children with Auditory Processing Disorder

    PubMed Central

    Tomlin, Dani; Rance, Gary

    2016-01-01

    Neurodevelopmental delay has been proposed as the underlying cause of the majority of cases of auditory processing disorder (APD). The current study employs the cortical auditory evoked potential (CAEP) to assess if maturational differences of the central auditory nervous system (CANS) can be identified between children who do and do not meet the diagnostic criterion for APD. The P1-N1 complex of the CAEP has previously been used for tracking development of the CANS in children with hearing impairment. Twenty-seven children (7 to 12 years old) who failed an APD behavioral test battery were age-matched (within 3 months) to children who had passed the same battery. CAEP responses to 500-Hz tone burst stimuli were recorded and analyzed for latency and amplitude measures. The P1-N1 complex of the CAEP, which has previously been used for tracking development of the CANS in children with hearing impairment, showed significant group differences. The children diagnosed with APD showed significantly increased latency (∼10 milliseconds) and significantly reduced amplitude (∼10 μV) of the early components of the CAEP compared with children with normal auditory processing. No significant differences were seen in the later P2 wave. The normal developmental course is for a decrease in latency and increase in amplitude as a function of age. The results of this study are, therefore, consistent with an immaturity of the CANS as an underlying cause of APD in children. PMID:27587924

  15. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  16. Development of Inhibitory Timescales in Auditory Cortex

    PubMed Central

    Reyes, Alex D.

    2011-01-01

    The time course of inhibition plays an important role in cortical sensitivity, tuning, and temporal response properties. We investigated the development of L2/3 inhibitory circuitry between fast-spiking (FS) interneurons and pyramidal cells (PCs) in auditory thalamocortical slices from mice between postnatal day 10 (P10) and P29. We found that the maturation of the intrinsic and synaptic properties of both FS cells and their connected PCs influence the timescales of inhibition. FS cell firing rates increased with age owing to decreased membrane time constants, shorter afterhyperpolarizations, and narrower action potentials. Between FS–PC pairs, excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) changed with age. The latencies, rise, and peak times of the IPSPs, as well as the decay constants of both EPSPs and IPSPs decreased between P10 and P29. In addition, decreases in short-term depression at excitatory PC–FS synapses resulted in more sustained synaptic responses during repetitive stimulation. Finally, we show that during early development, the temporal properties that influence the recruitment of inhibition lag those of excitation. Taken together, our results suggest that the changes in the timescales of inhibitory recruitment coincide with the development of the tuning and temporal response properties of auditory cortical networks. PMID:21068186

  17. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia.

    PubMed

    Kuga, Hironori; Onitsuka, Toshiaki; Hirano, Yoji; Nakamura, Itta; Oribe, Naoya; Mizuhara, Hiroaki; Kanai, Ryota; Kanba, Shigenobu; Ueno, Takefumi

    2016-10-01

    Recent MRI studies have shown that schizophrenia is characterized by reductions in brain gray matter, which progress in the acute state of the disease. Cortical circuitry abnormalities in gamma oscillations, such as deficits in the auditory steady state response (ASSR) to gamma frequency (>30-Hz) stimulation, have also been reported in schizophrenia patients. In the current study, we investigated neural responses during click stimulation by BOLD signals. We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ), 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ), and 24 healthy controls (HC), assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  18. The clothing effect: Tactile neurons in the precentral gyrus do not respond to the touch of the familiar primate chair

    NASA Astrophysics Data System (ADS)

    Graziano, Michael S. A.; Alisharan, Shalani E.; Hu, Xintian; Gross, Charles G.

    2002-09-01

    Neurons in a restricted zone in the precentral gyrus of macaque monkeys respond to tactile, visual, and auditory stimuli. The tactile receptive fields of these multimodal cells are usually located on the face, arm, or upper torso. In the present study, in awake monkeys sitting in a primate chair, the neurons responded to a tactile probe touching the skin within the tactile receptive field. However, the same neurons did not respond when the tactile receptive field was touched by the primate chair, to which the monkey was habituated.

  19. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  20. Music training relates to the development of neural mechanisms of selective auditory attention.

    PubMed

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not.

  1. [A Role of the Basal Ganglia in Processing of Complex Sounds and Auditory Attention].

    PubMed

    Silkis, I G

    2015-01-01

    A hypothetical mechanism is suggested for processing of complex sounds and auditory attention in parallel neuronal loops including various auditory cortical areas connected with parts of the medial geniculate body, inferior colliculus and basal ganglia. Release of dopamine in the striatum promotes bidirectional modulation of strong and weak inputs from the neocortex to striatal neurons giving rise to direct and indirect pathways through the basal ganglia. Subsequent synergistic disinhibition of one and inhibition of other groups of thalamic neurons by the basal ganglia result in the creation of contrasted neuronal representations of properties of auditory stimuli in related cortical areas. Contrasting is strengthened due to a simultaneous disinhibition of pedunculopontine nucleus and action at muscarine receptors on neurons in the medial geniculate body. It follows from this mechanism that involuntary attention to sound tone can enhance an early component of the responses of neurons in the primary auditory cortical area (50 msec) in the absence of dopamine due to a disinhibition of thalamic neurons via the direct pathway through the basal ganglia, whereas voluntary attention to complex sounds can enhance only those components of responses of neurones in secondary auditory cortical areas which latencies exceeds latencies of dopaminergic cells (i.e. after 100 msec). Various consequences of proposed mechanism are in agreement with known experimental data.

  2. Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.

    PubMed

    Oshurkova, E; Scheich, H; Brosch, M

    2008-06-02

    We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.

  3. 42 CFR 71.53 - Nonhuman primates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... member of their staff suspected of having an infectious disease acquired from nonhuman primates. (f) Disease control measures. Upon receipt of evidence of exposure of nonhuman primates to a communicable... nonhuman primates that is suspected of being yellow fever, monkeypox, or Marburg/Ebola disease....

  4. 42 CFR 71.53 - Nonhuman primates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... record on each shipment shall include the number of primates received, species, country of origin, date... nonhuman primates that is suspected of being yellow fever, monkeypox, or Marburg/Ebola disease. (3... member of their staff suspected of having an infectious disease acquired from nonhuman primates....

  5. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.

  6. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception?

    PubMed

    Kössl, Manfred; Hechavarria, Julio; Voss, Cornelia; Schaefer, Markus; Vater, Marianne

    2015-03-01

    Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.

  7. Music and learning-induced cortical plasticity.

    PubMed

    Pantev, Christo; Ross, Bernhard; Fujioka, Takkao; Trainor, Laurel J; Schulte, Michael; Schulz, Matthias

    2003-11-01

    Auditory stimuli are encoded by frequency-tuned neurons in the auditory cortex. There are a number of tonotopic maps, indicating that there are multiple representations, as in a mosaic. However, the cortical organization is not fixed due to the brain's capacity to adapt to current requirements of the environment. Several experiments on cerebral cortical organization in musicians demonstrate an astonishing plasticity. We used the MEG technique in a number of studies to investigate the changes that occur in the human auditory cortex when a skill is acquired, such as when learning to play a musical instrument. We found enlarged cortical representation of tones of the musical scale as compared to pure tones in skilled musicians. Enlargement was correlated with the age at which musicians began to practice. We also investigated cortical representations for notes of different timbre (violin and trumpet) and found that they are enhanced in violinists and trumpeters, preferentially for the timbre of the instrument on which the musician was trained. In recent studies we extended these findings in three ways. First, we show that we can use MEG to measure the effects of relatively short-term laboratory training involving learning to perceive virtual instead of spectral pitch and that the switch to perceiving virtual pitch is manifested in the gamma band frequency. Second, we show that there is cross-modal plasticity in that when the lips of trumpet players are stimulated (trumpet players assess their auditory performance by monitoring the position and pressure of their lips touching the mouthpiece of their instrument) at the same time as a trumpet tone, activation in the somatosensory cortex is increased more than it is during the sum of the separate lip and trumpet tone stimulation. Third, we show that musicians' automatic encoding and discrimination of pitch contour and interval information in melodies are specifically enhanced compared to those in nonmusicians in that

  8. Auditory hallucinations induced by trazodone.

    PubMed

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-04-03

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients.

  9. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  10. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  11. Cranial vault thickness in primates: Homo erectus does not have uniquely thick vault bones.

    PubMed

    Copes, Lynn E; Kimbel, William H

    2016-01-01

    Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but relatively little work has been done on elucidating its etiology or variation across fossils, living humans, or extant non-human primates. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. We obtained measurements of cranial vault thickness in fossil hominins from the literature and supplemented those data with additional measurements taken on African fossil specimens. Total CVT and the thickness of the cortical and diploë layers individually were compared to measures of CVT in extant species measured from more than 500 CT scans of human and non-human primates. Frontal and parietal CVT in fossil primates was compared to a regression of CVT on cranial capacity calculated for extant species. Even after controlling for cranial capacity, African and Asian H. erectus do not have uniquely high frontal or parietal thickness residuals, either among hominins or extant primates. Extant primates with residual CVT thickness similar to or exceeding H. erectus (depending on the sex and bone analyzed) include Nycticebus coucang, Perodicticus potto, Alouatta caraya, Lophocebus albigena, Galago alleni, Mandrillus sphinx, and Propithecus diadema. However, the especially thick vaults of extant non-human primates that overlap with H. erectus values are composed primarily of cortical bone, while H. erectus and other hominins have diploë-dominated vault bones. Thus, the combination of thick vaults comprised of a thickened diploë layer may be a reliable autapomorphy for members of the genus Homo.

  12. Representations of Pitch and Timbre Variation in Human Auditory Cortex.

    PubMed

    Allen, Emily J; Burton, Philip C; Olman, Cheryl A; Oxenham, Andrew J

    2017-02-01

    Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex.

  13. Subcortical correlates of auditory perceptual organization in humans.

    PubMed

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2016-09-01

    To make sense of complex auditory scenes, the auditory system sequentially organizes auditory components into perceptual objects or streams. In the conventional view of this process, the cortex plays a major role in perceptual organization, and subcortical mechanisms merely provide the cortex with acoustical features. Here, we show that the neural activities of the brainstem are linked to perceptual organization, which alternates spontaneously for human listeners without any stimulus change. The stimulus used in the experiment was an unchanging sequence of repeated triplet tones, which can be interpreted as either one or two streams. Listeners were instructed to report the perceptual states whenever they experienced perceptual switching between one and two streams throughout the stimulus presentation. Simultaneously, we recorded event related potentials with scalp electrodes. We measured the frequency-following response (FFR), which is considered to originate from the brainstem. We also assessed thalamo-cortical activity through the middle-latency response (MLR). The results demonstrate that the FFR and MLR varied with the state of auditory stream perception. In addition, we found that the MLR change precedes the FFR change with perceptual switching from a one-stream to a two-stream percept. This suggests that there are top-down influences on brainstem activity from the thalamo-cortical pathway. These findings are consistent with the idea of a distributed, hierarchical neural network for perceptual organization and suggest that the network extends to the brainstem level.

  14. Differential auditory signal processing in an animal model

    NASA Astrophysics Data System (ADS)

    Lim, Dukhwan; Kim, Chongsun; Chang, Sun O.

    2002-05-01

    Auditory evoked responses were collected in male zebra finches (Poephila guttata) to objectively determine differential frequency selectivity. First, the mating call of the animal was recorded and analyzed for its frequency components through the customized program. Then, auditory brainstem responses and cortical responses of each anesthetized animal were routinely recorded in response to tone bursts of 1-8 kHz derived from the corresponding mating call spectrum. From the results, most mating calls showed relatively consistent spectral structures. The upper limit of the spectrum was well under 10 kHz. The peak energy bands were concentrated in the region less than 5 kHz. The assessment of auditory brainstem responses and cortical evoked potentials showed differential selectivity with a series of characteristic scales. This system appears to be an excellent model to investigate complex sound processing and related language behaviors. These data could also be used in designing effective signal processing strategies in auditory rehabilitation devices such as hearing aids and cochlear implants. [Work supported by Brain Science & Engineering Program from Korean Ministry of Science and Technology.

  15. [Cortical Functional Connectivity during Cued vs. Implicit Modality-Specific Anticipatory Attention: EEG-Source Alpha Coherence Analysis].

    PubMed

    Machinskaya, R I; Talalay, I V; Kurgansky, A V

    2015-01-01

    The brain functional organization was studied in a group of healthy right-handed adults (N= 16, mean age = 23 ± 5.7) during preparation for visual and auditory sensory tasks in two conditions: (1) participants waited for appearance of either a visual or an auditory stimulus after being cued about its sensory modality (the cued anticipatory attention) or (2) they developed implicit anticipation of stimulus in the course of repetitive exposure to the same sequence of visual and auditory stimuli pairs. In both cases, participants were asked to discriminate the temporal order of stimuli presentation within a pair of either visual or auditory modality. The functional connectivity was assessed via alpha coherence computed in the source space for preselected regions of interests. For both visual and auditory modalities, increase of strength of functional links among cortical areas involved in the fronto-parietal attention system is found during the cued attention when compared to nonspecific sustained attention. An increase is also observed in the connection strengths between sensory-specific and associative (parietal and prefrontal) areas. In visual modality, the buildup of implicit anticipation was accompanied by the strengthening of functional links between the ventral premotor cortex and caudal (parietal and occipital) areas of the right hemisphere. In the case of auditory task, the increase of connection strengths within fronto-temporal cortical areas was observed. These areas included the rostral supplementary motor areas, ventral premotor cortices and primary auditory cortices.

  16. Peripheral auditory tuning for vowels.

    PubMed

    Namasivayam, Aravind Kumar; Le, Duc James; Hard, Jennifer; Lewis, Samantha Evelyn; Neufeld, Chris; van Lieshout, Pascal

    2013-12-01

    In this study, 35 young, healthy adults were tested on whether speech-like stimuli evoke a unique response in the auditory efferent system. To this end, descending cortical influences on medial olivocochlear (MOC) activity were indirectly evaluated by studying the effects of contralateral suppression on distortion product otoacoustic emissions (DPOAEs) under four conditions: (a) in the absence of any contralateral noise (Baseline), (b) presence of contralateral broadband noise (Noise Baseline), (c) vowel discrimination-in-noise task (VDN) and (d) tone discrimination-in-noise (TDN) task. A statistically significant release from suppression was evident across all tested DPOAE frequencies (1, 1.5 and 2 kHz) only for the VDN task (p < 0.05), which yielded greater release from suppression than the TDN task. These findings indicate that during active listening in the presence of noise, the MOC activity may be differentially modulated depending on the type of stimulus (vowel vs. tone). Specifically, in the presence of background noise, vowels may show a greater release from suppression in the cochlea than frequency, intensity and duration matched tones.

  17. Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in 'unimodal' visual neurons.

    PubMed

    Clemo, H Ruth; Sharma, Giriraj K; Allman, Brian L; Meredith, M Alex

    2008-10-01

    Neurophysiological studies have recently documented multisensory properties in 'unimodal' visual neurons of the cat posterolateral lateral suprasylvian (PLLS) cortex, a retinotopically organized area involved in visual motion processing. In this extrastriate visual area, a region has been identified where both visual and auditory stimuli were independently effective in activating neurons (bimodal zone), as well as a second region where visually-evoked activity was significantly facilitated by concurrent auditory stimulation but was unaffected by auditory stimulation alone (subthreshold multisensory region). Given their different distributions, the possible corticocortical connectivity underlying these distinct forms of crossmodal convergence was examined using biotinylated dextran amine (BDA) tracer methods in 21 adult cats. The auditory cortical areas examined included the anterior auditory field (AAF), primary auditory cortex (AI), dorsal zone (DZ), secondary auditory cortex (AII), field of the rostral suprasylvian sulcus (FRS), field anterior ectosylvian sulcus (FAES) and the posterior auditory field (PAF). Of these regions, the DZ, AI, AII, and FAES were found to project to the both the bimodal zone and the subthreshold region of the PLLS. This convergence of crossmodal inputs to the PLLS suggests not only that complex auditory information has access to this region but also that these connections provide the substrate for the different forms (bimodal versus subthreshold) of multisensory processing which may facilitate its functional role in visual motion processing.

  18. Pathogenesis of varicelloviruses in primates.

    PubMed

    Ouwendijk, Werner J D; Verjans, Georges M G M

    2015-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation.

  19. Viral infections of nonhuman primates.

    PubMed

    Kalter, S S; Heberling, R L; Cooke, A W; Barry, J D; Tian, P Y; Northam, W J

    1997-10-01

    Approximately 53,000 serologic tests and viral isolation studies were performed on 1,700 nonhuman primate specimens for evidence of past and/or current viral infection. Information, other than the requested test, generally was not provided with the specimen. This lack of information does not permit any attempt at interpretation of results. Requested testing included a large number of diverse viral agents in approximately 40 primate species. The resulting data are in keeping with those of previous studies and offer an insight into the needs of colony management, as well as some general information on the overall frequency of infection with the indicated viruses. Inasmuch as the results represent testing of single specimens, they are not to be construed as "diagnostic," and simply indicate past infection as represented by the presence of antibody in the test animal. Viral isolation results are listed, and the number of positive results versus the number of animals tested emphasizes the limitations of the procedure. Investigations such as these continue to assist in the maintenance of healthy nonhuman primate colonies. This information also supports continued use of nonhuman primates for research in human viral infections and may be helpful in terms of animal selection for use in xenotransplants.

  20. Cooperation and deception in primates.

    PubMed

    Hall, Katie; Brosnan, Sarah F

    2016-11-16

    Though competition and cooperation are often considered opposing forces in an arms race driving natural selection, many animals, including humans, cooperate in order to mitigate competition with others. Understanding others' psychological states, such as seeing and knowing, others' goals and intentions, and coordinating actions are all important for complex cooperation-as well as for predicting behavior in order to take advantage of others through tactical deception, a form of competition. We outline evidence of primates' understanding of how others perceive the world, and then consider how the evidence from both deception and cooperation fits this framework to give us a more complete understanding of the evolution of complex social cognition in primates. In experimental food competitions, primates flexibly manipulate group-mates' behavior to tactically deceive them. Deception can infiltrate cooperative interactions, such as when one takes an unfair share of meat after a coordinated hunt. In order to counter competition of this sort, primates maintain cooperation through partner choice, partner control, and third party punishment. Yet humans appear to stand alone in their ability to understand others' beliefs, which allows us not only to deceive others with the explicit intent to create a false belief, but it also allows us to put ourselves in others' shoes to determine when cheaters need to be punished, even if we are not directly disadvantaged by the cheater.

  1. Fear conditioning to discontinuous auditory cues requires perirhinal cortical function.

    PubMed

    Kholodar-Smith, D B; Allen, T A; Brown, T H

    2008-10-01

    Pretraining lesions of rat perirhinal (PR) cortex impair fear conditioning to ultrasonic vocalizations (USVs) but have no effect on conditioning to continuous tones. This study attempted to deconstruct USVs into simpler stimulus features that cause fear conditioning to be PR-dependent. Rats were conditioned to one of three cues: a multicall 19-kHz USV, a 19-kHz discontinuous tone, and a 19-kHz continuous tone. The discontinuous tone duplicated the on/off pattern of the individual calls in the USV, but it lacked the characteristic frequency modulations. Well-localized neurotoxic PR lesions impaired conditioning to the USV, the discontinuous tone, and the training context. However, PR lesions had no effect on conditioning to the continuous tone. The authors suggest that the lesion effects on fear conditioning to both cues and contexts reflect the essential role of PR in binding stimulus elements together into unitary representations.

  2. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input

    PubMed Central

    Happel, Max F. K.; Ohl, Frank W.

    2017-01-01

    Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex. PMID:28046062

  3. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution

    PubMed Central

    Homman-Ludiye, Jihane; Bourne, James A.

    2014-01-01

    The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460

  4. Primary and multisensory cortical activity is correlated with audiovisual percepts.

    PubMed

    Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P; Stufflebeam, Steven

    2010-04-01

    Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion.

  5. The cranium of Parapithecus grangeri, an Egyptian Oligocene anthropoidean primate

    PubMed Central

    Simons, Elwyn L.

    2001-01-01

    A nearly complete skull of Parapithecus grangeri from the early Oligocene of Egypt is described. The specimen is relatively undistorted and is undoubtedly the most complete higher primate skull yet found in the African Oligocene, which also makes it the most complete Oligocene primate cranium worldwide. Belonging in superfamily Parapithecoidea, a group regarded by some as the sister group to all other Anthropoidea, this skull reveals important information about the radiation of stem anthropoideans. This cranium is about 15% larger than size estimates based on a fragmentary cranium of its contemporary and close relative Apidium phiomense. It is about the same size as that of the gray gentle lemur, Hapalemur griseus, or of platyrrhines such as the owl monkey, Aotus trivirgatus, or the titi monkey, Callicebus torquatus. Comparatively small orbits and size differences in jaws and teeth show it was both diurnal and dimorphic. This is the only specimen of the species that shows (from sockets) that there were four small upper incisors. Several mandibular specimens of the species establish that there were no permanent lower incisors and that the symphysis was fused. Like other early anthropoideans this species possessed a lower encephalization quotient and less-developed orbital frontality than later anthropoideans. There is full postorbital closure and fusion of the metopic suture, and the ectotympanic forms a rim to the auditory aperture. A probable frontal/alisphenoid contact is a potentially derived resemblance to Catarrhini. A proposed separate genus for the species P. grangeri is not sustained. PMID:11438736

  6. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  7. Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates

    PubMed Central

    Duque, Alvaro; Krsnik, Zeljka; Kostović, Ivica; Rakic, Pasko

    2016-01-01

    The subplate (SP) was the last cellular compartment added to the Boulder Committee’s list of transient embryonic zones [Bystron I, Blakemore C, Rakic P (2008) Nature Rev Neurosci 9(2):110–122]. It is highly developed in human and nonhuman primates, but its origin, mode, and dynamics of development, resolution, and eventual extinction are not well understood because human postmortem tissue offers only static descriptive data, and mice cannot serve as an adequate experimental model for the distinct regional differences in primates. Here, we take advantage of the large and slowly developing SP in macaque monkey to examine the origin, settling pattern, and subsequent dispersion of the SP neurons in primates. Monkey embryos exposed to the radioactive DNA replication marker tritiated thymidine ([3H]dT, or TdR) at early embryonic ages were killed at different intervals postinjection to follow postmitotic cells' positional changes. As expected in primates, most SP neurons generated in the ventricular zone initially migrate radially, together with prospective layer 6 neurons. Surprisingly, mostly during midgestation, SP cells become secondarily displaced and widespread into the expanding SP zone, which becomes particularly wide subjacent to the association cortical areas and underneath the summit of its folia. We found that invasion of monoamine, basal forebrain, thalamocortical, and corticocortical axons is mainly responsible for this region-dependent passive dispersion of the SP cells. Histologic and immunohistochemical comparison with the human SP at corresponding fetal ages indicates that the same developmental events occur in both primate species. PMID:27503885

  8. Differential activity in Heschl's gyrus between deaf and hearing individuals is due to auditory deprivation rather than language modality.

    PubMed

    Cardin, Velia; Smittenaar, Rebecca C; Orfanidou, Eleni; Rönnberg, Jerker; Capek, Cheryl M; Rudner, Mary; Woll, Bencie

    2016-01-01

    Sensory cortices undergo crossmodal reorganisation as a consequence of sensory deprivation. Congenital deafness in humans represents a particular case with respect to other types of sensory deprivation, because cortical reorganisation is not only a consequence of auditory deprivation, but also of language-driven mechanisms. Visual crossmodal plasticity has been found in secondary auditory cortices of deaf individuals, but it is still unclear if reorganisation also takes place in primary auditory areas, and how this relates to language modality and auditory deprivation. Here, we dissociated the effects of language modality and auditory deprivation on crossmodal plasticity in Heschl's gyrus as a whole, and in cytoarchitectonic region Te1.0 (likely to contain the core auditory cortex). Using fMRI, we measured the BOLD response to viewing sign language in congenitally or early deaf individuals with and without sign language knowledge, and in hearing controls. Results show that differences between hearing and deaf individuals are due to a reduction in activation caused by visual stimulation in the hearing group, which is more significant in Te1.0 than in Heschl's gyrus as a whole. Furthermore, differences between deaf and hearing groups are due to auditory deprivation, and there is no evidence that the modality of language used by deaf individuals contributes to crossmodal plasticity in Heschl's gyrus.

  9. Heterogeneity of Auditory Verbal Working Memory in Schizophrenia

    PubMed Central

    Bruder, Gerard E.; Alschuler, Daniel M.; Kroppmann, Christopher J.; Fekri, Shiva; Gil, Roberto; Jarskog, Lars F.; Harkavy-Friedman, Jill M.; Goetz, Raymond; Kayser, Jürgen; Wexler, Bruce E.

    2011-01-01

    The heterogeneity of schizophrenia remains an obstacle for understanding its pathophysiology. Studies using a tone discrimination screening test to classify patients have found evidence for two subgroups having either a specific deficit in verbal working memory (WM) or deficits on both verbal and nonverbal memory tests. This study aimed to: (1) replicate in larger samples differences between these subgroups on the word serial position test (WSPT); (2) further evaluate their performance on additional tests of verbal WM, explicit memory, and sustained attention; (3) determine the relation of verbal WM deficits to auditory hallucinations and other symptoms; and (4) examine medication effects. WSPT of verbal WM and tone discrimination performance did not differ between medicated (n=45) and unmedicated (n=38) patients. Patients with schizophrenia who passed the auditory screening test (discriminators, n=60) were compared to those who did not (nondiscriminators, n=23), and healthy controls (n=47). The discriminator subgroup showed poorer verbal WM than controls and a deficit in verbal but not visual memory on Wechsler Memory Scale-Revised, whereas the nondiscriminator subgroup showed overall poorer performance on both verbal and nonverbal tests and a marked deficit in sustained attention. Verbal WM deficits in discriminators on WSPT were correlated with auditory hallucinations but not with negative symptoms. The results are consistent with a verbal memory deficit in a subgroup of schizophrenia having intact auditory perception, which may stem from dysfunction of language-related cortical regions, and a more generalized cognitive deficit in a subgroup having auditory perceptual and attentional dysfunction. PMID:21319926

  10. Effects of musical training on the auditory cortex in children.

    PubMed

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  11. Coding of melodic gestalt in human auditory cortex.

    PubMed

    Schindler, Andreas; Herdener, Marcus; Bartels, Andreas

    2013-12-01

    The perception of a melody is invariant to the absolute properties of its constituting notes, but depends on the relation between them-the melody's relative pitch profile. In fact, a melody's "Gestalt" is recognized regardless of the instrument or key used to play it. Pitch processing in general is assumed to occur at the level of the auditory cortex. However, it is unknown whether early auditory regions are able to encode pitch sequences integrated over time (i.e., melodies) and whether the resulting representations are invariant to specific keys. Here, we presented participants different melodies composed of the same 4 harmonic pitches during functional magnetic resonance imaging recordings. Additionally, we played the same melodies transposed in different keys and on different instruments. We found that melodies were invariantly represented by their blood oxygen level-dependent activation patterns in primary and secondary auditory cortices across instruments, and also across keys. Our findings extend common hierarchical models of auditory processing by showing that melodies are encoded independent of absolute pitch and based on their relative pitch profile as early as the primary auditory cortex.

  12. Cortico–Amygdala–Striatal Circuits Are Organized as Hierarchical Subsystems through the Primate Amygdala

    PubMed Central

    Cho, Youngsun T.; Ernst, Monique

    2013-01-01

    The prefrontal and insula cortex, amygdala, and striatum are key regions for emotional processing, yet the amygdala's role as an interface between the cortex and striatum is not well understood. In the nonhuman primate (Macaque fascicularis), we analyzed a collection of bidirectional tracer injections in the amygdala to understand how cortical inputs and striatal outputs are organized to form integrated cortico–amygdala–striatal circuits. Overall, diverse prefrontal and insular cortical regions projected to the basal and accessory basal nuclei of the amygdala. In turn, these amygdala regions projected to widespread striatal domains extending well beyond the classic ventral striatum. Analysis of the cases in aggregate revealed a topographic colocalization of cortical inputs and striatal outputs in the amygdala that was additionally distinguished by cortical cytoarchitecture. Specifically, the degree of cortical laminar differentiation of the cortical inputs predicted amygdalostriatal targets, and distinguished three main cortico–amygdala–striatal circuits. These three circuits were categorized as “primitive,” “intermediate,” and “developed,” respectively, to emphasize the relative phylogenetic and ontogenetic features of the cortical inputs. Within the amygdala, these circuits appeared arranged in a pyramidal-like fashion, with the primitive circuit found in all examined subregions, and subsequent circuits hierarchically layered in discrete amygdala subregions. This arrangement suggests a stepwise integration of the functions of these circuits across amygdala subregions, providing a potential mechanism through which internal emotional states are managed with external social and sensory information toward emotionally informed complex behaviors. PMID:23986238

  13. Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala.

    PubMed

    Cho, Youngsun T; Ernst, Monique; Fudge, Julie L

    2013-08-28

    The prefrontal and insula cortex, amygdala, and striatum are key regions for emotional processing, yet the amygdala's role as an interface between the cortex and striatum is not well understood. In the nonhuman primate (Macaque fascicularis), we analyzed a collection of bidirectional tracer injections in the amygdala to understand how cortical inputs and striatal outputs are organized to form integrated cortico-amygdala-striatal circuits. Overall, diverse prefrontal and insular cortical regions projected to the basal and accessory basal nuclei of the amygdala. In turn, these amygdala regions projected to widespread striatal domains extending well beyond the classic ventral striatum. Analysis of the cases in aggregate revealed a topographic colocalization of cortical inputs and striatal outputs in the amygdala that was additionally distinguished by cortical cytoarchitecture. Specifically, the degree of cortical laminar differentiation of the cortical inputs predicted amygdalostriatal targets, and distinguished three main cortico-amygdala-striatal circuits. These three circuits were categorized as "primitive," "intermediate," and "developed," respectively, to emphasize the relative phylogenetic and ontogenetic features of the cortical inputs. Within the amygdala, these circuits appeared arranged in a pyramidal-like fashion, with the primitive circuit found in all examined subregions, and subsequent circuits hierarchically layered in discrete amygdala subregions. This arrangement suggests a stepwise integration of the functions of these circuits across amygdala subregions, providing a potential mechanism through which internal emotional states are managed with external social and sensory information toward emotionally informed complex behaviors.

  14. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  15. Oscillatory alpha modulations in right auditory regions reflect the validity of acoustic cues in an auditory spatial attention task.

    PubMed

    Weisz, Nathan; Müller, Nadia; Jatzev, Sabine; Bertrand, Olivier

    2014-10-01

    Anticipation of targets in the left or right hemifield leads to alpha modulations in posterior brain areas. Recently using magnetoencephalography, we showed increased right auditory alpha activity when attention was cued ipsilaterally. Here, we investigated the issue how cue validity itself influences oscillatory alpha activity. Acoustic cues were presented either to the right or left ear, followed by a compound dichotically presented target plus distractor. The preceding cue was either informative (75% validity) or uninformative (50%) about the location of the upcoming target. Cue validity × side-related alpha modulations were identified in pre- and posttarget periods in a right lateralized network, comprising auditory and nonauditory regions. This replicates and extends our previous finding of the right hemispheric dominance of auditory attentional modulations. Importantly, effective connectivity analysis showed that, in the pretarget period, this effect is accompanied by a pronounced and time-varying connectivity pattern of the right auditory cortex to the right intraparietal sulcus (IPS), with influence of IPS on superior temporal gyrus dominating at earlier intervals of the cue-target period. Our study underlines the assumption that alpha oscillations may play a similar functional role in auditory cortical regions as reported in other sensory modalities and suggests that these effects may be mediated via IPS.

  16. Underground hibernation in a primate.

    PubMed

    Blanco, Marina B; Dausmann, Kathrin H; Ranaivoarisoa, Jean F; Yoder, Anne D

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

  17. Underground hibernation in a primate

    PubMed Central

    Blanco, Marina B.; Dausmann, Kathrin H.; Ranaivoarisoa, Jean F.; Yoder, Anne D.

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation. PMID:23636180

  18. Optogenetics in the nonhuman primate

    PubMed Central

    Han, Xue

    2013-01-01

    The nonhuman primate brain, the model system closest to the human brain, plays a critical role in our understanding of neural computation, cognition, and behavior. The continued quest to crack the neural codes in the monkey brain would be greatly enhanced with new tools and technologies that can rapidly and reversibly control the activities of desired cells at precise times during specific behavioral states. Recent advances in adapting optogenetic technologies to monkeys have enabled precise control of specific cells or brain regions at the millisecond timescale, allowing for the investigation of the causal role of these neural circuits in this model system. Validation of optogenetic technologies in monkeys also represents a critical preclinical step on the translational path of new generation cell-type-specific neural modulation therapies. Here, I discuss the current state of the application of optogenetics in the nonhuman primate model system, highlighting the available genetic, optical and electrical technologies, and their limitations and potentials. PMID:22341328

  19. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  20. Primate Experiments on SLS-1

    NASA Technical Reports Server (NTRS)

    Aochi, J.

    1985-01-01

    Experiments to study how certain body systems are affected by the space environment are described. These experiments are to be conducted on space shuttle flights. How weightlessness affects two body systems of primates are the prime concern. Thermoregulation and fluid and electrolyte homeostasis are the two systems concerned. The thermoregulation project will provide data on how body temperature and circadian rhythms are affected in a weightlessness environment and the homeostasis in fluids and electrolyte levels will address the problem of body fluid shifts.

  1. Smell facilitates auditory contagious yawning in stranger rats.

    PubMed

    Moyaho, Alejandro; Rivas-Zamudio, Xaman; Ugarte, Araceli; Eguibar, José R; Valencia, Jaime

    2015-01-01

    Most vertebrates yawn in situations ranging from relaxation to tension, but only humans and other primate species that show mental state attribution skills have been convincingly shown to display yawn contagion. Whether complex forms of empathy are necessary for yawn contagion to occur is still unclear. As empathy is a phylogenetically continuous trait, simple forms of empathy, such as emotional contagion, might be sufficient for non-primate species to show contagious yawning. In this study, we exposed pairs of male rats, which were selected for high yawning, with each other through a perforated wall and found that olfactory cues stimulated yawning, whereas visual cues inhibited it. Unexpectedly, cage-mate rats failed to show yawn contagion, although they did show correlated emotional reactivity. In contrast, stranger rats showed auditory contagious yawning and greater rates of smell-facilitated auditory contagious yawning, although they did not show correlated emotional reactivity. Strikingly, they did not show contagious yawning to rats from a low-yawning strain. These findings indicate that contagious yawning may be a widespread trait amongst vertebrates and that mechanisms other than empathy may be involved. We suggest that a communicatory function of yawning may be the mechanism responsible for yawn contagion in rats, as contagiousness was strain-specific and increased with olfactory cues, which are involved in mutual recognition.

  2. Pitch perception prior to cortical maturation

    NASA Astrophysics Data System (ADS)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  3. Auditory and visual connectivity gradients in frontoparietal cortex.

    PubMed

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc.

  4. Auditory and visual connectivity gradients in frontoparietal cortex

    PubMed Central

    Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert

    2016-01-01

    Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304

  5. Virtual Auditory Displays

    DTIC Science & Technology

    2000-01-01

    timbre , intensity, distance, room modeling, radio communication Virtual Environments Handbook Chapter 4 Virtual Auditory Displays Russell D... musical note “A” as a pure sinusoid, there will be 440 condensations and rarefactions per second. The distance between two adjacent condensations or...and complexity are pitch, loudness, and timbre respectively. This distinction between physical and perceptual measures of sound properties is an

  6. Modelling auditory attention.

    PubMed

    Kaya, Emine Merve; Elhilali, Mounya

    2017-02-19

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'.

  7. Modelling auditory attention

    PubMed Central

    Kaya, Emine Merve

    2017-01-01

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information—a phenomenon referred to as the ‘cocktail party problem’. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well as ‘top-down’ task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044012

  8. Auditory Fusion in Children.

    ERIC Educational Resources Information Center

    Davis, Sylvia M.; McCroskey, Robert L.

    1980-01-01

    Focuses on auditory fusion (defined in terms of a listerner's ability to distinguish paired acoustic events from single acoustic events) in 3- to 12-year-old children. The subjects listened to 270 pairs of tones controlled for frequency, intensity, and duration. (CM)

  9. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  10. Assessing Anxiety in Nonhuman Primates

    PubMed Central

    Coleman, Kristine; Pierre, Peter J.

    2014-01-01

    Anxiety can be broadly described as a psychological state in which normally innocuous environmental stimuli trigger negative emotional expectations. Human anxiety disorders are multidimensional and may be organic or acquired, situational or pervasive. The broad ranging nature of the anxiety phenotype speaks to the need for models that identify its various components and root causes to develop effective clinical treatments. The cross-species comparative approach to modeling anxiety disorders in animals aims to understand mechanisms that both contribute to and modulate anxiety. Nonhuman primate models provide an important bridge from nonprimate model systems because of the complexity of nonhuman primates’ biobehavioral capacities and their commonalities with human emotion. The broad goal of this review is to provide an overview of various procedures available to study anxiety in the nonhuman primate, with a focus on the behavioral aspects of anxiety. Commonly used methods covered in this review include assessing animals in their home environment or in response to an ethologically relevant threat, associative conditioning and startle response tests, and cognitive bias tests. We also discuss how these procedures can help veterinarians and researchers care for captive nonhuman primates. PMID:25225310

  11. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  12. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    PubMed

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity.

  13. Speech training alters consonant and vowel responses in multiple auditory cortex fields.

    PubMed

    Engineer, Crystal T; Rahebi, Kimiya C; Buell, Elizabeth P; Fink, Melyssa K; Kilgard, Michael P

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination.

  14. Spatial representations of temporal and spectral sound cues in human auditory cortex.

    PubMed

    Herdener, Marcus; Esposito, Fabrizio; Scheffler, Klaus; Schneider, Peter; Logothetis, Nikos K; Uludag, Kamil; Kayser, Christoph

    2013-01-01

    Natural and behaviorally relevant sounds are characterized by temporal modulations of their waveforms, which carry important cues for sound segmentation and communication. Still, there is little consensus as to how this temporal information is represented in auditory cortex. Here, by using functional magnetic resonance imaging (fMRI) optimized for studying the auditory system, we report the existence of a topographically ordered spatial representation of temporal sound modulation rates in human auditory cortex. We found a topographically organized sensitivity within auditory cortex to sounds with varying modulation rates, with enhanced responses to lower modulation rates (2 and 4 Hz) on lateral parts of Heschl's gyrus (HG) and faster modulation rates (16 and 32 Hz) on medial HG. The representation of temporal modulation rates was distinct from the representation of sound frequencies (tonotopy) that was orientated roughly orthogonal. Moreover, the combination of probabilistic anatomical maps with a previously proposed functional delineation of auditory fields revealed that the distinct maps of temporal and spectral sound features both prevail within two presumed primary auditory fields hA1 and hR. Our results reveal a topographically ordered representation of temporal sound cues in human primary auditory cortex that is complementary to maps of spectral cues. They thereby enhance our understanding of the functional parcellation and organization of auditory cortical processing.

  15. Timing predictability enhances regularity encoding in the human subcortical auditory pathway.

    PubMed

    Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles

    2016-11-17

    The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency-following responses (FFR) were recorded to a repeating consonant-vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway.

  16. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    PubMed

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways.

  17. Timing predictability enhances regularity encoding in the human subcortical auditory pathway

    PubMed Central

    Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles

    2016-01-01

    The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency–following responses (FFR) were recorded to a repeating consonant–vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway. PMID:27853313

  18. A MEG Investigation of Single-Word Auditory Comprehension in Aphasia

    ERIC Educational Resources Information Center

    Zipse, Lauryn; Kearns, Kevin; Nicholas, Marjorie; Marantz, Alec

    2011-01-01

    Purpose: To explore whether individuals with aphasia exhibit differences in the M350, an electrophysiological marker of lexical activation, compared with healthy controls. Method: Seven people with aphasia, 9 age-matched controls, and 10 younger controls completed an auditory lexical decision task while cortical activity was recorded with…

  19. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  20. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    ERIC Educational Resources Information Center

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  1. Inner ear evolution in primates through the Cenozoic: implications for the evolution of hearing.

    PubMed

    Coleman, Mark N; Boyer, Doug M

    2012-04-01

    Mammals are unique in being the only group of amniotes that can hear sounds in the upper frequency range (>12 kHz), yet details about the evolutionary development of hearing patterns remain poorly understood. In this study, we used high resolution X-ray computed tomography to investigate several functionally relevant auditory structures of the inner ear in a sample of 21 fossil primate species (60 Ma to recent times) and 25 species of living euarchontans (primates, tree shrews, and flying lemurs). The structures examined include the length of the cochlea, development of bony spiral lamina and area of the oval window (or stapedial footplate when present). Using these measurements we predicted aspects of low-frequency and high-frequency sensitivity and show that hearing patterns in primates likely evolved in several stages through the first half of the Cenozoic. These results provide temporal boundaries for the development of hearing patterns in extant lineages and strongly suggest that the ancestral euarchontan hearing pattern was characterized by good high-frequency hearing but relatively poor low-frequency sensitivity. They also show that haplorhines are unique among primates (extant or extinct) in having relatively longer cochleae and increased low-frequency sensitivity. We combined these results with additional, older paleontological evidence to put these findings in a broader evolutionary context.

  2. Delays in auditory processing identified in preschool children with FASD

    PubMed Central

    Stephen, Julia M.; Kodituwakku, Piyadasa W.; Kodituwakku, Elizabeth L.; Romero, Lucinda; Peters, Amanda M.; Sharadamma, Nirupama Muniswamy; Caprihan, Arvind; Coffman, Brian A.

    2012-01-01

    Background Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool aged children. Since sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Materials and Methods Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control children aged 3-6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multi-dipole spatio-temporal modeling technique (CSST – Ranken et al. 2002) to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. Results There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Discussion Auditory delay revealed by MEG in children with FASD may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. PMID:22458372

  3. Positive selection on NIN, a gene involved in neurogenesis, and primate brain evolution.

    PubMed

    Montgomery, S H; Mundy, N I

    2012-11-01

    A long-held dogma in comparative neurobiology has been that the number of neurons under a given area of cortical surface is constant. As such, the attention of those seeking to understand the genetic basis of brain evolution has focused on genes with functions in the lateral expansion of the developing cerebral cortex. However, new data suggest that cortical cytoarchitecture is not constant across primates, raising the possibility that changes in radial cortical development played a role in primate brain evolution. We present the first analysis of a gene with functions relevant to this dimension of brain evolution. We show that NIN, a gene necessary for maintaining asymmetric, neurogenic divisions of radial glial cells (RGCs), evolved adaptively during anthropoid evolution. We explored how this selection relates to neural phenotypes and find a significant association between selection on NIN and neonatal brain size in catarrhines. Our analyses suggest a relationship with prenatal neurogenesis and identify the human data point as an outlier, possibly explained by postnatal changes in development on the human lineage. A similar pattern is found in platyrrhines, but the highly encephalized genus Cebus departs from the general trend. We further show that the evolution of NIN may be associated with variation in neuron number not explained by increases in surface area, a result consistent with NIN's role in neurogenic divisions of RGCs. Our combined results suggest a role for NIN in the evolution of cortical development.

  4. [Comparative analysis of the neocortex during the ontogenesis of cetaceae and primates].

    PubMed

    Kesarev, V S; Borisenko, O V

    1986-03-01

    Comparative ontogenetic investigation of cytoarchitectonics of the cerebral neocortex has been performed in Cetacea and Primates using paraffin frontal and sagittal cerebral sections stained after Nissl. Cerebral hemispheres of dolphins, whales, monkeys and human being have been studied at various periods of prenatal development and in mature individuals. The comparison has been made at similar stages of cytoarchitectonical differentiation of the cortical plate. At two first stages of the prenatal ontogenesis (formation of the cortical plate and its differentiation into layers) there is not any principle differences between the Cetacea and Primates. Peculiarities of the cerebral cortical plate differentiation in the Cetacea (absence of the internal granular layer IV) is determined at the stage of stratification. Similar agranular character of the cerebral cortex differentiation is maintained during the whole subsequent ontogenesis in the Cetacea (heterogenetic type of the neocortex after Brodman). Absence of the layer IV in the cerebral neocortex determines some other principles in the spatial organization of the cortical-subcortical and in the intracortical connections in the Cetacea brain. This is confirmed by modern data of morphological and electrophysiological investigations. Perhaps, a comparatively more simple initial architectonics of the Cetacea brain limited the level of their functional possibilities, the latter is comparable only with anthropoid apes.

  5. Large-scale genomics unveil polygenic architecture of human cortical surface area.

    PubMed

    Chen, Chi-Hua; Peng, Qian; Schork, Andrew J; Lo, Min-Tzu; Fan, Chun-Chieh; Wang, Yunpeng; Desikan, Rahul S; Bettella, Francesco; Hagler, Donald J; Westlye, Lars T; Kremen, William S; Jernigan, Terry L; Le Hellard, Stephanie; Steen, Vidar M; Espeseth, Thomas; Huentelman, Matt; Håberg, Asta K; Agartz, Ingrid; Djurovic, Srdjan; Andreassen, Ole A; Schork, Nicholas; Dale, Anders M

    2015-07-20

    Little is known about how genetic variation contributes to neuroanatomical variability, and whether particular genomic regions comprising genes or evolutionarily conserved elements are enriched for effects that influence brain morphology. Here, we examine brain imaging and single-nucleotide polymorphisms (SNPs) data from ∼2,700 individuals. We show that a substantial proportion of variation in cortical surface area is explained by additive effects of SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory sensory and insular cortices (h(2)∼0.45). Genome-wide SNPs collectively account for, on average, about half of twin heritability across cortical regions (N=466 twins). We find enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more conserved regions contributed significantly to the heritability of cortical surface area, particularly, for medial and temporal cortical regions. SNPs in less conserved regions contributed more to occipital and dorsolateral prefrontal cortices.

  6. Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus.

    PubMed

    Dear, S P; Fritz, J; Haresign, T; Ferragamo, M; Simmons, J A

    1993-11-01

    1. In Eptesicus the auditory cortex, as defined by electrical activity recorded from microelectrodes in response to tone bursts, FM sweeps, and combinations of FM sweeps, encompasses an average cortical surface area of 5.7 mm2. This area is large with respec