Science.gov

Sample records for primate cortical auditory

  1. Diverse cortical codes for scene segmentation in primate auditory cortex.

    PubMed

    Malone, Brian J; Scott, Brian H; Semple, Malcolm N

    2015-04-01

    The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isolated by presenting otherwise identical pure tones of differing durations. Cortical response patterns were diverse, including selective encoding of onset and offset transients, tonic firing, and sustained suppression. Spike train classification methods revealed that many neurons robustly encoded tone duration despite substantial diversity in the encoding process. Excellent discrimination performance was achieved by neurons whose responses were primarily phasic at tone offset and by those that responded robustly while the tone persisted. Although diverse cortical response patterns converged on effective duration discrimination, this diversity significantly constrained the utility of decoding models referenced to a spiking pattern averaged across all responses or averaged within the same response category. Using maximum likelihood-based decoding models, we demonstrated that the spike train recorded in a single trial could support direct estimation of stimulus onset and offset. Comparisons between different decoding models established the substantial contribution of bursts of activity at sound onset and offset to demarcating the temporal boundaries of gated tones. Our results indicate that relatively few neurons suffice to provide temporally precise estimates of such auditory "edges," particularly for models that assume and exploit the heterogeneity of neural responses in awake cortex.

  2. Auditory Cortical Responses Elicited in Awake Primates by Random Spectrum Stimuli

    PubMed Central

    Barbour, Dennis L.; Wang, Xiaoqin

    2007-01-01

    Contrary to findings in subcortical auditory nuclei, auditory cortex neurons have traditionally been described as spiking only at the onsets of simple sounds such as pure tones or bandpass noise and to acoustic transients in complex sounds. Furthermore, primary auditory cortex (A1) has traditionally been described as mostly tone responsive and the lateral belt area of primates as mostly noise responsive. The present study was designed to unify the study of these two cortical areas using random spectrum stimuli (RSS), a new class of parametric, wideband, stationary acoustic stimuli. We found that 60% of all neurons encountered in A1 and the lateral belt of awake marmoset monkeys (Callithrix jacchus) showed significant changes in firing rates in response to RSS. Of these, 89% showed sustained spiking in response to one or more individual RSS, a substantially greater percentage than would be expected from traditional studies, indicating that RSS are well suited for studying these two cortical areas. When firing rates elicited by RSS were used to construct linear estimates of frequency tuning for these sustained responders, the shape of the estimate function remained relatively constant throughout the stimulus interval and across the stimulus properties of mean sound level, spectral density, and spectral contrast. This finding indicates that frequency tuning computed from RSS reflects a robust estimate of the actual tuning of a neuron. Use of this estimate to predict rate responses to other RSS, however, yielded poor results, implying that auditory cortex neurons integrate information across frequency nonlinearly. No systematic difference in prediction quality between A1 and the lateral belt could be detected. PMID:12904480

  3. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  4. Auditory cortical tuning to band-pass noise in primate A1 and CM: a comparison to pure tones

    PubMed Central

    Kajikawa, Yoshinao; Camalier, Corrie R.; de la Mothe, Lisa A.; D’Angelo, William R.; Sterbing-D’Angelo, Susanne J.; Hackett, Troy A.

    2011-01-01

    We examined multiunit responses to tones and to 1/3 and 2/3 octave band-pass noise (BPN) in the marmoset primary auditory cortex (A1) and the caudomedial belt (CM). In both areas, BPN was more effective than tones, evoking multiunit responses at lower intensity and across a wider frequency range. Typically, the best responses to BPN remained at the characteristic frequency. Additionally, in both areas responses to BPN tended to be of greater magnitude and shorter latency than responses to tones. These effects are consistent with the integration of more excitatory inputs driven by BPN than by tones. While it is generally thought that single units in A1 prefer narrow band sounds such as tones, we found that best responses for multi units in both A1 and CM were obtained with noises of narrow spectral bandwidths. PMID:21540062

  5. A unified framework for the organization of the primate auditory cortex

    PubMed Central

    Baumann, Simon; Petkov, Christopher I.; Griffiths, Timothy D.

    2013-01-01

    In non-human primates a scheme for the organization of the auditory cortex is frequently used to localize auditory processes. The scheme allows a common basis for comparison of functional organization across non-human primate species. However, although a body of functional and structural data in non-human primates supports an accepted scheme of nearly a dozen neighboring functional areas, can this scheme be directly applied to humans? Attempts to expand the scheme of auditory cortical fields in humans have been severely hampered by a recent controversy about the organization of tonotopic maps in humans, centered on two different models with radically different organization. We point out observations that reconcile the previous models and suggest a distinct model in which the human cortical organization is much more like that of other primates. This unified framework allows a more robust and detailed comparison of auditory cortex organization across primate species including humans. PMID:23641203

  6. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  7. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  8. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  9. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  10. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  11. Auditory short-term memory in the primate auditory cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  12. Theory of Auditory Thresholds in Primates

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  13. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  14. On cortical coding of vocal communication sounds in primates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    2000-10-01

    Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory-motor interactions between vocal production and perception systems.

  15. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  16. The outer subventricular zone and primate-specific cortical complexification.

    PubMed

    Dehay, Colette; Kennedy, Henry; Kosik, Kenneth S

    2015-02-18

    Evolutionary expansion and complexification of the primate cerebral cortex are largely linked to the emergence of the outer subventricular zone (OSVZ), a uniquely structured germinal zone that generates the expanded primate supragranular layers. The primate OSVZ departs from rodent germinal zones in that it includes a higher diversity of precursor types, inter-related in bidirectional non-hierarchical lineages. In addition, primate-specific regulatory mechanisms are operating in primate cortical precursors via the occurrence of novel miRNAs. Here, we propose that the origin and evolutionary importance of the OSVZ is related to genetic changes in multiple regulatory loops and that cell-cycle regulation is a favored target for evolutionary adaptation of the cortex.

  17. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    PubMed

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.

  18. Learning strategy determines auditory cortical plasticity

    PubMed Central

    Berlau, Kasia M.; Weinberger, Norman M.

    2013-01-01

    Learning modifies the primary auditory cortex (A1) to emphasize the processing and representation of behaviorally relevant sounds. However, the factors that determine cortical plasticity are poorly understood. While the type and amount of learning are assumed to be important, the actual strategies used to solve learning problems might be critical. To investigate this possibility, we trained two groups of adult male Sprague–Dawley rats to bar-press (BP) for water contingent on the presence of a 5.0 kHz tone using two different strategies: BP during tone presence or BP from tone-onset until receiving an error signal after tone cessation. Both groups achieved the same high levels of correct performance and both groups revealed equivalent learning of absolute frequency during training. Post-training terminal “mapping” of A1 showed no change in representational area of the tone signal frequency but revealed other substantial cue-specific plasticity that developed only in the tone-onset-to-error strategy group. Threshold was decreased ~10 dB and tuning bandwidth was narrowed by ~0.7 octaves. As sound onsets have greater perceptual weighting and cortical discharge efficacy than continual sound presence, the induction of specific learning-induced cortical plasticity may depend on the use of learning strategies that best exploit cortical proclivities. The present results also suggest a general principle for the induction and storage of plasticity in learning, viz., that the representation of specific acquired information may be selected by neurons according to a match between behaviorally selected stimulus features and circuit/network response properties. PMID:17707663

  19. Cooperative Nonlinearities in Auditory Cortical Neurons

    PubMed Central

    Atencio, Craig A.; Sharpee, Tatyana O.; Schreiner, Christoph E.

    2008-01-01

    SUMMARY Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron’s receptive field, it remains unclear which features of the acoustic environment are specifically represented by neurons in the primary auditory cortex (AI). We characterized cat AI spectrotemporal receptive fields (STRFs) by finding both the spike-triggered average (STA) and stimulus dimensions that maximized the mutual information between response and stimulus. We derived a nonlinearity relating spiking to stimulus projection onto two maximally informative dimensions (MIDs). The STA was highly correlated with the first MID. Generally, the nonlinearity for the first MID was asymmetric and often monotonic in shape, while the second MID nonlinearity was symmetric and non-monotonic. The joint nonlinearity for both MIDs revealed that most first and second MIDs were synergistic, and thus should be considered conjointly. The difference between the nonlinearities suggests different possible roles for the MIDs in auditory processing. PMID:18579084

  20. Cooperative nonlinearities in auditory cortical neurons.

    PubMed

    Atencio, Craig A; Sharpee, Tatyana O; Schreiner, Christoph E

    2008-06-26

    Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron's receptive field, it remains unclear which features of the acoustic environment are specifically represented by neurons in the primary auditory cortex (AI). We characterized cat AI spectrotemporal receptive fields (STRFs) by finding both the spike-triggered average (STA) and stimulus dimensions that maximized the mutual information between response and stimulus. We derived a nonlinearity relating spiking to stimulus projection onto two maximally informative dimensions (MIDs). The STA was highly correlated with the first MID. Generally, the nonlinearity for the first MID was asymmetric and often monotonic in shape, while the second MID nonlinearity was symmetric and nonmonotonic. The joint nonlinearity for both MIDs revealed that most first and second MIDs were synergistic and thus should be considered conjointly. The difference between the nonlinearities suggests different possible roles for the MIDs in auditory processing.

  1. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  2. Comodulation Enhances Signal Detection via Priming of Auditory Cortical Circuits

    PubMed Central

    Sollini, Joseph

    2016-01-01

    Acoustic environments are composed of complex overlapping sounds that the auditory system is required to segregate into discrete perceptual objects. The functions of distinct auditory processing stations in this challenging task are poorly understood. Here we show a direct role for mouse auditory cortex in detection and segregation of acoustic information. We measured the sensitivity of auditory cortical neurons to brief tones embedded in masking noise. By altering spectrotemporal characteristics of the masker, we reveal that sensitivity to pure tone stimuli is strongly enhanced in coherently modulated broadband noise, corresponding to the psychoacoustic phenomenon comodulation masking release. Improvements in detection were largest following priming periods of noise alone, indicating that cortical segregation is enhanced over time. Transient opsin-mediated silencing of auditory cortex during the priming period almost completely abolished these improvements, suggesting that cortical processing may play a direct and significant role in detection of quiet sounds in noisy environments. SIGNIFICANCE STATEMENT Auditory systems are adept at detecting and segregating competing sound sources, but there is little direct evidence of how this process occurs in the mammalian auditory pathway. We demonstrate that coherent broadband noise enhances signal representation in auditory cortex, and that prolonged exposure to noise is necessary to produce this enhancement. Using optogenetic perturbation to selectively silence auditory cortex during early noise processing, we show that cortical processing plays a crucial role in the segregation of competing sounds. PMID:27927950

  3. Auditory sensory gating deficit and cortical thickness in schizophrenia.

    PubMed

    Thoma, R J; Hanlon, F M; Sanchez, N; Weisend, M P; Huang, M; Jones, A; Miller, G A; Canive, J M

    2004-11-30

    Both an EEG P50 sensory gating deficit and abnormalities of the temporal lobe structure are considered characteristic of schizophrenia. The standard P50 sensory gating measure does not foster differential assessment of left- and right-hemisphere contributions, but its analogous MEG M50 component may be used to measure gating of distinct auditory source dipoles localizing to left- and right-hemisphere primary auditory cortex. The present study sought to determine how sensory gating ratio may relate to cortical thickness at the site of the auditory dipole localization. A standard auditory paired-click paradigm was used during MEG for patients (n=22) and normal controls (n=11). Sensory gating ratios were determined by measuring the strength of the 50 ms response to the second click divided by that of the first click (S2/S1). Cortical thickness was assessed by two reliable raters using 3D sMRI. Results showed that: (1) patients had a P50 and left M50 sensory gating deficit relative to controls; (2) cortex in both hemispheres was thicker in the control group; (3) in schizophrenia, poorer left-hemisphere M50 sensory gating correlated with thinner left-hemisphere auditory cortical thickness; and (4) poorer right-hemisphere M50 auditory sensory gating ratio correlated with thinner right-hemisphere auditory cortical thickness in patients. The MEG-assessed hemisphere-specific auditory sensory gating ratio may be driven by this structural abnormality in auditory cortex.

  4. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  5. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  6. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  7. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  8. Visual change detection recruits auditory cortices in early deafness.

    PubMed

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  9. Auditory cortex of bats and primates: managing species-specific calls for social communication.

    PubMed

    Kanwal, Jagmeet S; Rauschecker, Josef P

    2007-05-01

    Individuals of many animal species communicate with each other using sounds or "calls" that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use "combination-sensitivity" (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into "what" and "where" streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural "management" of species-specific calls in bats and primates can be tested by studying

  10. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  11. Specialization of Binaural Responses in Ventral Auditory Cortices

    PubMed Central

    Higgins, Nathan C.; Storace, Douglas A.; Escabí, Monty A.

    2010-01-01

    Accurate orientation to sound under challenging conditions requires auditory cortex, but it is unclear how spatial attributes of the auditory scene are represented at this level. Current organization schemes follow a functional division whereby dorsal and ventral auditory cortices specialize to encode spatial and object features of sound source, respectively. However, few studies have examined spatial cue sensitivities in ventral cortices to support or reject such schemes. Here Fourier optical imaging was used to quantify best frequency responses and corresponding gradient organization in primary (A1), anterior, posterior, ventral (VAF), and suprarhinal (SRAF) auditory fields of the rat. Spike rate sensitivities to binaural interaural level difference (ILD) and average binaural level cues were probed in A1 and two ventral cortices, VAF and SRAF. Continuous distributions of best ILDs and ILD tuning metrics were observed in all cortices, suggesting this horizontal position cue is well covered. VAF and caudal SRAF in the right cerebral hemisphere responded maximally to midline horizontal position cues, whereas A1 and rostral SRAF responded maximally to ILD cues favoring more eccentric positions in the contralateral sound hemifield. SRAF had the highest incidence of binaural facilitation for ILD cues corresponding to midline positions, supporting current theories that auditory cortices have specialized and hierarchical functional organization. PMID:20980610

  12. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  13. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    PubMed Central

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  14. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  15. Cortical Representations of Speech in a Multitalker Auditory Scene.

    PubMed

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex.SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  16. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  17. Visual-induced expectations modulate auditory cortical responses

    PubMed Central

    van Wassenhove, Virginie; Grzeczkowski, Lukasz

    2015-01-01

    Active sensing has important consequences on multisensory processing (Schroeder et al., 2010). Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient color changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the “where” and the “when” of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG) while maintaining the position of their eyes on the left, right, or center of the screen. Participants counted color changes of the fixation cross while neglecting sounds which could be presented to the left, right, or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants' attention directed to visual inputs. Second, color changes elicited robust modulations of auditory cortex responses (“when” prediction) seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of “when” a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that “where” predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds. PMID:25705174

  18. Cortical auditory evoked potential (P1): a potential objective indicator for auditory rehabilitation outcome.

    PubMed

    Thabet, Mirahan T; Said, Nithreen M

    2012-12-01

    Cortical auditory evoked potentials are a non-invasive tool that can provide objective information on maturation of the auditory pathways. This work was designed to study the role of cortical auditory evoked potential (P1) in assessment of the benefits of amplification and aural rehabilitation in hearing impaired children. The study consisted of 31 children classified into 2 groups. Study group included 18 hearing impaired children ranging in age 4-14 years old and classified into two subgroups according to adequacy of aural rehabilitation. A control group consisted of 13 normal hearing children ranging in age from 5 to 13 years. All children were subjected to history taking, basic audiological evaluation, intelligence quotient and language assessment. Cortical auditory evoked potential (P1) was measured using synthesized speech syllable /da/ as a recording stimulus that was presented binaurally via a loudspeaker. P1 was recorded in all children with significantly prolonged latencies in hearing impaired children with inadequate rehabilitation. P1 latency was correlated to hearing loss duration in hearing impaired children with inadequate aural rehabilitation. Auditory experience was correlated with P1 latency in hearing impaired children with adequate aural rehabilitation. Cortical auditory evoked potential (P1) might provide a clinical tool to monitor aural rehabilitation outcome and to guide intervention choices. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Cortical gamma-oscillations modulated by auditory-motor tasks

    PubMed Central

    Nagasawa, Tetsuro; Rothermel, Robert; Juhász, Csaba; Fukuda, Miho; Nishida, Masaaki; Akiyama, Tomoyuki; Sood, Sandeep; Asano, Eishi

    2010-01-01

    SUMMARY Human activities often involve hand-motor responses following external auditory-verbal commands. It has been believed that hand movements are predominantly driven by the contralateral primary sensorimotor cortex, whereas auditory-verbal information is processed in both superior temporal gyri. It remains unknown whether cortical activation in the superior temporal gyrus during an auditory-motor task is affected by laterality of hand-motor responses. Here, event-related gamma-oscillations were intracranially recorded as quantitative measures of cortical activation; we determined how cortical structures were activated by auditory-cued movement using each hand in 15 patients with focal epilepsy. Auditory-verbal stimuli elicited augmentation of gamma-oscillations in a posterior portion of the superior temporal gyrus, whereas hand-motor responses elicited gamma-augmentation in the pre- and post-central gyri. The magnitudes of such gamma-augmentation in the superior temporal, pre-central and post-central gyri were significantly larger when the hand contralateral to the recorded hemisphere was required to be used for motor responses, compared to when the ipsilateral hand was. The superior temporal gyrus in each hemisphere might play a greater pivotal role when the contralateral hand needs to be used for motor responses, compared to when the ipsilateral hand does. PMID:20143383

  20. Lifespan Differences in Cortical Dynamics of Auditory Perception

    ERIC Educational Resources Information Center

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  1. Lifespan Differences in Cortical Dynamics of Auditory Perception

    ERIC Educational Resources Information Center

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  2. Temporal prediction errors in visual and auditory cortices.

    PubMed

    Lee, Hweeling; Noppeney, Uta

    2014-04-14

    To form a coherent percept of the environment, the brain needs to bind sensory signals emanating from a common source, but to segregate those from different sources [1]. Temporal correlations and synchrony act as prominent cues for multisensory integration [2-4], but the neural mechanisms by which such cues are identified remain unclear. Predictive coding suggests that the brain iteratively optimizes an internal model of its environment by minimizing the errors between its predictions and the sensory inputs [5,6]. This model enables the brain to predict the temporal evolution of natural audiovisual inputs and their statistical (for example, temporal) relationship. A prediction of this theory is that asynchronous audiovisual signals violating the model's predictions induce an error signal that depends on the directionality of the audiovisual asynchrony. As the visual system generates the dominant temporal predictions for visual leading asynchrony, the delayed auditory inputs are expected to generate a prediction error signal in the auditory system (and vice versa for auditory leading asynchrony). Using functional magnetic resonance imaging (fMRI), we measured participants' brain responses to synchronous, visual leading and auditory leading movies of speech, sinewave speech or music. In line with predictive coding, auditory leading asynchrony elicited a prediction error in visual cortices and visual leading asynchrony in auditory cortices. Our results reveal predictive coding as a generic mechanism to temporally bind signals from multiple senses into a coherent percept. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neuromagnetic evidence of broader auditory cortical tuning in schizophrenia

    PubMed Central

    Rojas, Donald C.; Slason, Erin; Teale, Peter D.; Reite, Martin L.

    2007-01-01

    Deficits in basic auditory perception have been described in schizophrenia. Previous electrophysiological imaging research has documented a structure-function disassociation in the auditory system and altered tonotopic mapping in schizophrenia. The present study examined auditory cortical tuning in patients with schizophrenia. Eighteen patients with schizophrenia and 15 comparison subjects were recorded in a magnetoencephalographic (MEG) experiment of auditory tuning. Auditory cortical tuning at 1 kHz was examined by delivering 1 kHz pure tones in conjunction with pure tones at 5 frequencies surrounding and including 1 kHz. Source reconstruction data were examined for evidence of frequency specificity for the M100 component. There was a significant broadening of tuning in the schizophrenia group evident for the source amplitude of the M100. The frequently reported reduction in anterior-posterior source asymmetry for individuals with schizophrenia was replicated in this experiment. No relationships between symptom severity ratings and MEG measures were observed. This finding suggests that the frequency specificity of the M100 auditory evoked field is disturbed in schizophrenia, and may help explain the relatively poor behavioral performance of schizophrenia patients on simple frequency discrimination tasks. PMID:17851045

  4. Dynamics of auditory cortical activity during behavioural engagement and auditory perception

    PubMed Central

    Carcea, Ioana; Insanally, Michele N.; Froemke, Robert C.

    2017-01-01

    Behavioural engagement can enhance sensory perception. However, the neuronal mechanisms by which behavioural states affect stimulus perception remain poorly understood. Here we record from single units in auditory cortex of rats performing a self-initiated go/no-go auditory task. Self-initiation transforms cortical tuning curves and bidirectionally modulates stimulus-evoked activity patterns and improves auditory detection and recognition. Trial self-initiation decreases the rate of spontaneous activity in the majority of recorded cells. Optogenetic disruption of cortical activity before and during tone presentation shows that these changes in evoked and spontaneous activity are important for sound perception. Thus, behavioural engagement can prepare cortical circuits for sensory processing by dynamically changing sound representation and by controlling the pattern of spontaneous activity. PMID:28176787

  5. Dynamics of auditory cortical activity during behavioural engagement and auditory perception.

    PubMed

    Carcea, Ioana; Insanally, Michele N; Froemke, Robert C

    2017-02-08

    Behavioural engagement can enhance sensory perception. However, the neuronal mechanisms by which behavioural states affect stimulus perception remain poorly understood. Here we record from single units in auditory cortex of rats performing a self-initiated go/no-go auditory task. Self-initiation transforms cortical tuning curves and bidirectionally modulates stimulus-evoked activity patterns and improves auditory detection and recognition. Trial self-initiation decreases the rate of spontaneous activity in the majority of recorded cells. Optogenetic disruption of cortical activity before and during tone presentation shows that these changes in evoked and spontaneous activity are important for sound perception. Thus, behavioural engagement can prepare cortical circuits for sensory processing by dynamically changing sound representation and by controlling the pattern of spontaneous activity.

  6. Spatial Stream Segregation by Auditory Cortical Neurons

    PubMed Central

    Bremen, Peter

    2013-01-01

    In a complex auditory scene, a “cocktail party” for example, listeners can disentangle multiple competing sequences of sounds. A recent psychophysical study in our laboratory demonstrated a robust spatial component of stream segregation showing ∼8° acuity. Here, we recorded single- and multiple-neuron responses from the primary auditory cortex of anesthetized cats while presenting interleaved sound sequences that human listeners would experience as segregated streams. Sequences of broadband sounds alternated between pairs of locations. Neurons synchronized preferentially to sounds from one or the other location, thereby segregating competing sound sequences. Neurons favoring one source location or the other tended to aggregate within the cortex, suggestive of modular organization. The spatial acuity of stream segregation was as narrow as ∼10°, markedly sharper than the broad spatial tuning for single sources that is well known in the literature. Spatial sensitivity was sharpest among neurons having high characteristic frequencies. Neural stream segregation was predicted well by a parameter-free model that incorporated single-source spatial sensitivity and a measured forward-suppression term. We found that the forward suppression was not due to post discharge adaptation in the cortex and, therefore, must have arisen in the subcortical pathway or at the level of thalamocortical synapses. A linear-classifier analysis of single-neuron responses to rhythmic stimuli like those used in our psychophysical study yielded thresholds overlapping those of human listeners. Overall, the results indicate that the ascending auditory system does the work of segregating auditory streams, bringing them to discrete modules in the cortex for selection by top-down processes. PMID:23825404

  7. The influence of natural scene dynamics on auditory cortical activity.

    PubMed

    Chandrasekaran, Chandramouli; Turesson, Hjalmar K; Brown, Charles H; Ghazanfar, Asif A

    2010-10-20

    The efficient cortical encoding of natural scenes is essential for guiding adaptive behavior. Because natural scenes and network activity in cortical circuits share similar temporal scales, it is necessary to understand how the temporal structure of natural scenes influences network dynamics in cortical circuits and spiking output. We examined the relationship between the structure of natural acoustic scenes and its impact on network activity [as indexed by local field potentials (LFPs)] and spiking responses in macaque primary auditory cortex. Natural auditory scenes led to a change in the power of the LFP in the 2-9 and 16-30 Hz frequency ranges relative to the ongoing activity. In contrast, ongoing rhythmic activity in the 9-16 Hz range was essentially unaffected by the natural scene. Phase coherence analysis showed that scene-related changes in LFP power were at least partially attributable to the locking of the LFP and spiking activity to the temporal structure in the scene, with locking extending up to 25 Hz for some scenes and cortical sites. Consistent with distributed place and temporal coding schemes, a key predictor of phase locking and power changes was the overlap between the spectral selectivity of a cortical site and the spectral structure of the scene. Finally, during the processing of natural acoustic scenes, spikes were locked to LFP phase at frequencies up to 30 Hz. These results are consistent with an idea that the cortical representation of natural scenes emerges from an interaction between network activity and stimulus dynamics.

  8. Cortical functional connectivity under different auditory attentional efforts.

    PubMed

    Hong, Xiangfei; Tong, Shanbao

    2012-01-01

    Auditory attentional effort (AAE) could be tuned to different levels in a top-down manner, while its neural correlates are still poorly understood. In this paper, we investigate the cortical connectivity under different levels of AAE. Multichannel EEG signals were recorded from nine subjects (male/female=6=3) in an auditory discrimination task under low or high AAE. Behavioral results showed that subjects paid more attention under high AAE and detected the probe stimuli better than low AAE. Partial directed coherence (PDC) was used to study the cortical functional connectivity within the first 300 ms post-stimulus period which includes the N100 and P200 components in the event-related potential (ERP). Majority of the cortical connections were strengthened with the increase of AAE. The right hemispheric dominance of connectivity in maintaining auditory attention was found under low AAE, which disappeared when the AAE was increased, indicating that the right hemispheric dominance previously reported might be due to a relatively lower AAE. Besides, most cortical connections under high AAE were found to be from the parietal cortex to the prefrontal cortex, which suggested the initiative role of parietal cortex in maintaining a high AAE.

  9. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    PubMed

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  10. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains

    PubMed Central

    Ventura-Antunes, Lissa; Mota, Bruno; Herculano-Houzel, Suzana

    2013-01-01

    Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution. PMID:23576961

  11. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains.

    PubMed

    Ventura-Antunes, Lissa; Mota, Bruno; Herculano-Houzel, Suzana

    2013-01-01

    Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

  12. Level dependence of spatial processing in the primate auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2012-01-01

    Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ∼20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from “far” locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex. PMID:22592309

  13. Spectrotemporal Dynamics of Auditory Cortical Synaptic Receptive Field Plasticity

    PubMed Central

    Froemke, Robert C.; Martins, Ana Raquel O.

    2011-01-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. PMID:21426927

  14. Automatic cortical representation of auditory pitch changes in Rett syndrome.

    PubMed

    Foxe, John J; Burke, Kelly M; Andrade, Gizely N; Djukic, Aleksandra; Frey, Hans-Peter; Molholm, Sophie

    2016-01-01

    Over the typical course of Rett syndrome, initial language and communication abilities deteriorate dramatically between the ages of 1 and 4 years, and a majority of these children go on to lose all oral communication abilities. It becomes extremely difficult for clinicians and caretakers to accurately assess the level of preserved auditory functioning in these children, an issue of obvious clinical import. Non-invasive electrophysiological techniques allow for the interrogation of auditory cortical processing without the need for overt behavioral responses. In particular, the mismatch negativity (MMN) component of the auditory evoked potential (AEP) provides an excellent and robust dependent measure of change detection and auditory sensory memory. Here, we asked whether females with Rett syndrome would produce the MMN to occasional changes in pitch in a regularly occurring stream of auditory tones. Fourteen girls with genetically confirmed Rett syndrome and 22 age-matched neurotypical controls participated (ages 3.9-21.1 years). High-density electrophysiological recordings from 64 scalp electrodes were made while participants passively listened to a regularly occurring stream of 503-Hz auditory tone pips that was occasionally (15 % of presentations) interrupted by a higher-pitched deviant tone of 996 Hz. The MMN was derived by subtracting the AEP to these deviants from the AEP produced to the standard. Despite clearly anomalous morphology and latency of the AEP to simple pure-tone inputs in Rett syndrome, the MMN response was evident in both neurotypicals and Rett patients. However, we found that the pitch-evoked MMN was both delayed and protracted in duration in Rett, pointing to slowing of auditory responsiveness. The presence of the MMN in Rett patients suggests preserved abilities to process pitch changes in auditory sensory memory. This work represents a beginning step in an effort to comprehensively map the extent of auditory cortical functioning in Rett

  15. Hierarchical computation in the canonical auditory cortical circuit

    PubMed Central

    Atencio, Craig A.; Sharpee, Tatyana O.; Schreiner, Christoph E.

    2009-01-01

    Sensory cortical anatomy has identified a canonical microcircuit underlying computations between and within layers. This feed-forward circuit processes information serially from granular to supragranular and to infragranular layers. How this substrate correlates with an auditory cortical processing hierarchy is unclear. We recorded simultaneously from all layers in cat primary auditory cortex (AI) and estimated spectrotemporal receptive fields (STRFs) and associated nonlinearities. Spike-triggered averaged STRFs revealed that temporal precision, spectrotemporal separability, and feature selectivity varied with layer according to a hierarchical processing model. STRFs from maximally informative dimension (MID) analysis confirmed hierarchical processing. Of two cooperative MIDs identified for each neuron, the first comprised the majority of stimulus information in granular layers. Second MID contributions and nonlinear cooperativity increased in supragranular and infragranular layers. The AI microcircuit provides a valid template for three independent hierarchical computation principles. Increases in processing complexity, STRF cooperativity, and nonlinearity correlate with the synaptic distance from granular layers. PMID:19918079

  16. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions

    PubMed Central

    de la Mothe, Lisa A.; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A.

    2012-01-01

    The current working model of primate auditory cortex is constructed from a number of studies of both New and Old World monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a,b). In the current study the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates. PMID:22461313

  17. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes.

    PubMed

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  18. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    PubMed Central

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  19. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  20. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  1. The cortical language circuit: from auditory perception to sentence comprehension.

    PubMed

    Friederici, Angela D

    2012-05-01

    Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit.

  2. The Electrically-Evoked Cortical Auditory Event-Related Potential in Children with Auditory Brainstem Implants

    PubMed Central

    He, Shuman; Holly, F.B. Teagle; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A.

    2014-01-01

    Objective This study explored the feasibility of measuring electrically-evoked cortical auditory event-related potentials (eERPs) in children with auditory brainstem implants (ABIs). Design Five children with unilateral ABIs ranging in age from2.8 to 10.2yrs (mean: 5.2yrs) participated in this study. The stimulus was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar stimulation mode. Electrophysiological recordings of the onset eERP were conducted in all subjects. Results The onset eERP was recorded in four subjects who demonstrated auditory perception. These eERP responses showed variations in waveform morphology across subjects and stimulating electrode locations. No eERPs were observed in one subject who received no auditory sensation from ABI stimulation. Conclusions eERPs can be recorded in children with ABIs who develop auditory perception. The morphology of the eERP can vary across subjects and also across stimulating electrode locations within subjects. PMID:25426662

  3. Frequency Changes in a Continuous Tone: Auditory Cortical Potentials

    PubMed Central

    Dimitrijevic, Andrew; Michalewski, Henry J.; Zeng, Fan-Gang; Pratt, Hillel; Starr, Arnold

    2009-01-01

    Objective We examined auditory cortical potentials in normal hearing subjects to spectral changes in continuous low and high frequency pure tones. Methods Cortical potentials were recorded to increments of frequency from continuous 250 Hz or 4000 Hz tones. The magnitude of change was random and varied from 0% to 50% above the base frequency. Results Potentials consisted of N100, P200 and a slow negative wave (SN). N100 amplitude, latency and dipole magnitude with frequency increments were significantly greater for low compared to high frequencies. Dipole amplitudes were greater in the right than left hemisphere for both base frequencies. The SN amplitude to frequency changes between 4 to 50% was not significantly related to the magnitude of spectral change. Conclusions Modulation of N100 amplitude and latency elicited by spectral change is more pronounced with low compared to high frequencies. Significance These data provide electrophysiological evidence that central processing of spectral changes in the cortex differs for low and high frequencies. Some of these differences may be related to both temporal- and spectral-based coding at the auditory periphery. Central representation of frequency change may be related to the different temporal windows of integration across frequencies. PMID:18635394

  4. Longitudinal maturation of auditory cortical function during adolescence.

    PubMed

    Fitzroy, Ahren B; Krizman, Jennifer; Tierney, Adam; Agouridou, Manto; Kraus, Nina

    2015-01-01

    Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation.

  5. Cortical alpha oscillations as a tool for auditory selective inhibition

    PubMed Central

    Strauß, Antje; Wöstmann, Malte; Obleser, Jonas

    2014-01-01

    Listening to speech is often demanding because of signal degradations and the presence of distracting sounds (i.e., “noise”). The question how the brain achieves the task of extracting only relevant information from the mixture of sounds reaching the ear (i.e., “cocktail party problem”) is still open. In analogy to recent findings in vision, we propose cortical alpha (~10 Hz) oscillations measurable using M/EEG as a pivotal mechanism to selectively inhibit the processing of noise to improve auditory selective attention to task-relevant signals. We review initial evidence of enhanced alpha activity in selective listening tasks, suggesting a significant role of alpha-modulated noise suppression in speech. We discuss the importance of dissociating between noise interference in the auditory periphery (i.e., energetic masking) and noise interference with more central cognitive aspects of speech processing (i.e., informational masking). Finally, we point out the adverse effects of age-related hearing loss and/or cognitive decline on auditory selective inhibition. With this perspective article, we set the stage for future studies on the inhibitory role of alpha oscillations for speech processing in challenging listening situations. PMID:24904385

  6. Longitudinal maturation of auditory cortical function during adolescence

    PubMed Central

    Fitzroy, Ahren B.; Krizman, Jennifer; Tierney, Adam; Agouridou, Manto; Kraus, Nina

    2015-01-01

    Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation. PMID:26539092

  7. Auditory cortico-cortical connections in the owl monkey.

    PubMed

    Fitzpatrick, K A; Imig, T J

    1980-08-01

    Two tonotopically organized cortical fields, the primary (A1) and rostral (R) fields, comprise a core of auditory cortex in the owl monkey. Injections of tritiated proline were made into each of these fields to determine their projections to the auditory fields in the ipsilateral and contralateral hemispheres using autoradiographic methods. Neurons in R project to the rostromedial (RM) and primary fields in both hemispheres, and to the posterolateral (PL) and anterolateral (AL) fields in the ipsilateral hemisphere. In addition, the rostral fields in the two hemispheres are connected. Neurons in the primary field project to RM and R in both hemispheres and to AL, Pl, and the caudomedial (CM) field in the ipsilateral hemisphere. The primary fields in the two hemispheres are connected. Single injections into A1 and R often result in labeling of two or more columns of tissue in the ipsilateral and contralateral target fields. Cortico-cortical axon terminations are concentrated in layer IV of fields AL and RM and in upper layer III and layer IV of R and CM. In A1, axon terminals of neurons whose cell bodies lie in A1 in the opposite hemisphere are concentrated in upper layer III and layer IV; axon terminals of neurons located in field R of the same hemispheres are concentrated in layers I and II. Layer IV of Pl contains the greatest concentration of cortico-cortical axon terminals; the supragranular layers contain a somewhat lower concentration. Neurons in R project contralaterally in the anterior commissure while A1 neurons send their axons contralaterally in the corpus callosum.

  8. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  9. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  10. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions.

    PubMed

    de la Mothe, Lisa A; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A

    2012-05-01

    The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.

  11. Modeling the representation of speech sounds in auditory cortical areas

    NASA Astrophysics Data System (ADS)

    Guenther, Frank H.; Tourville, Jason A.; Bohland, Jason W.

    2003-04-01

    Many studies have shown that sounds from near the center of a sound category (such as a phoneme from one's native language) are more difficult to discriminate from each other than sounds from near a category boundary. However, the neural processes underlying this phenomenon are not yet clearly understood. In this talk we describe neural models that have been developed to address experimental data from psychophysical and functional brain imaging experiments investigating sound representations in the cortex. Experiments investigating the effects of categorization and discrimination training with nonspeech sounds indicate that different training tasks have different effects on sound discriminability: discrimination training increases the discriminability of the training sounds, whereas learning a new sound category decreases the discriminability of the training sounds within the category. These results can be accounted for by a neural model in which categorization training causes a decrease in the size of the cortical representation of central sounds in the category, while discrimination training leads to an increase in the cortical representation of training sounds. This model is supported by brain imaging results for speech and nonspeech sounds. Experimental results further suggest preferential utilization of different auditory cortical regions when subjects perform identification versus discrimination tasks.

  12. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  13. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the

  14. Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography.

    PubMed

    Schneider, U; Schleussner, E; Haueisen, J; Nowak, H; Seewald, H J

    2001-01-01

    Magnetoencephalography (MEG) using auditory evoked cortical fields (AEF) is an absolutely non-invasive method of passive measurement which utilizes magnetic fields caused by specific cortical activity. By applying the exceptionally sensitive SQUID technology to record these fields of dipolar configuration produced by the fetal brain, MEG as an investigational tool could provide new insights into the development of the human brain in utero. The major constraint to this application is a very low signal-to-noise ratio (SNR) that has to be attributed to a variety of factors including the magnetic signals generated by the fetal and maternal hearts which inevitably obscure a straightforward signal analysis. By applying a new algorithm of specific heart artefact reduction based on the relative regularity of the heart signals, we were able to increase the chance of extracting a fetal AEF from the raw data by the means of averaging techniques and principle component analysis. Results from 27 pregnant, healthy women (third trimester of their uncomplicated pregnancy) indicate an improved detection rate and the reproducibility of the fetal MEG. We evaluate and discuss a-priori criteria for signal analyses which will enable us to systematically analyze additional limiting factors, to further enhance the efficiency of this method and to promote the assessment of its possible clinical value in the future.

  15. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    NASA Astrophysics Data System (ADS)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  16. Harmonic template neurons in primate auditory cortex underlying complex sound processing.

    PubMed

    Feng, Lei; Wang, Xiaoqin

    2017-01-31

    Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music.

  17. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  18. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing.

    PubMed

    Guéguin, Marie; Le Bouquin-Jeannès, Régine; Faucon, Gérard; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2007-02-01

    The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.

  19. Predicting perception in noise using cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; McMillan, Garnett P; Penman, Tina M; Gille, Sun Mi

    2013-12-01

    Speech perception in background noise is a common challenge across individuals and health conditions (e.g., hearing impairment, aging, etc.). Both behavioral and physiological measures have been used to understand the important factors that contribute to perception-in-noise abilities. The addition of a physiological measure provides additional information about signal-in-noise encoding in the auditory system and may be useful in clarifying some of the variability in perception-in-noise abilities across individuals. Fifteen young normal-hearing individuals were tested using both electrophysiology and behavioral methods as a means to determine (1) the effects of signal-to-noise ratio (SNR) and signal level and (2) how well cortical auditory evoked potentials (CAEPs) can predict perception in noise. Three correlation/regression approaches were used to determine how well CAEPs predicted behavior. Main effects of SNR were found for both electrophysiology and speech perception measures, while signal level effects were found generally only for speech testing. These results demonstrate that when signals are presented in noise, sensitivity to SNR cues obscures any encoding of signal level cues. Electrophysiology and behavioral measures were strongly correlated. The best physiological predictors (e.g., latency, amplitude, and area of CAEP waves) of behavior (SNR at which 50 % of the sentence is understood) were N1 latency and N1 amplitude measures. In addition, behavior was best predicted by the 70-dB signal/5-dB SNR CAEP condition. It will be important in future studies to determine the relationship of electrophysiology and behavior in populations who experience difficulty understanding speech in noise such as those with hearing impairment or age-related deficits.

  20. Predicting the connectivity of primate cortical networks from topological and spatial node properties

    PubMed Central

    Costa, Luciano da F; Kaiser, Marcus; Hilgetag, Claus C

    2007-01-01

    Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints. PMID:17408506

  1. Rapid cortical dynamics associated with auditory spatial attention gradients

    PubMed Central

    Mock, Jeffrey R.; Seay, Michael J.; Charney, Danielle R.; Holmes, John L.; Golob, Edward J.

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120–200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models. PMID:26082679

  2. Rapid cortical dynamics associated with auditory spatial attention gradients.

    PubMed

    Mock, Jeffrey R; Seay, Michael J; Charney, Danielle R; Holmes, John L; Golob, Edward J

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120-200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models.

  3. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  4. Decrease of functional coupling between left and right auditory cortices during dichotic listening: an electroencephalography study.

    PubMed

    Brancucci, A; Babiloni, C; Vecchio, F; Galderisi, S; Mucci, A; Tecchio, F; Romani, G L; Rossini, P M

    2005-01-01

    The present study focused on functional coupling between human bilateral auditory cortices and on possible influence of right over left auditory cortex during dichotic listening of complex non-verbal tones having near (competing) compared with distant non-competing fundamental frequencies. It was hypothesized that dichotic stimulation with competing tones would induce a decline of functional coupling between the two auditory cortices, as revealed by a decrease of electroencephalography coherence and an increase of directed transfer function from right (specialized for the present stimulus material) to left auditory cortex. Electroencephalograph was recorded from T3 and T4 scalp sites, overlying respectively left and right auditory cortices, and from Cz scalp site (vertex) for control purposes. Event-related coherence between T3 and T4 scalp sites was significantly lower for all electroencephalography bands of interest during dichotic listening of competing than non-competing tone pairs. This was a specific effect, since event-related coherence did not differ in a monotic control condition. Furthermore, event-related coherence between T3 and Cz and between T4 and Cz scalp sites showed no significant effects. Conversely, the directed transfer function results showed negligible influence at group level of right over left auditory cortex during dichotic listening. These results suggest a decrease of functional coupling between bilateral auditory cortices during competing dichotic stimuli as a possible neural substrate for the lateralization of auditory stimuli during dichotic listening.

  5. Minimization of cochlear implant artifact in cortical auditory evoked potentials in children.

    PubMed

    Bakhos, D; Roux, S; Robier, A; Bonnet-Brilhault, F; Lescanne, E; Bruneau, N

    2012-11-01

    In congenitally deaf children fit with a cochlear implant, little is known about the maturation of the auditory cortex. Cortical auditory evoked potentials are a useful methodology to study the auditory cortical system of children with cochlear implants. Nevertheless, these recordings are contaminated by a cochlear implant artifact. The objective of this study was to use independent component analysis to minimize the artifact of the cochlear implant to study cortical auditory evoked potentials. Prospective study. A total of 5 children ranging in age from 21 to 49 months who were fitted with a cochlear implant for at least 6 months were included in this study. The stimuli were pure tones (750 Hz, 200 ms duration, 70 dB SPL) presented with an irregular interstimulus interval (1000-2000 ms) via loud speakers. The cortical auditory evoked potentials were recorded from 17 Ag-AgCl electrodes referenced to the nose. The peak latency and amplitude of each deflection culminating at the fronto-central and temporal sites were analyzed. The P100-N250 peak latencies and amplitudes of the cortical auditory evoked potentials recorded from children fitted with cochlear implants. Scalp map potentials distributions were done for each child for the N250 wave. The use of independent component analysis permitted to minimize the cochlear implant artifact for the five children. Cortical auditory evoked potentials were recorded at fronto-central and temporal sites. Scalp map potentials distributions for the N2 wave showed activation of temporal generators contralateral at the CI for the five children. This preliminary electrophysiological study confirms the value and the limits of independent component analysis. It could allow longitudinal studies in cochlear implant users to examine the maturation of auditory cortex. It could also be used to identify objective cortical electrophysiological measures to help the fitting of CIs in children. Copyright © 2012 Elsevier Ireland Ltd. All rights

  6. Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche

    PubMed Central

    Radonjić, Nevena V.; Ayoub, Albert E.; Memi, Fani; Yu, Xiaojing; Maroof, Asif; Jakovcevski, Igor; Anderson, Stewart A.; Rakic, Pasko; Zecevic, Nada

    2015-01-01

    Summary Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates. PMID:25497090

  7. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    NASA Astrophysics Data System (ADS)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  8. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    PubMed Central

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  9. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  10. Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration

    PubMed Central

    Kayser, Christoph; Logothetis, Nikos K.

    2009-01-01

    Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior temporal sulcus (STS) as likely source of visual input to auditory cortex, little evidence exists to support this notion at the functional level. Here we tested this hypothesis by simultaneously recording from sites in auditory cortex and STS in alert animals stimulated with dynamic naturalistic audio–visual scenes. Using Granger causality and directed transfer functions we first quantified causal interactions at the level of field potentials, and subsequently determined those frequency bands that show effective interactions, i.e. interactions that are relevant for influencing neuronal firing at the target site. We found that effective interactions from auditory cortex to STS prevail below 20 Hz, while interactions from STS to auditory cortex prevail above 20 Hz. In addition, we found that directed interactions from STS to auditory cortex make a significant contribution to multisensory influences in auditory cortex: Sites in auditory cortex showing multisensory enhancement received stronger feed-back from STS during audio–visual than during auditory stimulation, while sites with multisensory suppression received weaker feed-back. These findings suggest that beta frequencies might be important for inter-areal coupling in the temporal lobe and demonstrate that superior temporal regions indeed provide one major source of visual influences to auditory cortex. PMID:19503750

  11. Auditory and visual cortex of primates: a comparison of two sensory systems

    PubMed Central

    Rauschecker, Josef P.

    2014-01-01

    A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177

  12. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.

    PubMed

    Slugocki, Christopher; Bosnyak, Daniel; Trainor, Laurel J

    2017-03-01

    Recent electrophysiological work has evinced a capacity for plasticity in subcortical auditory nuclei in human listeners. Similar plastic effects have been measured in cortically-generated auditory potentials but it is unclear how the two interact. Here we present Simultaneously-Evoked Auditory Potentials (SEAP), a method designed to concurrently elicit electrophysiological brain potentials from inferior colliculus, thalamus, and primary and secondary auditory cortices. Twenty-six normal-hearing adult subjects (mean 19.26 years, 9 male) were exposed to 2400 monaural (right-ear) presentations of a specially-designed stimulus which consisted of a pure-tone carrier (500 or 600 Hz) that had been amplitude-modulated at the sum of 37 and 81 Hz (depth 100%). Presentation followed an oddball paradigm wherein the pure-tone carrier was set to 500 Hz for 85% of presentations and pseudo-randomly changed to 600 Hz for the remaining 15% of presentations. Single-channel electroencephalographic data were recorded from each subject using a vertical montage referenced to the right earlobe. We show that SEAP elicits a 500 Hz frequency-following response (FFR; generated in inferior colliculus), 80 (subcortical) and 40 (primary auditory cortex) Hz auditory steady-state responses (ASSRs), mismatch negativity (MMN) and P3a (when there is an occasional change in carrier frequency; secondary auditory cortex) in addition to the obligatory N1-P2 complex (secondary auditory cortex). Analyses showed that subcortical and cortical processes are linked as (i) the latency of the FFR predicts the phase delay of the 40 Hz steady-state response, (ii) the phase delays of the 40 and 80 Hz steady-state responses are correlated, and (iii) the fidelity of the FFR predicts the latency of the N1 component. The SEAP method offers a new approach for measuring the dynamic encoding of acoustic features at multiple levels of the auditory pathway. As such, SEAP is a promising tool with which to study how

  13. Familiarity with Speech Affects Cortical Processing of Auditory Distance Cues and Increases Acuity

    PubMed Central

    Wisniewski, Matthew G.; Mercado, Eduardo; Gramann, Klaus; Makeig, Scott

    2012-01-01

    Several acoustic cues contribute to auditory distance estimation. Nonacoustic cues, including familiarity, may also play a role. We tested participants’ ability to distinguish the distances of acoustically similar sounds that differed in familiarity. Participants were better able to judge the distances of familiar sounds. Electroencephalographic (EEG) recordings collected while participants performed this auditory distance judgment task revealed that several cortical regions responded in different ways depending on sound familiarity. Surprisingly, these differences were observed in auditory cortical regions as well as other cortical regions distributed throughout both hemispheres. These data suggest that learning about subtle, distance-dependent variations in complex speech sounds involves processing in a broad cortical network that contributes both to speech recognition and to how spatial information is extracted from speech. PMID:22911734

  14. Membrane potential dynamics of populations of cortical neurons during auditory streaming.

    PubMed

    Farley, Brandon J; Noreña, Arnaud J

    2015-10-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts.

  15. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices.

    PubMed

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W

    2010-05-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects the influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl's gyrus) the onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30-35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory and 74 ms in the visual cortex, i.e., 3-21 ms after inputs from the two modalities converged.

  16. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices

    PubMed Central

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P.; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W.

    2010-01-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl’s gyrus) onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30–35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory, and 74 ms in the visual cortex, i.e., 3–21 ms after inputs from both modalities converged. PMID:20584181

  17. Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex.

    PubMed

    Meyer, Martin; Liem, Franziskus; Hirsiger, Sarah; Jäncke, Lutz; Hänggi, Jürgen

    2014-10-01

    This investigation provides an analysis of structural asymmetries in 5 anatomically defined regions (Heschl's gyrus, HG; Heschl's sulcus, HS; planum temporale, PT; planum polare, PP; superior temporal gyrus, STG) within the human auditory-related cortex. Volumetric 3-dimensional T1-weighted magnetic resonance imaging scans were collected from 104 participants (52 males). Cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) were calculated based on individual scans of these anatomical traits. This investigation demonstrates a leftward asymmetry for CV and CSA that is observed in the HG, STG, and PT regions. As regards CT, we note a rightward asymmetry in the HG and HS. A correlation analysis of asymmetry indices between measurements for distinct regions of interest (ROIs) yields significant correlations between CT and CV in 4 of 5 ROIs (HG, HS, PT, and STG). Significant correlation values between CSA and CV are observed for all 5 ROIs. The findings suggest that auditory-related cortical areas demonstrate larger leftward asymmetry with respect to the CSA, while a clear rightward asymmetry with respect to CT is salient in both the primary and the secondary auditory cortex only. In addition, we propose that CV is not an ideal neuromarker for anatomical measurements. CT and CSA should be considered independent traits of anatomical asymmetries in the auditory-related cortex.

  18. Cortical Evoked Potentials and Hearing Aids in Individuals with Auditory Dys-Synchrony.

    PubMed

    Yuvaraj, Pradeep; Mannarukrishnaiah, Jayaram

    2015-12-01

    The purpose of the present study was to investigate the relationship between cortical processing of speech and benefit from hearing aids in individuals with auditory dys-synchrony. Data were collected from 38 individuals with auditory dys-synchrony. Participants were selected based on hearing thresholds, middle ear reflexes, otoacoustic emissions, and auditory brain stem responses. Cortical-evoked potentials were recorded for click and speech. Participants with auditory dys-synchrony were fitted with bilateral multichannel wide dynamic range compression hearing aids. Aided and unaided speech identification scores for 40 words were obtained for each participant. Hierarchical cluster analysis using Ward's method clearly showed four subgroups of participants with auditory dys-synchrony based on the hearing aid benefit score (aided minus unaided speech identification score). The difference in the mean aided and unaided speech identification scores was significantly different in participants with auditory dys-synchrony. However, the mean unaided speech identification scores were not significantly different between the four subgroups. The N2 amplitude and P1 latency of the speech-evoked cortical potentials were significantly different between the four subgroups formed based on hearing aid benefit scores. The results indicated that subgroups of individuals with auditory dys-synchrony who benefit from hearing aids exist. Individuals who benefitted from hearing aids showed decreased N2 amplitudes compared with those who did not. N2 amplitude is associated with greater suppression of background noise while processing speech.

  19. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain.

    PubMed

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-02-29

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex.

  1. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  2. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    PubMed

    Ruusuvirta, Timo; Lipponen, Arto; Pellinen, Eeva; Penttonen, Markku; Astikainen, Piia

    2013-01-01

    Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN) of event-related potentials (ERPs) reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum) local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant) was interspersed with a repeated tone (standard). Two standard-to-standard (SSI) and standard-to-deviant (SDI) intervals (200 ms vs. 500 ms) were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses). Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical) manifestation of MMN.

  3. Auditory Cortical Activity During Cochlear Implant-Mediated Perception of Spoken Language, Melody, and Rhythm

    PubMed Central

    Molloy, Anne T.; Jiradejvong, Patpong; Braun, Allen R.

    2009-01-01

    Despite the significant advances in language perception for cochlear implant (CI) recipients, music perception continues to be a major challenge for implant-mediated listening. Our understanding of the neural mechanisms that underlie successful implant listening remains limited. To our knowledge, this study represents the first neuroimaging investigation of music perception in CI users, with the hypothesis that CI subjects would demonstrate greater auditory cortical activation than normal hearing controls. H215O positron emission tomography (PET) was used here to assess auditory cortical activation patterns in ten postlingually deafened CI patients and ten normal hearing control subjects. Subjects were presented with language, melody, and rhythm tasks during scanning. Our results show significant auditory cortical activation in implant subjects in comparison to control subjects for language, melody, and rhythm. The greatest activity in CI users compared to controls was seen for language tasks, which is thought to reflect both implant and neural specializations for language processing. For musical stimuli, PET scanning revealed significantly greater activation during rhythm perception in CI subjects (compared to control subjects), and the least activation during melody perception, which was the most difficult task for CI users. These results may suggest a possible relationship between auditory performance and degree of auditory cortical activation in implant recipients that deserves further study. PMID:19662456

  4. Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management.

    PubMed

    Herraiz, C; Diges, I; Cobo, P; Aparicio, J M

    2009-01-01

    Scientific evidence has proved reorganisation processes in the auditory cortex after sensorineural hearing loss and overstimulation of certain tonotopic cortical areas, as we see in auditory conditioning techniques. Acoustic rehabilitation reduces the impact of these reorganisation changes. Recent theories explain tinnitus mechanisms as a negative consequence of neural plasticity in the central nervous system after a peripheral aggression. Auditory discrimination training (ADT) could partially reverse the wrong changes in tonotopic representation and improve tinnitus. We discuss different studies and their efficacy on tinnitus perception and annoyance. Indications, method, dose and sound strategy need to be implemented.

  5. Selective Neuronal Activation by Cochlear Implant Stimulation in Auditory Cortex of Awake Primate.

    PubMed

    Johnson, Luke A; Della Santina, Charles C; Wang, Xiaoqin

    2016-12-07

    Despite the success of cochlear implants (CIs) in human populations, most users perform poorly in noisy environments and music and tonal language perception. How CI devices engage the brain at the single neuron level has remained largely unknown, in particular in the primate brain. By comparing neuronal responses with acoustic and CI stimulation in marmoset monkeys unilaterally implanted with a CI electrode array, we discovered that CI stimulation was surprisingly ineffective at activating many neurons in auditory cortex, particularly in the hemisphere ipsilateral to the CI. Further analyses revealed that the CI-nonresponsive neurons were narrowly tuned to frequency and sound level when probed with acoustic stimuli; such neurons likely play a role in perceptual behaviors requiring fine frequency and level discrimination, tasks that CI users find especially challenging. These findings suggest potential deficits in central auditory processing of CI stimulation and provide important insights into factors responsible for poor CI user performance in a wide range of perceptual tasks. The cochlear implant (CI) is the most successful neural prosthetic device to date and has restored hearing in hundreds of thousands of deaf individuals worldwide. However, despite its huge successes, CI users still face many perceptual limitations, and the brain mechanisms involved in hearing through CI devices remain poorly understood. By directly comparing single-neuron responses to acoustic and CI stimulation in auditory cortex of awake marmoset monkeys, we discovered that neurons unresponsive to CI stimulation were sharply tuned to frequency and sound level. Our results point out a major deficit in central auditory processing of CI stimulation and provide important insights into mechanisms underlying the poor CI user performance in a wide range of perceptual tasks. Copyright © 2016 the authors 0270-6474/16/3612468-17$15.00/0.

  6. Perirhinal cortex relays auditory information to the frontal motor cortices in the rat.

    PubMed

    Kyuhou, Shin-ichi; Matsuzaki, Ryuichi; Gemba, Hisae

    2003-12-26

    Auditory evoked potentials (AEPs) were recorded in the motor cortices (MC) with chronically implanted electrodes in the rat. Some of the AEPs in the MC, namely negative potentials on the surface and positive ones at a depth of 2 mm at latencies of about 50-150 ms, were abolished by limited bilateral lesions of the anterior perirhinal cortex (PERa) which was responsive to auditory stimulus, indicating that the AEPs in the MC were at least partially relayed in the PERa. The auditory response in the MC was prominently enhanced when water was supplied or the medial forebrain bundle was stimulated after auditory stimulus. These results indicate that the MC receives the reward associated auditory information from the PERa.

  7. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    PubMed

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (Otolemur garnetti).

    PubMed

    Miller, Daniel J; Lackey, Elizabeth P; Hackett, Troy A; Kaas, Jon H

    2013-11-01

    Change in the timeline of neurobiological growth is an important source of biological variation, and thus phenotypic evolution. However, no study has to date investigated sensory system development in any of the prosimian primates that are thought to most closely resemble our earliest primate ancestors. Acetylcholine (ACh) is a neurotransmitter critical to normal brain function by regulating synaptic plasticity associated with attention and learning. Myelination is an important structural component of the brain because it facilitates rapid neuronal communication. In this work we investigated the expression of acetylcholinesterase (AChE) and the density of myelinated axons throughout postnatal development in the inferior colliculus (IC), medial geniculate complex (MGC), and auditory cortex (auditory core, belt, and parabelt) in Garnett's greater galago (Otolemur garnetti). We found that the IC and MGC exhibit relatively high myelinated fiber length density (MFLD) values at birth and attain adult-like values by the species-typical age at weaning. In contrast, neocortical auditory fields are relatively unmyelinated at birth and only attain adult-like MFLD values by the species-typical age at puberty. Analysis of AChE expression indicated that, in contrast to evidence from rodent samples, the adult-like distribution of AChE in the core area of auditory cortex, dense bands in layers I, IIIb/IV, and Vb/VI, is present at birth. These data indicate the differential developmental trajectory of central auditory system structures and demonstrate the early onset of adult-like AChE expression in primary auditory cortex in O. garnetti, suggesting the auditory system is more developed at birth in primates compared to rodents. Copyright © 2013 Wiley Periodicals, Inc.

  9. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo

    2016-02-15

    Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans.

  10. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  11. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  12. Auditory stimuli from a sensor glove model modulate cortical audiotactile integration.

    PubMed

    Mendes, Raquel Metzker; Barbosa, Rafael Inácio; Salmón, Carlos Ernesto Garrido; Rondinoni, Carlo; Escorsi-Rosset, Sara; Delsim, Juliana Carla; Barbieri, Cláudio Henrique; Mazzer, Nilton

    2013-08-26

    The purpose of this study was to shed light on cortical audiotactile integration and sensory substitution mechanisms, thought to serve as a basis for the use of a sensor glove in the preservation of the cortical map of the hand after peripheral nerve injuries. Fourteen subjects were selected and randomly assigned either to a training group, trained to replace touch for hearing with the use of a sensor glove, or to a control group, untrained. Training group volunteers had to identify textures just by the sound. In an fMRI experiment, all subjects received three types of stimuli: tactile only, combined audiotactile stimulation, and auditory only. Results indicate that, for trained subjects, a coupling between auditory and somatosensory cortical areas is established through associative areas. Differences in signal correlation between groups point to a pairing mechanism, which, at first, connects functionally the primary auditory and sensory areas (trained subjects). Later, this connection seems to be mediated by associative areas. The training with the sensor glove influences cortical audiotactile integration mechanisms, determining BOLD signal changes in the somatosensory area during auditory stimulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. [New method for measuring the cortical auditory evoked potentials: the HEARLab].

    PubMed

    Bach, Adám; Tóth, Ferenc; Matievics, Vera; Kiss, József Géza; Jóri, József; Szakál, Beáta; Balogh, Norbert; Soós, Alexandra; Rovó, László

    2014-09-21

    Cortical auditory evoked potentials can provide objective information about the highest level of the auditory system. The purpose of the authors was to introduce a new tool, the "HEARLab" which can be routinely used in clinical practice for the measurement of the cortical auditory evoked potentials. In addition, they wanted to establish standards of the analyzed parameters in subjects with normal hearing. 25 adults with normal hearing were tested with speech stimuli, and frequency specific examinations were performed utilizing pure tone stimuli. The findings regarding the latency and amplitude analyses of the evoked potentials confirm previously published results of this novel method. The HEARLAb can be a great help when performance of the conventional audiological examinations is complicated. The examination can be performed in uncooperative subjects even in the presence of hearing aids. The test is frequency specific and does not require anesthesia.

  14. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  15. Abstract encoding of auditory objects in cortical activity patterns.

    PubMed

    Giordano, Bruno L; McAdams, Stephen; Zatorre, Robert J; Kriegeskorte, Nikolaus; Belin, Pascal

    2013-09-01

    The human brain is thought to process auditory objects along a hierarchical temporal "what" stream that progressively abstracts object information from the low-level structure (e.g., loudness) as processing proceeds along the middle-to-anterior direction. Empirical demonstrations of abstract object encoding, independent of low-level structure, have relied on speech stimuli, and non-speech studies of object-category encoding (e.g., human vocalizations) often lack a systematic assessment of low-level information (e.g., vocalizations are highly harmonic). It is currently unknown whether abstract encoding constitutes a general functional principle that operates for auditory objects other than speech. We combined multivariate analyses of functional imaging data with an accurate analysis of the low-level acoustical information to examine the abstract encoding of non-speech categories. We observed abstract encoding of the living and human-action sound categories in the fine-grained spatial distribution of activity in the middle-to-posterior temporal cortex (e.g., planum temporale). Abstract encoding of auditory objects appears to extend to non-speech biological sounds and to operate in regions other than the anterior temporal lobe. Neural processes for the abstract encoding of auditory objects might have facilitated the emergence of speech categories in our ancestors.

  16. Auditory cortical N100 in pre- and post-synaptic auditory neuropathy to frequency or intensity changes of continuous tones

    PubMed Central

    Dimitrijevic, Andrew; Starr, Arnold; Bhatt, Shrutee; Michalewski, Henry J.; Zeng, Fan-Gang; Pratt, Hillel

    2010-01-01

    Objectives Auditory cortical N100s were examined in ten auditory neuropathy (AN) subjects as objective measures of impaired hearing. Methods Latency and amplitudes of N100 in AN to increases of frequency (4–50%) or intensity (4–8 dB) of low (250 Hz) or high (4000 Hz) frequency tones were compared with results from normal-hearing controls. The sites of auditory nerve dysfunction were pre-synaptic (n=3) due to otoferlin mutations causing temperature sensitive deafness, post-synaptic (n=4) affecting other cranial and/or peripheral neuropathies, and undefined (n=3). Results AN consistently had N100s only to the largest changes of frequency or intensity whereas controls consistently had N100s to all but the smallest frequency and intensity changes. N100 latency in AN was significantly delayed compared to controls, more so for 250 than for 4000 Hz and more so for changes of intensity compared to frequency. N100 amplitudes to frequency change were significantly reduced in ANs compared to controls, except for pre-synaptic AN in whom amplitudes were greater than controls. N100 latency to frequency change of 250 but not of 4000 Hz was significantly related to speech perception scores. Conclusions As a group, AN subjects’ N100 potentials were abnormally delayed and smaller, particularly for low frequency. The extent of these abnormalities differed between pre- and post-synaptic forms of the disorder. Significance Abnormalities of auditory cortical N100 in AN reflect disorders of both temporal processing (low frequency) and neural adaptation (high frequency). Auditory N100 latency to the low frequency provides an objective measure of the degree of impaired speech perception in AN. PMID:20822952

  17. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    PubMed

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.

  18. The investigation of cortical auditory evoked potentials responses in young adults having musical education.

    PubMed

    Polat, Zahra; Ataş, Ahmet

    2014-12-01

    In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Non-randomized controlled study. The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Significant differences were found in the amplitude values of P1 and P2 (p<0.05). The differences among the latencies were not found to be significantly important (p>0.05). The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech.

  19. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our

  20. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.

    PubMed

    Kayser, Stephanie J; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2015-11-04

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that

  1. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    PubMed Central

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  2. Frequency preference and attention effects across cortical depths in the human primary auditory cortex.

    PubMed

    De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-12-29

    Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.

  3. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  4. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.

    PubMed

    Harper, Nicol S; Schoppe, Oliver; Willmore, Ben D B; Cui, Zhanfeng; Schnupp, Jan W H; King, Andrew J

    2016-11-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.

  5. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

    PubMed Central

    Willmore, Ben D. B.; Cui, Zhanfeng; Schnupp, Jan W. H.; King, Andrew J.

    2016-01-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1–7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context. PMID:27835647

  6. Enhancement of auditory cortical development by musical experience in children.

    PubMed

    Shahin, Antoine; Roberts, Larry E; Trainor, Laurel J

    2004-08-26

    Auditory evoked potentials (AEPs) express the development of mature synaptic connections in the upper neocortical laminae known to occur between 4 and 15 years of age. AEPs evoked by piano, violin, and pure tones were measured twice in a group of 4- to 5-year-old children enrolled in Suzuki music lessons and in non-musician controls. P1 was larger in the Suzuki pupils for all tones whereas P2 was enhanced specifically for the instrument of practice (piano or violin). AEPs observed for the instrument of practice were comparable to those of non-musician children about 3 years older in chronological age. The findings set into relief a general process by which the neocortical synaptic matrix is shaped by an accumulation of specific auditory experiences.

  7. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  8. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    PubMed

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies.

  9. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks.

    PubMed

    Keitel, Anne; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2017-02-15

    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    PubMed Central

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  11. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  12. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  13. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  14. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars.

    PubMed

    Shanechi, Maryam M; Hu, Rollin C; Williams, Ziv M

    2014-01-01

    Motor paralysis is among the most disabling aspects of injury to the central nervous system. Here we develop and test a target-based cortical-spinal neural prosthesis that employs neural activity recorded from premotor neurons to control limb movements in functionally paralysed primate avatars. Given the complexity by which muscle contractions are naturally controlled, we approach the problem of eliciting goal-directed limb movement in paralysed animals by focusing on the intended targets of movement rather than their intermediate trajectories. We then match this information in real-time with spinal cord and muscle stimulation parameters that produce free planar limb movements to those intended target locations. We demonstrate that both the decoded activities of premotor populations and their adaptive responses can be used, after brief training, to effectively direct an avatar's limb to distinct targets variably displayed on a screen. These findings advance the future possibility of reconstituting targeted limb movement in paralysed subjects.

  15. Meta-adaptation in the auditory midbrain under cortical influence

    PubMed Central

    Robinson, Benjamin L.; Harper, Nicol S.; McAlpine, David

    2016-01-01

    Neural adaptation is central to sensation. Neurons in auditory midbrain, for example, rapidly adapt their firing rates to enhance coding precision of common sound intensities. However, it remains unknown whether this adaptation is fixed, or dynamic and dependent on experience. Here, using guinea pigs as animal models, we report that adaptation accelerates when an environment is re-encountered—in response to a sound environment that repeatedly switches between quiet and loud, midbrain neurons accrue experience to find an efficient code more rapidly. This phenomenon, which we term meta-adaptation, suggests a top–down influence on the midbrain. To test this, we inactivate auditory cortex and find acceleration of adaptation with experience is attenuated, indicating a role for cortex—and its little-understood projections to the midbrain—in modulating meta-adaptation. Given the prevalence of adaptation across organisms and senses, meta-adaptation might be similarly common, with extensive implications for understanding how neurons encode the rapidly changing environments of the real world. PMID:27883088

  16. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  17. Knowledge About Sounds—Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice

    PubMed Central

    Geissler, Diana B.; Schmidt, H. Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition. PMID:27013959

  18. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice.

    PubMed

    Geissler, Diana B; Schmidt, H Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition.

  19. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  20. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well.

  1. Localization of cortical dysfunction based on auditory and visual naming performance

    PubMed Central

    Hamberger, Marla J.; Seidel, William T.

    2009-01-01

    Naming is generally considered a left hemisphere function without precise localization. However, recent cortical stimulation studies demonstrate a modality-related anatomical dissociation, in that anterior temporal stimulation disrupts auditory description naming (“auditory naming”), but not visual object naming (“visual naming”), whereas posterior temporal stimulation disrupts naming on both tasks. We hypothesized that patients with anterior temporal abnormalities would exhibit impaired auditory naming, yet normal range visual naming, whereas posterior temporal patients would exhibit impaired performance on both tasks. Thirty-four patients with documented anterior temporal abnormalities and 14 patients with documented posterior temporal abnormalities received both naming tests. As hypothesized, patients with anterior temporal abnormalities demonstrated impaired auditory naming, yet normal range visual naming performance. Patients with posterior temporal abnormalities were impaired in visual naming, however, auditory naming scores were intact. Although these group patterns were statistically significant, on an individual basis, auditory-visual naming asymmetries better predicted whether individual patients had anterior or posterior temporal abnormalities. These behavioral findings are generally consistent with stimulation results, suggesting that modality specificity is inherent in the organization of language, with predictable neuroanatomical correlates. Results also carry clinical implications regarding localizing dysfunction, identifying and characterizing naming deficits, and potentially, in treating neurologically-based language disorders. PMID:19573271

  2. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat

    PubMed Central

    Nieto-Diego, Javier; Malmierca, Manuel S.

    2016-01-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883

  3. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity

    PubMed Central

    Yurgil, Kate A.; Golob, Edward J.

    2014-01-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low vs. high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention control related to WMC and possibly higher-level cognition. PMID:24016201

  4. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.

  5. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

    PubMed Central

    Otani, Tomoki; Marchetto, Maria C.; Gage, Fred H.; Simons, Benjamin D.; Livesey, Frederick J.

    2016-01-01

    Summary Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. PMID:27049876

  6. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas

    PubMed Central

    Pallas, Sarah L.

    2013-01-01

    Loss of sensory input from peripheral organ damage, sensory deprivation, or brain damage can result in adaptive or maladaptive changes in sensory cortex. In previous research, we found that auditory cortical tuning and tonotopy were impaired by cross-modal invasion of visual inputs. Sensory deprivation is typically associated with a loss of inhibition. To determine whether inhibitory plasticity is responsible for this process, we measured pre- and postsynaptic changes in inhibitory connectivity in ferret auditory cortex (AC) after cross-modal plasticity. We found that blocking GABAA receptors increased responsiveness and broadened sound frequency tuning in the cross-modal group more than in the normal group. Furthermore, expression levels of glutamic acid decarboxylase (GAD) protein were increased in the cross-modal group. We also found that blocking inhibition unmasked visual responses of some auditory neurons in cross-modal AC. Overall, our data suggest a role for increased inhibition in reducing the effectiveness of the abnormal visual inputs and argue that decreased inhibition is not responsible for compromised auditory cortical function after cross-modal invasion. Our findings imply that inhibitory plasticity may play a role in reorganizing sensory cortex after cross-modal invasion, suggesting clinical strategies for recovery after brain injury or sensory deprivation. PMID:24288625

  8. A role for descending auditory cortical projections in songbird vocal learning

    PubMed Central

    Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S

    2014-01-01

    Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934

  9. Auditory cortical field coding long-lasting tonal offsets in mice

    PubMed Central

    Baba, Hironori; Tsukano, Hiroaki; Hishida, Ryuichi; Takahashi, Kuniyuki; Horii, Arata; Takahashi, Sugata; Shibuki, Katsuei

    2016-01-01

    Although temporal information processing is important in auditory perception, the mechanisms for coding tonal offsets are unknown. We investigated cortical responses elicited at the offset of tonal stimuli using flavoprotein fluorescence imaging in mice. Off-responses were clearly observed at the offset of tonal stimuli lasting for 7 s, but not after stimuli lasting for 1 s. Off-responses to the short stimuli appeared in a similar cortical region, when conditioning tonal stimuli lasting for 5–20 s preceded the stimuli. MK-801, an inhibitor of NMDA receptors, suppressed the two types of off-responses, suggesting that disinhibition produced by NMDA receptor-dependent synaptic depression might be involved in the off-responses. The peak off-responses were localized in a small region adjacent to the primary auditory cortex, and no frequency-dependent shift of the response peaks was found. Frequency matching of preceding tonal stimuli with short test stimuli was not required for inducing off-responses to short stimuli. Two-photon calcium imaging demonstrated significantly larger neuronal off-responses to stimuli lasting for 7 s in this field, compared with off-responses to stimuli lasting for 1 s. The present results indicate the presence of an auditory cortical field responding to long-lasting tonal offsets, possibly for temporal information processing. PMID:27687766

  10. Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons.

    PubMed

    Rummell, Brian P; Klee, Jan L; Sigurdsson, Torfi

    2016-11-23

    Many of the sounds that we perceive are caused by our own actions, for example when speaking or moving, and must be distinguished from sounds caused by external events. Studies using macroscopic measurements of brain activity in human subjects have consistently shown that responses to self-generated sounds are attenuated in amplitude. However, the underlying manifestation of this phenomenon at the cellular level is not well understood. To address this, we recorded the activity of neurons in the auditory cortex of mice in response to sounds generated by their own behavior. We found that the responses of auditory cortical neurons to these self-generated sounds were consistently attenuated, compared with the same sounds generated independently of the animals' behavior. This effect was observed in both putative pyramidal neurons and in interneurons and was stronger in lower layers of auditory cortex. Downstream of the auditory cortex, we found that responses of hippocampal neurons to self-generated sounds were almost entirely suppressed. Responses to self-generated optogenetic stimulation of auditory thalamocortical terminals were also attenuated, suggesting a cortical contribution to this effect. Further analyses revealed that the attenuation of self-generated sounds was not simply due to the nonspecific effects of movement or behavioral state on auditory responsiveness. However, the strength of attenuation depended on the degree to which self-generated sounds were expected to occur, in a cell-type-specific manner. Together, these results reveal the cellular basis underlying attenuated responses to self-generated sounds and suggest that predictive processes contribute to this effect.

  11. Auditory Cortical Local Subnetworks Are Characterized by Sharply Synchronous Activity

    PubMed Central

    Schreiner, Christoph E.

    2013-01-01

    In primary auditory cortex (AI), broadly correlated firing has been commonly observed. In contrast, sharply synchronous firing has rarely been seen and has not been well characterized. Therefore, we examined cat AI local subnetworks using cross-correlation and spectrotemporal receptive field (STRF) analysis for neighboring neurons. Sharply synchronous firing responses were observed predominantly for neurons separated by <150 μm. This high synchrony was independent of layers and was present between all distinguishable cell types. The sharpest synchrony was seen in supragranular layers and between regular spiking units. Synchronous spikes conveyed more stimulus information than nonsynchronous spikes. Neighboring neurons in all layers had similar best frequencies and similar STRFs, with the highest similarity in supragranular and granular layers. Spectral tuning selectivity and latency were only moderately conserved in these local, high-synchrony AI subnetworks. Overall, sharp synchrony is a specific characteristic of fine-scale networks within the AI and local functional processing is well ordered and similar, but not identical, for neighboring neurons of all cell types. PMID:24259573

  12. Cortical Oscillations in Auditory Perception and Speech: Evidence for Two Temporal Windows in Human Auditory Cortex

    PubMed Central

    Luo, Huan; Poeppel, David

    2012-01-01

    Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (∼20–80 ms duration information) and the theta band (∼150–300 ms), corresponding to segmental and diphonic versus syllabic modulation rates, respectively. It has been hypothesized that auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that such non-speech stimuli with temporal structure matching speech-relevant scales (∼25 and ∼200 ms) elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands). In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST). The data argue for a mesoscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales. PMID:22666214

  13. [Cortical processing of visual and auditory stimuli in depressive patients: a study with event related potentials].

    PubMed

    Ortiz, T; Pérez-Serrano, J M; Coullaut, J; Fudio, S; Coullaut, J; Criado, J

    1998-01-01

    Event related Potentials, which seem to be an objective parameter reflecting cognitive functions, have been examined in depression. To evaluate the influence of visual and auditory stimuli on the P300 latency we studied 42 patients with major depression and 21 normal subjects. The experimental tasks applied were first a series of 300 auditory stimuli [255 (85%) were tones of 1000 Hz, and considered the frequent stimulus, whereas 45 (15%) were tones of 2000 Hz and referred to as the rare stimulus and second a series of 300 visual stimuli 255 (85%) were black circles on a white background, and considered the frequent stimulus, 9 cm diameter, 200 ms duration whereas 45 (15%) were back squares on a white background and referred to as the rare stimulus, 9 cm diameter, 200 ms duration] in the center of a computer screen. The results shown an increase of P300 latency in depressive patients during auditory and visual tasks. Non differences were found in reaction time to visual or auditory stimuli. These results are consistent with an impairment in brain function in depressive patients that is associated with cortical hypoactivity and deficits in perceptive, auditory or visual, functions.

  14. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  15. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons.

    PubMed

    Lidow, M S; Song, Z M

    2001-07-02

    This study examined the effects of cocaine use during the second trimester of pregnancy on cerebral neocortical volume and density, and total number of neocortical neurons and glia in offspring. We also evaluated the extent of postnatal recovery of cytoarchitectural abnormalities previously observed in the neocortex of two-month-old primates born from cocaine-treated mothers (Lidow [1995] Synapse 21:332-334). Pregnant monkeys received cocaine orally (20 mg/kg/day) from the 40th to 102nd days of pregnancy (embryonic day [E]40-E102). On E64 and E65, the animals were injected with [(3)H]thymidine. Cerebral hemispheres of the offspring were examined at three years of age. We found a reduction in the neocortical volume and density and total number of neocortical neurons. The observed reduction in neuronal number within the neocortex was not accounted for by the increase in the number of neurons in the white matter of cocaine-exposed animals, because the number of these "extra" neurons was equal to only half that of missing neurons. We detected no significant changes in the number of neocortical glia. The cytoarchitectural abnormalities in the neocortex of prenatally cocaine-exposed three-year-old monkeys closely resembled previously described neocortical abnormalities in similarly exposed two-month-old animals: the neocortex lacked a discernible lamination; the majority of the cells labeled by [(3)H]thymidine injected during neocortical neurogenesis did not reach their proper position within the cortical plate. Therefore, postnatal maturation is not associated with significant improvement in neocortical organization in primates prenatally exposed to cocaine. There was, however, a postnatal recovery of low glial fibrillary acidic protein (GFAP) immunoreactivity previously observed in 2-month-old cocaine-exposed animals.

  16. Early acoustic discrimination experience ameliorates auditory processing deficits in male rats with cortical developmental disruption

    PubMed Central

    Threlkeld, Steven W.; Hill, Courtney A.; Rosen, Glenn D.; Fitch, R. Holly

    2014-01-01

    Auditory temporal processing deficits have been suggested to play a causal role in language learning impairments, and evidence of cortical developmental anomalies (microgyria (MG), ectopia) has been reported for language-impaired populations. Rodent models have linked these features, by showing deficits in auditory temporal discrimination for rats with neuronal migration anomalies (MG, ectopia). Since evidence from human studies suggests that training with both speech and non-speech acoustic stimuli may improve language performance in developmentally language-disabled populations, we were interested in whether/how maturation and early experience might influence auditory processing deficits seen in male rats with induced focal cortical MG. Results showed that for both simple (Normal single tone), as well as increasingly complex auditory discrimination tasks (Silent gap in white noise and FM sweep), prior experience significantly improved acoustic discrimination performance -- in fact, beyond improvements seen with maturation only. Further, we replicated evidence that young adult rats with MG were significantly impaired at discriminating FM sweeps compared to shams. However, these MG effects were no longer seen when experienced subjects were retested in adulthood (even though deficits in short duration FM sweep detection were seen for adult MG rats with no early experience). Thus while some improvements in auditory processing were seen with normal maturation, the effects of early experience were even more profound, in fact resulting in amelioration of MG effects seen at earlier ages. These findings support the clinical view that early training intervention with appropriate acoustic stimuli could similarly ameliorate long-term processing impairments seen in some language-impaired children. PMID:19460626

  17. Role of cortical neurodynamics for understanding the neural basis of motivated behavior - lessons from auditory category learning.

    PubMed

    Ohl, Frank W

    2015-04-01

    Rhythmic activity appears in the auditory cortex in both microscopic and macroscopic observables and is modulated by both bottom-up and top-down processes. How this activity serves both types of processes is largely unknown. Here we review studies that have recently improved our understanding of potential functional roles of large-scale global dynamic activity patterns in auditory cortex. The experimental paradigm of auditory category learning allowed critical testing of the hypothesis that global auditory cortical activity states are associated with endogenous cognitive states mediating the meaning associated with an acoustic stimulus rather than with activity states that merely represent the stimulus for further processing.

  18. Increased neural correlations in primate auditory cortex during slow-wave sleep.

    PubMed

    Issa, Elias B; Wang, Xiaoqin

    2013-06-01

    During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.

  19. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons

    PubMed Central

    Atencio, Craig A.; Schreiner, Christoph E.

    2008-01-01

    Excitatory pyramidal neurons and inhibitory interneurons constitute the main elements of cortical circuitry and have distinctive morphologic and electrophysiological properties. Here, we differentiate them by analyzing the time course of their action potentials (APs) and characterizing their receptive field properties in auditory cortex. Pyramidal neurons have longer APs and discharge as Regular-Spiking Units (RSUs), while basket and chandelier cells, which are inhibitory interneurons, have shorter APs and are Fast-Spiking Units (FSUs). To compare these neuronal classes we stimulated cat primary auditory cortex neurons with a dynamic moving ripple stimulus and constructed single-unit spectrotemporal receptive fields (STRFs) and their associated nonlinearities. FSUs had shorter latencies, broader spectral tuning, greater stimulus specificity, and higher temporal precision than RSUs. The STRF structure of FSUs was more separable, suggesting more independence between spectral and temporal processing regimes. The nonlinearities associated with the two cell classes was indicative of higher feature selectivity for FSUs. These global functional differences between RSUs and FSUs suggest fundamental distinctions between putative excitatory and inhibitory neurons that shape auditory cortical processing. PMID:18400888

  20. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.

  1. Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals.

    PubMed

    Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L

    2015-09-01

    A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD.

  2. Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI

    PubMed Central

    Amedi, Amir

    2011-01-01

    The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities. PMID:21448274

  3. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

    NASA Astrophysics Data System (ADS)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.

    2014-02-01

    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  4. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    PubMed Central

    Schoppe, Oliver; King, Andrew J.; Schnupp, Jan W.H.; Harper, Nicol S.

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it

  5. Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields

    PubMed Central

    Lee, Christopher M.; Osman, Ahmad F.; Volgushev, Maxim; Escabí, Monty A.

    2016-01-01

    Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences. Spike rate, relative synchrony, and first-spike latency metrics have previously been used to quantify neural sensitivities to temporal sound cues; however, such metrics do not measure absolute spike timing of sustained responses to sound shape. To address this, in this study we quantify two forms of spike-timing precision, jitter, and reliability. In all three fields, we find that jitter decreases logarithmically with increase in the basis spline (B-spline) cutoff frequency used to shape the sound envelope. In contrast, reliability decreases logarithmically with increase in sound envelope modulation frequency. In A1, jitter and reliability vary independently, whereas in ventral cortical fields, jitter and reliability covary. Jitter time scales increase (A1 < VAF < cSRAF) and modulation frequency upper cutoffs decrease (A1 > VAF > cSRAF) with ventral progression from A1. These results suggest a transition from independent encoding of shape and periodicity sound cues on short time scales in A1 to a joint encoding of these same cues on longer time scales in ventral nonprimary cortices. PMID:26843599

  6. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions

    PubMed Central

    Cardin, Velia

    2016-01-01

    Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss. PMID:27242405

  7. Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields.

    PubMed

    Lee, Christopher M; Osman, Ahmad F; Volgushev, Maxim; Escabí, Monty A; Read, Heather L

    2016-04-01

    Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences. Spike rate, relative synchrony, and first-spike latency metrics have previously been used to quantify neural sensitivities to temporal sound cues; however, such metrics do not measure absolute spike timing of sustained responses to sound shape. To address this, in this study we quantify two forms of spike-timing precision, jitter, and reliability. In all three fields, we find that jitter decreases logarithmically with increase in the basis spline (B-spline) cutoff frequency used to shape the sound envelope. In contrast, reliability decreases logarithmically with increase in sound envelope modulation frequency. In A1, jitter and reliability vary independently, whereas in ventral cortical fields, jitter and reliability covary. Jitter time scales increase (A1 < VAF < cSRAF) and modulation frequency upper cutoffs decrease (A1 > VAF > cSRAF) with ventral progression from A1. These results suggest a transition from independent encoding of shape and periodicity sound cues on short time scales in A1 to a joint encoding of these same cues on longer time scales in ventral nonprimary cortices.

  8. Cortical Inhibition Reduces Information Redundancy at Presentation of Communication Sounds in the Primary Auditory Cortex

    PubMed Central

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris

    2013-01-01

    In all sensory modalities, intracortical inhibition shapes the functional properties of cortical neurons but also influences the responses to natural stimuli. Studies performed in various species have revealed that auditory cortex neurons respond to conspecific vocalizations by temporal spike patterns displaying a high trial-to-trial reliability, which might result from precise timing between excitation and inhibition. Studying the guinea pig auditory cortex, we show that partial blockage of GABAA receptors by gabazine (GBZ) application (10 μm, a concentration that promotes expansion of cortical receptive fields) increased the evoked firing rate and the spike-timing reliability during presentation of communication sounds (conspecific and heterospecific vocalizations), whereas GABAB receptor antagonists [10 μm saclofen; 10–50 μm CGP55845 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid)] had nonsignificant effects. Computing mutual information (MI) from the responses to vocalizations using either the evoked firing rate or the temporal spike patterns revealed that GBZ application increased the MI derived from the activity of single cortical site but did not change the MI derived from population activity. In addition, quantification of information redundancy showed that GBZ significantly increased redundancy at the population level. This result suggests that a potential role of intracortical inhibition is to reduce information redundancy during the processing of natural stimuli. PMID:23804094

  9. The use of cortical auditory evoked potentials to evaluate neural encoding of speech sounds in adults.

    PubMed

    Agung, Katrina; Purdy, Suzanne C; McMahon, Catherine M; Newall, Philip

    2006-09-01

    There has been considerable recent interest in the use of cortical auditory evoked potentials (CAEPs) as an electrophysiological measure of human speech encoding in individuals with normal as well as impaired auditory systems. The development of such electrophysiological measures such as CAEPs is important because they can be used to evaluate the benefits of hearing aids and cochlear implants in infants, young children, and adults that cannot cooperate for behavioral speech discrimination testing. The current study determined whether CAEPs produced by seven different speech sounds, which together cover a broad range of frequencies across the speech spectrum, could be differentiated from each other based on response latency and amplitude measures. CAEPs were recorded from ten adults with normal hearing in response to speech stimuli presented at a conversational level (65 dB SPL) via a loudspeaker. Cortical responses were reliably elicited by each of the speech sounds in all participants. CAEPs produced by speech sounds dominated by high-frequency energy were significantly different in amplitude from CAEPs produced by sounds dominated by lower-frequency energy. Significant effects of stimulus duration were also observed, with shorter duration stimuli producing larger amplitudes and earlier latencies than longer duration stimuli. This research demonstrates that CAEPs can be reliably evoked by sounds that encompass the entire speech frequency range. Further, CAEP latencies and amplitudes may provide an objective indication that spectrally different speech sounds are encoded differently at the cortical level.

  10. Online Stimulus Optimization Rapidly Reveals Multidimensional Selectivity in Auditory Cortical Neurons

    PubMed Central

    Hancock, Kenneth E.; Sen, Kamal

    2014-01-01

    Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory object. At higher levels of a sensory pathway, neurons may select for a restricted region of feature space defined by the intersection of multiple, independent stimulus dimensions. To further characterize how auditory cortical neurons decompose and integrate multiple facets of an isolated sound, we developed an automated procedure that manipulated five fundamental acoustic properties in real time based on single-unit feedback in awake mice. Within several minutes, the online approach converged on regions of the multidimensional stimulus manifold that reliably drove neurons at significantly higher rates than predefined stimuli. Optimized stimuli were cross-validated against pure tone receptive fields and spectrotemporal receptive field estimates in the inferior colliculus and primary auditory cortex. We observed, from midbrain to cortex, increases in both level invariance and frequency selectivity, which may underlie equivalent sparseness of responses in the two areas. We found that onset and steady-state spike rates increased proportionately as the stimulus was tailored to the multidimensional receptive field. By separately evaluating the amount of leverage each sound feature exerted on the overall firing rate, these findings reveal interdependencies between stimulus features as well as hierarchical shifts in selectivity and invariance that may go unnoticed with traditional approaches. PMID:24990917

  11. Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Potentials.

    PubMed

    O'Brien, Jennifer L; Nikjeh, Dee A; Lister, Jennifer J

    2015-01-01

    The goal of this study was to begin to explore whether the beneficial auditory neural effects of early music training persist throughout life and influence age-related changes in neurophysiological processing of sound. Cortical auditory evoked potentials (CAEPs) elicited by harmonic tone complexes were examined, including P1-N1-P2, mismatch negativity (MMN), and P3a. Data from older adult musicians (n = 8) and nonmusicians (n = 8) (ages 55-70 years) were compared to previous data from young adult musicians (n = 40) and nonmusicians (n = 20) (ages 18-33 years). P1-N1-P2 amplitudes and latencies did not differ between older adult musicians and nonmusicians; however, MMN and P3a latencies for harmonic tone deviances were earlier for older musicians than older nonmusicians. Comparisons of P1-N1-P2, MMN, and P3a components between older and young adult musicians and nonmusicians suggest that P1 and P2 latencies are significantly affected by age, but not musicianship, while MMN and P3a appear to be more sensitive to effects of musicianship than aging. Findings support beneficial influences of musicianship on central auditory function and suggest a positive interaction between aging and musicianship on the auditory neural system.

  12. Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.

    PubMed

    Chambers, Anna R; Hancock, Kenneth E; Sen, Kamal; Polley, Daniel B

    2014-07-02

    Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory object. At higher levels of a sensory pathway, neurons may select for a restricted region of feature space defined by the intersection of multiple, independent stimulus dimensions. To further characterize how auditory cortical neurons decompose and integrate multiple facets of an isolated sound, we developed an automated procedure that manipulated five fundamental acoustic properties in real time based on single-unit feedback in awake mice. Within several minutes, the online approach converged on regions of the multidimensional stimulus manifold that reliably drove neurons at significantly higher rates than predefined stimuli. Optimized stimuli were cross-validated against pure tone receptive fields and spectrotemporal receptive field estimates in the inferior colliculus and primary auditory cortex. We observed, from midbrain to cortex, increases in both level invariance and frequency selectivity, which may underlie equivalent sparseness of responses in the two areas. We found that onset and steady-state spike rates increased proportionately as the stimulus was tailored to the multidimensional receptive field. By separately evaluating the amount of leverage each sound feature exerted on the overall firing rate, these findings reveal interdependencies between stimulus features as well as hierarchical shifts in selectivity and invariance that may go unnoticed with traditional approaches.

  13. Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices

    NASA Astrophysics Data System (ADS)

    Kotilahti, Kalle; Nissila, Ilkka; Makela, Riikka; Noponen, Tommi; Lipiainen, Lauri; Gavrielides, Nasia; Kajava, Timo; Huotilainen, Minna; Fellman, Vineta; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42+/-1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76+/- 0.38 μ M (mean+/-std.) and to the speech stimuli 1.00+/- 0.45 μ+/- μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29+/- 0.85 μM to the music stimuli and 1.23+/- 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found.

  14. A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls

    PubMed Central

    Lin, Frank G.; Galindo-Leon, Edgar E.; Ivanova, Tamara N.; Mappus, Rudolph C.; Liu, Robert C.

    2013-01-01

    A growing interest in sensory system plasticity in the natural context of motherhood has created the need to investigate how intrinsic physiological state (e.g., hormonal, motivational, etc.) interacts with sensory experience to drive adaptive cortical plasticity for behaviorally relevant stimuli. Using a maternal mouse model of auditory cortical inhibitory plasticity for ultrasonic pup calls, we examined the role of pup care versus maternal physiological state in the long-term retention of this plasticity. Very recent experience caring for pups by Early Cocarers, which are virgins, produced stronger call-evoked lateral-band inhibition in auditory cortex. However, this plasticity was absent when measured post-weaning in Cocarers, even though it was present at the same time point in Mothers, whose pup experience occurred under a maternal physiological state. A two-alternative choice phonotaxis task revealed that the same animal groups (Early Cocarers and Mothers) demonstrating stronger lateral-band inhibition also preferred pup calls over a neutral sound, a correlation consistent with the hypothesis that this inhibitory mechanism may play a mnemonic role and is engaged to process sounds that are particularly salient. Our electrophysiological data hints at a possible mechanism through which the maternal physiological state may act to preserve the cortical plasticity: selectively suppressing detrimental spontaneous activity in neurons that are responsive to calls, an effect observed only in Mothers. Taken together, the maternal physiological state during the care of pups may help maintain the memory trace of behaviorally salient infant cues within core auditory cortex, potentially ensuring a more rapid induction of future maternal behavior. PMID:23707982

  15. Congruent Visual Speech Enhances Cortical Entrainment to Continuous Auditory Speech in Noise-Free Conditions.

    PubMed

    Crosse, Michael J; Butler, John S; Lalor, Edmund C

    2015-10-21

    Congruent audiovisual speech enhances our ability to comprehend a speaker, even in noise-free conditions. When incongruent auditory and visual information is presented concurrently, it can hinder a listener's perception and even cause him or her to perceive information that was not presented in either modality. Efforts to investigate the neural basis of these effects have often focused on the special case of discrete audiovisual syllables that are spatially and temporally congruent, with less work done on the case of natural, continuous speech. Recent electrophysiological studies have demonstrated that cortical response measures to continuous auditory speech can be easily obtained using multivariate analysis methods. Here, we apply such methods to the case of audiovisual speech and, importantly, present a novel framework for indexing multisensory integration in the context of continuous speech. Specifically, we examine how the temporal and contextual congruency of ongoing audiovisual speech affects the cortical encoding of the speech envelope in humans using electroencephalography. We demonstrate that the cortical representation of the speech envelope is enhanced by the presentation of congruent audiovisual speech in noise-free conditions. Furthermore, we show that this is likely attributable to the contribution of neural generators that are not particularly active during unimodal stimulation and that it is most prominent at the temporal scale corresponding to syllabic rate (2-6 Hz). Finally, our data suggest that neural entrainment to the speech envelope is inhibited when the auditory and visual streams are incongruent both temporally and contextually. Seeing a speaker's face as he or she talks can greatly help in understanding what the speaker is saying. This is because the speaker's facial movements relay information about what the speaker is saying, but also, importantly, when the speaker is saying it. Studying how the brain uses this timing relationship to

  16. The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants.

    PubMed

    Golding, Maryanne; Pearce, Wendy; Seymour, John; Cooper, Alison; Ching, Teresa; Dillon, Harvey

    2007-02-01

    Finding ways to evaluate the success of hearing aid fittings in young infants has increased in importance with the implementation of hearing screening programs. Cortical auditory evoked potentials (CAEP) can be recorded in infants and provides evidence for speech detection at the cortical level. The validity of this technique as a tool of hearing aid evaluation needs, however, to be demonstrated. The present study examined the relationship between the presence/absence of CAEPs to speech stimuli and the outcomes of a parental questionnaire in young infants who were fitted with hearing aids. The presence/absence of responses was determined by an experienced examiner as well as by a statistical measure, Hotelling's T(2). A statistically significant correlation between CAEPs and questionnaire scores was found using the examiner's grading (rs = 0.45) and using the statistical grading (rs = 0.41), and there was reasonably good agreement between traditional response detection methods and the statistical analysis.

  17. Cortical processing of speech sounds and their analogues in a spatial auditory environment.

    PubMed

    Palomäki, Kalle J; Tiitinen, Hannu; Mäkinen, Ville; May, Patrick; Alku, Paavo

    2002-08-01

    We used magnetoencephalographic (MEG) measurements to study how speech sounds presented in a realistic spatial sound environment are processed in human cortex. A spatial sound environment was created by utilizing head-related transfer functions (HRTFs), and using a vowel, a pseudo-vowel, and a wide-band noise burst as stimuli. The behaviour of the most prominent auditory response, the cortically generated N1m, was investigated above the left and right hemisphere. We found that the N1m responses elicited by the vowel and by the pseudo-vowel were much larger in amplitude than those evoked by the noise burst. Corroborating previous observations, we also found that cortical activity reflecting the processing of spatial sound was more pronounced in the right than in the left hemisphere for all of the stimulus types and that both hemispheres exhibited contralateral tuning to sound direction.

  18. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.

    PubMed

    Kimura, A; Imbe, H; Donishi, T

    2010-04-14

    In the rat cortex, the two non-primary auditory areas, posterodorsal and ventral auditory areas, may constitute the two streams of auditory processing in their distinct projections to the posterior parietal and insular cortices. The posterior parietal cortex is considered crucial for auditory spatial processing and directed attention, while possible auditory function of the insular cortex is largely unclear. In this study, we electrophysiologically delineated an auditory area in the caudal part of the granular insular cortex (insular auditory area, IA) and examined efferent connections of IA with anterograde tracer biocytin to deduce the functional significance of IA. IA projected to the rostral agranular insular cortex, a component of the lateral prefrontal cortex. IA also projected to the adjacent dysgranular insular cortex and the caudal agranular insular cortex and sent feedback projections to cortical layer I of the primary and secondary somatosensory areas. Corticofugal projections terminated in auditory, somatosensory and visceral thalamic nuclei, and the bottom of the thalamic reticular nucleus that could overlap the visceral sector. The ventral part of the caudate putamen, the external cortex of the inferior colliculus and the central amygdaloid nucleus were also the main targets. IA exhibited neural response to transcutaneous electrical stimulation of the forepaw in addition to acoustic stimulation (noise bursts and pure tones). The results suggest that IA subserves diverse functions associated with somatosensory, nociceptive and visceral processing that may underlie sound-driven emotional and autonomic responses. IA, being potentially involved in such extensive cross-modal sensory interactions, could also be an important anatomical node of auditory processing linked to higher neural processing in the prefrontal cortex.

  19. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.

    PubMed

    Haber, Suzanne N; Kim, Ki-Sok; Mailly, Philippe; Calzavara, Roberta

    2006-08-09

    The anterior cingulate and orbital cortices and the ventral striatum process different aspects of reward evaluation, whereas the dorsolateral prefrontal cortex and the dorsal striatum are involved in cognitive function. Collectively, these areas are critical to decision making. We mapped the striatal area that receives information about reward evaluation. We also explored the extent to which terminals from reward-related cortical areas converge in the striatum with those from cognitive regions. Using three-dimensional-rendered reconstructions of corticostriatal projection fields along with two-dimensional chartings, we demonstrate the reward and cognitive territories in the primate striatum and show the convergence between these cortical inputs. The results show two labeling patterns: a focal projection field that consists of densely distributed terminal patches, and a diffuse projection consisting of clusters of fibers, extending throughout a wide area of the striatum. Together, these projection fields demonstrate a remarkably large, rostral, reward-related striatal territory that reaches into the dorsal striatum. Fibers from different reward-processing and cognitive cortical areas occupy both separate and converging territories. Furthermore, the diffuse projection may serve a separate integrative function by broadly disseminating general cortical activity. These findings show that the rostral striatum is in a unique position to mediate different aspects of incentive learning. Furthermore, areas of convergence may be particularly sensitive to dopamine modulation during decision making and habit formation.

  20. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise.

    PubMed

    Baltzell, Lucas S; Billings, Curtis J

    2014-02-01

    The purpose of this study was to determine the effects of SNR and signal level on the offset response of the cortical auditory evoked potential (CAEP). Successful listening often depends on how well the auditory system can extract target signals from competing background noise. Both signal onsets and offsets are encoded neurally and contribute to successful listening in noise. Neural onset responses to signals in noise demonstrate a strong sensitivity to signal-to-noise ratio (SNR) rather than signal level; however, the sensitivity of neural offset responses to these cues is not known. We analyzed the offset response from two previously published datasets for which only the onset response was reported. For both datasets, CAEPs were recorded from young normal-hearing adults in response to a 1000-Hz tone. For the first dataset, tones were presented at seven different signal levels without background noise, while the second dataset varied both signal level and SNR. Offset responses demonstrated sensitivity to absolute signal level in quiet, SNR, and to absolute signal level in noise. Offset sensitivity to signal level when presented in noise contrasts with previously published onset results. This sensitivity suggests a potential clinical measure of cortical encoding of signal level in noise.

  1. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1975-01-01

    Cortical-evoked potentials were recorded from human subjects performing an auditory detection task with confidence rating responses. Unlike earlier studies that used similar procedures, the observation interval during which the auditory signal could occur was clearly marked by a visual cue light. By precisely defining the observation interval and, hence, synchronizing all perceptual decisions to the evoked potential averaging epoch, it was possible to demonstrate that high-confidence false alarms are accompanied by late-positive P3 components equivalent to those for equally confident hits. Moreover the hit and false alarm evoked potentials were found to covary similarly with variations in confidence rating and to have similar amplitude distributions over the scalp. In a second experiment, it was demonstrated that correct rejections can be associated with a P3 component larger than that for hits. Thus it was possible to show, within the signal detection paradigm, how the two major factors of decision confidence and expectancy are reflected in the P3 component of the cortical-evoked potential.

  2. Environmental Acoustic Enrichment Promotes Recovery from Developmentally Degraded Auditory Cortical Processing

    PubMed Central

    Zhu, Xiaoqing; Wang, Fang; Hu, Huifang; Sun, Xinde; Kilgard, Michael P.; Merzenich, Michael M.

    2014-01-01

    It has previously been shown that environmental enrichment can enhance structural plasticity in the brain and thereby improve cognitive and behavioral function. In this study, we reared developmentally noise-exposed rats in an acoustic-enriched environment for ∼4 weeks to investigate whether or not enrichment could restore developmentally degraded behavioral and neuronal processing of sound frequency. We found that noise-exposed rats had significantly elevated sound frequency discrimination thresholds compared with age-matched naive rats. Environmental acoustic enrichment nearly restored to normal the behavioral deficit resulting from early disrupted acoustic inputs. Signs of both degraded frequency selectivity of neurons as measured by the bandwidth of frequency tuning curves and decreased long-term potentiation of field potentials recorded in the primary auditory cortex of these noise-exposed rats also were reversed partially. The observed behavioral and physiological effects induced by enrichment were accompanied by recovery of cortical expressions of certain NMDA and GABAA receptor subunits and brain-derived neurotrophic factor. These studies in a rodent model show that environmental acoustic enrichment promotes recovery from early noise-induced auditory cortical dysfunction and indicate a therapeutic potential of this noninvasive approach for normalizing neurological function from pathologies that cause hearing and associated language impairments in older children and adults. PMID:24741032

  3. Effects of acute nicotine on auditory change-related cortical responses.

    PubMed

    Otsuru, Naofumi; Tsuruhara, Aki; Motomura, Eishi; Tanii, Hisashi; Nishihara, Makoto; Inui, Koji; Kakigi, Ryusuke

    2012-11-01

    Nicotine is known to have enhancing effects on some aspects of attention and cognition. The purpose of the present study was to elucidate the effects of nicotine on pre-attentive change-related cortical activity. Change-related cortical activity in response to an abrupt increase (3 dB) and decrease (6 dB) in sound pressure in a continuous sound was recorded by using magnetoencephalography. Nicotine was administered with a nicotine gum (4 mg of nicotine). Eleven healthy nonsmokers were tested with a double-blind and placebo-controlled design. Effects of nicotine on the main component of the onset response peaking at around 50 ms (P50m) and the main component of the change-related response at around 120 ms (Change-N1m) were investigated. Nicotine failed to affect P50m, while it significantly increased the amplitude of Change-N1m evoked by both auditory changes. The magnitude of the amplitude increase was similar among subjects regardless of the magnitude of the baseline response, which resulted in the percent increase of Change-N1m being greater for subjects with Change-N1m of smaller amplitude. Since Change-N1m represents a pre-attentive automatic process to encode new auditory events, the present results suggest that nicotine can exert beneficial cognitive effects without a direct impact on attention.

  4. Spike Time-Dependent Plasticity Induced by Intra-Cortical Microstimulation in the Auditory Cortex

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirokazu; Yokota, Ryo; Suzrikawa, Jun; Kanzaki, Ryohei

    Intrinsic plastic properties in the auditory cortex can cause dynamic remodeling of the functional organization according to trainings. Neurorehabilitation will therefore potentially benefit from electrical stimulation that can modify synaptic strength as desired. Here we show that the auditory cortex of rats can be modified by intracortical microstimulation (ICMS) associated with tone stimuli on the basis of the spike time-dependent plasticity (STDP). Two kinds of ICMS were applied; a pairing ICMS following a tone-induced excitatory synaptic input and an anti-paring ICMS preceding a tone-induced input. The pairing and anti-pairing ICMS produced potentiation and depression, respectively, in responses to the paired tones with a particular test frequency, and thereby modified the tuning property of the auditory cortical neurons. In addition, we demonstrated that our experimental setup has a potential to directly measure how anesthetic agents and pharmacological manipulation affect ICMS-induced plasticity, and thus will serve as a powerful platform to investigate the neural basis of the plasticity.

  5. Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia

    PubMed Central

    Rissling, Anthony J.; Miyakoshi, Makoto; Sugar, Catherine A.; Braff, David L.; Makeig, Scott; Light, Gregory A.

    2014-01-01

    Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. PMID:25379456

  6. Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns.

    PubMed

    Bonte, Milene; Hausfeld, Lars; Scharke, Wolfgang; Valente, Giancarlo; Formisano, Elia

    2014-03-26

    Selective attention to relevant sound properties is essential for everyday listening situations. It enables the formation of different perceptual representations of the same acoustic input and is at the basis of flexible and goal-dependent behavior. Here, we investigated the role of the human auditory cortex in forming behavior-dependent representations of sounds. We used single-trial fMRI and analyzed cortical responses collected while subjects listened to the same speech sounds (vowels /a/, /i/, and /u/) spoken by different speakers (boy, girl, male) and performed a delayed-match-to-sample task on either speech sound or speaker identity. Univariate analyses showed a task-specific activation increase in the right superior temporal gyrus/sulcus (STG/STS) during speaker categorization and in the right posterior temporal cortex during vowel categorization. Beyond regional differences in activation levels, multivariate classification of single trial responses demonstrated that the success with which single speakers and vowels can be decoded from auditory cortical activation patterns depends on task demands and subject's behavioral performance. Speaker/vowel classification relied on distinct but overlapping regions across the (right) mid-anterior STG/STS (speakers) and bilateral mid-posterior STG/STS (vowels), as well as the superior temporal plane including Heschl's gyrus/sulcus. The task dependency of speaker/vowel classification demonstrates that the informative fMRI response patterns reflect the top-down enhancement of behaviorally relevant sound representations. Furthermore, our findings suggest that successful selection, processing, and retention of task-relevant sound properties relies on the joint encoding of information across early and higher-order regions of the auditory cortex.

  7. Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch

    PubMed Central

    Lee, Adrian K. C.; Rajaram, Siddharth; Xia, Jing; Bharadwaj, Hari; Larson, Eric; Hämäläinen, Matti S.; Shinn-Cunningham, Barbara G.

    2012-01-01

    In order to extract information in a rich environment, we focus on different features that allow us to direct attention to whatever source is of interest. The cortical network deployed during spatial attention, especially in vision, is well characterized. For example, visuospatial attention engages a frontoparietal network including the frontal eye fields (FEFs), which modulate activity in visual sensory areas to enhance the representation of an attended visual object. However, relatively little is known about the neural circuitry controlling attention directed to non-spatial features, or to auditory objects or features (either spatial or non-spatial). Here, using combined magnetoencephalography (MEG) and anatomical information obtained from MRI, we contrasted cortical activity when observers attended to different auditory features given the same acoustic mixture of two simultaneous spoken digits. Leveraging the fine temporal resolution of MEG, we establish that activity in left FEF is enhanced both prior to and throughout the auditory stimulus when listeners direct auditory attention to target location compared to when they focus on target pitch. In contrast, activity in the left posterior superior temporal sulcus (STS), a region previously associated with auditory pitch categorization, is greater when listeners direct attention to target pitch rather than target location. This differential enhancement is only significant after observers are instructed which cue to attend, but before the acoustic stimuli begin. We therefore argue that left FEF participates more strongly in directing auditory spatial attention, while the left STS aids auditory object selection based on the non-spatial acoustic feature of pitch. PMID:23335874

  8. Thalamic stimulation largely elicits orthodromic, rather than antidromic, cortical activation in an auditory thalamocortical slice.

    PubMed

    Rose, H J; Metherate, R

    2001-01-01

    Stimulation of the medial geniculate body in an auditory thalamocortical slice elicits a short-latency current sink in the middle cortical layers, as would be expected following activation of thalamocortical relay neurons. However, corticothalamic neurons can have axon collaterals that project to the middle layers, thus, a middle-layer current sink could also result from antidromic activation of corticothalamic neurons and their axon collaterals. The likelihood of thalamic stimulation activating corticothalamic neurons would be reduced substantially if the corticothalamic pathway was not well preserved in the slice, and/or if the threshold for antidromic activation was significantly higher than for orthodromic activation. To determine the prevalence and threshold of antidromic activation, we recorded intracellularly from day 14-17 mouse brain slices containing infragranular cortical neurons while stimulating the medial geniculate or thalamocortical pathway. Antidromic spikes were confirmed by spike collision and characterized according to spike latency "jitter" and the ability to follow a high-frequency (100 Hz) stimulus train. The ability to follow a 100-Hz tetanus was a reliable indicator of antidromic activation, but both antidromic and orthodromic spikes could have low jitter. Thalamic stimulation produced antidromic activation in two of 69 infragranular cortical neurons (<3%), indicating the presence of antidromic activity, but implying a limited corticothalamic connection in the slice. Antidromic spikes in 13 additional neurons were obtained by stimulating axons in the thalamocortical pathway. The antidromic threshold averaged 214+/-40.6 microA (range 6-475 microA), over seven times the orthodromic threshold for medial geniculate-evoked responses in layer IV extracellular (28+/-5.4 microA) or intracellular (27+/-5.6 microA) recordings. We conclude that medial geniculate stimulation activates relatively few corticothalamic neurons. Conversely, low

  9. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.

    PubMed

    Willmore, Ben D B; Schoppe, Oliver; King, Andrew J; Schnupp, Jan W H; Harper, Nicol S

    2016-01-13

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear-nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free

  10. Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence.

    PubMed

    Coffey, Emily B J; Musacchia, Gabriella; Zatorre, Robert J

    2017-01-25

    The frequency-following response (FFR) is a measure of the brain's periodic sound encoding. It is of increasing importance for studying the human auditory nervous system due to numerous associations with auditory cognition and dysfunction. Although the FFR is widely interpreted as originating from brainstem nuclei, a recent study using MEG suggested that there is also a right-lateralized contribution from the auditory cortex at the fundamental frequency (Coffey et al., 2016b). Our objectives in the present work were to validate and better localize this result using a completely different neuroimaging modality and to document the relationships between the FFR, the onset response, and cortical activity. Using a combination of EEG, fMRI, and diffusion-weighted imaging, we show that activity in the right auditory cortex is related to individual differences in FFR-fundamental frequency (f0) strength, a finding that was replicated with two independent stimulus sets, with and without acoustic energy at the fundamental frequency. We demonstrate a dissociation between this FFR-f0-sensitive response in the right and an area in left auditory cortex that is sensitive to individual differences in the timing of initial response to sound onset. Relationships to timing and their lateralization are supported by parallels in the microstructure of the underlying white matter, implicating a mechanism involving neural conduction efficiency. These data confirm that the FFR has a cortical contribution and suggest ways in which auditory neuroscience may be advanced by connecting early sound representation to measures of higher-level sound processing and cognitive function. The frequency-following response (FFR) is an EEG signal that is used to explore how the auditory system encodes temporal regularities in sound and is related to differences in auditory function between individuals. It is known that brainstem nuclei contribute to the FFR, but recent findings of an additional cortical

  11. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  12. Auditory processing disorder in patients with language-learning impairment and correlation with malformation of cortical development.

    PubMed

    Boscariol, Mirela; Guimarães, Catarina Abraão; Hage, Simone R de Vasconcellos; Garcia, Vera Lucia; Schmutzler, Kátia M R; Cendes, Fernando; Guerreiro, Marilisa Mantovani

    2011-11-01

    Malformations of cortical development have been described in children and families with language-learning impairment. The objective of this study was to assess the auditory processing information in children with language-learning impairment in the presence or absence of a malformation of cortical development in the auditory processing areas. We selected 32 children (19 males), aged eight to 15 years, divided into three groups: Group I comprised 11 children with language-learning impairment and bilateral perisylvian polymicrogyria, Group II comprised 10 children with language-learning impairment and normal MRI, and Group III comprised 11 normal children. Behavioral auditory tests, such as the Random Gap Detection Test and Digits Dichotic Test were performed. Statistical analysis was performed using the Kruskal-Wallis test and Mann-Whitney test, with a level of significance of 0.05. The results revealed a statistically significant difference among the groups. Our data showed abnormalities in auditory processing of children in Groups I and II when compared with the control group, with children in Group I being more affected than children in Group II. Our data showed that the presence of a cortical malformation correlates with a worse performance in some tasks of auditory processing function.

  13. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    PubMed

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  14. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates

    PubMed Central

    Feingold, Joseph; Desrochers, Theresa M.; Fujii, Naotaka; Harlan, Ray; Tierney, Patrick L.; Shimazu, Hideki; Amemori, Ken-ichi

    2012-01-01

    A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain. PMID:22170970

  15. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  16. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.

    PubMed

    Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K

    2012-04-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models.

  17. Synaptic Properties of Connections between the Primary and Secondary Auditory Cortices in Mice

    PubMed Central

    Sherman, S. Murray

    2011-01-01

    Little is known regarding the synaptic properties of corticocortical connections from one cortical area to another. To expand on this knowledge, we assessed the synaptic properties of excitatory projections from the primary to secondary auditory cortex and vice versa. We identified 2 types of postsynaptic responses. The first class of responses have larger initial excitatory postsynaptic potentials (EPSPs), exhibit paired-pulse depression, are limited to ionotropic glutamate receptor activation, and have larger synaptic terminals; the second has smaller initial EPSPs, paired-pulse facilitation, metabotropic glutamate receptor activation, and smaller synaptic terminals. These responses are similar to the driver and modulator properties previously identified for thalamic and thalamocortical circuitry, suggesting that the same classification may extend to corticocortical inputs and have an implication for the functional organization of corticocortical circuits. PMID:21385835

  18. Learning strategy trumps motivational level in determining learning-induced auditory cortical plasticity.

    PubMed

    Bieszczad, Kasia M; Weinberger, Norman M

    2010-02-01

    Associative memory for auditory-cued events involves specific plasticity in the primary auditory cortex (A1) that facilitates responses to tones which gain behavioral significance, by modifying representational parameters of sensory coding. Learning strategy, rather than the amount or content of learning, can determine this learning-induced cortical (high order) associative representational plasticity (HARP). Thus, tone-contingent learning with signaled errors can be accomplished either by (1) responding only during tone duration ("tone-duration" strategy, T-Dur), or (2) responding from tone onset until receiving an error signal for responses made immediately after tone offset ("tone-onset-to-error", TOTE). While rats using both strategies achieve the same high level of performance, only those using the TOTE strategy develop HARP, viz., frequency-specific decreased threshold (increased sensitivity) and decreased bandwidth (increased selectivity) (Berlau & Weinberger, 2008). The present study challenged the generality of learning strategy by determining if high motivation dominates in the formation of HARP. Two groups of adult male rats were trained to bar-press during a 5.0kHz (10s, 70dB) tone for a water reward under either high (HiMot) or moderate (ModMot) levels of motivation. The HiMot group achieved a higher level of correct performance. However, terminal mapping of A1 showed that only the ModMot group developed HARP, i.e., increased sensitivity and selectivity in the signal-frequency band. Behavioral analysis revealed that the ModMot group used the TOTE strategy while HiMot subjects used the T-Dur strategy. Thus, type of learning strategy, not level of learning or motivation, is dominant for the formation of cortical plasticity.

  19. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Auditory brain stem response and cortical evoked potentials in children with type 1 diabetes mellitus.

    PubMed

    Radwan, Heba Mohammed; El-Gharib, Amani Mohamed; Erfan, Adel Ali; Emara, Afaf Ahmad

    2017-05-01

    Delay in ABR and CAEPs wave latencies in children with type 1DM indicates that there is abnormality in the neural conduction in DM patients. The duration of DM has greater effect on auditory function than the control of DM. Diabetes mellitus (DM) is a common endocrine and metabolic disorder. Evoked potentials offer the possibility to perform a functional evaluation of neural pathways in the central nervous system. To investigate the effect of type 1 diabetes mellitus (T1DM) on auditory brain stem response (ABR) and cortical evoked potentials (CAEPs). This study included two groups: a control group (GI), which consisted of 20 healthy children with normal peripheral hearing, and a study group (GII), which consisted of 30 children with type I DM. Basic audiological evaluation, ABR, and CAEPs were done in both groups. Delayed absolute latencies of ABR and CAEPs waves were found. Amplitudes showed no significant difference between both groups. Positive correlation was found between ABR wave latencies and duration of DM. No correlation was found between ABR, CAEPs, and glycated hemoglobin.

  1. Cortical Gamma Generators Suggest Abnormal Auditory Circuitry in Early-Onset Psychosis

    PubMed Central

    Wilson, Tony W.; Hernandez, Olivia O.; Asherin, Ryan M.; Teale, Peter D.; Reite, Martin L.; Rojas, Donald C.

    2009-01-01

    Neurobiological theories of schizophrenia and related psychoses have increasingly emphasized impaired neuronal coordination (i.e., dysfunctional connectivity) as central to the pathophysiology. Although neuroimaging evidence has mostly corroborated these accounts, the basic mechanism(s) of reduced functional connectivity remains elusive. In this study, we examine the developmental trajectory and underlying mechanism(s) of dysfunctional connectivity by using gamma oscillatory power as an index of local and long-range circuit integrity. An early-onset psychosis group and a matched cohort of typically-developing adolescents listened to monaurally presented click-trains, as whole-head magnetoencephalography data were acquired. Consistent with previous work, gamma-band power was significantly higher in right auditory cortices across groups and conditions. However, patients exhibited significantly reduced overall gamma power relative to controls, and showed a reduced ear-of-stimulation effect indicating that ipsi-versus contralateral presentation had less impact on hemispheric power. Gamma-frequency oscillations are thought to be dependent on GABA-ergic interneuronal networks, thus these patients’s impairment in generating and/or maintaining such activity may indicate that local circuit integrity is at least partially compromised early in the disease process. In addition, patients also showed abnormality in long-range networks (i.e., ear-of-stimulation effects) potentially suggesting that multiple stages along auditory pathways contribute to connectivity aberrations found in patients with psychosis. PMID:17557901

  2. Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis.

    PubMed

    Wilson, Tony W; Hernandez, Olivia O; Asherin, Ryan M; Teale, Peter D; Reite, Martin L; Rojas, Donald C

    2008-02-01

    Neurobiological theories of schizophrenia and related psychoses have increasingly emphasized impaired neuronal coordination (i.e., dysfunctional connectivity) as central to the pathophysiology. Although neuroimaging evidence has mostly corroborated these accounts, the basic mechanism(s) of reduced functional connectivity remains elusive. In this study, we examine the developmental trajectory and underlying mechanism(s) of dysfunctional connectivity by using gamma oscillatory power as an index of local and long-range circuit integrity. An early-onset psychosis group and a matched cohort of typically developing adolescents listened to monaurally presented click-trains, as whole-head magnetoencephalography data were acquired. Consistent with previous work, gamma-band power was significantly higher in right auditory cortices across groups and conditions. However, patients exhibited significantly reduced overall gamma power relative to controls, and showed a reduced ear-of-stimulation effect indicating that ipsi- versus contralateral presentation had less impact on hemispheric power. Gamma-frequency oscillations are thought to be dependent on gamma-aminobutyric acidergic interneuronal networks, thus these patients' impairment in generating and/or maintaining such activity may indicate that local circuit integrity is at least partially compromised early in the disease process. In addition, patients also showed abnormality in long-range networks (i.e., ear-of-stimulation effects) potentially suggesting that multiple stages along auditory pathways contribute to connectivity aberrations found in patients with psychosis.

  3. Complex Spectral Interactions Encoded by Auditory Cortical Neurons: Relationship Between Bandwidth and Pattern

    PubMed Central

    O'Connor, Kevin N.; Yin, Pingbo; Petkov, Christopher I.; Sutter, Mitchell L.

    2010-01-01

    The focus of most research on auditory cortical neurons has concerned the effects of rather simple stimuli, such as pure tones or broad-band noise, or the modulation of a single acoustic parameter. Extending these findings to feature coding in more complex stimuli such as natural sounds may be difficult, however. Generalizing results from the simple to more complex case may be complicated by non-linear interactions occurring between multiple, simultaneously varying acoustic parameters in complex sounds. To examine this issue in the frequency domain, we performed a parametric study of the effects of two global features, spectral pattern (here ripple frequency) and bandwidth, on primary auditory (A1) neurons in awake macaques. Most neurons were tuned for one or both variables and most also displayed an interaction between bandwidth and pattern implying that their effects were conditional or interdependent. A spectral linear filter model was able to qualitatively reproduce the basic effects and interactions, indicating that a simple neural mechanism may be able to account for these interdependencies. Our results suggest that the behavior of most A1 neurons is likely to depend on multiple parameters, and so most are unlikely to respond independently or invariantly to specific acoustic features. PMID:21152347

  4. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude.

    PubMed

    Martin, B A; Boothroyd, A

    2000-04-01

    The acoustic change complex (ACC) is a scalp-recorded negative-positive voltage swing elicited by a change during an otherwise steady-state sound. The ACC was obtained from eight adults in response to changes of amplitude and/or spectral envelope at the temporal center of a three-formant synthetic vowel lasting 800 ms. In the absence of spectral change, the group mean waveforms showed a clear ACC to amplitude increments of 2 dB or more and decrements of 3 dB or more. In the presence of a change of second formant frequency (from perceived /u/ to perceived /i/), amplitude increments increased the magnitude of the ACC but amplitude decrements had little or no effect. The fact that the just detectable amplitude change is close to the psychoacoustic limits of the auditory system augurs well for the clinical application of the ACC. The failure to find a condition under which the spectrally elicited ACC is diminished by a small change of amplitude supports the conclusion that the observed ACC to a change of spectral envelope reflects some aspect of cortical frequency coding. Taken together, these findings support the potential value of the ACC as an objective index of auditory discrimination capacity.

  5. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    PubMed

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  6. Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Tremblay, Kelly L; Souza, Pamela E; Binns, Malcolm A

    2007-01-01

    Hearing aid amplification can be used as a model for studying the effects of auditory stimulation on the central auditory system (CAS). We examined the effects of stimulus presentation level on the physiological detection of sound in unaided and aided conditions. P1, N1, P2, and N2 cortical evoked potentials were recorded in sound field from 13 normal-hearing young adults in response to a 1000-Hz tone presented at seven stimulus intensity levels. As expected, peak amplitudes increased and peak latencies decreased with increasing intensity for unaided and aided conditions. However, there was no significant effect of amplification on latencies or amplitudes. Taken together, these results demonstrate that 20 dB of hearing aid gain affects neural responses differently than 20 dB of stimulus intensity change. Hearing aid signal processing is discussed as a possible contributor to these results. This study demonstrates (1) the importance of controlling for stimulus intensity when evoking responses in aided conditions, and (2) the need to better understand the interaction between the hearing aid and the CAS.

  7. Active engagement improves primary auditory cortical neurons' ability to discriminate temporal modulation.

    PubMed

    Niwa, Mamiko; Johnson, Jeffrey S; O'Connor, Kevin N; Sutter, Mitchell L

    2012-07-04

    The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measure of how well neurons temporally follow the stimulus' temporal modulation. When data were separated by nonsynchronized and synchronized responses, the firing rate of nonsynchronized responses best distinguished AM- noise from unmodulated noise, followed by VS for synchronized responses, with firing rate for synchronized neurons providing the poorest AM discrimination. Firing rate-based AM discrimination for synchronized neurons, however, improved most with task engagement, showing that the least sensitive code in the passive condition improves the most with task engagement. Rate coding improved due to larger increases in absolute firing rate at higher modulation depths than for lower depths and unmodulated sounds. Relative to spontaneous activity (which increased with engagement), the response to unmodulated sounds decreased substantially. The temporal coding improvement--responses more precisely temporally following a stimulus when animals were required to attend to it--expands the framework of possible mechanisms of attention to include increasing temporal precision of stimulus following. These findings provide a crucial step to understanding the coding of temporal modulation and support a model in which rate and temporal coding work in parallel, permitting a multiplexed code for temporal modulation, and for a complementary representation of rate and temporal coding.

  8. One year of musical training affects development of auditory cortical-evoked fields in young children.

    PubMed

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J

    2006-10-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields showed prominent bilateral P100m, N250m, P320m and N450m peaks. Significant change in the peak latencies of all components except P100m was observed over time. Larger P100m and N450m amplitude as well as more rapid change of N250m amplitude and latency was associated with the violin rather than the noise stimuli. Larger P100m and P320m peak amplitudes in the left hemisphere than in the right are consistent with left-lateralized cortical development in this age group. A clear musical training effect was expressed in a larger and earlier N250m peak in the left hemisphere in response to the violin sound in musically trained children compared with untrained children. This difference coincided with pronounced morphological change in a time window between 100 and 400 ms, which was observed in musically trained children in response to violin stimuli only, whereas in untrained children a similar change was present regardless of stimulus type. This transition could be related to establishing a neural network associated with sound categorization and/or involuntary attention, which can be altered by music learning experience.

  9. Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.

    2014-01-01

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543

  10. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    PubMed Central

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  11. Abnormal auditory cortical activation in dyslexia 100 msec after speech onset.

    PubMed

    Helenius, Päivi; Salmelin, Riitta; Richardson, Ulla; Leinonen, Seija; Lyytinen, Heikki

    2002-05-15

    Reading difficulties are associated with problems in processing and manipulating speech sounds. Dyslexic individuals seem to have, for instance, difficulties in perceiving the length and identity of consonants. Using magnetoencephalography (MEG), we characterized the spatio-temporal pattern of auditory cortical activation in dyslexia evoked by three types of natural bisyllabic pseudowords (/ata/, /atta/, and /a a/), complex nonspeech sound pairs (corresponding to /atta/ and /a a/) and simple 1-kHz tones. The most robust difference between dyslexic and non-reading-impaired adults was seen in the left supratemporal auditory cortex 100 msec after the onset of the vowel /a/. This N100m response was abnormally strong in dyslexic individuals. For the complex nonspeech sounds and tone, the N100m response amplitudes were similar in dyslexic and nonimpaired individuals. The responses evoked by syllable /ta/ of the pseudoword /atta/ also showed modest latency differences between the two subject groups. The responses evoked by the corresponding nonspeech sounds did not differ between the two subject groups. Further, when the initial formant transition, that is, the consonant, was removed from the syllable /ta/, the N100m latency was normal in dyslexic individuals. Thus, it appears that dyslexia is reflected as abnormal activation of the auditory cortex already 100 msec after speech onset, manifested as abnormal response strengths for natural speech and as delays for speech sounds containing rapid frequency transition. These differences between the dyslexic and nonimpaired individuals also imply that the N100m response codes stimulus-specific features likely to be critical for speech perception. Which features of speech (or nonspeech stimuli) are critical in eliciting the abnormally strong N100m response in dyslexic individuals should be resolved in future studies.

  12. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness.

    PubMed

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2015-09-01

    Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.

  13. Neural correlates of short-term memory in primate auditory cortex

    PubMed Central

    Bigelow, James; Rossi, Breein; Poremba, Amy

    2014-01-01

    Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM). Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single- and multi-unit activity was recorded from the primary auditory cortex (A1) of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials) or withheld button presses if they were different (non-match trials). A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to non-match trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP) and prefrontal cortex (PFC) of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top–down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during auditory STM

  14. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  15. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    PubMed

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  16. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  17. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    PubMed

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality.

  18. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    PubMed

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab(®)) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  19. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia.

    PubMed

    Huffaker, Stephen J; Chen, Jingshan; Nicodemus, Kristin K; Sambataro, Fabio; Yang, Feng; Mattay, Venkata; Lipska, Barbara K; Hyde, Thomas M; Song, Jian; Rujescu, Dan; Giegling, Ina; Mayilyan, Karine; Proust, Morgan J; Soghoyan, Armen; Caforio, Grazia; Callicott, Joseph H; Bertolino, Alessandro; Meyer-Lindenberg, Andreas; Chang, Jay; Ji, Yuanyuan; Egan, Michael F; Goldberg, Terry E; Kleinman, Joel E; Lu, Bai; Weinberger, Daniel R

    2009-05-01

    Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5' complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go-related K(+) channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K(+) current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.

  20. Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio).

    PubMed

    Atkinson, Elizabeth G; Rogers, Jeffrey; Mahaney, Michael C; Cox, Laura A; Cheverud, James M

    2015-06-01

    Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical-cortical connectivity, and gyrification's potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.

  1. Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity.

    PubMed

    Balaram, Pooja; Kaas, Jon H

    2014-01-01

    Primary visual cortex (V1) is clearly distinguishable from other cortical areas by its distinctive pattern of neocortical lamination across mammalian species. In some mammals, primates in particular, the layers of V1 are further divided into a number of sublayers based on their anatomical and functional characteristics. While these sublayers are easily recognizable across a range of primates, the exact number of divisions in each layer and their relative position within the depth of V1 has been inconsistently reported, largely due to conflicting schemes of nomenclature for the V1 layers. This conflict centers on the definition of layer 4 in primate V1, and the subdivisions of layer 4 that can be consistently identified across primate species. Brodmann's (1909) laminar scheme for V1 delineates three subdivisions of layer 4 in primates, based on cellular morphology and geniculate inputs in anthropoid monkeys. In contrast, Hässler's (1967) laminar scheme delineates a single layer 4 and multiple subdivisions of layer 3, based on comparisons of V1 lamination across the primate lineage. In order to clarify laminar divisions in primate visual cortex, we performed NeuN and VGLUT2 immunohistochemistry in V1 of chimpanzees, Old World macaque monkeys, New World squirrel, owl, and marmoset monkeys, prosimian galagos and mouse lemurs, and non-primate, but highly visual, tree shrews. By comparing the laminar divisions identified by each method across species, we find that Hässler's (1967) laminar scheme for V1 provides a more consistent representation of neocortical layers across all primates, including humans, and facilitates comparisons of V1 lamination with non-primate species. These findings, along with many others, support the consistent use of Hässler's laminar scheme in V1 research.

  2. Cortical Auditory Evoked Potentials Recorded from Nucleus Hybrid Cochlear Implant Users

    PubMed Central

    Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue; Turner, Christopher; Abbas, Paul

    2015-01-01

    Objective Nucleus Hybrid CI users hear low-frequency sounds via acoustic stimulation and high frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine (1) if the evoked potential measures could predict which programming strategy resulted either in better outcome on the speech perception task or was preferred by the listener, and (2) whether CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. Design CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental MAPs that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal to noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise (SNR-50). Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 “onset” response and the auditory “change” or ACC response. Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Results Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the AAC response was not found to be sensitive enough to

  3. Enhanced auditory evoked activity to self-generated sounds is mediated by primary and supplementary motor cortices.

    PubMed

    Reznik, Daniel; Ossmy, Ori; Mukamel, Roy

    2015-02-04

    Accumulating evidence demonstrates that responses in auditory cortex to auditory consequences of self-generated actions are modified relative to the responses evoked by identical sounds generated by an external source. Such modifications have been suggested to occur through a corollary discharge sent from the motor system, although the exact neuroanatomical origin is unknown. Furthermore, since tactile input has also been shown to modify responses in auditory cortex, it is not even clear whether the source of such modifications is motor output or somatosensory feedback. We recorded functional magnetic resonance imaging (fMRI) data from healthy human subjects (n = 11) while manipulating the rate at which they performed sound-producing actions with their right hand. In addition, we manipulated the amount of tactile feedback to examine the relative roles of motor and somatosensory cortices in modifying evoked activity in auditory cortex (superior temporal gyrus). We found an enhanced fMRI signal in left auditory cortex during perception of self-generated sounds relative to passive listening to identical sounds. Moreover, the signal difference between active and passive conditions in left auditory cortex covaried with the rate of sound-producing actions and was invariant to the amount of tactile feedback. Together with functional connectivity analysis, our results suggest motor output from supplementary motor area and left primary motor cortex as the source of signal modification in auditory cortex during perception of self-generated sounds. Motor signals from these regions could represent a predictive signal of the expected auditory consequences of the performed action.

  4. Pharmaco-MEG evidence for attention related hyper-connectivity between auditory and prefrontal cortices in ADHD

    PubMed Central

    Heinrichs-Graham, Elizabeth; Franzen, John D.; Knott, Nichole L.; White, Matthew L.; Wetzel, Martin W.; Wilson, Tony W.

    2014-01-01

    The ability to attend to particular stimuli while ignoring others is crucial in goal-directed activities and has been linked with prefrontal cortical regions, including the dorsolateral prefrontal cortex (DLPFC). Both hyper- and hypo-activation in the DLPFC has been reported in patients with attention-deficit/hyperactivity disorder (ADHD) during many different cognitive tasks, but the network-level effects of such aberrant activity remain largely unknown. Using magnetoencephalography (MEG), we examined functional connectivity between regions of the DLPFC and the modality-specific auditory cortices during an auditory attention task in medicated and un-medicated adults with ADHD, and those without ADHD. Participants completed an attention task in two separate sessions (medicated/un-medicated), and each session consisted of two blocks (attend and no-attend). All MEG data were coregistered to structural MRI, corrected for head motion, and projected into source space. Subsequently, we computed the phase coherence (i.e., functional connectivity) between DLPFC regions and the auditory cortices. We found that un-medicated adults with ADHD exhibited greater phase coherence in the beta (14–30Hz) and gamma frequency (30–56 Hz) range in attend and no-attend conditions compared to controls. Stimulant medication attenuated these differences, but did not fully eliminate them. These results suggest that aberrant bottom-up processing may engulf executive resources in ADHD. PMID:24495532

  5. Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise.

    PubMed

    Warrier, Catherine M; Johnson, Krista L; Hayes, Erin A; Nicol, Trent; Kraus, Nina

    2004-08-01

    The physiological mechanisms that contribute to abnormal encoding of speech in children with learning problems are yet to be well understood. Furthermore, speech perception problems appear to be particularly exacerbated by background noise in this population. This study compared speech-evoked cortical responses recorded in a noisy background to those recorded in quiet in normal children (NL) and children with learning problems (LP). Timing differences between responses recorded in quiet and in background noise were assessed by cross-correlating the responses with each other. Overall response magnitude was measured with root-mean-square (RMS) amplitude. Cross-correlation scores indicated that 23% of LP children exhibited cortical neural timing abnormalities such that their neurophysiological representation of speech sounds became distorted in the presence of background noise. The latency of the N2 response in noise was isolated as being the root of this distortion. RMS amplitudes in these children did not differ from NL children, indicating that this result was not due to a difference in response magnitude. LP children who participated in a commercial auditory training program and exhibited improved cortical timing also showed improvements in phonological perception. Consequently, auditory pathway timing deficits can be objectively observed in LP children, and auditory training can diminish these deficits.

  6. Cortical auditory-evoked potentials (CAEPs) in adults in response to filtered speech stimuli.

    PubMed

    Carter, Lyndal; Dillon, Harvey; Seymour, John; Seeto, Mark; Van Dun, Bram

    2013-10-01

    Previous studies have demonstrated that cortical auditory-evoked potentials (CAEPs) can be reliably elicited in response to speech stimuli in listeners wearing hearing aids. It is unclear, however, how close to the aided behavioral threshold (i.e., at what behavioral sensation level) a sound must be before a cortical response can reliably be detected. The purpose of this study was to systematically examine the relationship between CAEP detection and the audibility of speech sounds (as measured behaviorally), when the listener is wearing a hearing aid fitted to prescriptive targets. A secondary aim was to investigate whether CAEP detection is affected by varying the frequency emphasis of stimuli, so as to simulate variations to the prescribed gain-frequency response of a hearing aid. The results have direct implications for the evaluation of hearing aid fittings in nonresponsive adult clients, and indirect implications for the evaluation of hearing aid fittings in infants. Participants wore hearing aids while listening to speech sounds presented in a sound field. Aided thresholds were measured, and cortical responses evoked, under a range of stimulus conditions. The presence or absence of CAEPs was determined by an automated statistic. Participants were adults (6 females and 4 males). Participants had sensorineural hearing loss ranging from mild to severe-profound in degree. Participants' own hearing aids were replaced with a test hearing aid, with linear processing, during assessments. Pure-tone thresholds and hearing aid gain measurements were obtained, and a theoretical prediction of speech stimulus audibility for each participant (similar to those used for audibility predictions in infant hearing aid fittings) was calculated. Three speech stimuli, (/m/, /t/, and /g/) were presented aided (monaurally, nontest ear occluded), free field, under three conditions (+4 dB/octave, -4 dB/octave, and without filtering), at levels of 40, 50, and 60 dB SPL (measured for the

  7. Background noise can enhance cortical auditory evoked potentials under certain conditions

    PubMed Central

    Papesh, Melissa A.; Billings, Curtis J.; Baltzell, Lucas S.

    2017-01-01

    Objective To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. Methods CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30 dB. The syllable was presented binaurally and monaurally at two presentation rates. Results The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Conclusions Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Significance Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. PMID:25453611

  8. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults

    PubMed Central

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-01-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  9. A cortical network underpinning the perceptual priority for rising intensity and auditory ``looming.''

    NASA Astrophysics Data System (ADS)

    Neuhoff, John G.; Bilecen, Deniz; Mustovic, Henrietta; Schachinger, Hartmut; Seifritz, Erich; Scheffler, Klaus; di Salle, Francesco

    2002-05-01

    Relative motion between a sound source and a listener creates a change in acoustic intensity that can be used to anticipate the source's approach. Humans have been shown to overestimate the intensity change of rising compared to falling intensity sounds and underestimate the time-to-contact of approaching sound sources. From an evolutionary perspective, this perceptual priority for looming sounds may represent an adaptive advantage that provides an increased margin of safety for responding to approaching auditory objects. Here, using functional magnetic resonance imaging, we show that the prioritization of rising contrasted with falling intensity sine-tones is grounded in a specific neural network. This network is predominantly composed of the superior temporal sulci, the middle temporal gyri, the right temporo-parietal junction, the motor and premotor cortices mainly on the right hemisphere, the left frontal operculum, and the left superior posterior cerebellar cortex. These regions are critical for the allocation of attention, the analysis of space, object recognition, and neurobehavioral preparation for action. Our results identify a widespread neural network underpinning the perceptual priority for looming sounds that can be used in translating sensory information into preparedness for adverse events and appropriate action. [Work supported by the Swiss and the American NSFs.

  10. Regulation of learned vocal behavior by an auditory motor cortical nucleus in juvenile zebra finches.

    PubMed

    Naie, Katja; Hahnloser, Richard H R

    2011-07-01

    In the process of song learning, songbirds such as the zebra finch shape their initial soft and poorly formed vocalizations (subsong) first into variable plastic songs with a discernable recurring motif and then into highly stereotyped adult songs. A premotor brain area critically involved in plastic and adult song production is the cortical nucleus HVC. One of HVC's primary afferents, the nucleus interface of the nidopallium (NIf), provides a significant source of auditory input to HVC. However, the premotor involvement of NIf has not been extensively studied yet. Here we report that brief and reversible pharmacological inactivation of NIf in juvenile birds leads to transient degradation of plastic song toward subsong, as revealed by spectral and temporal song features. No such song degradation is seen following NIf inactivation in adults. However, in both juveniles and adults NIf inactivation leads to a transient decrease in song stereotypy. Our findings reveal a contribution of NIf to song production in juveniles that agrees with its known role in adults in mediating thalamic drive to downstream vocal motor areas during sleep.

  11. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  12. Dynamics of Infant Cortical Auditory Evoked Potentials (CAEPs) for Tone and Speech Tokens

    PubMed Central

    Cone, Barbara; Whitaker, Richard

    2013-01-01

    Objectives Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: 1) further knowledge of auditory development above the level of the brainstem during the first year of life; 2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and to 3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. Design 36 infants, between the ages of 4-12 months (mean= 8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Results Infant CAEP component latencies were prolonged by 100-150 ms in comparison to

  13. Cross-modal recruitment of primary visual cortex by auditory stimuli in the nonhuman primate brain: a molecular mapping study.

    PubMed

    Hirst, Priscilla; Javadi Khomami, Pasha; Gharat, Amol; Zangenehpour, Shahin

    2012-01-01

    Recent studies suggest that exposure to only one component of audiovisual events can lead to cross-modal cortical activation. However, it is not certain whether such crossmodal recruitment can occur in the absence of explicit conditioning, semantic factors, or long-term associations. A recent study demonstrated that crossmodal cortical recruitment can occur even after a brief exposure to bimodal stimuli without semantic association. In addition, the authors showed that the primary visual cortex is under such crossmodal influence. In the present study, we used molecular activity mapping of the immediate early gene zif268. We found that animals, which had previously been exposed to a combination of auditory and visual stimuli, showed increased number of active neurons in the primary visual cortex when presented with sounds alone. As previously implied, this crossmodal activation appears to be the result of implicit associations of the two stimuli, likely driven by their spatiotemporal characteristics; it was observed after a relatively short period of exposure (~45 min) and lasted for a relatively long period after the initial exposure (~1 day). These results suggest that the previously reported findings may be directly rooted in the increased activity of the neurons occupying the primary visual cortex.

  14. Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio)

    PubMed Central

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Mahaney, Michael C.; Cox, Laura A.; Cheverud, James M.

    2015-01-01

    Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution. PMID:25873632

  15. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment.

    PubMed

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  16. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates

    PubMed Central

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit “map” of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber–based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  17. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  18. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex

    PubMed Central

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    We recorded from single neurons of the primary auditory cortex (A1), while trained monkeys reported a decision based on the comparison of 2 acoustic flutter stimuli. Crucially, to form the decision, monkeys had to compare the second stimulus rate to the memory trace of the first stimulus rate. We found that the responses of A1 neurons encode stimulus rates both through their periodicity and through their firing rates during the stimulation periods, but not during the working memory and decision components of this task. Neurometric thresholds based on firing rate were very similar to the monkey's discrimination thresholds, whereas neurometric thresholds based on periodicity were lower than the experimental thresholds. Thus, an observer could solve this task with a precision similar to that of the monkey based only on the firing rates evoked by the stimuli. These results suggest that the A1 is exclusively associated with the sensory and not with the cognitive components of this task. PMID:19458263

  19. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history

    PubMed Central

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-01-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-µm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on the

  20. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history.

    PubMed

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-09-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-microm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on

  1. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1.SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  2. How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices.

    PubMed

    Twomey, Tae; Waters, Dafydd; Price, Cathy J; Evans, Samuel; MacSweeney, Mairéad

    2017-09-27

    To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants.SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was

  3. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power.

    PubMed

    Harris, Kelly C; Vaden, Kenneth I; Dubno, Judy R

    2014-09-01

    The N1-P2 is an obligatory cortical response that can reflect the representation of spectral and temporal characteristics of an auditory stimulus. Traditionally,mean amplitudes and latencies of the prominent peaks in the averaged response are compared across experimental conditions. Analyses of the peaks in the averaged response only reflect a subset of the data contained within the electroencephalogram(EEG) signal. We used single-trial analyses techniques to identify the contribution of brain noise,neural synchrony, and spectral power to the generation of P2 amplitude and how these variables may change across age group. This information is important for appropriate interpretation of event-related potentials (ERPs) results and in understanding of age-related neural pathologies. EEG was measured from 25 younger and 25 older normal hearing adults. Age-related and individual differences in P2 response amplitudes, and variability in brain noise, phase locking value (PLV), and spectral power (4-8 Hz) were assessed from electrode FCz. Model testing and linear regression were used to determine the extent to which brain noise, PLV, and spectral power uniquely predicted P2 amplitudes and varied by age group. Younger adults had significantly larger P2 amplitudes, PLV, and power compared to older adults. Brain noise did not differ between age groups. The results of regression testing revealed that brain noise and PLV, but not spectral power were unique predictors of P2 amplitudes. Model fit was significantly better in younger than in older adults. ERP analyses are intended to provide a better understanding of the underlying neural mechanisms that contribute to individual and group differences in behavior. The current results support that age-related declines in neural synchrony contribute to smaller P2 amplitudes in older normal hearing adults. Based on our results, we discuss potential models in which differences in neural synchrony and brain noise can account for

  4. Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss.

    PubMed

    Fan, Wenliang; Zhang, Wenjuan; Li, Jing; Zhao, Xueyan; Mella, Grace; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong; Xu, Haibo

    2015-12-01

    To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. Prospective case study. Tertiary class A teaching hospital. Thirty-nine patients with left-side unilateral sudden sensorineural hearing loss and 47 patients with right-side unilateral sudden sensorineural hearing loss. Diagnostic. To compare the regional gray matter of unilateral sudden sensorineural hearing loss patients and healthy control participants. Compared with control groups, patients with left side unilateral sudden sensorineural hearing loss had significant gray matter reductions in the right middle temporal gyrus and right superior temporal gyrus, whereas patients with right side unilateral sudden sensorineural hearing loss showed gray matter decreases in the left superior temporal gyrus and left middle temporal gyrus. A significant negative correlation with the duration of the sudden sensorineural hearing loss (R = -0.427, p = 0.012 for left-side unilateral SSNHL and R = -0.412, p = 0.013 for right-side unilateral SSNHL) was also found in these brain areas. There was no region with increased gray matter found in both groups of unilateral sudden sensorineural hearing loss patients. This study confirms that detectable decreased contralateral auditory cortical morphological changes have occurred in unilateral SSNHL patients within the acute period by voxel-based morphometry methods. The gray matter volumes of these brain areas also perform a negative correlation with the duration of the disease, which suggests a gradual brain structural impairment after the progression of the disease.

  5. Effects of Spectral Degradation on Attentional Modulation of Cortical Auditory Responses to Continuous Speech.

    PubMed

    Kong, Ying-Yee; Somarowthu, Ala; Ding, Nai

    2015-12-01

    This study investigates the effect of spectral degradation on cortical speech encoding in complex auditory scenes. Young normal-hearing listeners were simultaneously presented with two speech streams and were instructed to attend to only one of them. The speech mixtures were subjected to noise-channel vocoding to preserve the temporal envelope and degrade the spectral information of speech. Each subject was tested with five spectral resolution conditions (unprocessed speech, 64-, 32-, 16-, and 8-channel vocoder conditions) and two target-to-masker ratio (TMR) conditions (3 and 0 dB). Ongoing electroencephalographic (EEG) responses and speech comprehension were measured in each spectral and TMR condition for each subject. Neural tracking of each speech stream was characterized by cross-correlating the EEG responses with the envelope of each of the simultaneous speech streams at different time lags. Results showed that spectral degradation and TMR both significantly influenced how top-down attention modulated the EEG responses to the attended and unattended speech. That is, the EEG responses to the attended and unattended speech streams differed more for the higher (unprocessed, 64 ch, and 32 ch) than the lower (16 and 8 ch) spectral resolution conditions, as well as for the higher (3 dB) than the lower TMR (0 dB) condition. The magnitude of differential neural modulation responses to the attended and unattended speech streams significantly correlated with speech comprehension scores. These results suggest that severe spectral degradation and low TMR hinder speech stream segregation, making it difficult to employ top-down attention to differentially process different speech streams.

  6. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus.

    PubMed

    Ghazaleh, Naghmeh; Zwaag, Wietske van der; Clarke, Stephanie; Ville, Dimitri Van De; Maire, Raphael; Saenz, Melissa

    2017-02-06

    Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity in the primary auditory cortex. The high spatial resolution afforded by 7 T imaging allowed tonotopic mapping of primary auditory cortex on an individual subject basis. Eleven patients with unilateral hearing loss and tinnitus were compared to normal-hearing controls. Patients showed an over-representation and hyperactivity in a region of the cortical map corresponding to low frequencies sounds, irrespective of the hearing loss and tinnitus range, which in most cases affected higher frequencies. This finding of hyperactivity in low frequency map regions, irrespective of hearing loss range, is consistent with some previous studies in animal models and corroborates a previous study of human tinnitus. Thus these findings contribute to accumulating evidence that gross cortical tonotopic map reorganization is not a causal factor of tinnitus.

  7. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-10-15

    Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the PAF unilaterally, to label cortical and thalamic afferents. Following early deafness, there was a significant decrease in callosal projections from the contralateral PAF. Late-deaf animals showed small-scale changes in projections from one visual cortical area, the posterior ectosylvian field (EPp), and the multisensory zone (MZ). With the exception of these minor differences, connectivity to the PAF was largely similar between groups, with the principle projections arising from the primary auditory cortex (A1) and the ventral division of the medial geniculate body (MGBv). This absence of large-scale connectional change suggests that the functional reorganization that follows sensory loss results from changes in synaptic strength and/or unmasking of subthreshold intermodal connections. J. Comp. Neurol. 524:3042-3063, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Contribution of Inhibition to Stimulus Selectivity in Primary Auditory Cortex of Awake Primates

    PubMed Central

    Sadagopan, Srivatsun

    2010-01-01

    Recent studies have demonstrated the high selectivity of neurons in primary auditory cortex (A1) and a highly sparse representation of sounds by the population of A1 neurons in awake animals. However, the underlying receptive field structures that confer high selectivity on A1 neurons are poorly understood. The sharp tuning of A1 neurons' excitatory receptive fields (RFs) provides a partial explanation of the above properties. However, it remains unclear how inhibitory components of RFs contribute to the selectivity of A1 neurons observed in awake animals. To examine the role of the inhibition in sharpening stimulus selectivity, we have quantitatively analyzed stimulus-induced suppressive effects over populations of single neurons in frequency, amplitude, and time in A1 of awake marmosets. In addition to the well documented short-latency side-band suppression elicited by masking tones around the best frequency (BF) of a neuron, we uncovered long-latency suppressions caused by single-tone stimulation. Such long-latency suppressions also included monotonically increasing suppression with sound level both on-BF and off-BF, and persistent suppression lasting up to 100 ms after stimulus offset in a substantial proportion of A1 neurons. The extent of the suppression depended on the shape of a neuron's frequency-response area (“O” or “V” shaped). These findings suggest that the excitatory RF of A1 neurons is cocooned by wide-ranging inhibition that contributes to the high selectivity in A1 neurons' responses to complex stimuli. Population sparseness of the tone-responsive A1 neuron population may also be a consequence of this pervasive inhibition. PMID:20505098

  9. Predicting the Multisensory Consequences of One’s Own Action: BOLD Suppression in Auditory and Visual Cortices

    PubMed Central

    van Kemenade, Bianca M.; Arikan, B. Ezgi; Fiehler, Katja; Leube, Dirk T.; Harris, Laurence R.; Kircher, Tilo

    2017-01-01

    Predictive mechanisms are essential to successfully interact with the environment and to compensate for delays in the transmission of neural signals. However, whether and how we predict multisensory action outcomes remains largely unknown. Here we investigated the existence of multisensory predictive mechanisms in a context where actions have outcomes in different modalities. During fMRI data acquisition auditory, visual and auditory-visual stimuli were presented in active and passive conditions. In the active condition, a self-initiated button press elicited the stimuli with variable short delays (0-417ms) between action and outcome, and participants had to detect the presence of a delay for auditory or visual outcome (task modality). In the passive condition, stimuli appeared automatically, and participants had to detect the number of stimulus modalities (unimodal/bimodal). For action consequences compared to identical but unpredictable control stimuli we observed suppression of the blood oxygen level depended (BOLD) response in a broad network including bilateral auditory and visual cortices. This effect was independent of task modality or stimulus modality and strongest for trials where no delay was detected (undetected

  10. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity

    PubMed Central

    Meredith, M. Alex; Clemo, H. Ruth; Corley, Sarah B.; Chabot, Nicole; Lomber, Stephen G.

    2016-01-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were ‘unmasked.’ These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  11. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Tim; Ledochowitsch, Peter; Maharabiz, Michel M.; Sabes, Philip N.

    2015-03-01

    Although several studies have shown the feasibility of using optogenetics in non-human primates (NHP), reliable largescale chronic interfaces have not yet been reported for such studies in NHP. Here we introduce a chronic setup that permits repeated, daily optogenetic stimulation and large-scale recording from the same sites in NHP cortex. The setup combines optogenetics with a transparent artificial dura (AD) and high-density micro-electrocorticography (μECoG). To obtain expression across large areas of cortex, we infused AAV5-CamKIIa-C1V1-EYFP viral vector using an infusion technique based on convection-enhanced delivery (CED) in primary somatosensory (S1) and motor (M1) cortices. By epifluorescent imaging through AD we were able to confirm high levels of expression covering about 110 mm2 of S1 and M1. We then incorporated a 192-channel μECoG array spanning 192 mm2 into the AD for simultaneous electrophysiological recording during optical stimulation. The array consists of patterned Pt-Au-Pt metal traces embedded in ~10 μm Parylene-C insulator. The parylene is sufficiently transparent to allow minimally attenuated optical access for optogenetic stimulation. The array was chronically implanted over the opsin-expressing areas in M1 and S1 for over two weeks. Optical stimulation was delivered via a fiber optic placed on the surface of the AD. With this setup, we recorded reliable evoked activity following light stimulation at several locations. Similar responses were recorded across tens of days, however a decline in the light-evoked signal amplitude was observed during this period due to the growth of dural tissue over the array. These results show the feasibility of a chronic interface for combined largescale optogenetic stimulation and cortical recordings across days.

  12. Effects of musical training on the early auditory cortical representation of pitch transitions as indexed by change-N1.

    PubMed

    Itoh, Kosuke; Okumiya-Kanke, Yoko; Nakayama, Yoh; Kwee, Ingrid L; Nakada, Tsutomu

    2012-12-01

    The effects of musical training on the early auditory cortical response to pitch transitions in music were investigated by use of the change-N1 component of auditory event-related potentials. Musicians and non-musicians were presented with music stimuli comprising a melody and a harmony under various listening conditions. First, when the subjects played a video game and were instructed to ignore the auditory stimuli, the onset of stimuli elicited a typical, fronto-central onset-N1, whereas melodic and harmonic pitch transitions within the stimuli elicited so-called change-N1s that were more posterior in scalp distribution. The pitch transition change-N1s, but not onset-N1, were enhanced in musicians. Second, when the listeners attended to the same stimuli as above to detect infrequently occurring target stimuli, the change-N1 elicited by pitch changes (in non-target stimuli) was augmented, in non-musicians only when the target was easily detectable, and in both musicians and non-musicians when it was difficult to detect. Thus, the early, obligatory cortical response to pitch transitions during passive listening was chronically enhanced by training in musicians, and, reflecting this training-induced enhancement, the task-related modulation of this response was also different between musicians and non-musicians. These results are the first to demonstrate the long-term effects of training, short-term effects of task and the effects of their interaction on the early (~100-ms) cortical processing of pitch transitions in music. The scalp distributions of these enhancement effects were generally right dominant at temporal electrode sites, suggesting contributions from the radially oriented subcomponent of change-N1, namely, the Tb (N1c) wave of the T-complex. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  14. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  15. The brain's router: a cortical network model of serial processing in the primate brain.

    PubMed

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R; Dehaene, Stanislas; Sigman, Mariano

    2010-04-29

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.

  16. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet

    PubMed Central

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael

    2016-01-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  17. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  18. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  19. Context-dependent changes in functional connectivity of auditory cortices during the perception of object words.

    PubMed

    van Dam, Wessel O; van Dongen, Eelco V; Bekkering, Harold; Rueschemeyer, Shirley-Ann

    2012-10-01

    Embodied theories hold that cognitive concepts are grounded in our sensorimotor systems. Specifically, a number of behavioral and neuroimaging studies have buttressed the idea that language concepts are represented in areas involved in perception and action [Pulvermueller, F. Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576-582, 2005; Barsalou, L. W. Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-660, 1999]. Proponents of a strong embodied account argue that activity in perception/action areas is triggered automatically upon encountering a word and reflect static semantic representations. In contrast to what would be expected if lexical semantic representations are automatically triggered upon encountering a word, a number of studies failed to find motor-related activity for words with a putative action-semantic component [Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47, 388-396, 2009; Rueschemeyer, S.-A., Brass, M., & Friederici, A. D. Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19, 855-865, 2007]. In a recent fMRI study, Van Dam and colleagues [Van Dam, W. O., Van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, in press] showed that the degree to which a modality-specific region contributes to a representation considerably changes as a function of context. In the current study, we presented words for which both motor and visual properties (e.g., tennis ball, boxing glove) were important in constituting the concept. Our aim was to corroborate on earlier findings of flexible and context-dependent language representations by testing whether functional integration between auditory brain regions and perception/action areas is modulated by context

  20. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d

  1. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    PubMed

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  2. Scalp VEPs and intra-cortical responses to chromatic and achromatic stimuli in primates.

    PubMed

    Kulikowski, J J; Robson, A G; Murray, I J

    2002-09-01

    We propose asimple method of monitoring separate visual pathways inlightly sedated monkeys using chromatic and achromatic gratings of low contrast, which are known to activate predominantly either parvo- or magno-systems. The scalp Visual Evoked Potentials (VEPs) are compared with simultaneously recorded intra-cortical VEPs which in turn are compared with multi-unit and single-unit responses. At isoluminance, the onset of low contrast, coarse chromatic square wave spatial profile gratings generates negative scalp VEPs which exhibit properties consistent with the activation of sustained, parvocellular-chromatic mechanisms (e.g. low-pass spatio-temporal characteristics). In monkeys, most components of chromatic onset VEPs have latencies comparable to neuronal activity within the supragranular layers of V1. Corresponding coarse achromatic gratings elicit positive VEPs which exhibit properties consistent with the activation of transient-type magnocellular mechanisms (e.g. temporal tuning to higher temporal frequencies) and which have a more complex morphology. Achromatic onset VEPs may contain early components of similar timing to activity recorded in monkey V1, but later components cannot be related to V1 generators; other sources are not known. Achromatic reversal VEPs are similar to achromatic onset, chromatic reversal and both chromatic and achromatic offset VEPs and all differ from chromatic onset VEPs. It is observed that early components of scalp-recorded chromatic-onset VEPs are related in time to some intra-cortical potentials. These VEPs are generated by low spatial frequencies and have low pass temporal characteristics. Other scalp potentials, apparently unrelated to V1 field potential activity must be generated by other sources such as extra-striate areas.

  3. The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    PubMed Central

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano

    2010-01-01

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869

  4. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    PubMed Central

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  5. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants.

    PubMed

    Barlow, Nathan; Purdy, Suzanne C; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-02-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs.

  6. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants

    PubMed Central

    Barlow, Nathan; Purdy, Suzanne C.; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-01-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs. PMID:27587925

  7. Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia.

    PubMed

    Shim, Miseon; Kim, Do-Won; Lee, Seung-Hwan; Im, Chang-Hwan

    2014-07-01

    P300 deficits in patients with schizophrenia have previously been investigated using EEGs recorded during auditory oddball tasks. However, small-world cortical functional networks during auditory oddball tasks and their relationships with symptom severity scores in schizophrenia have not yet been investigated. In this study, the small-world characteristics of source-level functional connectivity networks of EEG responses elicited by an auditory oddball paradigm were evaluated using two representative graph-theoretical measures, clustering coefficient and path length. EEG signals from 34 patients with schizophrenia and 34 healthy controls were recorded while each subject was asked to attend to oddball tones. The results showed reduced clustering coefficients and increased path lengths in patients with schizophrenia, suggesting that the small-world functional network is disrupted in patients with schizophrenia. In addition, the negative and cognitive symptom components of positive and negative symptom scales were negatively correlated with the clustering coefficient and positively correlated with path length, demonstrating that both indices are indicators of symptom severity in patients with schizophrenia. Our study results suggest that disrupted small-world characteristics are potential biomarkers for patients with schizophrenia.

  8. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.

    PubMed

    Kuriki, Shinya; Ohta, Keisuke; Koyama, Sachiko

    2007-11-01

    Long-latency auditory-evoked magnetic field and potential show strong attenuation of N1m/N1 responses when an identical stimulus is presented repeatedly due to adaptation of auditory cortical neurons. This adaptation is weak in subsequently occurring P2m/P2 responses, being weaker for piano chords than single piano notes. The adaptation of P2m is more suppressed in musicians having long-term musical training than in nonmusicians, whereas the amplitude of P2 is enhanced preferentially in musicians as the spectral complexity of musical tones increases. To address the key issues of whether such high responsiveness of P2m/P2 responses to complex sounds is intrinsic and common to nonmusical sounds, we conducted a magnetoencephalographic study on participants who had no experience of musical training, using consecutive trains of piano and vowel sounds. The dipole moment of the P2m sources located in the auditory cortex indicated significantly suppressed adaptation in the right hemisphere both to piano and vowel sounds. Thus, the persistent responsiveness of the P2m activity may be inherent, not induced by intensive training, and common to spectrally complex sounds. The right hemisphere dominance of the responsiveness to musical and speech sounds suggests analysis of acoustic features of object sounds to be a significant function of P2m activity.

  9. Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: electrophysiological evidence.

    PubMed

    Folland, Nicole A; Butler, Blake E; Payne, Jennifer E; Trainor, Laurel J

    2015-05-01

    Sound waves emitted by two or more simultaneous sources reach the ear as one complex waveform. Auditory scene analysis involves parsing a complex waveform into separate perceptual representations of the sound sources [Bregman, A. S. Auditory scene analysis: The perceptual organization of sounds. London: MIT Press, 1990]. Harmonicity provides an important cue for auditory scene analysis. Normally, harmonics at integer multiples of a fundamental frequency are perceived as one sound with a pitch corresponding to the fundamental frequency. However, when one harmonic in such a complex, pitch-evoking sound is sufficiently mistuned, that harmonic emerges from the complex tone and is perceived as a separate auditory object. Previous work has shown that the percept of two objects is indexed in both children and adults by the object-related negativity component of the ERP derived from EEG recordings [Alain, C., Arnott, S. T., & Picton, T. W. Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27, 1072-1089, 2001]. Here we examine the emergence of object-related responses to an 8% harmonic mistuning in infants between 2 and 12 months of age. Two-month-old infants showed no significant object-related response. However, in 4- to 12-month-old infants, a significant frontally positive component was present, and by 8-12 months, a significant frontocentral object-related negativity was present, similar to that seen in older children and adults. This is in accordance with previous research demonstrating that infants younger than 4 months of age do not integrate harmonic information to perceive pitch when the fundamental is missing [He, C., Hotson, L., & Trainor, L. J. Maturation of cortical mismatch mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 47, 218-229, 2009]. The

  10. Cortical contributions to the auditory frequency-following response revealed by MEG.

    PubMed

    Coffey, Emily B J; Herholz, Sibylle C; Chepesiuk, Alexander M P; Baillet, Sylvain; Zatorre, Robert J

    2016-03-24

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation.

  11. Cortical contributions to the auditory frequency-following response revealed by MEG

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  12. Cortical activity of children with dyslexia during natural speech processing: evidence of auditory processing deficiency.

    PubMed

    Putter-Katz, Hanna; Kishon-Rabin, Liat; Sachartov, Emma; Shabtai, Esther L; Sadeh, Michelle; Weiz, Raphael; Gadoth, Natan; Pratt, Hillel

    2005-01-01

    Children with dyslexia have difficulties with phonological processing. It is assumed that deficits in auditory temporal processing underlie the phonological difficulties of dyslectic subjects (i.e. the processing of rapid acoustic changes that occur in speech). In this study we assessed behavioral and electrophysiological evoked brain responses of dyslectic and skilled reading children while performing a set of hierarchically structured auditory tasks. Stimuli consisted of auditory natural unmodified speech that was controlled for the parameter of changing rate of main acoustic cues: vowels (slowly changing speech cues: /i/ versus /u/) and consonant-vowel (CV) syllables (rapidly changing speech cues: /da/ versus /ga/). Brain auditory processing differed significantly between groups: reaction time of dyslectic readers was prolonged in identifying speech stimuli and increased with increased phonological demand. Latencies of auditory evoked responses (auditory event related potentials [AERPs]) recorded during syllable identification of the dyslectic group were prolonged relative to those of skilled readers. Moreover, N1 amplitudes during vowel processing were larger for the dyslectic children and P3 amplitudes during CV processing were smaller for the dyslectic children. From the results of this study it is evident that the latency and amplitude of AERPs are sensitive measures of the complexity of phonological processing in skilled and dyslectic readers. These results may be signs of deficient auditory processing of natural speech under normal listening conditions as a contributing factor to reading difficulties in dyslexia. Detecting a dysfunction in the central auditory processing pathway might lead to early detection of children who may benefit from phonetic-acoustic training methods.

  13. Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets.

    PubMed

    Leach, Nicholas D; Nodal, Fernando R; Cordery, Patricia M; King, Andrew J; Bajo, Victoria M

    2013-04-10

    The nucleus basalis (NB) in the basal forebrain provides most of the cholinergic input to the neocortex and has been implicated in a variety of cognitive functions related to the processing of sensory stimuli. However, the role that cortical acetylcholine release plays in perception remains unclear. Here we show that selective loss of cholinergic NB neurons that project to the cortex reduces the accuracy with which ferrets localize brief sounds and prevents them from adaptively reweighting auditory localization cues in response to chronic occlusion of one ear. Cholinergic input to the cortex was disrupted by making bilateral injections of the immunotoxin ME20.4-SAP into the NB. This produced a substantial loss of both p75 neurotrophin receptor (p75(NTR))-positive and choline acetyltransferase-positive cells in this region and of acetylcholinesterase-positive fibers throughout the auditory cortex. These animals were significantly impaired in their ability to localize short broadband sounds (40-500 ms in duration) in the horizontal plane, with larger cholinergic cell lesions producing greater performance impairments. Although they localized longer sounds with normal accuracy, their response times were significantly longer than controls. Ferrets with cholinergic forebrain lesions were also less able to relearn to localize sound after plugging one ear. In contrast to controls, they exhibited little recovery of localization performance after behavioral training. Together, these results show that cortical cholinergic inputs contribute to the perception of sound source location under normal hearing conditions and play a critical role in allowing the auditory system to adapt to changes in the spatial cues available.

  14. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    PubMed

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.

  15. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    PubMed Central

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  16. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  17. Hearing an illusory vowel in noise: suppression of auditory cortical activity.

    PubMed

    Riecke, Lars; Vanbussel, Mieke; Hausfeld, Lars; Başkent, Deniz; Formisano, Elia; Esposito, Fabrizio

    2012-06-06

    Human hearing is constructive. For example, when a voice is partially replaced by an extraneous sound (e.g., on the telephone due to a transmission problem), the auditory system may restore the missing portion so that the voice can be perceived as continuous (Miller and Licklider, 1950; for review, see Bregman, 1990; Warren, 1999). The neural mechanisms underlying this continuity illusion have been studied mostly with schematic stimuli (e.g., simple tones) and are still a matter of debate (for review, see Petkov and Sutter, 2011). The goal of the present study was to elucidate how these mechanisms operate under more natural conditions. Using psychophysics and electroencephalography (EEG), we assessed simultaneously the perceived continuity of a human vowel sound through interrupting noise and the concurrent neural activity. We found that vowel continuity illusions were accompanied by a suppression of the 4 Hz EEG power in auditory cortex (AC) that was evoked by the vowel interruption. This suppression was stronger than the suppression accompanying continuity illusions of a simple tone. Finally, continuity perception and 4 Hz power depended on the intactness of the sound that preceded the vowel (i.e., the auditory context). These findings show that a natural sound may be restored during noise due to the suppression of 4 Hz AC activity evoked early during the noise. This mechanism may attenuate sudden pitch changes, adapt the resistance of the auditory system to extraneous sounds across auditory scenes, and provide a useful model for assisted hearing devices.

  18. Auditory processing in schizophrenia during the middle latency period (10–50 ms): high-density electrical mapping and source analysis reveal subcortical antecedents to early cortical deficits

    PubMed Central

    Leavitt, Victoria M.; Molholm, Sophie; Ritter, Walter; Shpaner, Marina; Foxe, John J.

    2007-01-01

    Introduction Auditory sensory processing dysfunction is a core component of schizophrenia, with deficits occurring at 50 ms post-stimulus firmly established in the literature. Given that the initial afference of primary auditory cortex occurs at least 35 ms earlier, however, an essential question remains: how early in sensory processing do such deficits arise, and do they occur during initial cortical afference or earlier, which would implicate subcortical auditory dysfunction. Objective To establish the onset of the earliest deficits in auditory processing, we examined the time window demarcating the transition from subcortical to cortical processing: 10 ms to 50 ms during the so-called middle latency responses (MLRs). These remain to be adequately characterized in patients with schizophrenia. Methods We recorded auditory evoked potentials (AEPs) to simple tone-pips from 15 control subjects and 21 medicated patients with longer-term schizophrenia or schizoaffective disorder (illness duration 16 yr, standard deviation [SD] 9.4 yr), using high-density electrical scalp recordings. Between-group analyses assessed the integrity of the MLRs across groups. In addition, 2 source-localization models were conducted to address whether a distinction between subcortical and cortical generators of the MLRs can be made and whether evidence for differential dorsal and ventral pathway contributions to auditory processing deficits can be established. Results Robust auditory processing deficits were found for patients as early as 15 ms. Evidence for subcortical generators of the earliest MLR component (P20) was provided by source analysis. Topographical mapping and source localization also pointed to greater decrements in processing in the dorsal auditory pathway of patients, providing support for a theory of pervasive deficits that are organized along the lines of a dorsal–ventral distinction. Conclusions Auditory sensory dysfunction in schizophrenia begins extremely early in

  19. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.

    PubMed

    Petrus, Emily; Rodriguez, Gabriela; Patterson, Ryan; Connor, Blaine; Kanold, Patrick O; Lee, Hey-Kyoung

    2015-06-10

    Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1-L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1-L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1-L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1-L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation.

  20. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    PubMed

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  1. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS)

    PubMed Central

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception. PMID:27042360

  2. Functional localization of auditory cortical fields of human: click-train stimulation.

    PubMed

    Brugge, John F; Volkov, Igor O; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Fenoy, Albert; Steinschneider, Mitchell; Howard, Matthew A

    2008-04-01

    Averaged auditory evoked potentials (AEPs) to bilaterally presented 100 Hz click trains were recorded from multiple sites simultaneously within Heschl's gyrus (HG) and on the posterolateral surface of the superior temporal gyrus (STG) in epilepsy-surgery patients. Three auditory fields were identified based on AEP waveforms and their distribution. Primary (core) auditory cortex was localized to posteromedial HG. Here the AEP was characterized by a robust polyphasic low-frequency field potential having a short onset latency and on which was superimposed a smaller frequency-following response to the click train. Core AEPs exhibited the lowest response threshold and highest response amplitude at one HG site with threshold rising and amplitude declining systematically on either side of it. The AEPs recorded anterolateral to the core, if present, were typically of low amplitude, with little or no evidence of short-latency waves or the frequency-following response that characterized core AEPs. We suggest that this area is part of a lateral auditory belt system. Robust AEPs, with waveforms demonstrably different from those of the core or lateral belt, were localized to the posterolateral surface of the STG and conform to previously described field PLST.

  3. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  4. Dynamics of auditory-vocal interaction in monkey auditory cortex.

    PubMed

    Eliades, Steven J; Wang, Xiaoqin

    2005-10-01

    Single neurons in the primate auditory cortex exhibit vocalization-related modulations (excitatory or inhibitory) during self-initiated vocal production. Previous studies have shown that these modulations of cortical activity are variable in individual neurons' responses to multiple instances of vocalization and diverse between different cortical neurons. The present study investigated dynamic patterns of vocalization-related modulations and demonstrated that much of the variability in cortical modulations was related to the acoustic structures of self-produced vocalization. We found that suppression of single unit activity during multi-phrased vocalizations was temporally specific in that it was maintained during each phrase, but was released between phrases. Furthermore, the degree of suppression or excitation was correlated to the mean energy and frequency of the produced vocalizations, accounting for much of the response variability between multiple instances of vocalization. Simultaneous recordings of pairs of neurons from a single electrode revealed that the modulations by self-produced vocalizations in nearby neurons were largely uncorrelated. Additionally, vocalization-induced suppression was found to be preferentially distributed to upper cortical layers. Finally, we showed that the summation of all auditory cortical activity during vocalization, including both single and multi-unit responses, was weakly excitatory, consistent with observations from studies of the human brain during speech.

  5. Using neuroimaging to understand the cortical mechanisms of auditory selective attention

    PubMed Central

    Lee, Adrian KC; Larson, Eric; Maddox, Ross K; Shinn-Cunningham, Barbara G

    2013-01-01

    Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the “cocktail party” problem. PMID:23850664

  6. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes.

    PubMed

    Lewis, James W; Talkington, William J; Tallaksen, Katherine C; Frum, Chris A

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and "auditory objects" can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more "object-like," independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds-a quantitative measure of change in entropy of the acoustic signals over time-and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the

  7. Clinical Experience of Using Cortical Auditory Evoked Potentials in the Treatment of Infant Hearing Loss in Australia

    PubMed Central

    Punch, Simone; Van Dun, Bram; King, Alison; Carter, Lyndal; Pearce, Wendy

    2016-01-01

    This article presents the clinical protocol that is currently being used within Australian Hearing for infant hearing aid evaluation using cortical auditory evoked potentials (CAEPs). CAEP testing is performed in the free field at two stimulus levels (65 dB sound pressure level [SPL], followed by 55 or 75 dB SPL) using three brief frequency-distinct speech sounds /m/, /ɡ/, and /t/, within a standard audiological appointment of up to 90 minutes. CAEP results are used to check or guide modifications of hearing aid fittings or to confirm unaided hearing capability. A retrospective review of 83 client files evaluated whether clinical practice aligned with the clinical protocol. It showed that most children could be assessed as part of their initial fitting program when they were identified as a priority for CAEP testing. Aided CAEPs were most commonly assessed within 8 weeks of the fitting. A survey of 32 pediatric audiologists provided information about their perception of cortical testing at Australian Hearing. The results indicated that clinical CAEP testing influenced audiologists' approach to rehabilitation and was well received by parents and that they were satisfied with the technique. Three case studies were selected to illustrate how CAEP testing can be used in a clinical environment. Overall, CAEP testing has been effectively integrated into the infant fitting program. PMID:27587921

  8. Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing

    PubMed Central

    Teschner, Magnus J.; Seybold, Bryan A.; Malone, Brian J.; Hüning, Jana

    2016-01-01

    The neural mechanisms that support the robust processing of acoustic signals in the presence of background noise in the auditory system remain largely unresolved. Psychophysical experiments have shown that signal detection is influenced by the signal-to-noise ratio (SNR) and the overall stimulus level, but this relationship has not been fully characterized. We evaluated the neural representation of frequency in rat primary auditory cortex by constructing tonal frequency response areas (FRAs) in primary auditory cortex for different SNRs, tone levels, and noise levels. We show that response strength and selectivity for frequency and sound level depend on interactions between SNRs and tone levels. At low SNRs, jointly increasing the tone and noise levels reduced firing rates and narrowed FRA bandwidths; at higher SNRs, however, increasing the tone and noise levels increased firing rates and expanded bandwidths, as is usually seen for FRAs obtained without background noise. These changes in frequency and intensity tuning decreased tone level and tone frequency discriminability at low SNRs. By contrast, neither response onset latencies nor noise-driven steady-state firing rates meaningfully interacted with SNRs or overall sound levels. Speech detection performance in humans was also shown to depend on the interaction between overall sound level and SNR. Together, these results indicate that signal processing difficulties imposed by high noise levels are quite general and suggest that the neurophysiological changes we see for simple sounds generalize to more complex stimuli. SIGNIFICANCE STATEMENT Effective processing of sounds in background noise is an important feature of the mammalian auditory system and a necessary feature for successful hearing in many listening conditions. Even mild hearing loss strongly affects this ability in humans, seriously degrading the ability to communicate. The mechanisms involved in achieving high performance in background noise are not

  9. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.

    PubMed

    Brown, Carolyn J; Jeon, Eun-Kyung; Driscoll, Virginia; Mussoi, Bruna; Deshpande, Shruti Balvalli; Gfeller, Kate; Abbas, Paul J

    Evidence suggests that musicians, as a group, have superior frequency resolution abilities when compared with nonmusicians. It is possible to assess auditory discrimination using either behavioral or electrophysiologic methods. The purpose of this study was to determine if the acoustic change complex (ACC) is sensitive enough to reflect the differences in spectral processing exhibited by musicians and nonmusicians. Twenty individuals (10 musicians and 10 nonmusicians) participated in this study. Pitch and spectral ripple discrimination were assessed using both behavioral and electrophysiologic methods. Behavioral measures were obtained using a standard three interval, forced choice procedure. The ACC was recorded and used as an objective (i.e., nonbehavioral) measure of discrimination between two auditory signals. The same stimuli were used for both psychophysical and electrophysiologic testing. As a group, musicians were able to detect smaller changes in pitch than nonmusician. They also were able to detect a shift in the position of the peaks and valleys in a ripple noise stimulus at higher ripple densities than non-musicians. ACC responses recorded from musicians were larger than those recorded from non-musicians when the amplitude of the ACC response was normalized to the amplitude of the onset response in each stimulus pair. Visual detection thresholds derived from the evoked potential data were better for musicians than non-musicians regardless of whether the task was discrimination of musical pitch or detection of a change in the frequency spectrum of the ripple noise stimuli. Behavioral measures of discrimination were generally more sensitive than the electrophysiologic measures; however, the two metrics were correlated. Perhaps as a result of extensive training, musicians are better able to discriminate spectrally complex acoustic signals than nonmusicians. Those differences are evident not only in perceptual/behavioral tests but also in electrophysiologic

  10. Cortical Response Variability as a Developmental Index of Selective Auditory Attention

    ERIC Educational Resources Information Center

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory…

  11. Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss: A Case Report.

    PubMed

    Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C

    2016-10-01

    We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.

  12. Interacting parallel pathways associate sounds with visual identity in auditory cortices.

    PubMed

    Ahveninen, Jyrki; Huang, Samantha; Ahlfors, Seppo P; Hämäläinen, Matti; Rossi, Stephanie; Sams, Mikko; Jääskeläinen, Iiro P

    2016-01-01

    Spatial and non-spatial information of sound events is presumably processed in parallel auditory cortex (AC) "what" and "where" streams, which are modulated by inputs from the respective visual-cortex subsystems. How these parallel processes are integrated to perceptual objects that remain stable across time and the source agent's movements is unknown. We recorded magneto- and electroencephalography (MEG/EEG) data while subjects viewed animated video clips featuring two audiovisual objects, a black cat and a gray cat. Adaptor-probe events were either linked to the same object (the black cat meowed twice in a row in the same location) or included a visually conveyed identity change (the black and then the gray cat meowed with identical voices in the same location). In addition to effects in visual (including fusiform, middle temporal or MT areas) and frontoparietal association areas, the visually conveyed object-identity change was associated with a release from adaptation of early (50-150ms) activity in posterior ACs, spreading to left anterior ACs at 250-450ms in our combined MEG/EEG source estimates. Repetition of events belonging to the same object resulted in increased theta-band (4-8Hz) synchronization within the "what" and "where" pathways (e.g., between anterior AC and fusiform areas). In contrast, the visually conveyed identity changes resulted in distributed synchronization at higher frequencies (alpha and beta bands, 8-32Hz) across different auditory, visual, and association areas. The results suggest that sound events become initially linked to perceptual objects in posterior AC, followed by modulations of representations in anterior AC. Hierarchical what and where pathways seem to operate in parallel after repeating audiovisual associations, whereas the resetting of such associations engages a distributed network across auditory, visual, and multisensory areas.

  13. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  14. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template.

    PubMed

    Majka, Piotr; Chaplin, Tristan A; Yu, Hsin-Hao; Tolpygo, Alexander; Mitra, Partha P; Wójcik, Daniel K; Rosa, Marcello G P

    2016-08-01

    The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  15. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations

    PubMed Central

    Scharinger, Mathias; Monahan, Philip J.; Idsardi, William J.

    2016-01-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in ‘bet’) exert less top-down effects than the high-vowels (as in ‘bit’) because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in ‘bat’). We tested this assumption in a Magnetoencephalographic (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch-negativity (MMN) responses between 200 and 300 ms post stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18–26 Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. PMID:26780574

  16. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework.

  17. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    PubMed Central

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  18. Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection

    PubMed Central

    Chandrasekaran, Chandramouli; Lemus, Luis; Ghazanfar, Asif A.

    2013-01-01

    How low-level sensory areas help mediate the detection and discrimination advantages of integrating faces and voices is the subject of intense debate. To gain insights, we investigated the role of the auditory cortex in face/voice integration in macaque monkeys performing a vocal-detection task. Behaviorally, subjects were slower to detect vocalizations as the signal-to-noise ratio decreased, but seeing mouth movements associated with vocalizations sped up detection. Paralleling this behavioral relationship, as the signal to noise ratio decreased, the onset of spiking responses were delayed and magnitudes were decreased. However, when mouth motion accompanied the vocalization, these responses were uniformly faster. Conversely, and at odds with previous assumptions regarding the neural basis of face/voice integration, changes in the magnitude of neural responses were not related consistently to audiovisual behavior. Taken together, our data reveal that facilitation of spike latency is a means by which the auditory cortex partially mediates the reaction time benefits of combining faces and voices. PMID:24218574

  19. Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex.

    PubMed

    Ortiz-Rios, Michael; Azevedo, Frederico A C; Kuśmierek, Paweł; Balla, Dávid Z; Munk, Matthias H; Keliris, Georgios A; Logothetis, Nikos K; Rauschecker, Josef P

    2017-02-22

    In primates, posterior auditory cortical areas are thought to be part of a dorsal auditory pathway that processes spatial information. But how posterior (and other) auditory areas represent acoustic space remains a matter of debate. Here we provide new evidence based on functional magnetic resonance imaging (fMRI) of the macaque indicating that space is predominantly represented by a distributed hemifield code rather than by a local spatial topography. Hemifield tuning in cortical and subcortical regions emerges from an opponent hemispheric pattern of activation and deactivation that depends on the availability of interaural delay cues. Importantly, these opponent signals allow responses in posterior regions to segregate space similarly to a hemifield code representation. Taken together, our results reconcile seemingly contradictory views by showing that the representation of space follows closely a hemifield code and suggest that enhanced posterior-dorsal spatial specificity in primates might emerge from this form of coding. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory.

  1. Topographic recordings of auditory evoked potentials to speech: subcortical and cortical responses.

    PubMed

    Bellier, Ludovic; Bouchet, Patrick; Jeanvoine, Arnaud; Valentin, Olivier; Thai-Van, Hung; Caclin, Anne

    2015-04-01

    Topographies of speech auditory brainstem response (speech ABR), a fine electrophysiological marker of speech encoding, have never been described. Yet, they could provide useful information to assess speech ABR generators and better characterize populations of interest (e.g., musicians, dyslexics). We present here a novel methodology of topographic speech ABR recording, using a 32-channel low sampling rate (5 kHz) EEG system. Quality of speech ABRs obtained with this conventional multichannel EEG system were compared to that of signals simultaneously recorded with a high sampling rate (13.3 kHz) EEG system. Correlations between speech ABRs recorded with the two systems revealed highly similar signals, without any significant difference between their signal-to-noise ratios (SNRs). Moreover, an advanced denoising method for multichannel data (denoising source separation) significantly improved SNR and allowed topography of speech ABR to be recovered. Copyright © 2014 Society for Psychophysiological Research.

  2. Low-frequency cortical oscillations entrain to sub-threshold rhythmic auditory stimuli.

    PubMed

    Ten Oever, Sanne; Schroeder, Charles E; Poeppel, David; van Atteveldt, Nienke; Mehta, Ashesh D; Mégevand, Pierre; Groppe, David M; Zion-Golumbic, Elana

    2017-04-14

    Many environmental stimuli contain temporal regularities, a feature which can help predict forthcoming input. Phase-locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (Ten Oever et al., 2014). It is not known whether this "inaudible" rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography (MEG) and electrocorticography (ECoG) in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase-locking to the rhythmic sounds preceded participants' detection of them. Moreover, no significant auditory-evoked responses accompanied this pre-threshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in inter-trial coherence (ITC), only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally-predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness.SIGNIFICANCE STATEMENTThe environment is full of rhythmically structured signals that the nervous system can exploit for information processing. Thus it is important to understand how the brain processes such temporally structured, regular features of external stimuli. Here we report the alignment of slowly fluctuating oscillatory brain

  3. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  4. Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex

    PubMed Central

    Kanwisher, Nancy; McDermott, Josh H.

    2013-01-01

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce “resolved” peaks of excitation in the cochlea, whereas others are “unresolved,” providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior. PMID:24336712

  5. Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials.

    PubMed

    Li, Shu-Chen; Passow, Susanne; Nietfeld, Wilfried; Schröder, Julia; Bertram, Lars; Heekeren, Hauke R; Lindenberger, Ulman

    2013-07-01

    Using a specific variant of the dichotic listening paradigm, we studied the influence of dopamine on attentional modulation of auditory perception by assessing effects of allelic variation of a single-nucleotide polymorphism (SNP) rs907094 in the DARPP-32 gene (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein 32 kilodations; also known as PPP1R1B) on behavior and cortical evoked potentials. A frequent DARPP-32 haplotype that includes the A allele of this SNP is associated with higher mRNA expression of DARPP-32 protein isoforms, striatal dopamine receptor function, and frontal-striatal connectivity. As we hypothesized, behaviorally the A homozygotes were more flexible in selectively attending to auditory inputs than any G carriers. Moreover, this genotype also affected auditory evoked cortical potentials that reflect early sensory and late attentional processes. Specifically, analyses of event-related potentials (ERPs) revealed that amplitudes of an early component of sensory selection (N1) and a late component (N450) reflecting attentional deployment for conflict resolution were larger in A homozygotes than in any G carriers. Taken together, our data lend support for dopamine's role in modulating auditory attention both during the early sensory selection and late conflict resolution stages.

  6. Lateralized abnormalities in auditory M50 sensory gating and cortical thickness of the superior temporal gyrus in post-traumatic stress disorder: preliminary results.

    PubMed

    Hunter, Michael; Villarreal, Gerardo; McHaffie, Greg R; Jimenez, Billy; Smith, Ashley K; Calais, Lawrence A; Hanlon, Faith; Thoma, Robert J; Cañive, José M

    2011-02-28

    Auditory sensory gating deficits have been reported in subjects with post-traumatic stress disorder (PTSD), but the hemispheric and neuronal origins of this deficit are not well understood. The objectives of this study were to: (1) investigate auditory sensory gating of the 50-ms response (M50) in patients diagnosed with PTSD by utilizing magnetoencephalography (MEG); (2) explore the relationship between M50 sensory gating and cortical thickness of the superior temporal gyrus (STG) measured with structural magnetic resonance imaging (MRI); and (3) examine the association between PTSD symptomatology and bilateral sensory gating. Seven participants with combat-related PTSD and eleven controls underwent the paired-click sensory gating paradigm. MEG localized M50 neuronal generators to the STG in both groups. The PTSD group displayed impaired M50 gating in the right hemisphere. Thinner right STG cortical thickness was associated with worse right sensory gating in the PTSD group. The right S1 M50 source strength and gating ratio were correlated with PTSD symptomatology. These findings suggest that the structural integrity of right hemisphere STG cortices play an important role in auditory sensory gating deficits in PTSD. Published by Elsevier Ireland Ltd.

  7. The effect of long-term unilateral deafness on the activation pattern in the auditory cortices of French-native speakers: influence of deafness side

    PubMed Central

    Hanss, Julien; Veuillet, Evelyne; Adjout, Kamel; Besle, Julien; Collet, Lionel; Thai-Van, Hung

    2009-01-01

    Background In normal-hearing subjects, monaural stimulation produces a normal pattern of asynchrony and asymmetry over the auditory cortices in favour of the contralateral temporal lobe. While late onset unilateral deafness has been reported to change this pattern, the exact influence of the side of deafness on central auditory plasticity still remains unclear. The present study aimed at assessing whether left-sided and right-sided deafness had differential effects on the characteristics of neurophysiological responses over auditory areas. Eighteen unilaterally deaf and 16 normal hearing right-handed subjects participated. All unilaterally deaf subjects had post-lingual deafness. Long latency auditory evoked potentials (late-AEPs) were elicited by two types of stimuli, non-speech (1 kHz tone-burst) and speech-sounds (voiceless syllable/pa/) delivered to the intact ear at 50 dB SL. The latencies and amplitudes of the early exogenous components (N100 and P150) were measured using temporal scalp electrodes. Results Subjects with left-sided deafness showed major neurophysiological changes, in the form of a more symmetrical activation pattern over auditory areas in response to non-speech sound and even a significant reversal of the activation pattern in favour of the cortex ipsilateral to the stimulation in response to speech sound. This was observed not only for AEP amplitudes but also for AEP time course. In contrast, no significant changes were reported for late-AEP responses in subjects with right-sided deafness. Conclusion The results show that cortical reorganization induced by unilateral deafness mainly occurs in subjects with left-sided deafness. This suggests that anatomical and functional plastic changes are more likely to occur in the right than in the left auditory cortex. The possible perceptual correlates of such neurophysiological changes are discussed. PMID:19309511

  8. Vinpocetine inhibits the epileptic cortical activity and auditory alterations induced by pentylenetetrazole in the guinea pig in vivo.

    PubMed

    Nekrassov, Vladimir; Sitges, María

    2004-06-01

    Here we investigate the effect of the neuroprotective drug, vinpocetine on the epileptic cortical activity, on the alterations of the later waves of brainstem auditory evoked potentials (BAEPs) and on the hearing decline induced by the convulsing agent, pentylenetetrazole (PTZ). Vinpocetine at doses from 2 to 10 mg/kg inhibits the tonic-clonic convulsions induced by PTZ (100 mg/kg). Vinpocetine injected at a dose of 2 mg/kg 4 h before PTZ completely prevents the characteristic electroencephalogram (EEG) changes induced by PTZ for the ictal and post-ictal periods. Vinpocetine also abolished the PTZ-induced changes in the amplitude and latency of the later waves of the BAEPs in response to pure tone burst monoaural stimuli (frequency 8 or 4 kHz intensity 100 dB), and the PTZ-induced increase in the BAEP threshold. These results show the antiepileptic potential of vinpocetine and indicate the capability of vinpocetine to prevent the changes in the BAEP waves associated with the hearing loss observed during generalized epilepsy.

  9. Clinical Use of Aided Cortical Auditory Evoked Potentials as a Measure of Physiological Detection or Physiological Discrimination

    PubMed Central

    Billings, Curtis J.; Papesh, Melissa A.; Penman, Tina M.; Baltzell, Lucas S.; Gallun, Frederick J.

    2012-01-01

    The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established. PMID:23093964

  10. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications.

    PubMed

    Ching, Teresa Y C; Zhang, Vicky W; Hou, Sanna; Van Buynder, Patricia

    2016-02-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented.

  11. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications

    PubMed Central

    Ching, Teresa Y. C.; Zhang, Vicky W.; Hou, Sanna; Van Buynder, Patricia

    2016-01-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented. PMID:27587920

  12. Synaptic Properties of Thalamic Input to the Subgranular Layers of Primary Somatosensory and Auditory Cortices in the Mouse

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2011-01-01

    The classification of synaptic inputs is an essential part of understanding brain circuitry. In the present study, we examined the synaptic properties of thalamic inputs to pyramidal neurons in layers 5a, 5b, and 6 of primary somatosensory (S1) and auditory (A1) cortices in mouse thalamocortical slices. Stimulation of the ventral posterior medial nucleus (VPM) and the ventral division of the medial geniculate body (MGBv) resulted in three distinct response classes, two of which have never been described before in thalamocortical projections. Class 1A responses included synaptic depression and all-or-none responses while Class 1B responses exhibited synaptic depression and graded responses. Class 1C responses are characterized by mixed facilitation and depression as well as graded responses. Activation of metabotropic glutamate receptors was not observed in any of the response classes. We conclude that Class 1 responses can be broken up into three distinct subclasses, and that thalamic inputs to the subgranular layers of cortex may combine with other, intracortical inputs to drive their postsynaptic target cells. We also integrate these results with our recent, analogous study of thalamocortical inputs to granular and supragranular layers (Viaene et al., 2011). PMID:21900553

  13. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured.

  14. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate

    PubMed Central

    Jerjos, Michael; Hohman, Baily; Lauterbur, M. Elise; Kistler, Logan

    2017-01-01

    Abstract Several taxonomically distinct mammalian groups—certain microbats and cetaceans (e.g., dolphins)—share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat–dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. PMID:28810710

  15. Geometric Representation Of Visual Data In The Cortex Of Primates: Computer Reconstruction And Modeling Of Neo-Cortical Map And Column Systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric

    1988-08-01

    Much of vertebrate midbrain and mammalian cortex is dedicated to two-dimensional "maps" in which two or more stimulus parameters are encoded by the position of neural activation in the map. Moreover, there are a large number of such maps which interact in an unknown fashion to yield a unified perception of the world. Our research program is based on studying the structure and function of brain maps. In the present paper, we review a recently constructed system of computer aided neuro-anatomy which allows high resolution texture mapped models of cortical surfaces in two and three dimensions to be displayed and manipulated. At the same time, this work demonstrates some of the basic geometric patterns of architecture of the primate brain, such as columnar and topographic mapping.

  16. Two cortical mechanisms support the integration of visual and auditory speech: a hypothesis and preliminary data.

    PubMed

    Okada, Kayoko; Hickok, Gregory

    2009-03-20

    Visual speech (lip-reading) influences the perception of heard speech. The literature suggests at least two possible mechanisms for this influence: "direct" sensory-sensory interaction, whereby sensory signals from auditory and visual modalities are integrated directly, likely in the superior temporal sulcus, and "indirect" sensory-motor interaction, whereby visual speech is first mapped onto motor-speech representations in the frontal lobe, which in turn influences sensory perception via sensory-motor integration networks. We hypothesize that both mechanisms exist, and further that previous demonstrations of lip-reading functional activations in Broca's region and the posterior planum temporale reflect the sensory-motor mechanism. We tested one prediction of this hypothesis using fMRI. We assessed whether viewing visual speech (contrasted with facial gestures) activates the same network as a speech sensory-motor integration task (listen to and then silently rehearse speech). Both tasks activated locations within Broca's area, dorsal premotor cortex, and the posterior planum temporal (Spt), and focal regions of the STS, all of which have previously been implicated in sensory-motor integration for speech. This finding is consistent with the view that visual speech influences heard speech via sensory-motor networks. Lip-reading also activated a much wider network in the superior temporal lobe than the sensory-motor task, possibly reflecting a more direct cross-sensory integration network.

  17. Scalp localization of human auditory cortical activity modified by GSM electromagnetic fields.

    PubMed

    Maby, Emmanuel; Jeannes, Regine Le Bouquin; Faucon, Gerard

    2006-07-01

    This study attempted to determine whether there is a localized effect of GSM (Global System for Mobile communications) microwaves by studying the Auditory Evoked Potentials (AEP) recorded at the scalp of nine healthy subjects and six epileptic patients. We determined the influence of GSM RadioFrequency (RF) on parameters characterizing the AEP in time or/and frequency domains. A parameter selection method using SVM (Support Vector Machines)-based criteria allowed us to estimate those most altered by the radiofrequencies. The topography of the parameter modifications was computed to determine the localization of the radiofrequency influence. A statistical test was conducted for selected scalp areas, in order to determine whether there were significant localized alterations due to the RF. The epileptic patients showed a lengthening of the scalp component N100 (100 ms latency) in the frontal area contralateral to the radiation, which may be due to an afferent tract alteration. For the healthy subjects, an amplitude increase of the P200 wave (200 ms latency) was identified in the frontal area. The present study suggests that radiofrequency fields emitted by mobile phones modify the AEP. Nevertheless, no direct link between these findings and RF-induced damages in brain function was established.

  18. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding

    PubMed Central

    Malmierca, Manuel S.; Anderson, Lucy A.; Antunes, Flora M.

    2015-01-01

    To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex. PMID:25805974

  19. Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank

    2011-09-01

    The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.

  20. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  1. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm.

    PubMed

    Bares, Martin; Rektor, Ivan; Kanovský, Petr; Streitová, Hana

    2003-12-01

    This study concerned sensory processing (post-stimulus late evoked potential components) in different parts of the human brain as related to a motor task (hand movement) in a cognitive paradigm (Contingent Negative Variation). The focus of the study was on the time and space distribution of middle and late post-stimulus evoked potential (EP) components, and on the processing of sensory information in the subcortical-cortical networks. Stereoelectroencephalography (SEEG) recordings of the contingent negative variation (CNV) in an audio-visual paradigm with a motor task were taken from 30 patients (27 patients with drug-resistant epilepsy; 3 patients with chronic thalamic pain). The intracerebral recordings were taken from 337 cortical sites (primary sensorimotor area (SM1); supplementary motor area (SMA); the cingulate gyrus; the orbitofrontal, premotor and dorsolateral prefrontal cortices; the temporal cortex, including the amygdalohippocampal complex; the parietooccipital lobes; and the insula) and from subcortical structures (the basal ganglia and the posterior thalamus). The concurrent scalp recordings were obtained from 3 patients in the thalamic group. In 4 patients in the epilepsy group, scalp recordings were taken separately from the SEEG procedure. The middle and long latency evoked potentials following an auditory warning (S1) and a visual imperative (S2) stimuli were analyzed. The occurrences of EPs were studied in two time windows (200-300 ms; and over 300 ms) following S1 and S2. Following S1, a high frequency of EP with latencies over 200 ms was observed in the primary sensorimotor area, the supplementary motor area, the premotor cortex, the orbitofrontal cortex, the cingulate gyrus, some parts of the temporal lobe, the basal ganglia, the insula, and the posterior thalamus. Following S2, a high frequency of EP in both of the time windows over 200 ms was observed in the SM1, the SMA, the premotor and dorsolateral prefrontal cortex, the orbitofrontal

  2. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  3. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates

    PubMed Central

    Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C.; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-01-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class. PMID:27441598

  4. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm.

    PubMed

    Jenson, David; Harkrider, Ashley W; Thornton, David; Bowers, Andrew L; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required "active" discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral "auditory" alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.

  5. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral

  6. High-Resolution fMRI Maps of Cortical Activation in Nonhuman Primates: Correlation with Intrinsic Signal Optical Images

    PubMed Central

    Roe, Anna W.; Chen, Li Min

    2009-01-01

    One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338

  7. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    PubMed

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  8. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm

    PubMed Central

    Jenson, David; Harkrider, Ashley W.; Thornton, David; Bowers, Andrew L.; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required “active” discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral “auditory” alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. PMID

  9. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis

    PubMed Central

    Clarkson, Cheryl; Herrero-Turrión, M. Javier; Merchán, Miguel A.

    2012-01-01

    The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs. PMID:23233834

  10. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    PubMed

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  11. Contralaterality of cortical auditory processing at the level of the M50/M100 complex and the mismatch field: a whole-head magnetoencephalography study.

    PubMed

    Ackermann, H; Hertrich, I; Mathiak, K; Lutzenberger, W

    2001-06-13

    Humans show a stronger cortical representation of auditory input at the opposite hemisphere each. To specify the temporal aspects of this contralaterality effect within the domain of speech stimuli, the present study recorded a series of evoked magnetic fields (M50, M100, mismatch field) subsequent to monaural application of stop consonant-vowel syllables using whole-head magnetoencephalography (MEG). The M50 components exhibited a skewed shape of cross-symmetrical distribution in terms of an initial maximum peak succeeded by a knot over the contralateral and a reversed pattern over the ipsilateral temporal lobe. Most presumably, this pattern of evoked fields reflects two distinct stages of central-auditory processing: (a) initial excitation of the larger contralateral and the smaller ipsilateral projection area of the stimulated ear; (b) subsequent transcallosal activation of the residual neurons, i.e. the targets of the non-stimulated ear, at either side. Previous studies using non-speech stimuli found contralaterality of central-auditory processing to extend to the M100 field. In contrast, a larger amplitude of ipsilateral M100 as compared to the respective opposite deflection emerged after stimulation of either ear. Finally, the computed magnetic analogues of mismatch negativity failed any significant laterality effects. These data provide first evidence for a distinct pattern of hemispheric differences at the level of the M50/M100 complex subsequent to monaural application of speech stimuli.

  12. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network.

    PubMed

    Mayhew, Stephen D; Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2013-08-01

    The human brain is continually, dynamically active and spontaneous fluctuations in this activity play a functional role in affecting both behavioural and neuronal responses. However, the mechanisms through which this occurs remain poorly understood. Simultaneous EEG-fMRI is a promising technique to study how spontaneous activity modulates the brain's response to stimulation, as temporal indices of ongoing cortical excitability can be integrated with spatially localised evoked responses. Here we demonstrate an interaction between the ongoing power of the electrophysiological alpha oscillation and the magnitude of both positive (PBR) and negative (NBR) fMRI responses to two contrasts of visual checkerboard reversal. Furthermore, the amplitude of pre-stimulus EEG alpha-power significantly modulated the amplitude and shape of subsequent PBR and NBR to the visual stimulus. A nonlinear reduction of visual PBR and an enhancement of auditory NBR and default-mode network NBR were observed in trials preceded by high alpha-power. These modulated areas formed a functionally connected network during a separate resting-state recording. Our findings suggest that the "baseline" state of the brain exhibits considerable trial-to-trial variability which arises from fluctuations in the balance of cortical inhibition/excitation that are represented by respective increases/decreases in the power of the EEG alpha oscillation. The consequence of this spontaneous electrophysiological variability is modulated amplitudes of both PBR and NBR to stimulation. Fluctuations in alpha-power may subserve a functional relationship in the visual-auditory network, acting as mediator for both short and long-range cortical inhibition, the strength of which is represented in part by NBR.

  13. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants.

    PubMed

    Nash-Kille, Amy; Sharma, Anu

    2014-07-01

    Although brainstem dys-synchrony is a hallmark of children with auditory neuropathy spectrum disorder (ANSD), little is known about how the lack of neural synchrony manifests at more central levels. We used time-frequency single-trial EEG analyses (i.e., inter-trial coherence; ITC), to examine cortical phase synchrony in children with normal hearing (NH), sensorineural hearing loss (SNHL) and ANSD. Single trial time-frequency analyses were performed on cortical auditory evoked responses from 41 NH children, 91 children with ANSD and 50 children with SNHL. The latter two groups included children who received intervention via hearing aids and cochlear implants. ITC measures were compared between groups as a function of hearing loss, intervention type, and cortical maturational status. In children with SNHL, ITC decreased as severity of hearing loss increased. Children with ANSD revealed lower levels of ITC relative to children with NH or SNHL, regardless of intervention. Children with ANSD who received cochlear implants showed significant improvements in ITC with increasing experience with their implants. Cortical phase coherence is significantly reduced as a result of both severe-to-profound SNHL and ANSD. ITC provides a window into the brain oscillations underlying the averaged cortical auditory evoked response. Our results provide a first description of deficits in cortical phase synchrony in children with SNHL and ANSD. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants

    PubMed Central

    Nash-Kille, Amy; Sharma, Anu

    2014-01-01

    Objective Although brainstem dys-synchrony is a hallmark of children with auditory neuropathy spectrum disorder (ANSD), little is known about how the lack of neural synchrony manifests at more central levels. We used time-frequency single-trial EEG analyses (i.e., inter-trial coherence; ITC), to examine cortical phase synchrony in children with normal hearing (NH), sensorineural hearing loss (SNHL) and ANSD. Methods Single trial time-frequency analyses were performed on cortical auditory evoked responses from 41 NH children, 91 children with ANSD and 50 children with SNHL. The latter two groups included children who received intervention via hearing aids and cochlear implants. ITC measures were compared between groups as a function of hearing loss, intervention type, and cortical maturational status. Results In children with SNHL, ITC decreased as severity of hearing loss increased. Children with ANSD revealed lower levels of ITC relative to children with NH or SNHL, regardless of intervention. Children with ANSD who received cochlear implants showed significant improvements in ITC with increasing experience with their implants. Conclusions Cortical phase coherence is significantly reduced as a result of both severe-to-profound SNHL and ANSD. Significance ITC provides a window into the brain oscillations underlying the averaged cortical auditory evoked response. Our results provide a first description of deficits in cortical phase synchrony in children with SNHL and ANSD. PMID:24360131

  15. Cortical pathways to the mammalian amygdala.

    PubMed

    McDonald, A J

    1998-06-01

    The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.

  16. Disruptions in Serotonergic Regulation of Cortical Glutamate Release in Primate Insular Cortex in Response to Chronic Ethanol and Nursery Rearing

    PubMed Central

    Alexander, Georgia M.; Graef, John D.; Hammarback, James A.; Nordskog, Brian K.; Burnett, Elizabeth J.; Daunais, James B.; Bennett, Allyson J.; Friedman, David P.; Suomi, Stephen J.; Godwin, Dwayne W.

    2015-01-01

    Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. We therefore investigated changes in both serotonin receptor expression and glutamatergic synaptic activity in the AIC of alcohol-drinking rhesus monkeys. We studied tissues from male rhesus monkeys raised under two conditions: Male rhesus monkeys 1) “Mother reared” (MR) by adult females (n=9), or; 2) “Nursery reared” (NR), i.e., separated from their mothers and reared as a separate group under surrogate/peer-reared conditions (n=9). The NR condition represents a long-standing and well-validated nonhuman primate model of early life stress. All monkeys were trained to self-administer ethanol (4% w/v) or an isocaloric maltose-dextrin control solution. Subsets from each rearing condition were then given daily access to either ethanol, water or maltose dextrin for 12 months. Tissues were collected at necropsy and were further analyzed. Using real time RT-PCR we found that ethanol-naïve, NR monkeys had lower AIC levels of 5-HT1A and 5-HT2A receptor mRNA compared to ethanol-naïve, MR animals. While NR monkeys consumed more ethanol over the 12-month period compared to MR animals, both MR and NR animals expressed greater 5-HT1A and 5-HT2A receptor mRNA levels following chronic alcohol self-administration. The interaction between nursery-rearing conditions and alcohol consumption resulted in a significant enhancement of both 5-HT1A and 5-HT2A receptor mRNA levels such that lower expression levels observed in nursery rearing conditions were not found in the alcohol self-administration group. Using voltage clamp recordings in the whole cell configuration we recorded excitatory postsynaptic currents in both ethanol-naïve and chronic self

  17. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.

    PubMed

    DeBruyn, E J; Casagrande, V A; Beck, P D; Bonds, A B

    1993-01-01

    1. This study describes the response properties of V1 cortical cells in a nocturnal primate and examines the receptive field organization of these cells in relationship to anatomically defined layers and cytochrome oxidase (CO) rich blobs and CO poor interblob compartments. Visual resolution and contrast sensitivity are consistent with other physiological and behavioral measures in this species. Comparisons are made with response properties of the same zones in macaque monkey, as well as of area 17 of a distantly related species (cat) that also occupies a nocturnal niche. 2. The responses of single cells to drifting sinusoidal gratings were recorded in V1 (striate cortex) of anesthetized, paralyzed bush babies (Galago crassicaudatus). Cells tended to be grouped with respect to ocular dominance, orientation preference, and direction selectivity. There was a high proportion of monocularly driven cells as in macaque monkey. Only 6% of the cells were nonoriented. These were poorly tuned complex cells and bore no resemblance to nonoriented lateral geniculate nucleus (LGN)-like cells reported in layer IV of macaque monkeys. Unidirectional cells were most frequently encountered in cortical layers that receive input from the magnocellular layers of the LGN. 3. Cells were classified as simple (31%) or complex (69%) according to standard criteria. Simple cells were significantly more narrowly tuned than complex cells for both orientation and spatial frequency. Complex cells had significantly higher average optimal spatial frequencies and spatial frequency cutoffs than simple cells. Contrast sensitivity of simple and complex cells averaged 38 and 34, respectively. Spatial resolution and sensitivity of these cells matches behavioral measures in bush baby. The spatial and temporal resolution of bush baby cells are similar to those of cats, which is likely related to the nocturnal niche of both species. 4. Cells in supragranular (I-III) and infragranular (V, VI) layers differed

  18. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.

    PubMed

    Malhotra, Shveta; Lomber, Stephen G

    2007-01-01

    Although the contributions of primary auditory cortex (AI) to sound localization have been extensively studied in a large number of mammals, little is known of the contributions of nonprimary auditory cortex to sound localization. Therefore the purpose of this study was to examine the contributions of both primary and all the recognized regions of acoustically responsive nonprimary auditory cortex to sound localization during both bilateral and unilateral reversible deactivation. The cats learned to make an orienting response (head movement and approach) to a 100-ms broad-band noise stimulus emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90 degrees to right 90 degrees , at 15 degrees intervals) along the horizontal plane after attending to a central visual stimulus. Twenty-one cats had one or two bilateral pairs of cryoloops chronically implanted over one of ten regions of auditory cortex. We examined AI [which included the dorsal zone (DZ)], the three other tonotopic fields [anterior auditory field (AAF), posterior auditory field (PAF), ventral posterior auditory field (VPAF)], as well as six nontonotopic regions that included second auditory cortex (AII), the anterior ectosylvian sulcus (AES), the insular (IN) region, the temporal (T) region [which included the ventral auditory field (VAF)], the dorsal posterior ectosylvian (dPE) gyrus [which included the intermediate posterior ectosylvian (iPE) gyrus], and the ventral posterior ectosylvian (vPE) gyrus. In accord with earlier studies, unilateral deactivation of AI/DZ caused sound localization deficits in the contralateral field. Bilateral deactivation of AI/DZ resulted in bilateral sound localization deficits throughout the 180 degrees field examined. Of the three other tonotopically organized fields, only deactivation of PAF resulted in sound localization deficits. These deficits were virtually identical to the unilateral and bilateral deactivation results

  19. An investigation of prototypical and atypical within-category vowels and non-speech analogues on cortical auditory evoked related potentials (AERPs) in 9 year old children.

    PubMed

    Bruder, Jennifer; Leppänen, Paavo H T; Bartling, Jürgen; Csépe, Valéria; Démonet, Jean-Francois; Schulte-Körne, Gerd

    2011-02-01

    The present study examined cortical auditory evoked related potentials (AERPs) for the P1-N250 and MMN components in children 9 years of age. The first goal was to investigate whether AERPs respond differentially to vowels and complex tones, and the second goal was to explore how prototypical language formant structures might be reflected in these early auditory processing stages. Stimuli were two synthetic within-category vowels (/y/), one of which was preferred by adult German listeners ("prototypical-vowel"), and analogous complex tones. P1 strongly distinguished vowels from tones, revealing larger amplitudes for the more difficult to discriminate but phonetically richer vowel stimuli. Prototypical language phoneme status did not reliably affect AERPs; however P1 amplitudes elicited by the prototypical-vowel correlated robustly with the ability to correctly identify two prototypical-vowels presented in succession as "same" (r=-0.70) and word reading fluency (r=-0.63). These negative correlations suggest that smaller P1 amplitudes elicited by the prototypical-vowel predict enhanced accuracy when judging prototypical-vowel "sameness" and increased word reading speed. N250 and MMN did not differentiate between vowels and tones and showed no correlations to behavioural measures. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The relationship between cortical auditory evoked potentials (CAEPs) and speech perception in children with Nurotron(®) cochlear implants during four years of follow-up.

    PubMed

    Guo, Qianqian; Li, Yuling; Fu, Xinxing; Liu, Hui; Chen, Jing; Meng, Chao; Long, Mo; Chen, Xueqing

    2016-06-01

    The purpose of the current study was to evaluate the relationship between the presence or absence of cortical auditory evoked potentials (CAEPs) to speech stimuli and the performance of speech perception in Chinese pediatric recipients of the Nurotron(®) cochlear implant (CI).We also wanted to determine how the CAEPs might be used as an indicator for predicting early speech perception and could provide objective evidence for clinical applications of CAEPs. 23 pediatric unilateral CI recipients participated in this study. 15 males 8 females, and their ages at implantation ranged from 13 to 68 months, with a mean age of 36 months. CAEPs and Mandarin Early Speech Perception (MESP) tests were used to evaluate the audibility and speech perception of these CI users. The tests were administered at the first, second, third, and fourth year after the CI surgery. All the subjects demonstrated improvements in detection of speech sounds with CI. The percentages of participants who could detect all three stimuli were 26% (6/23) at first year, to 100% (23/23) at the fourth year post-implantation. The percentages of participants who passed the Category 6 of MESP were from 9% (2/23) at first year, to 91% (21/23) at the fourth year post-implantation. Significant correlations (p<0.05) were found between CAEP scores and MESP at the first, second, third year after the CI surgery. The multiple regression equation for prediction of MESP categories from CAEP scores and hearing ages was MESP=1.088+(0.504×CAEP score)+(0.964×hearing ages) (F=72.919, p<0.001, R(2)=0.621). The results of this study suggested that aided cortical assessment was a useful tool to evaluate the outcomes of cochlear implantation. Cortical outcomes had a significant positive relationship with the MESP, which predicted the early speech perception of CI recipients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis.

    PubMed

    Carrillo-de-la-Peña, M T; Vallet, M; Pérez, M I; Gómez-Perretta, C

    2006-07-01

    On the basis of recent evidence concerning the amplification of incoming stimulation in fibromyalgia (FM) patients, it has been proposed that a generalized hypervigilance of painful and nonpainful sensations may be at the root of this disorder. So far, research into this issue has been inconclusive, possibly owing to the lack of agreement as to the operational definition of "generalized hypervigilance" and to the lack of robust objective measures characterizing the sensory style of FM patients. In this study, we recorded auditory-evoked potentials (AEPs) elicited by tones of increasing intensity (60, 70, 80, 90, and 105 dB) in 27 female FM patients and 25 healthy controls. Fibromyalgia patients presented shorter N1 and P2 latencies and a stronger intensity dependence of their AEPs. Both results suggest that FM patients may be hypervigilant to sensory stimuli, especially when very loud tones are used. The most noteworthy difference between patients and control subjects is at the highest stimulus intensity, for which far more patients maintained increased N1-P2 amplitudes in relation to the 90-dB tones. The larger AEP amplitudes to the 105-dB tones suggest that defects in an inhibitory system protecting against overstimulation may be a crucial factor in the pathophysiology of FM. Because a stronger loudness dependence of AEPs has been related to weak serotonergic transmission, it is hypothesized that for many FM patients deficient inhibition of the response to noxious and intense auditory stimuli may be due to a serotonergic deficit. The study of auditory-evoked potentials in response to tones of increasing intensity in FM patients may help to clarify the pathophysiology of this disorder, especially regarding the role of inhibition deficits involving serotonergic dysfunction, and may be a useful tool to guide the pharmacologic treatment of FM patients.

  2. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey.

    PubMed

    Romanski, L M; Bates, J F; Goldman-Rakic, P S

    1999-01-11

    Recent anatomical and electrophysiological studies have expanded our knowledge of the auditory cortical system in primates and have described its organization as a series of concentric circles with a central or primary auditory core, surrounded by a lateral and medial belt of secondary auditory cortex with a tertiary parabelt cortex just lateral to this belt. Because recent studies have shown that rostral and caudal belt and parabelt cortices have distinct patterns of connections and acoustic responsivity, we hypothesized that these divergent auditory regions might have distinct targets in the frontal lobe. We, therefore, placed discrete injections of wheat germ agglutinin-horseradish peroxidase or fluorescent retrograde tracers into the prefrontal cortex of macaque monkeys and analyzed the anterograde and retrograde labeling in the aforementioned auditory areas. Injections that included rostral and orbital prefrontal areas (10, 46 rostral, 12) labeled the rostral belt and parabelt most heavily, whereas injections including the caudal principal sulcus (area 46), periarcuate cortex (area 8a), and ventrolateral prefrontal cortex (area12vl) labeled the caudal belt and parabelt. Projections originating in the parabelt cortex were denser than those arising from the lateral or medial belt cortices in most cases. In addition, the anterior third of the superior temporal gyrus and the dorsal bank of the superior temporal sulcus were also labeled after prefrontal injections, confirming previous studies. The present topographical results suggest that acoustic information diverges into separate streams that target distinct rostral and caudal domains of the prefrontal cortex, which may serve different acoustic functions.

  3. No effects of mobile phone use on cortical auditory change-detection in children: an ERP study.

    PubMed

    Kwon, Myoung Soo; Huotilainen, Minna; Shestakova, Anna; Kujala, Teija; Näätänen, Risto; Hämäläinen, Heikki

    2010-04-01

    We investigated the effect of mobile phone use on the auditory sensory memory in children. Auditory event-related potentials (ERPs), P1, N2, mismatch negativity (MMN), and P3a, were recorded from 17 children, aged 11-12 years, in the recently developed multi-feature paradigm. This paradigm allows one to determine the neural change-detection profile consisting of several different types of acoustic changes. During the recording, an ordinary GSM (Global System for Mobile Communications) mobile phone emitting 902 MHz (pulsed at 217 Hz) electromagnetic field (EMF) was placed on the ear, over the left or right temporal area (SAR(1g) = 1.14 W/kg, SAR(10g) = 0.82 W/kg, peak value = 1.21 W/kg). The EMF was either on or off in a single-blind manner. We found that a short exposure (two 6 min blocks for each side) to mobile phone EMF has no statistically significant effects on the neural change-detection profile measured with the MMN. Furthermore, the multi-feature paradigm was shown to be well suited for studies of perception accuracy and sensory memory in children. However, it should be noted that the present study only had sufficient statistical power to detect a large effect size. (c) 2009 Wiley-Liss, Inc.

  4. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  5. Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2013-01-01

    Auditory-vocal interaction, the modulation of auditory sensory responses during vocal production, is an important but poorly understood neurophysiological phenomenon in nonhuman primates. This sensory-motor processing has important behavioral implications for self-monitoring during vocal production as well as feedback-mediated vocal control for both animals and humans. Previous studies in marmosets have shown that a large portion of neurons in the auditory cortex are suppressed during self-produced vocalization but have primarily focused on a single type of isolation vocalization. The present study expands previous analyses to compare auditory-vocal interaction of cortical responses between different types of vocalizations. We recorded neurons from the auditory cortex of unrestrained marmoset monkeys with implanted electrode arrays and showed that auditory-vocal interactions generalize across vocalization types. We found the following: 1) Vocal suppression and excitation are a general phenomenon, occurring for all four major vocalization types. 2) Within individual neurons, suppression was the more general response, occurring for multiple vocalization types, while excitation tended to be more specific to a single vocalization type. 3) A subset of neurons changed their responses between different types of vocalization, most often from strong suppression or excitation for one vocalization to unresponsive for another, and only rarely from suppression to excitation. 4) Differences in neural responses between vocalization types were weakly correlated with passive response properties, measured by playbacks of acoustic stimuli including recorded vocalizations. These results indicate that vocalization-induced modulation of the auditory cortex is a general phenomenon applicable to all vocalization types, but variations within individual neurons suggest possible vocalization-specific coding. PMID:23274315

  6. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment

    PubMed Central

    Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo

    2016-01-01

    We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems. PMID:27708745

  7. Electroacoustic Comparison of Hearing Aid Output of Phonemes in Running Speech versus Isolation: Implications for Aided Cortical Auditory Evoked Potentials Testing

    PubMed Central

    Easwar, Vijayalakshmi; Purcell, David W.; Scollie, Susan D.

    2012-01-01

    Background. Functioning of nonlinear hearing aids varies with characteristics of input stimuli. In the past decade, aided speech evoked cortical auditory evoked potentials (CAEPs) have been proposed for validation of hearing aid fittings. However, unlike in running speech, phonemes presented as stimuli during CAEP testing are preceded by silent intervals of over one second. Hence, the present study aimed to compare if hearing aids process phonemes similarly in running speech and in CAEP testing contexts. Method. A sample of ten hearing aids was used. Overall phoneme level and phoneme onset level of eight phonemes in both contexts were compared at three input levels representing conversational speech levels. Results. Differences of over 3 dB between the two contexts were noted in one-fourth of the observations measuring overall phoneme levels and in one-third of the observations measuring phoneme onset level. In a majority of these differences, output levels of phonemes were higher in the running speech context. These differences varied across hearing aids. Conclusion. Lower output levels in the isolation context may have implications for calibration and estimation of audibility based on CAEPs. The variability across hearing aids observed could make it challenging to predict differences on an individual basis. PMID:23316236

  8. Knockdown of the candidate dyslexia susceptibility gene homolog Dyx1c1 in rodents: Effects on auditory processing, visual attention, and cortical and thalamic anatomy

    PubMed Central

    Szalkowski, Caitlin E.; Booker, Anne B.; Truong, Dongnhu T.; Threlkeld, Steven W.; Rosen, Glenn D.; Fitch, Roslyn H.

    2014-01-01

    The current study investigated the behavioral and neuroanatomical effects of embryonic knockdown of the candidate dyslexia susceptibility gene (CDSG) homolog Dyx1c1 through RNA interference in rats. Specifically, we examined long-term effects on visual attention abilities in males, in addition to assessing rapid and complex auditory processing abilities in male and, for the first time, female rats. Results replicated prior evidence of complex acoustic processing deficits in Dyx1c1 male rats, and revealed new evidence of comparable deficits in Dyx1c1 female rats. Moreover, we found new evidence that knocking down Dyx1c1 produced orthogonal impairments in visual attention in the male sub-group. Stereological analyses of male brains from prior RNA interference studies revealed that, despite consistent visible evidence of disruptions in neuronal migration (i.e., heterotopia), knockdown of Dyx1c1 did not significantly alter cortical volume, hippocampal volume, or midsagittal area of the corpus callosum (measured in a separate cohort of like-treated Dyx1c1 male rats). Dyx1c1 transfection did however lead to significant changes in medial geniculate nucleus (MGN) anatomy, with a significant shift to smaller MGN neurons in Dyx1c1 transfected animals. Combined results provide important information about the impact of Dyx1c1 on behavioral functions that parallel domains known to be affected in language impaired populations, as well as information about widespread changes to the brain following early disruption of this candidate dyslexia susceptibility gene. PMID:23594585

  9. Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction.

    PubMed

    Shelley, A M; Silipo, G; Javitt, D C

    1999-05-04

    Event-related potentials (ERPs) were recorded from 15 schizophrenic patients and 17 normal controls in an auditory oddball paradigm in order to investigate the effects of stimulus probability and interstimulus interval (ISI) on deficits in mismatch negativity (MMN) generation in schizophrenia. MMN amplitude was reduced for schizophrenics overall, with the degree of deficit increasing as deviant probability decreased. In contrast, schizophrenic subjects were no more affected by alterations in ISI than controls. The experimental design also permitted evaluation of N1 generation as a function of ISI in schizophrenia. Schizophrenic subjects showed decreased N1 amplitude across conditions, with the degree of deficit increasing with increasing ISI. For both MMN and N1, therefore, the degree of deficit increased with increasing component amplitude in normals, implying that the deficit in ERP generation in schizophrenia may reflect a decrease in maximal current flow through underlying neuronal ensembles. The observed pattern of dysfunction is consistent both with observations of impaired precision of processing in schizophrenia, and with predictions of the PCP/NMDA model.

  10. Synaptic mechanisms underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons in auditory cortical layer 5.

    PubMed

    Sun, Yujiao J; Kim, Young-Joo; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I

    2013-03-20

    Corticofugal projections from the primary auditory cortex (A1) have been shown to play a role in modulating subcortical processing. However, functional properties of the corticofugal neurons and their synaptic circuitry mechanisms remain unclear. In this study, we performed in vivo whole-cell recordings from layer 5 (L5) pyramidal neurons in the rat A1 and found two distinct neuronal classes according to their functional properties. Intrinsic-bursting (IB) neurons, the L5 corticofugal neurons, exhibited early and rather unselective spike responses to a wide range of frequencies. The exceptionally broad spectral tuning of IB neurons was attributable to their broad excitatory inputs with long temporal durations and inhibitory inputs being more narrowly tuned than excitatory inputs. This uncommon pattern of excitatory-inhibitory interplay was attributed initially to a broad thalamocortical convergence onto IB neurons, which also receive temporally prolonged intracortical excitatory input as well as feedforward inhibitory input at least partially from more narrowly tuned fast-spiking inhibitory neurons. In contrast, regular-spiking neurons, which are mainly corticocortical, exhibited sharp frequency tuning similar to L4 pyramidal cells, underlying which are well-matched purely intracortical excitation and inhibition. The functional dichotomy among L5 pyramidal neurons suggests two distinct processing streams. The spectrally and temporally broad synaptic integration in IB neurons may ensure robust feedback signals to facilitate subcortical function and plasticity in a general manner.

  11. Phase-amplitude cross-frequency coupling in EEG-derived cortical time series upon an auditory perception task.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2015-01-01

    Recent evidence suggests that cross-frequency coupling (CFC) plays an essential role in multi-scale communication across the brain. The amplitude of the high frequency oscillations, responsible for local activity, is modulated by the phase of the lower frequency activity, in a task and region-relevant way. In this paper, we examine this phase-amplitude coupling in a two-tone oddball paradigm for the low frequency bands (delta, theta, alpha, and beta) and determine the most prominent CFCs. Data consisted of cortical time series, extracted by applying three-dimensional vector field tomography (3D-VFT) to high density (256 channels) electroencephalography (HD-EEG), and CFC analysis was based on the phase-amplitude coupling metric, namely PAC. Our findings suggest CFC spanning across all brain regions and low frequencies. Stronger coupling was observed in the delta band, that is closely linked to sensory processing. However, theta coupling was reinforced in the target tone response, revealing a task-dependent CFC and its role in brain networks communication.

  12. The evolution of neocortex in primates.

    PubMed

    Kaas, Jon H

    2012-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved.

  13. Thalamic label patterns suggest primary and ventral auditory fields are distinct core regions.

    PubMed

    Storace, Douglas A; Higgins, Nathan C; Read, Heather L

    2010-05-15

    A hierarchical scheme proposed by Kaas and colleagues suggests that primate auditory cortex can be divided into core and belt regions based on anatomic connections with thalamus and distinctions among response properties. According to their model, core auditory cortex receives predominantly unimodal sensory input from the ventral nucleus of the medial geniculate body (MGBv); whereas belt cortex receives predominantly cross-modal sensory input from nuclei outside the MGBv. We previously characterized distinct response properties in rat primary (A1) versus ventral auditory field (VAF) cortex; however, it has been unclear whether VAF should be categorized as a core or belt auditory cortex. The current study employed high-resolution functional imaging to map intrinsic metabolic responses to tones and to guide retrograde tracer injections into A1 and VAF. The size and density of retrogradely labeled somas in the medial geniculate body (MGB) were examined as a function of their position along the caudal-to-rostral axis, subdivision of origin, and cortical projection target. A1 and VAF projecting neurons were found in the same subdivisions of the MGB but in rostral and caudal parts, respectively. Less than 3% of the cells projected to both regions. VAF projecting neurons were smaller than A1 projecting neurons located in dorsal (MGBd) and suprageniculate (SG) nuclei. Thus, soma size varied with both caudal-rostral position and cortical target. Finally, the majority (>70%) of A1 and VAF projecting neurons were located in MGBv. These MGB connection profiles suggest that rat auditory cortex, like primate auditory cortex, is made up of multiple distinct core regions. (c) 2010 Wiley-Liss, Inc.

  14. Comparative primate neuroimaging: insights into human brain evolution.

    PubMed

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  15. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age

    PubMed Central

    Yu, Yan H.; Wagner, Monica

    2014-01-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250- ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. PMID:25219893

  16. Effects of Acoustic Complexity on Processing Sound Intensity in 10- to 11-Year-Old Children: Evidence From Cortical Auditory Evoked Potentials

    PubMed Central

    Dinces, Elizabeth; Sussman, Elyse

    2012-01-01

    Objectives/Hypothesis The environmental complexity that sounds are presented in, as well as the stimulus presentation rate, influences how sound intensity is centrally encoded with differences between children and adults. Study Design Cortical auditory evoked potential (CAEP) comparison study in children and adults examining two stimulus rates and three different stimulus contexts. Methods Twelve 10 and 11 year olds and 11 adults were studied in two experiments examining the CAEP to a 1-KHz, 50-ms tone. A Slow-Rate experiment at 750-ms stimulus onset asynchrony (SOA) compared the CAEPs of 78 dB to 86 dB SPL in 2 complexity conditions. A Fast-Rate experiment was performed at 125 ms SOA with the same conditions plus an additional complexity condition. Repeated measures and mixed-model analysis of variance (ANOVA) was used to examine the latency and amplitude of the CAEP components. Results CAEP amplitudes and latencies were significantly affected by rate, intensity, and age with complexity interacting in multiple mixed-mode ANOVAs. P1 was the only CAEP component present at the Fast Rate. There were main effects of rate, age, and stimulus intensity level on the CAEP amplitudes and latencies. Maturational differences were seen in the interactions of intensity with complexity for the different CAEP components. Conclusions Complexity of the sound environment was reflected in the relative amplitude of the CAEPs evoked by sound intensity. The effect of stimulus intensity depended on the complexity of the surrounding environment. Effects of the surrounding sounds were different in children than in adults. PMID:21792970

  17. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD.

    PubMed

    Port, Russell G; Gaetz, William; Bloy, Luke; Wang, Dah-Jyuu; Blaskey, Lisa; Kuschner, Emily S; Levy, Susan E; Brodkin, Edward S; Roberts, Timothy P L

    2017-04-01

    Autism spectrum disorder (ASD) is hypothesized to arise from imbalances between excitatory and inhibitory neurotransmission (E/I imbalance). Studies have demonstrated E/I imbalance in individuals with ASD and also corresponding rodent models. One neural process thought to be reliant on E/I balance is gamma-band activity (Gamma), with support arising from observed correlations between motor, as well as visual, Gamma and underlying GABA concentrations in healthy adults. Additionally, decreased Gamma has been observed in ASD individuals and relevant animal models, though the direct relationship between Gamma and GABA concentrations in ASD remains unexplored. This study combined magnetoencephalography (MEG) and edited magnetic resonance spectroscopy (MRS) in 27 typically developing individuals (TD) and 30 individuals with ASD. Auditory cortex localized phase-locked Gamma was compared to resting Superior Temporal Gyrus relative cortical GABA concentrations for both children/adolescents and adults. Children/adolescents with ASD exhibited significantly decreased GABA+/Creatine (Cr) levels, though typical Gamma. Additionally, these children/adolescents lacked the typical maturation of GABA+/Cr concentrations and gamma-band coherence. Furthermore, children/adolescents with ASD additionally failed to exhibit the typical GABA+/Cr to gamma-band coherence association. This altered coupling during childhood/adolescence may result in Gamma decreases observed in the adults with ASD. Therefore, individuals with ASD exhibit improper local neuronal circuitry maturation during a childhood/adolescence critical period, when GABA is involved in configuring of such circuit functioning. Provocatively a novel line of treatment is suggested (with a critical time window); by increasing neural GABA levels in children/adolescents with ASD, proper local circuitry maturation may be restored resulting in typical Gamma in adulthood. Autism Res 2017, 10: 593-607. © 2016 International Society for

  18. Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations.

    PubMed

    Mørch-Johnsen, Lynn; Nesvåg, Ragnar; Jørgensen, Kjetil N; Lange, Elisabeth H; Hartberg, Cecilie B; Haukvik, Unn K; Kompus, Kristiina; Westerhausen, René; Osnes, Kåre; Andreassen, Ole A; Melle, Ingrid; Hugdahl, Kenneth; Agartz, Ingrid

    2017-01-01

    Neuroimaging studies have demonstrated associations between smaller auditory cortex volume and auditory hallucinations (AH) in schizophrenia. Reduced cortical volume can result from a reduction of either cortical thickness or cortical surface area, which may reflect different neuropathology. We investigate for the first time how thickness and surface area of the auditory cortex relate to AH in a large sample of schizophrenia spectrum patients. Schizophrenia spectrum (n = 194) patients underwent magnetic resonance imaging. Mean cortical thickness and surface area in auditory cortex regions (Heschl's gyrus [HG], planum temporale [PT], and superior temporal gyrus [STG]) were compared between patients with (AH+, n = 145) and without (AH-, n = 49) a lifetime history of AH and 279 healthy controls. AH+ patients showed significantly thinner cortex in the left HG compared to AH- patients (d = 0.43, P = .0096). There were no significant differences between AH+ and AH- patients in cortical thickness in the PT or STG, or in auditory cortex surface area in any of the regions investigated. Group differences in cortical thickness in the left HG was not affected by duration of illness or current antipsychotic medication. AH in schizophrenia patients were related to thinner cortex, but not smaller surface area of the left HG, a region which includes the primary auditory cortex. The results support that structural abnormalities of the auditory cortex underlie AH in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Primate cognition.

    PubMed

    Seed, Amanda; Tomasello, Michael

    2010-07-01

    As the cognitive revolution was slow to come to the study of animal behavior, the vast majority of what we know about primate cognition has been discovered in the last 30 years. Building on the recognition that the physical and social worlds of humans and their living primate relatives pose many of the same evolutionary challenges, programs of research have established that the most basic cognitive skills and mental representations that humans use to navigate those worlds are already possessed by other primates. There may be differences between humans and other primates, however, in more complex cognitive skills, such as reasoning about relations, causality, time, and other minds. Of special importance, the human primate seems to possess a species-unique set of adaptations for "cultural intelligence," which are broad reaching in their effects on human cognition.

  20. Functional organization of human auditory cortex: Investigation of response latencies through direct recordings

    PubMed Central

    McMurray, Bob; Kovach, Christopher K.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl’s gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. PMID:25019680

  1. In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    PubMed Central

    Dick, Frederic; Tierney, Adam Taylor; Lutti, Antoine; Josephs, Oliver; Sereno, Martin I.; Weiskopf, Nikolaus

    2012-01-01

    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with post mortem cyto- or myelo-architectonics from the same individual. We combined high-resolution (800 μm) quantitative T1 mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the ‘auditory core’ of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to post-mortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two ‘mirror-image‘ tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that thee two maps within the core are the human analogues of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multi-modal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies. PMID:23152594

  2. [The Map of Auditory Function].

    PubMed

    Fujimoto, So; Komura, Yutaka

    2017-04-01

    Brodmann areas 41 and 42 are located in the superior temporal gyrus and regarded as auditory cortices. The fundamental function in audition is frequency analysis; however, the findings on tonotopy maps of the human auditory cortex were not unified until recently when they were compared to the findings on inputs and outputs of the monkey auditory cortex. The auditory cortex shows plasticity after conditioned learning and surgery of cochlear implant. It is also involved in speech perception, music appreciation, and auditory hallucination in schizophrenia through interactions with other brain areas, such as the thalamus, frontal cortex, and limbic systems.

  3. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  5. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  6. Evolution of the brain and intelligence in primates.

    PubMed

    Roth, Gerhard; Dicke, Ursula

    2012-01-01

    Primates are, on average, more intelligent than other mammals, with great apes and finally humans on top. They generally have larger brains and cortices, and because of higher relative cortex volume and neuron packing density (NPD), they have much more cortical neurons than other mammalian taxa with the same brain size. Likewise, information processing capacity is generally higher in primates due to short interneuronal distance and high axonal conduction velocity. Across primate taxa, differences in intelligence correlate best with differences in number of cortical neurons and synapses plus information processing speed. The human brain stands out by having a large cortical volume with relatively high NPD, high conduction velocity, and high cortical parcellation. All aspects of human intelligence are present at least in rudimentary form in nonhuman primates or some mammals or vertebrates except syntactical language. The latter can be regarded as a very potent "intelligence amplifier."

  7. Using neural modeling and functional neuroimaging to study the neural basis of auditory object processing

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry; Husain, Fatima T.

    2003-04-01

    The neural basis of auditory object processing in the human cerebral cortex was investigated by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates neuronal dynamics of cortical auditory processing of frequency-modulated (FM) sweeps to functional neuroimaging data obtained using functional magnetic resonance imaging (fMRI). FM sweeps are ubiquitous in animal communication. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the model neuronal units were constrained to agree with data from the neurophysiological literature regarding FM sweep perception. A fMRI experiment using stimuli and tasks similar to those used in our simulations was performed. The regional integrated synaptic activities of the model were used to determine simulated regional fMRI activities, and generally agreed with the experimentally observed fMRI data. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex. This type of approach offers the potential for understanding the neural basis of human speech perception.

  8. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways.

    PubMed

    Clarke, S; Bellmann, A; Meuli, R A; Assal, G; Steck, A J

    2000-01-01

    Auditory recognition and auditory spatial functions were studied in four patients with circumscribed left hemispheric lesions. Patient FD was severely deficient in recognition of environmental sounds but normal in auditory localisation and auditory motion perception. The lesion included the left superior, middle and inferior temporal gyri and lateral auditory areas (as identified in previous anatomical studies), but spared Heschl's gyrus, the acoustic radiation and the thalamus. Patient SD had the same profile as FD, with deficient recognition of environmental sounds but normal auditory localisation and motion perception. The lesion comprised the postero-inferior part of the frontal convexity and the anterior third of the temporal lobe; data from non-human primates indicate that the latter are interconnected with lateral auditory areas. Patient MA was deficient in recognition of environmental sounds, auditory localisation and auditory motion perception, confirming that auditory spatial functions can be disturbed by left unilateral damage; the lesion involved the supratemporal region as well as the temporal, postero-inferior frontal and antero-inferior parietal convexities. Patient CZ was severely deficient in auditory motion perception and partially deficient in auditory localisation, but normal in recognition of environmental sounds; the lesion involved large parts of the parieto-frontal convexity and the supratemporal region. We propose that auditory information is processed in the human auditory cortex along two distinct pathways, one lateral devoted to auditory recognition and one medial and posterior devoted to auditory spatial functions.

  9. Activity in a Premotor Cortical Nucleus of Zebra Finches Is Locally Organized and Exhibits Auditory Selectivity in Neurons but Not in Glia

    PubMed Central

    Graber, Michael H.; Helmchen, Fritjof; Hahnloser, Richard H. R.

    2013-01-01

    Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS) compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations. PMID:24312533

  10. Subcortical processing in auditory communication.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2015-10-01

    The voice is a rich source of information, which the human brain has evolved to decode and interpret. Empirical observations have shown that the human auditory system is especially sensitive to the human voice, and that activity within the voice-sensitive regions of the primary and secondary auditory cortex is modulated by the emotional quality of the vocal signal, and may therefore subserve, with frontal regions, the cognitive ability to correctly identify the speaker's affective state. So far, the network involved in the processing of vocal affect has been mainly characterised at the cortical level. However, anatomical and functional evidence suggests that acoustic information relevant to the affective quality of the auditory signal might be processed prior to the auditory cortex. Here we review the animal and human literature on the main subcortical structures along the auditory pathway, and propose a model whereby the distinction between different types of vocal affect in auditory communication begins at very early stages of auditory processing, and relies on the analysis of individual acoustic features of the sound signal. We further suggest that this early feature-based decoding occurs at a subcortical level along the ascending auditory pathway, and provides a preliminary coarse (but fast) characterisation of the affective quality of the auditory signal before the more refined (but slower) cortical processing is completed.

  11. Using naturalistic utterances to investigate vocal communication processing and development in human and non-human primates

    PubMed Central

    Talkington, William J.; Taglialatela, Jared P.; Lewis, James W.

    2013-01-01

    Humans and several non-human primates possess cortical regions that are most sensitive to vocalizations produced by their own kind (conspecifics). However, the use of speech and other broadly defined categories of behaviorally relevant natural sounds has led to many discrepancies regarding where voice-sensitivity occurs, and more generally the identification of cortical networks, “proto-networks” or protolanguage networks, and pathways that may be sensitive or selective for certain aspects of vocalization processing. In this prospective review we examine different approaches for exploring vocal communication processing, including pathways that may be, or become, specialized for conspecific utterances. In particular, we address the use of naturally produced non-stereotypical vocalizations (mimicry of other animal calls) as another category of vocalization for use with human and non-human primate auditory systems. We focus this review on two main themes, including progress and future ideas for studying vocalization processing in great apes (chimpanzees) and in very early stages of human development, including infants and fetuses. Advancing our understanding of the fundamental principles that govern the evolution and early development of cortical pathways for processing non-verbal communication utterances is expected to lead to better diagnoses and early intervention strategies in children with communication disorders, improve rehabilitation of communication disorders resulting from brain injury, and develop new strategies for intelligent hearing aid and implant design that can better enhance speech signals in noisy environments. PMID:23994296

  12. Using naturalistic utterances to investigate vocal communication processing and development in human and non-human primates.

    PubMed

    Talkington, William J; Taglialatela, Jared P; Lewis, James W

    2013-11-01

    Humans and several non-human primates possess cortical regions that are most sensitive to vocalizations produced by their own kind (conspecifics). However, the use of speech and other broadly defined categories of behaviorally relevant natural sounds has led to many discrepancies regarding where voice-sensitivity occurs, and more generally the identification of cortical networks, "proto-networks" or protolanguage networks, and pathways that may be sensitive or selective for certain aspects of vocalization processing. In this prospective review we examine different approaches for exploring vocal communication processing, including pathways that may be, or become, specialized for conspecific utterances. In particular, we address the use of naturally produced non-stereotypical vocalizations (mimicry of other animal calls) as another category of vocalization for use with human and non-human primate auditory systems. We focus this review on two main themes, including progress and future ideas for studying vocalization processing in great apes (chimpanzees) and in very early stages of human development, including infants and fetuses. Advancing our understanding of the fundamental principles that govern the evolution and early development of cortical pathways for processing non-verbal communication utterances is expected to lead to better diagnoses and early intervention strategies in children with communication disorders, improve rehabilitation of communication disorders resulting from brain injury, and develop new strategies for intelligent hearing aid and implant design that can better enhance speech signals in noisy environments. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".

  13. Auditory effects on the motor responses after magnetic cortical stimulation and on the H-reflexes in patients with Parkinson's disease.

    PubMed

    Nakashima, K; Wang, Y; Shimoda, M; Shimoyama, R; Yokoyama, Y; Takahashi, K

    1994-03-01

    The effects of sound on the responses in teh abductor pollicis brevis muscle after magnetic cortical stimulation and on the H-reflexes in the wrist and finger flexor muscles were examined. Magnetic cortical stimulation and electrical stimulation eliciting H-reflexes were conditioned by sound stimulation. This sound stimulation did not produce the electromyographic response by itself. In the control subjects, sound stimulation produced an increase of the motor responses after cortical stimulation at intervals of 100, 150, 200 and 250 ms. The increase was greater in the patients with Parkinson's disease (PD). In the control subjects, sound stimulation produced an increase of the H-reflexes at intervals of 50, 100, 150 and 200 ms. This H-reflex increase in the PD patients was less than in the normal subjects. The reticular system might play a role in the abnormal motor control system in PD patients.

  14. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    PubMed

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p < 0.05). In conclusion, the bilateral visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices.

  15. Spectral and spatial tuning of onset and offset response functions in auditory cortical fields A1 and CL of rhesus macaques.

    PubMed

    Ramamurthy, Deepa L; Recanzone, Gregg H

    2016-12-07

    The mammalian auditory cortex is necessary for spectral and spatial processing of acoustic stimuli. Most physiological studies of single neurons in the auditory cortex have focused on the onset and sustained portions of evoked responses, but there have been far fewer studies on the relationship between onset and offset responses. In the current study, we compared spectral and spatial tuning of onset and offset responses of neurons in primary auditory cortex (A1) and the caudolateral (CL) belt area of awake macaque monkeys. Several different metrics were used to determine the relationship between onset and offset response profiles in both frequency and space domains. In the frequency domain, a substantial proportion of neurons in A1 and CL displayed highly dissimilar best stimuli for onset- and offset-evoked responses, though even for these neurons, there was usually a large overlap in the range of frequencies that elicited onset and offset responses and distributions of tuning overlap metrics were mostly unimodal. In the spatial domain, the vast majority of neurons displayed very similar best locations for onset- and offset-evoked responses, along with unimodal distributions of all tuning overlap metrics considered. Finally, for both spectral and spatial tuning, a slightly larger fraction of neurons in A1 displayed non-overlapping onset and offset response profiles, relative to CL, which supports hierarchical differences in the processing of sounds in the two areas. However, these differences are small compared to differences in proportions of simple cells (low overlap) and complex cells (high overlap) in primary and secondary visual areas.

  16. Perceptual learning in the developing auditory cortex.

    PubMed

    Bao, Shaowen

    2015-03-01

    A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant. How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the most important classes of sounds, animal vocalizations? How does naturalistic acoustic experience shape cortical sound representation and perception? To answer these questions, we need to consider an unusual strategy, statistical learning, where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain statistical structures of natural animal vocalizations shape auditory cortical acoustic representations, and how cortical plasticity may underlie learned categorical sound perception. These results will be discussed in the context of human speech perception.

  17. Behind the scenes of auditory perception.

    PubMed

    Shamma, Shihab A; Micheyl, Christophe

    2010-06-01

    'Auditory scenes' often contain contributions from multiple acoustic sources. These are usually heard as separate auditory 'streams', which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the past two years indicate that both cortical and subcortical processes contribute to the formation of auditory streams, and they raise important questions concerning the roles of primary and secondary areas of auditory cortex in this phenomenon. In addition, these findings underline the importance of taking into account the relative timing of neural responses, and the influence of selective attention, in the search for neural correlates of the perception of auditory streams.

  18. Cortical maturation of long latency auditory evoked potentials in hearing children: the complex P1-N1-P2-N2.

    PubMed

    Silva, Liliane Aparecida Fagundes; Magliaro, Fernanda Cristina Leite; Carvalho, Ana Claudia Martinho de; Matas, Carla Gentile

    2017-09-04

    The purpose of this study was to monitor the emergence and changes to the components of the Long Latency Auditory Evoked Potentials (LLAEP) in normal hearing children. This longitudinal study included children of both genders: seven aged between 10 and 35 months, and eight children between 37 and 63 months. The electrophysiological hearing evaluation consisted of analysis of LLAEP obtained in a sound field generated with loudspeakers positioned at an azimuth of 90°, through which the syllable /ba/ was played at an intensity of 70 dB HL. Each child underwent an initial evaluation followed by two re-evaluations three and nine months later. The emergence of LLAEP components across the nine-month follow-up period was observed. P1 and N2 were the most common components in children of this age range. There was no statistically significant difference regarding the occurrence of P1, N1, P2, and N2 components amongst younger and older children. Regarding latency values, the greatest changes overtime were observed in the P1 component for younger children and in the N2 component for older children. Only the P1 component significantly differed between the groups, with the highest latency values observed in younger children. LLAEP maturation occurs gradually and the emergence of complex components appears to be related more to the maturation of the central auditory nervous system than to chronological age.

  19. Central auditory imperception.

    PubMed

    Snow, J B; Rintelmann, W F; Miller, J M; Konkle, D F

    1977-09-01

    The development of clinically applicable techniques for the evaluation of hearing impairment caused by lesions of the central auditory pathways has increased clinical interest in the anatomy and physiology of these pathways. A conceptualization of present understanding of the anatomy and physiology of the central auditory pathways is presented. Clinical tests based on reduction of redundancy of the speech message, degradation of speech and binaural interations are presented. Specifically performance-intensity functions, filtered speech tests, competing message tests and time-compressed speech tests are presented with the emphasis on our experience with time-compressed speech tests. With proper use of these tests not only can central auditory impairments by detected, but brain stem lesions can be distinguished from cortical lesions.

  20. A paradox in the evolution of primate vocal learning.

    PubMed

    Egnor, S E Roian; Hauser, Marc D

    2004-11-01

    The importance of auditory feedback in the development of spoken language in humans is striking. Paradoxically, although auditory-feedback-dependent vocal plasticity has been shown in a variety of taxonomic groups, there is little evidence that our nearest relatives--non-human primates--require auditory feedback for the development of species-typical vocal signals. Because of the apparent lack of developmental plasticity in the vocal production system, neuroscientists have largely ignored the neural mechanisms of non-human primate vocal production and perception. Recently, the absence of evidence for vocal plasticity from developmental studies has been contrasted with evidence for vocal plasticity in adults. We argue that this new evidence makes non-human primate vocal behavior an attractive model system for neurobiological analysis.

  1. MEG in the macaque monkey and human: Distinguishing cortical fields in space and time

    PubMed Central

    Zumer, Johanna M.; Nagarajan, Srikantan S.; Krubitzer, Leah A.; Zhu, Zhao; Turner, Robert S.; Disbrow, Elizabeth A.

    2010-01-01

    Magnetoencephalography (MEG) is an increasingly popular non-invasive tool used to record, on a millisecond timescale, the magnetic field changes generated by cortical neural activity. MEG has the advantage, over fMRI for example, that it is a direct measure of neural activity. In the current investigation we used MEG to measure cortical responses to tactile and auditory stimuli in the macaque monkey. We had two aims. First, we sought to determine whether MEG, a technique that may have low spatial accuracy, could be used to distinguish the location and organization of sensory cortical fields in macaque monkeys, a species with a relatively small brain compared to that of the human. Second, we wanted to examine the temporal dynamics of cortical responses in the macaque monkey relative to the human. We recorded MEG data from anesthetized monkeys and, for comparison, from awake humans that were presented with simple tactile and auditory stimuli. Neural source reconstruction of MEG data showed that primary somatosensory and auditory cortex could be differentiated and, further, that separate representations of the digit and lip within somatosensory cortex could be identified in macaque monkeys as well as humans. We compared the latencies of activity from monkey and human data for the three stimulation types and proposed a correspondence between the neural responses of the two species. We thus demonstrate the feasibility of using MEG in the macaque monkey and provide a non-human primate model for examining the relationship between external evoked magnetic fields and their underlying neural sources. PMID:20493828

  2. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  3. Stimulus control and auditory discrimination learning sets in the bottlenose dolphin1

    PubMed Central

    Herman, Louis M.; Arbeit, William R.

    1973-01-01

    The learning efficiency of an Atlantic bottlenose dolphin was evaluated using auditory discrimination learning-set tasks. Efficiency, as measured by the probability of a correct response on Trial 2 of a new discrete-trial, two-choice auditory discrimination problem, reached levels comparable to those attained by advanced species of nonhuman primates. Runs of errorless problems in some cases rivaled those reported for individual rhesus monkeys in visual discrimination learning-set tasks. This level of stimulus control of responses to new auditory discriminanda was attained through (a) the development of a sequential within-trial method for presentation of a pair of auditory discriminanda; (b) the extensive use of fading methods to train initial discriminations, followed by the fadeout of the use of fading; (c) the development of listening behavior through control of the animal's responses during projection of the auditory discriminanda; and (d) the use of highly discriminable auditory stimuli, by applying results of a parametric evaluation of discriminability of selected acoustic variables. Learning efficiency was tested using a cueing method on Trial 1 of each new discrimination, to allow the animal to identify the positive stimulus before its response. Efficiency was also tested with the more common blind baiting method, in which the Trial 1 response was reinforced on only a random half of the problems. Efficiency was high for both methods. The overall results were generally in keeping with exceptations of learning capacity based on the large size and high degree of cortical complexity of the brain of the bottlenose dolphin. PMID:16811670

  4. Studying Auditory Verbal Hallucinations Using the RDoC framework

    PubMed Central

    Ford, Judith M.

    2016-01-01

    In this paper, I explain why I adopted an RDoC approach to study the neurobiology of auditory verbal hallucinations (AVH), or voices. I explain that the RDoC construct of “Agency” fits well with AVH phenomenology. To the extent that voices sound non-self, voice hearers lack a sense of agency over the voices. Using a vocalization paradigm like those used with non-human primates to study mechanisms subserving the sense of agency, we find that the auditory N1 ERP is suppressed during vocalization, that EEG synchrony preceding speech onset is related to N1 suppression, and that both are reduced in patients with schizophrenia. Reduced cortical suppression is also seen across multiple psychotic disorders and in clinically high-risk youth. The motor activity preceding talking and connectivity between frontal and temporal lobes during talking have both proved sensitive to AVH, suggesting neural activity and connectivity associated with intentions to act may be a better way to study agency and predictions based on agency. PMID:26877116

  5. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  6. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life.

    PubMed

    Hogsden, Jennifer L; Dringenberg, Hans C

    2009-08-01

    The composition of N-methyl-D-aspartate (NMDA) receptor subunits influences the degree of synaptic plasticity expressed during development and into adulthood. Here, we show that theta-burst stimulation of the medial geniculate nucleus reliably induced NMDA receptor-dependent long-term potentiation (LTP) of field postsynaptic potentials recorded in the primary auditory cortex (A1) of urethane-anesthetized rats. Furthermore, substantially greater levels of LTP were elicited in juvenile animals (30-37 days old; approximately 55% maximal potentiation) than in adult animals (approximately 30% potentiation). Masking patterned sound via continuous white noise exposure during early postnatal life (from postnatal day 5 to postnatal day 50-60) resulted in enhanced, juvenile-like levels of LTP (approximately 70% maximal potentiation) relative to age-matched controls reared in unaltered acoustic environments (approximately 30%). Rats reared in white noise and then placed in unaltered acoustic environments for 40-50 days showed levels of LTP comparable to those of adult controls, indicating that white noise rearing results in a form of developmental arrest that can be overcome by subsequent patterned sound exposure. We explored the mechanisms mediating white noise-induced plasticity enhancements by local NR2B subunit antagonist application in A1. NR2B subunit antagonists (Ro 25-6981 or ifenprodil) completely reversed white noise-induced LTP enhancement at concentrations that did not affect LTP in adult or age-matched controls. We conclude that white noise exposure during early postnatal life results in the maintenance of juvenile-like, higher levels of plasticity in A1, an effect that appears to be critically dependent on NR2B subunit activation.

  7. Cortical reorganization in children with cochlear implants.

    PubMed

    Gilley, Phillip M; Sharma, Anu; Dorman, Michael F

    2008-11-06

    Congenital deafness leads to atypical organization of the auditory nervous system. However, the extent to which auditory pathways reorganize during deafness is not well understood. We recorded cortical auditory evoked potentials in normal hearing children and in congenitally deaf children fitted with cochlear implants. High-density EEG and source modeling revealed principal activity from auditory cortex in normal hearing and early implanted children. However, children implanted after a critical period of seven years revealed activity from parietotemporal cortex in response to auditory stimulation, demonstrating reorganized cortical pathways. Reorganization of central auditory pathways is limited by the age at which implantation occurs, and may help explain the benefits and limitations of implantation in congenitally deaf children.

  8. Auditory evoked potentials from the cortex: audiology applications.

    PubMed

    Cone-Wesson, Barbara; Wunderlich, Julia

    2003-10-01

    The audiological applications of cortical auditory evoked potentials are reviewed. Cortical auditory evoked potentials have some advantages compared with more commonly used techniques such as the auditory brainstem response, because they are more closely tied to perception and can be evoked by complex sounds such as speech. These response characteristics suggest that these potentials could be used clinically in the estimation of threshold and also to assess speech discrimination and perception. Clinical uses of auditory evoked potentials include threshold estimation and their use as an electrophysiological index of auditory system development, auditory discrimination and speech perception, and the benefits from cochlear implantation, auditory training, or amplification. Cortical auditory evoked potentials obtained in passively alert adults have a remarkably high correspondence with perceptual threshold. Acoustic features of complex sounds may be reflected in the waveform and latency of these potentials and so might be used to determine the integrity of neural encoding for such features and thus contribute to speech perception assessment. MMN and P3 have been used to discern discrimination abilities among groups of normal-hearing and hearing-impaired individuals; however, their sensitivity and specificity for testing an individual's abilities has not yet been established. Cortical auditory potentials are affected by listening experience and attention and so could be used to gauge the effects of aural habilitation. The presence of cortical potentials in children with auditory neuropathy appears to indicate residual hearing abilities. Parametric and developmental research is needed to further establish these applications in audiology.

  9. Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

    PubMed Central

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.

    2015-01-01

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263

  10. Modulation-frequency-specific adaptation in awake auditory cortex.

    PubMed

    Malone, Brian J; Beitel, Ralph E; Vollmer, Maike; Heiser, Marc A; Schreiner, Christoph E

    2015-04-15

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical "modulation masking," in which the presentation of a modulated "masker" signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. Copyright © 2015 the authors 0270-6474/15/355904-13$15.00/0.

  11. Dual temporal encoding mechanisms in human auditory cortex: Evidence from MEG and EEG.

    PubMed

    Tang, Huizhen; Crain, Stephen; Johnson, Blake W

    2016-03-01

    Current hypotheses about language processing advocate an integral relationship between encoding of temporal information and linguistic processing in the brain. All such explanations must accommodate the evident ability of the perceptual system to process both slow and fast time scales in speech. However most cortical neurons are limited in their capability to precisely synchronise to temporal modulations at rates faster than about 50Hz. Hence, a central question in auditory neurophysiology concerns how the full range of perceptually relevant modulation rates might be encoded in the cerebral cortex. Here we show with concurrent noninvasive magnetoencephalography (MEG) and electroencephalography (EEG) measurements that the human auditory cortex transitions between a phase-locked (PL) mode of responding to modulation rates below about 50Hz, and a non-phase-locked (NPL) mode at higher rates. Precisely such dual response modes are predictable from the behaviours of single neurons in auditory cortices of non-human primates. Our data point to a common mechanistic explanation for the single neuron and MEG/EEG results and support the hypothesis that two distinct types of neuronal encoding mechanisms are employed by the auditory cortex to represent a wide range of temporal modulation rates. This dual encoding model allows slow and fast modulations in speech to be processed in parallel and is therefore consistent with theoretical frameworks in which slow temporal modulations (such as rhythm or syllabic structure) are akin to the contours or edges of visual objects, whereas faster modulations (such as periodicity pitch or phonemic structure) are more like visual texture.

  12. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri)

    PubMed Central

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2012-01-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews. PMID:23124770

  13. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri).

    PubMed

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2013-05-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.

  14. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition.

  15. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    PubMed

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  16. Representation of Dynamic Interaural Phase Difference in Auditory Cortex of Awake Rhesus Macaques

    PubMed Central

    Scott, Brian H.; Malone, Brian J.; Semple, Malcolm N.

    2009-01-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level. PMID:19164111

  17. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    PubMed

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  18. Two organizing principles of vocal production: Implications for nonhuman and human primates.

    PubMed

    Owren, Michael J; Amoss, R Toby; Rendall, Drew

    2011-06-01

    Vocal communication in nonhuman primates receives considerable research attention, with many investigators arguing for similarities between this calling and speech in humans. Data from development and neural organization show a central role of affect in monkey and ape sounds, however, suggesting that their calls are homologous to spontaneous human emotional vocalizations while having little relation to spoken language. Based on this evidence, we propose two principles that can be useful in evaluating the many and disparate empirical findings that bear on the nature of vocal production in nonhuman and human primates. One principle distinguishes production-first from reception-first vocal development, referring to the markedly different role of auditory-motor experience in each case. The second highlights a phenomenon dubbed dual neural pathways, specifically that when a species with an existing vocal system evolves a new functionally distinct vocalization capability, it occurs through emergence of a second parallel neural pathway rather than through expansion of the extant circuitry. With these principles as a backdrop, we review evidence of acoustic modification of calling associated with background noise, conditioning effects, audience composition, and vocal convergence and divergence in nonhuman primates. Although each kind of evidence has been interpreted to show flexible cognitively mediated control over vocal production, we suggest that most are more consistent with affectively grounded mechanisms. The lone exception is production of simple, novel sounds in great apes, which is argued to reveal at least some degree of volitional vocal control. If also present in early hominins, the cortically based circuitry surmised to be associated with these rudimentary capabilities likely also provided the substrate for later emergence of the neural pathway allowing volitional production in modern humans.

  19. Neural mechanisms underlying auditory feedback control of speech.

    PubMed

    Tourville, Jason A; Reilly, Kevin J; Guenther, Frank H

    2008-02-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 136 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech.

  20. Auditory processing disorder in perisylvian syndrome.

    PubMed

    Boscariol, Mirela; Garcia, Vera Lúcia; Guimarães, Catarina Abraão; Montenegro, Maria Augusta; Hage, Simone Rocha Vasconcelos; Cendes, Fernando; Guerreiro, Marilisa Mantovani

    2010-04-01

    We hypothesized that the processing of auditory information by the perisylvian polymicrogyric cortex may be different from the normal cortex. To characterize the auditory processing in bilateral perisylvian syndrome, we examined ten patients with perisylvian polymicrogyria (Group I) and seven control children (Group II). Group I was composed by four children with bilateral perisylvian polymicrogyria and six children with bilateral posterior perisylvian polymicrogyria. The evaluation included neurological and neuroimaging investigation, intellectual quotient and audiological assessment (audiometry and behavior auditory tests). The results revealed a statistically significant difference between the groups in the behavioral auditory tests, such as, digits dichotic test, nonverbal dichotic test (specifically in right attention), and random gap detection/random gap detection expanded tests. Our data showed abnormalities in the auditory processing of children with perisylvian polymicrogyria, suggesting that perisylvian polymicrogyric cortex is functionally abnormal. We also found a correlation between the severity of our auditory findings and the extent of the cortical abnormality.

  1. Auditory Imagination.

    ERIC Educational Resources Information Center

    Croft, Martyn

    Auditory imagination is used in this paper to describe a number of issues and activities related to sound and having to do with listening, thinking, recalling, imagining, reshaping, creating, and uttering sounds and words. Examples of auditory imagination in religious and literary works are cited that indicate a belief in an imagined, expected, or…

  2. Auditory Spatial Attention Representations in the Human Cerebral Cortex

    PubMed Central

    Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2014-01-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  3. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes.

  4. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Auditory Dysfunction in Patients with Cerebrovascular Disease

    PubMed Central

    2014-01-01

    Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD) is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked. PMID:25401133

  6. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  7. Extrathalamic Modulation of Cortical Function

    DTIC Science & Technology

    1990-07-27

    and c7rtico-cortical systems. For example, we have shown that primate LC-NA neurons are more acti during waking than sleep and exhibit bursts of...infusion needle. Infusion of the alpha-adrenergic agonist clonidine (CLON), in concentrations ranging from 5-20 uM (67-270pg/50 nl injection...ind hippocampal EEG (HEEG) typically exhibit activity similar to that of a lightly sleeping animal. However, periods of "waking" EEG are sometimes

  8. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  9. Auditory neglect.

    PubMed Central

    De Renzi, E; Gentilini, M; Barbieri, C

    1989-01-01

    Auditory neglect was investigated in normal controls and in patients with a recent unilateral hemispheric lesion, by requiring them to detect the interruptions that occurred in one ear in a sound delivered through earphones either mono-aurally or binaurally. Control patients accurately detected interruptions. One left brain damaged (LBD) patient missed only once in the ipsilateral ear while seven of the 30 right brain damaged (RBD) patients missed more than one signal in the monoaural test and nine patients did the same in the binaural test. Omissions were always more marked in the left ear and in the binaural test with a significant ear by test interaction. The lesion of these patients was in the parietal lobe (five patients) and the thalamus (four patients). The relation of auditory neglect to auditory extinction was investigated and found to be equivocal, in that there were seven RBD patients who showed extinction, but not neglect and, more importantly, two patients who exhibited the opposite pattern, thus challenging the view that extinction is a minor form of neglect. Also visual and auditory neglect were not consistently correlated, the former being present in nine RBD patients without auditory neglect and the latter in two RBD patients without visual neglect. The finding that in some RBD patients with auditory neglect omissions also occurred, though with less frequency, in the right ear, points to a right hemisphere participation in the deployment of attention not only to the contralateral, but also to the ipsilateral space. PMID:2732732

  10. Social drive and the evolution of primate hearing

    PubMed Central

    Ramsier, Marissa A.; Cunningham, Andrew J.; Finneran, James J.; Dominy, Nathaniel J.

    2012-01-01

    The structure and function of primate communication have attracted much attention, and vocal signals, in particular, have been studied in detail. As a general rule, larger social groups emit more types of vocal signals, including those conveying the presence of specific types of predators. The adaptive advantages of receiving and responding to alarm calls are expected to exert a selective pressure on the auditory system. Yet, the comparative biology of primate hearing is limited to select species, and little attention has been paid to the effects of social and vocal complexity on hearing. Here, we use the auditory brainstem response method to generate the largest number of standardized audiograms available for any primate radiation. We compared the auditory sensitivities of 11 strepsirrhine species with and without independent contrasts and show that social complexity explains a significant amount of variation in two audiometric parameters—overall sensitivity and high-frequency limit. We verified the generality of this latter result by augmenting our analysis with published data from nine species spanning the primate order. To account for these findings, we develop and test a model of social drive. We hypothesize that social complexity has favoured enhanced hearing sensitivities, especially at higher frequencies. PMID:22641824

  11. Social drive and the evolution of primate hearing.

    PubMed

    Ramsier, Marissa A; Cunningham, Andrew J; Finneran, James J; Dominy, Nathaniel J

    2012-07-05

    The structure and function of primate communication have attracted much attention, and vocal signals, in particular, have been studied in detail. As a general rule, larger social groups emit more types of vocal signals, including those conveying the presence of specific types of predators. The adaptive advantages of receiving and responding to alarm calls are expected to exert a selective pressure on the auditory system. Yet, the comparative biology of primate hearing is limited to select species, and little attention has been paid to the effects of social and vocal complexity on hearing. Here, we use the auditory brainstem response method to generate the largest number of standardized audiograms available for any primate radiation. We compared the auditory sensitivities of 11 strepsirrhine species with and without independent contrasts and show that social complexity explains a significant amount of variation in two audiometric parameters-overall sensitivity and high-frequency limit. We verified the generality of this latter result by augmenting our analysis with published data from nine species spanning the primate order. To account for these findings, we develop and test a model of social drive. We hypothesize that social complexity has favoured enhanced hearing sensitivities, especially at higher frequencies.

  12. Octave effect in auditory attention

    PubMed Central

    Borra, Tobias; Versnel, Huib; Kemner, Chantal; van Opstal, A. John; van Ee, Raymond

    2013-01-01

    After hearing a tone, the human auditory system becomes more sensitive to similar tones than to other tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone. Intriguingly, this “octave effect” not only occurs for physically presented tones, but even persists for the missing fundamental in complex tones, and for imagined tones. Our results suggest neural interactions combining octave-related frequencies, likely located in nonprimary cortical regions. We speculate that this connectivity scheme evolved from exposure to natural vibrations containing octave-related spectral peaks, e.g., as produced by vocal cords. PMID:24003112

  13. Primate photopigments and primate color vision.

    PubMed Central

    Jacobs, G H

    1996-01-01

    The past 15 years have brought much progress in our understanding of several basic features of primate color vision. There has been particular success in cataloging the spectral properties of the cone photopigments found in retinas of a number of primate species and in elucidating the relationship between cone opsin genes and their photopigment products. Direct studies of color vision show that there are several modal patterns of color vision among groupings of primates: (i) Old World monkeys, apes, and humans all enjoy trichromatic color vision, although the former two groups do not seem prone to the polymorphic variations in color vision that are characteristic of people; (ii) most species of New World monkeys are highly polymorphic, with individual animals having any of several types of dichromatic or trichromatic color vision; (iii) less is known about color vision in prosimians, but evidence suggests that at least some diurnal species have dichromatic color vision; and (iv) some nocturnal primates may lack color vision completely. In many cases the photopigments and photopigment gene arrangements underlying these patterns have been revealed and, as a result, hints are emerging about the evolution of color vision among the primates. PMID:8570598

  14. Primate communication in the pure ultrasound

    PubMed Central

    Ramsier, Marissa A.; Cunningham, Andrew J.; Moritz, Gillian L.; Finneran, James J.; Williams, Cathy V.; Ong, Perry S.; Gursky-Doyen, Sharon L.; Dominy, Nathaniel J.

    2012-01-01

    Few mammals—cetaceans, domestic cats and select bats and rodents—can send and receive vocal signals contained within the ultrasonic domain, or pure ultrasound (greater than 20 kHz). Here, we use the auditory brainstem response (ABR) method to demonstrate that a species of nocturnal primate, the Philippine tarsier (Tarsius syrichta), has a high-frequency limit of auditory sensitivity of ca 91 kHz. We also recorded a vocalization with a dominant frequency of 70 kHz. Such values are among the highest recorded for any terrestrial mammal, and a relatively extreme example of ultrasonic communication. For Philippine tarsiers, ultrasonic vocalizations might represent a private channel of communication that subverts detection by predators, prey and competitors, enhances energetic efficiency, or improves detection against low-frequency background noise. PMID:22319094

  15. Injury- and Use-Related Plasticity in the Adult Auditory System.

    ERIC Educational Resources Information Center

    Irvine, Dexter R. F.

    2000-01-01

    This article discusses findings concerning the plasticity of auditory cortical processing mechanisms in adults, including the effects of restricted cochlear damage or behavioral training with acoustic stimuli on the frequency selectivity of auditory cortical neurons and evidence for analogous injury- and use-related plasticity in the adult human…

  16. Mechanisms of circumferential gyral convolution in primate brains.

    PubMed

    Zhang, Tuo; Razavi, Mir Jalil; Chen, Hanbo; Li, Yujie; Li, Xiao; Li, Longchuan; Guo, Lei; Hu, Xiaoping; Liu, Tianming; Wang, Xianqiao

    2017-06-01

    Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species. However, systematic study of circumferential convolution patterns is lacking. To address this issue, we utilized structural MRI (sMRI) and diffusion MRI (dMRI) data from primate brains. We quantified cortical thickness and circumferential convolutions on gyral banks in relation to axonal pathways and density along the gray matter/white matter boundaries. Based on these observations, we performed a series of computational simulations. Results demonstrated that the interplay of heterogeneous cortex growth and mechanical forces along axons plays a vital role in the regulation of circumferential convolutions. In contrast, gyral geometry controls the complexity of circumferential convolutions. These findings offer insight into the mystery of circumferential convolutions in primate brains.

  17. Orthogonal acoustic dimensions define auditory field maps in human cortex.

    PubMed

    Barton, Brian; Venezia, Jonathan H; Saberi, Kourosh; Hickok, Gregory; Brewer, Alyssa A

    2012-12-11

    The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.

  18. Property in Nonhuman Primates

    ERIC Educational Resources Information Center

    Brosnan, Sarah F.

    2011-01-01

    Property is rare in most nonhuman primates, most likely because their lifestyles are not conducive to it. Nonetheless, just because these species do not frequently maintain property does not mean that they lack the propensity to do so. Primates show respect for possession, as well as behaviors related to property, such as irrational decision…

  19. Property in Nonhuman Primates

    ERIC Educational Resources Information Center

    Brosnan, Sarah F.

    2011-01-01

    Property is rare in most nonhuman primates, most likely because their lifestyles are not conducive to it. Nonetheless, just because these species do not frequently maintain property does not mean that they lack the propensity to do so. Primates show respect for possession, as well as behaviors related to property, such as irrational decision…

  20. Effects of Ionizing Radiation on Auditory and Visual Thresholds

    DTIC Science & Technology

    1992-03-01

    intact organism. A direct assessment of functional alterations in the intact organism as a result of radiation exposure, however, can be provided by a...motor function in non-human primates. There are data (reviewed by Kimmeldorf and Hunt; ref 3) suggesting that alterations in auditory and visual...Old World monkeys (Cercopithecinae). Amer. J. Rhya. Anthrop ., 1973, X 357-364. 6. Fay, R.R. Auditory frequency discrimination in vertebrates. 1

  1. Raptors and primate evolution.

    PubMed

    McGraw, W Scott; Berger, Lee R

    2013-01-01

    Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review.

  2. Hidden Hearing Loss and Computational Models of the Auditory Pathway: Predicting Speech Intelligibility Decline

    DTIC Science & Technology

    2016-11-28

    Title: Hidden Hearing Loss and Computational Models of the Auditory Pathway: Predicting Speech Intelligibility Decline Christopher J. Smalt...clinical hearing thresholds is difficulty in understanding speech in noise. Recent animal studies have shown that noise exposure causes selective loss ...to utilize computational models of the auditory periphery and auditory cortex to study the effect of low spontaneous rate ANF loss on the cortical

  3. Cortical complexity in cetacean brains.

    PubMed

    Hof, Patrick R; Chanis, Rebecca; Marino, Lori

    2005-11-01

    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55-60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin.

  4. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  5. The Perception of Auditory Motion.

    PubMed

    Carlile, Simon; Leung, Johahn

    2016-04-19

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. © The Author(s) 2016.

  6. Auditory map plasticity: Diversity in causes and consequences

    PubMed Central

    Schreiner, Christoph E.; Polley, Daniel B.

    2014-01-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remains a key-aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  7. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  8. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  9. Dynamics of Propofol-Induced Loss of Consciousness Across Primate Neocortex

    PubMed Central

    Ahmed, Omar J.; Patel, Shaun R.; Gale, John T.; Sierra-Mercado, Demetrio; Brown, Emery N.; Eskandar, Emad N.

    2016-01-01

    frontal premotor area) during the loss of consciousness (LOC) induced by propofol in nonhuman primates. Coherent beta oscillations between these regions are disrupted before LOC. Pronounced but brief gamma-band oscillations appear to correspond to LOC. In addition, neurons in both of these cortices transition from responding to both tactile and auditory stimulation before LOC to only tactile modality during unconsciousness. We demonstrate that propofol-induced LOC is accompanied by spatiotemporally distinctive neuronal dynamics in this network with concurrent changes in multisensory processing. PMID:27445148

  10. Auditory distraction transmitted by a cochlear implant alters allocation of attentional resources

    PubMed Central

    Finke, Mareike; Sandmann, Pascale; Kopp, Bruno; Lenarz, Thomas; Büchner, Andreas

    2015-01-01

    Cochlear implants (CIs) are auditory prostheses which restore hearing via electrical stimulation of the auditory nerve. The successful adaptation of auditory cognition to the CI input depends to a substantial degree on individual factors. We pursued an electrophysiological approach toward an analysis of cortical responses that reflect perceptual processing stages and higher-level responses to CI input. Performance and event-related potentials on two cross-modal discrimination-following-distraction (DFD) tasks from CI users and normal-hearing (NH) individuals were compared. The visual-auditory distraction task combined visual distraction with following auditory discrimination performance. Here, we observed similar cortical responses to visual distractors (Novelty-N2) and slowed, less accurate auditory discrimination performance in CI users when compared to NH individuals. Conversely, the auditory-visual distraction task was used to combine auditory distraction with visual discrimination performance. In this task we found attenuated cortical responses to auditory distractors (Novelty-P3), slowed visual discrimination performance, and attenuated cortical P3-responses to visual targets in CI users compared to NH individuals. These results suggest that CI users process auditory distractors differently than NH individuals and that the presence of auditory CI input has an adverse effect on the processing of visual targets and the visual discrimination ability in implanted individuals. We propose that this attenuation of the visual modality occurs through the allocation of neural resources to the CI input. PMID:25798083

  11. Neurobiological roots of language in primate audition: common computational properties.

    PubMed

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L; Rauschecker, Josef P

    2015-03-01

    Here, we present a new perspective on an old question: how does the neurobiology of human language relate to brain systems in nonhuman primates? We argue that higher-order language combinatorics, including sentence and discourse processing, can be situated in a unified, cross-species dorsal-ventral streams architecture for higher auditory processing, and that the functions of the dorsal and