Sample records for primate motor cortex

  1. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    PubMed

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2017-02-01

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The evolution of neocortex in primates

    PubMed Central

    Kaas, Jon H.

    2013-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624

  3. The evolution of neocortex in primates.

    PubMed

    Kaas, Jon H

    2012-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Laryngeal Motor Cortex and Control of Speech in Humans

    PubMed Central

    Simonyan, Kristina; Horwitz, Barry

    2011-01-01

    Speech production is one of the most complex and rapid motor behaviors and involves a precise coordination of over 100 laryngeal, orofacial and respiratory muscles. Yet, we lack a complete understanding of laryngeal motor cortical control during production of speech and other voluntary laryngeal behaviors. In recent years, a number of studies have confirmed the laryngeal motor cortical representation in humans and provided some information about its interactions with other cortical and subcortical regions that are principally involved in vocal motor control of speech production. In this review, we discuss the organization of the peripheral and central laryngeal control based on neuroimaging and electrical stimulation studies in humans and neuroanatomical tracing studies in non-human primates. We hypothesize that the location of the laryngeal motor cortex in the primary motor cortex and its direct connections with the brainstem laryngeal motoneurons in humans, as oppose to its location in the premotor cortex with only indirect connections to the laryngeal motoneurons in non-human primates, may represent one of the major evolutionary developments in humans towards the ability to speak and vocalize voluntarily. PMID:21362688

  5. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).

    PubMed

    Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin

    2016-11-30

    Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate. Human frontal cortex plays a crucial role in speech production. However, it has remained unclear whether the frontal cortex of nonhuman primates is involved in the production of self-initiated vocalizations during natural vocal communication. Using a wireless multichannel neural recording technique, we observed in the premotor cortex neural activation and suppression both before and during self-initiated vocalizations when marmosets, a highly vocal New World primate species, engaged in vocal exchanges with conspecifics. A novel finding of the present study is the discovery of a subpopulation of premotor cortex neurons that was activated by vocal production, but not by orofacial movement. These observations provide clear evidence of the premotor cortex's involvement in vocal production in a New World primate species. Copyright © 2016 the authors 0270-6474/16/3612168-12$15.00/0.

  6. The Evolution of Human Handedness

    PubMed Central

    Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin

    2013-01-01

    There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442

  7. FUNCTIONAL RECOVERY FOLLOWING MOTOR CORTEX LESIONS IN NON-HUMAN PRIMATES: EXPERIMENTAL IMPLICATIONS FOR HUMAN STROKE PATIENTS

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.

    2013-01-01

    This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307

  8. Responses of primate frontal cortex neurons during natural vocal communication.

    PubMed

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  9. Responses of primate frontal cortex neurons during natural vocal communication

    PubMed Central

    Thomas, A. Wren; Nummela, Samuel U.; de la Mothe, Lisa A.

    2015-01-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. PMID:26084912

  10. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    PubMed

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  12. Laterality and the evolution of the prefronto-cerebellar system in anthropoids.

    PubMed

    Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin

    2013-06-01

    There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.

  13. [Neuroanatomy of Frontal Association Cortex].

    PubMed

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  14. The mammalian neocortex new pyramidal neuron: a new conception.

    PubMed

    Marín-Padilla, Miguel

    2014-01-06

    The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities while essentially using analogous anatomical and neural makeups. The human neocortex starts to develop in 6-week-old embryos with the establishment of a primordial cortical organization, which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divides its components into those above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating its developing motor activities. The new pyramidal neuron' distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface) without losing its original attachment to first layer or the location of its soma and, hence, retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing and thinking as a premotor activity. Words used in language are the motor expression of thoughts and represent sounds produced by maneuvering the column of expiratory air by coordinated motor quivering as it passes through the larynx, pharynx, mouth, tongue, and lips. Homo sapiens cerebrum has developed new motor centers to communicate mental thoughts (and/or intention) through motor actions.

  15. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct

    NASA Astrophysics Data System (ADS)

    Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.

    1996-06-01

    Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.

  16. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  17. Motor cortex embeds muscle-like commands in an untangled population response

    PubMed Central

    Russo, Abigail A.; Bittner, Sean R.; Perkins, Sean M.; Seely, Jeffrey S.; London, Brian M.; Lara, Antonio H.; Miri, Andrew; Marshall, Najja J.; Kohn, Adam; Jessell, Thomas M.; Abbott, Laurence F.; Cunningham, John P.; Churchland, Mark M.

    2018-01-01

    Summary Primate motor cortex projects to spinal interneurons and motor neurons, suggesting that motor cortex activity may be dominated by muscle-like commands. Extensive observations during reaching lend support to this view, but evidence remains ambiguous and much-debated. To provide a different perspective, we employed a novel behavioral paradigm that affords extensive comparison between time-evolving neural and muscle activity. We found that single motor cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid ‘tangling’: moments where similar activity patterns led to dissimilar future patterns. Avoidance of tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Finally, we were able to predict motor cortex activity from muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling. PMID:29398358

  18. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo

    2016-02-15

    Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans. © 2015 Wiley Periodicals, Inc.

  19. Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank

    2011-09-01

    The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.

  20. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.

  1. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    PubMed Central

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  2. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    NASA Astrophysics Data System (ADS)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  3. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    NASA Astrophysics Data System (ADS)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  <  0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9%  ±  24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  4. The evolution of the complex sensory and motor systems of the human brain.

    PubMed

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  5. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules.

    PubMed

    Balsters, J H; Cussans, E; Diedrichsen, J; Phillips, K A; Preuss, T M; Rilling, J K; Ramnani, N

    2010-02-01

    It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  6. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.

    2017-01-01

    Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654

  7. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.

    PubMed

    Zaaimi, Boubker; Dean, Lauren R; Baker, Stuart N

    2018-01-01

    Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more efficient but less precise in producing natural patterns of motor output than motor cortex or spinal cord. We suggest that gross muscle synergies from the reticular formation are sculpted and refined by motor cortex and spinal circuits to reach the finely fractionated output characteristic of dexterous primate upper limb movements.

  8. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation

    PubMed Central

    Dean, Lauren R.

    2018-01-01

    Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more efficient but less precise in producing natural patterns of motor output than motor cortex or spinal cord. We suggest that gross muscle synergies from the reticular formation are sculpted and refined by motor cortex and spinal circuits to reach the finely fractionated output characteristic of dexterous primate upper limb movements. PMID:29046427

  9. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  10. Structural Organization of the Laryngeal Motor Cortical Network and Its Implication for Evolution of Speech Production.

    PubMed

    Kumar, Veena; Croxson, Paula L; Simonyan, Kristina

    2016-04-13

    The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production. Copyright © 2016 the authors 0270-6474/16/364170-12$15.00/0.

  11. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  12. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys

    PubMed Central

    Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline

    2016-01-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467

  13. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  14. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  15. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys.

    PubMed

    Procyk, Emmanuel; Wilson, Charles R E; Stoll, Frederic M; Faraut, Maïlys C M; Petrides, Michael; Amiez, Céline

    2016-02-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    PubMed

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  17. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    PubMed Central

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  18. Lateral prefrontal cortex: architectonic and functional organization

    PubMed Central

    Petrides, Michael

    2005-01-01

    A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information. PMID:15937012

  19. Evolution of columns, modules, and domains in the neocortex of primates.

    PubMed

    Kaas, Jon H

    2012-06-26

    The specialized regions of neocortex of mammals, called areas, have been divided into smaller functional units called minicolumns, columns, modules, and domains. Here we describe some of these functional subdivisions of areas in primates and suggest when they emerged in mammalian evolution. We distinguish several types of these smaller subdivisions. Minicolumns, vertical arrays of neurons that are more densely interconnected with each other than with laterally neighboring neurons, are present in all cortical areas. Classic columns are defined by a repeating pattern of two or more types of cortex distinguished by having different inputs and neurons with different response properties. Sensory stimuli that continuously vary along a stimulus dimension may activate groups of neurons that vary continuously in location, producing "columns" without specific boundaries. Other groups or columns of cortical neurons are separated by narrow septa of fibers that reflect discontinuities in the receptor sheet. Larger regions of posterior parietal cortex and frontal motor cortex are parts of networks devoted to producing different sequences of movements. We distinguish these larger functionally distinct regions as domains. Columns of several types have evolved independently a number of times. Some of the columns found in primates likely emerged with the first primates, whereas others likely were present in earlier ancestors. The sizes and shapes of columns seem to depend on the balance of neuron activation patterns and molecular signals during development.

  20. Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference

    PubMed Central

    Zach, Neta; Inbar, Dorrit; Grinvald, Yael; Vaadia, Eilon

    2012-01-01

    Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models. PMID:22427923

  1. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.

    PubMed

    Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A

    2012-04-15

    A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.

  2. Joining forces: Motor control meets mirror neurons. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli, and Maffongelli

    NASA Astrophysics Data System (ADS)

    Casile, Antonino

    2015-03-01

    Several consistent and compelling experimental findings suggest that in primates the observation of actions or movements activates the observer's motor cortex (for a recent and very thorough review see [1]). One important piece of evidence was the discovery of mirror neurons, that are neurons in the macaque ventral pre-motor (area F5), motor and parietal cortices (area PFG) that respond both when the monkey executes a goal-directed motor act (e.g. breaking a peanut) or when it sees a similar action executed by others [2-5]. A similar system has been later reported also in humans ([6-8] but see also [9,10] for negative results).

  3. Processing and Integration of Contextual Information in Monkey Ventrolateral Prefrontal Neurons during Selection and Execution of Goal-Directed Manipulative Actions.

    PubMed

    Bruni, Stefania; Giorgetti, Valentina; Bonini, Luca; Fogassi, Leonardo

    2015-08-26

    The prefrontal cortex (PFC) is deemed to underlie the complexity, flexibility, and goal-directedness of primates' behavior. Most neurophysiological studies performed so far investigated PFC functions with arm-reaching or oculomotor tasks, thus leaving unclear whether, and to which extent, PFC neurons also play a role in goal-directed manipulative actions, such as those commonly used by primates during most of their daily activities. Here we trained two macaques to perform or withhold grasp-to-eat and grasp-to-place actions, depending on the combination of two subsequently presented cues: an auditory go/no-go cue (high/low tone) and a visually presented target (food/object). By varying the order of presentation of the two cues, we could segment and independently evaluate the processing and integration of contextual information allowing the monkey to make a decision on whether or not to act, and what action to perform. We recorded 403 task-related neurons from the ventrolateral prefrontal cortex (VLPFC): unimodal sensory-driven (37%), motor-related (21%), unimodal sensory-and-motor (23%), and multisensory (19%) neurons. Target and go/no-go selectivity characterized most of the recorded neurons, particularly those endowed with motor-related discharge. Interestingly, multisensory neurons appeared to encode a behavioral decision independently from the sensory modality of the stimulus allowing the monkey to make it: some of them reflected the decision to act or refraining from acting (56%), whereas others (44%) encoded the decision to perform (or withhold) a specific action (e.g., grasp-to-eat). Our findings indicate that VLPFC neurons play a role in the processing of contextual information underlying motor decision during goal-directed manipulative actions. We demonstrated that macaque ventrolateral prefrontal cortex (VLPFC) neurons show remarkable selectivity for different aspects of the contextual information allowing the monkey to select and execute goal-directed manipulative actions. Interestingly, a set of these neurons provide multimodal representations of the intended goal of a forthcoming action, encoding a behavioral decision (e.g., grasp-to-eat) independently from the sensory information allowing the monkey to make it. Our findings expand the available knowledge on prefrontal functions by showing that VLPFC neurons play a role in the selection and execution of goal-directed manipulative actions resembling those of common primates' foraging behaviors. On these bases, we propose that VLPFC may host an abstract "vocabulary" of the intended goals pursued by primates in their natural environment. Copyright © 2015 the authors 0270-6474/15/3511877-14$15.00/0.

  4. The Thalamocortical Projection Systems in Primate: An Anatomical Support for Multisensory and Sensorimotor Interplay

    PubMed Central

    Cappe, Céline; Morel, Anne; Barone, Pascal

    2009-01-01

    Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed. PMID:19150924

  5. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque.

    PubMed

    Cozzi, Bruno; De Giorgio, Andrea; Peruffo, A; Montelli, S; Panin, M; Bombardi, C; Grandis, A; Pirone, A; Zambenedetti, P; Corain, L; Granato, Alberto

    2017-08-01

    The architecture of the neocortex classically consists of six layers, based on cytological criteria and on the layout of intra/interlaminar connections. Yet, the comparison of cortical cytoarchitectonic features across different species proves overwhelmingly difficult, due to the lack of a reliable model to analyze the connection patterns of neuronal ensembles forming the different layers. We first defined a set of suitable morphometric cell features, obtained in digitized Nissl-stained sections of the motor cortex of the horse, chimpanzee, and crab-eating macaque. We then modeled them using a quite general non-parametric data representation model, showing that the assessment of neuronal cell complexity (i.e., how a given cell differs from its neighbors) can be performed using a suitable measure of statistical dispersion such as the mean absolute deviation-mean absolute deviation (MAD). Along with the non-parametric combination and permutation methodology, application of MAD allowed not only to estimate, but also to compare and rank the motor cortical complexity across different species. As to the instances presented in this paper, we show that the pyramidal layers of the motor cortex of the horse are far more irregular than those of primates. This feature could be related to the different organizations of the motor system in monodactylous mammals.

  6. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  7. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    PubMed

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  8. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  9. Cortical orofacial motor representation in Old World monkeys, great apes, and humans. I. Quantitative analysis of cytoarchitecture.

    PubMed

    Sherwood, Chet C; Holloway, Ralph L; Erwin, Joseph M; Schleicher, Axel; Zilles, Karl; Hof, Patrick R

    2004-01-01

    Social life in anthropoid primates is mediated by interindividual communication, involving movements of the orofacial muscles for the production of vocalization and gestural expression. Although phylogenetic diversity has been reported in the auditory and visual communication systems of primates, little is known about the comparative neuroanatomy that subserves orofacial movement. The current study reports results from quantitative image analysis of the region corresponding to orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens) using the Grey Level Index method. This cortical region has been implicated in the execution of skilled motor activities such as voluntary facial expression and human speech. Density profiles of the laminar distribution of Nissl-stained neuronal somata were acquired from high-resolution images to quantify cytoarchitectural patterns. Despite general similarity in these profiles across catarrhines, multivariate analysis showed that cytoarchitectural patterns of individuals were more similar within-species versus between-species. Compared to Old World monkeys, the orofacial representation of area 4 in great apes and humans was characterized by an increased relative thickness of layer III and overall lower cell volume densities, providing more neuropil space for interconnections. These phylogenetic differences in microstructure might provide an anatomical substrate for the evolution of greater volitional fine motor control of facial expressions in great apes and humans. Copyright 2004 S. Karger AG, Basel

  10. Mapping of cingulate motor function by cortical stimulation.

    PubMed

    Basha, Maysaa M; Fernández-Baca Vaca, Guadalupe; Lüders, Hans O

    2013-09-01

    An 8-year-old boy with intractable left mesiofrontal lobe epilepsy underwent placement of stereotactic intracerebral depth electrodes to better localise the epileptogenic zone. Co-registration of preoperative MRI and post-electrode implantation CAT allowed for anatomical localisation of electrode contacts. Electrical stimulation of electrodes over the dorsal and ventral banks of the cingulate cortex on the left produced right foot dorsiflexion and right wrist and elbow flexion, respectively, demonstrating detailed representation of cingulate motor function in humans, somatotopically distributed along the banks of the cingulate sulcus, as seen in the non-human primate. [Published with video sequences].

  11. Physiology, anatomy, and plasticity of the cerebral cortex in relation to musical instrument performance

    NASA Astrophysics Data System (ADS)

    Tramo, Mark Jude

    2004-05-01

    The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.

  12. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats.

    PubMed

    Aravamuthan, Bhooma R; Shoykhet, Michael

    2015-10-01

    The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P < 0.05). Cardiac arrest survivors also demonstrate greater coherence between EPN single neurons and MCx LFP (3-100 Hz; P < 0.001). This increased coherence indicates abnormal synchrony in the neuronal motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders.

  13. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    PubMed

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. Copyright © 2013 Wiley Periodicals, Inc.

  14. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species.

    PubMed

    Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K

    2005-08-02

    The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.

  15. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  16. Variability of human corticospinal excitability tracks the state of action preparation.

    PubMed

    Klein-Flügge, Miriam C; Nobbs, David; Pitcher, Julia B; Bestmann, Sven

    2013-03-27

    Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example, trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in variability before movement onset. However, whether noninvasive measures of the variability of population activity available from humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action preparation. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation, and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of action preparation but also more complex processes, such as choice-to-action transformations.

  17. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  18. Using stereotactic brain atlases for small rodents and nonhuman primates for optrode array customization

    NASA Astrophysics Data System (ADS)

    Boutte, Ronald W.; Merlin, Sam; Griffiths, Brandon; Parry, Trent; Blair, Steve

    2017-02-01

    As the optogenetic field expands its need to target with high specificity only grows more crucial. This work will show a method for customizing soda-lime glass optrode arrays so that fine structures within the brains of small rodents and nonhuman primates can be optically interrogated below the outer cortical layer. An 8 × 6 array is customized for optrode length (400 μm ), optrode width (75 μm ), optrode pitch (400 μm ), backplane thickness (500 μm ), and overall form factor (3.45 mm × 2.65 mm ). The 400 μm long optrode is capable of illuminating the cortical Layer IV of rhesus macaque ( Macaca Fascicularis ) and the motor cortex of small mice ( Mus Musculus ).

  19. Vision for perception and vision for action in the primate brain.

    PubMed

    Goodale, M A

    1998-01-01

    Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.

  20. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    PubMed

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  1. Area 4 has layer IV in adult primates

    PubMed Central

    García-Cabezas, Miguel Ángel; Barbas, Helen

    2014-01-01

    There are opposing views about the status of layer IV in primary motor cortex (area 4). Cajal described a layer IV in area 4 of adult humans. In contrast, Brodmann found layer IV in development but not in adult primates and called area 4 ‘agranular’. We addressed this issue in rhesus monkeys using the neural marker SMI-32, which labels neurons in lower layer III and upper V, but not in layer IV. SMI-32 delineated a central unlabeled cortical stripe in area 4 that corresponds to layer IV, which was populated with small interneurons also found in layer IV in ‘granular’ areas (such as area 46). We distinguished layer IV interneurons from projection neurons in the layers above and below using cellular criteria. The commonly used term ‘agranular’ for area 4 is also used for the phylogenetically ancient limbic cortices, confusing areas that differ markedly in laminar structure. This issue pertains to the systematic variation in the architecture across cortices, traced from limbic cortices through areas with increasingly more elaborate laminar structure. The principle of systematic variation can be used to predict laminar patterns of connections across cortical systems. This principle places area 4 and agranular anterior cingulate cortices at opposite poles of the graded laminar differentiation of motor cortices. The status of layer IV in area 4 thus pertains to core organizational features of the cortex, its connections and evolution. PMID:24735460

  2. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.

    PubMed

    Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu

    2009-05-06

    The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.

  3. Human neuroethology of emotion.

    PubMed

    Ploog, D

    1989-01-01

    1. Based on ethological theory, the question of what is the difference between human and nonhuman primate emotionality is investigated. 2. The anatomical basis for this difference is the greater number of neurons in the anterior thalamic nuclei in humans than in monkeys and apes. This may represent an increased differentiation of the limbic message being sent to the cortex. 3. Only humans can report about experiences and subjective feelings in certain motivational states. The two most general states are wakefulness and sleep. The subjective aspect of (desynchronized) sleep is dreaming. The causal relationship between dreaming and certain lower brain stem mechanisms is analysed. 4. Whereas the motor system is usually blocked during desynchronized sleep, there are individuals who voice their emotions and speak while sleeping. As there are essential differences in the substrates for the voluntary control of the voice in the human and nonhuman primates there are essential differences in the voluntary control of emotions. 5. Similar to the motor matching theory of speech perception a motor matching process of affect perception is suggested. 6. The evolutionary change in the human motivational system is thought to be one of several prerequisites for the evolution of language.

  4. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    PubMed

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  5. Multiple parietal-frontal pathways mediate grasping in macaque monkeys

    PubMed Central

    Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.

    2011-01-01

    The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196

  6. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.

    PubMed

    Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C

    2013-01-30

    Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.

  7. Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.

    2011-01-01

    Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261

  8. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes.

    PubMed

    Sherwood, Chet C; Raghanti, Mary Ann; Stimpson, Cheryl D; Spocter, Muhammad A; Uddin, Monica; Boddy, Amy M; Wildman, Derek E; Bonar, Christopher J; Lewandowski, Albert H; Phillips, Kimberley A; Erwin, Joseph M; Hof, Patrick R

    2010-04-07

    Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.

  9. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  10. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  11. Comprehensive analysis of area-specific and time-dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury.

    PubMed

    Higo, Noriyuki; Sato, Akira; Yamamoto, Tatsuya; Oishi, Takao; Nishimura, Yukio; Murata, Yumi; Onoe, Hirotaka; Isa, Tadashi; Kojima, Toshio

    2018-05-01

    The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST. © 2018 Wiley Periodicals, Inc.

  12. Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity

    PubMed Central

    Buckner, Randy L.

    2009-01-01

    Multiple, segregated fronto-cerebellar circuits have been characterized in nonhuman primates using transneuronal tracing techniques including those that target prefrontal areas. Here, we used functional connectivity MRI (fcMRI) in humans (n = 40) to identify 4 topographically distinct fronto-cerebellar circuits that target 1) motor cortex, 2) dorsolateral prefrontal cortex, 3) medial prefrontal cortex, and 4) anterior prefrontal cortex. All 4 circuits were replicated and dissociated in an independent data set (n = 40). Direct comparison of right- and left-seeded frontal regions revealed contralateral lateralization in the cerebellum for each of the segregated circuits. The presence of circuits that involve prefrontal regions confirms that the cerebellum participates in networks important to cognition including a specific fronto-cerebellar circuit that interacts with the default network. Overall, the extent of the cerebellum associated with prefrontal cortex included a large portion of the posterior hemispheres consistent with a prominent role of the cerebellum in nonmotor functions. We conclude by providing a provisional map of the topography of the cerebellum based on functional correlations with the frontal cortex. PMID:19592571

  13. Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract.

    PubMed

    Nudo, R J; Masterton, R B

    1990-06-22

    In the companion paper to this one (Nudo and Masterton: J. Comp. Neurol. 296:559-583, '90), we have presented data indicating that in each of 22 mammals, there are either 2 or 3 separate regions of neocortex contributing corticospinal fibers. In this paper, we describe the variation in the absolute size of these cortical regions, the total amount of neocortex contributing corticospinal fibers (CST cortex), and the total amount of neocortex (total cortex) in each of the animals. We then use strict statistical tests to examine the relationships between these measures and several other quantitative measures or descriptions of the animals' size, ancestral heritage, motor prowess, and ecological adaptation. The results show that the absolute amount of CST cortex is more closely related to the total amount of neocortex than to any other quantitative measure available. The further variation--that is, the variation in the amount of CST cortex relative to total neocortex--appears to have been random over the inferred ancestral lineages of most animals in the sample, but seems to have been almost absent along the anthropoid lineage. Because this constancy in the relative amount of CST cortex over a very long period of anthropoid ancestry is apparently unusual if not unique among mammals, it may contain a clue to the special role of the corticospinal tract among primates. Finally, the distribution of the CST among the 3 cortical regions in primates was found to be more closely related to their particular mode of ecological adaptation than to their particular combination of digital dexterity and hand-eye coordination.

  14. Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging

    PubMed Central

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole

    2008-01-01

    Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742

  15. Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus

    NASA Technical Reports Server (NTRS)

    Macchi, G.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    The nomenclature most commonly applied to the motor-related nuclei of the human thalamus differs substantially from that applied to the thalamus of other primates, from which most knowledge of input-output connections is derived. Knowledge of these connections in the human is a prerequisite for stereotactic neurosurgical approaches designed to alleviate movement disorders by the placement of lesions in specific nuclei. Transfer to humans of connectional information derived from experimental studies in nonhuman primates requires agreement about the equivalence of nuclei in the different species, and dialogue between experimentalists and neurosurgeons would be facilitated by the use of a common nomenclature. In this review, the authors compare the different nomenclatures and review the cyto- and chemoarchitecture of the nuclei in the anterolateral aspect of the ventral nuclear mass in humans and monkeys, suggest which nuclei are equivalent, and propose a common terminology. On this basis, it is possible to identify the nuclei of the human motor thalamus that transfer information from the substantia nigra, globus pallidus, cerebellum, and proprioceptive components of the medial lemniscus to prefrontal, premotor, motor, and somatosensory areas of the cerebral cortex. It also becomes possible to suggest the principal functional systems involved in stereotactically guided thalamotomies and the functional basis of the symptoms observed following ischemic lesions in different parts of the human thalamus.

  16. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    PubMed Central

    Katsuki, Fumi; Constantinidis, Christos

    2012-01-01

    The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms. PMID:22563310

  17. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  18. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  19. Force-related neuronal activity in two regions of the primate ventral premotor cortex.

    PubMed

    Hepp-Reymond, M C; Hüsler, E J; Maier, M A; Ql, H X

    1994-05-01

    Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.

  20. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    PubMed

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  1. On cortical coding of vocal communication sounds in primates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    2000-10-01

    Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory-motor interactions between vocal production and perception systems.

  2. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  3. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri)

    PubMed Central

    Wong, Peiyan; Kaas, Jon H.

    2010-01-01

    Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In the present study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal or horizontal planes, and processed for parvalbumin (PV), SMI-32 immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, myelin, cytochrome oxidase (CO) and Nissl substance. These different procedures revealed similar boundaries between areas, suggesting the detection of functionally relevant borders and allowed a more precise demarcation of cortical areal boundaries. Primary cortical areas were most clearly revealed by the zinc stain, due to the poor staining of layer 4, as thalamocortical terminations lack free ionic zinc. Area 17 (V1) was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in primary auditory and somatosensory, cortex. In primary sensory areas, thalamocortical terminations in layer 4 densely express VGluT2. Auditory cortex consists of two architectonically distinct subdivisions, a primary core region (Ac), surrounded by a belt region (Ab) that had a slightly less developed koniocellular appearance. Primary motor cortex (M1) was identified by the absence of VGluT2 staining in the poorly developed granular layer 4 and the presence of SMI-32 labeled pyramidal cells in layers 3 and 5. The presence of well-differentiated cortical areas in tree shrews indicates their usefulness in studies of cortical organization and function. PMID:19462403

  4. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  5. A conserved pattern of differential expansion of cortical areas in simian primates.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Soares, Juliana G M; Gattass, Ricardo; Rosa, Marcello G P

    2013-09-18

    The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.

  6. Jaw-Opening Reflex and Corticobulbar Motor Excitability Changes During Quiet Sleep in Non-Human Primates

    PubMed Central

    Yao, Dongyuan; Lavigne, Gilles J.; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J.

    2013-01-01

    Study Objective: To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Design: Polysomnographic recordings in the electrophysiological study. Setting: University sleep research laboratories. Participants and Interventions: The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). Measurements and Results: During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. Conclusions: The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS. Citation: Yao D; Lavigne GJ; Lee JC; Adachi K; Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. SLEEP 2013;36(2):269-280. PMID:23372275

  7. Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey

    PubMed Central

    Ishida, Hiroaki; Fornia, Luca; Grandi, Laura Clara; Umiltà, Maria Alessandra; Gallese, Vittorio

    2013-01-01

    The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object. PMID:23936121

  8. Neural Correlates of the Lombard Effect in Primate Auditory Cortex

    PubMed Central

    Eliades, Steven J.

    2012-01-01

    Speaking is a sensory-motor process that involves constant self-monitoring to ensure accurate vocal production. Self-monitoring of vocal feedback allows rapid adjustment to correct perceived differences between intended and produced vocalizations. One important behavior in vocal feedback control is a compensatory increase in vocal intensity in response to noise masking during vocal production, commonly referred to as the Lombard effect. This behavior requires mechanisms for continuously monitoring auditory feedback during speaking. However, the underlying neural mechanisms are poorly understood. Here we show that when marmoset monkeys vocalize in the presence of masking noise that disrupts vocal feedback, the compensatory increase in vocal intensity is accompanied by a shift in auditory cortex activity toward neural response patterns seen during vocalizations under normal feedback condition. Furthermore, we show that neural activity in auditory cortex during a vocalization phrase predicts vocal intensity compensation in subsequent phrases. These observations demonstrate that the auditory cortex participates in self-monitoring during the Lombard effect, and may play a role in the compensation of noise masking during feedback-mediated vocal control. PMID:22855821

  9. Motor system evolution and the emergence of high cognitive functions.

    PubMed

    Mendoza, Germán; Merchant, Hugo

    2014-11-01

    In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  11. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex.

    PubMed

    Murray, Elisabeth A; Rudebeck, Peter H

    2018-05-23

    The estimated values of choices, and therefore decision-making based on those values, are influenced by both the chance that the chosen items or goods can be obtained (availability) and their current worth (desirability) as well as by the ability to link the estimated values to choices (a process sometimes called credit assignment). In primates, the prefrontal cortex (PFC) has been thought to contribute to each of these processes; however, causal relationships between particular subdivisions of the PFC and specific functions have been difficult to establish. Recent lesion-based research studies have defined the roles of two different parts of the primate PFC - the orbitofrontal cortex (OFC) and the ventral lateral frontal cortex (VLFC) - and their subdivisions in evaluating each of these factors and in mediating credit assignment during reward-based decision-making.

  12. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  13. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury. PMID:27830790

  14. Activity of neurons in area 6 of the cat during fixation and eye movements.

    PubMed

    Weyand, T G; Gafka, A C

    1998-01-01

    We studied the visuomotor properties of 645 neurons in area 6 of five cats trained in oculomotor tasks. The area we recorded from corresponds well with territories believed to contain the feline homologue of the frontal eye fields observed in primates. Despite an expectation that cells with pre-saccadic activity would be common, only a small fraction (approximately 5%) of the cells displayed activity that could be linked to subsequent saccadic eye movements. These pre-motor cells appeared to be distributed over a broad region of cortex mixed in with other cell types. As in primates, saccade-related activity tended to occur only during "purposeful" saccades. At least 30% (208/645) of the neurons were visual, with many of these cells possessing huge receptive fields that appeared to include the entire contralateral visual field. Visual responsiveness was generally attenuated by fixation during the oculomotor tasks. Although attentional mechanisms may play a role in this attenuation, this cortical area also exhibits powerful lateral interactions in which spatially displaced visual stimuli suppress each other. Most cells, visually responsive or not, were affected by fixation. Nearly equal proportions of cells showed increases or decreases in activity during fixation. For many of the cells affected by fixation, the source of this modulation appears to reflect cognitive, rather than sensory or motor processes. This included cells that showed anticipatory activity, and cells that responded to the reward only when it was presented in the context of the task. Based on the paucity of pre-saccadic neurons, it would be difficult to conclude that this region of cortex in the cat is homologous to the frontal eye fields of the monkey. However, when considered in the context of differences in the oculomotor habits of these two animals, we believe the homology fits. In addition to pre-motor neurons, the properties of several other cell types found in this area could contribute to the control of gaze.

  15. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    PubMed Central

    Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261

  16. Dual Neural Network Model for the Evolution of Speech and Language.

    PubMed

    Hage, Steffen R; Nieder, Andreas

    2016-12-01

    Explaining the evolution of speech and language poses one of the biggest challenges in biology. We propose a dual network model that posits a volitional articulatory motor network (VAMN) originating in the prefrontal cortex (PFC; including Broca's area) that cognitively controls vocal output of a phylogenetically conserved primary vocal motor network (PVMN) situated in subcortical structures. By comparing the connections between these two systems in human and nonhuman primate brains, we identify crucial biological preadaptations in monkeys for the emergence of a language system in humans. This model of language evolution explains the exclusiveness of non-verbal communication sounds (e.g., cries) in infants with an immature PFC, as well as the observed emergence of non-linguistic vocalizations in adults after frontal lobe pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  18. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.

  19. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex

    PubMed Central

    Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.

    2015-01-01

    Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia. PMID:25522392

  20. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    PubMed

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mirror Neurons in a New World Monkey, Common Marmoset

    PubMed Central

    Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka

    2015-01-01

    Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using “in vivo” connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic “mirror” properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution. PMID:26696817

  2. Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks

    PubMed Central

    Heiney, Shane A.; Blazquez, Pablo M.

    2018-01-01

    The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216

  3. Spike-timing dependent plasticity in primate corticospinal connections induced during free behavior

    PubMed Central

    Nishimura, Yukio; Perlmutter, Steve I.; Eaton, Ryan W.; Fetz, Eberhard E.

    2014-01-01

    Motor learning and functional recovery from brain damage involve changes in the strength of synaptic connections between neurons. Relevant in vivo evidence on the underlying cellular mechanisms remains limited and indirect. We found that the strength of neural connections between motor cortex and spinal cord in monkeys can be modified with an autonomous recurrent neural interface that delivers electrical stimuli in the spinal cord triggered by action potentials of corticospinal cells during free behavior. The activity-dependent stimulation modified the strength of the terminal connections of single corticomotoneuronal cells, consistent with a bidirectional spike-timing dependent plasticity rule previously derived from in vitro experiments. For some cells the changes lasted for days after the end of conditioning, but most effects eventually reverted to preconditioning levels. These results provide the first direct evidence of corticospinal synaptic plasticity in vivo at the level of single neurons induced by normal firing patterns during free behavior. PMID:24210907

  4. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  5. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  6. Neural correlates of working memory development in adolescent primates

    PubMed Central

    Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Li, Sihai; King, Samson G.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos

    2016-01-01

    Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood. The adult prefrontal cortex is characterized by increased activity during the delay period of the task but no change in the representation of stimuli. Activity evoked by distracting stimuli also decreases in the adult prefrontal cortex. The increase in delay period activity relative to the baseline activity of prefrontal neurons is the best correlate of maturation and is not merely a consequence of improved performance. Our results reveal neural correlates of the working memory improvement typical of primate adolescence. PMID:27827365

  7. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys

    PubMed Central

    Stepniewska, Iwona; Kaas, Jon H.

    2015-01-01

    The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903

  8. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.

    PubMed

    Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H

    2016-07-01

    The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.

  9. The role of the premotor cortex and the primary motor cortex in action verb comprehension: evidence from Granger causality analysis.

    PubMed

    Yang, Jie; Shu, Hua

    2012-08-01

    Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Social Context-Dependent Activity in Marmoset Frontal Cortex Populations during Natural Conversations

    PubMed Central

    de la Mothe, Lisa; Miller, Cory T.

    2017-01-01

    Communication is an inherently interactive process that weaves together the fabric of both human and nonhuman primate societies. To investigate the properties of the primate brain during active social signaling, we recorded the responses of frontal cortex neurons as freely moving marmosets engaged in conversational exchanges with a visually occluded virtual marmoset. We found that small changes in firing rate (∼1 Hz) occurred across a broadly distributed population of frontal cortex neurons when marmosets heard a conspecific vocalization, and that these changes corresponded to subjects' likelihood of producing or withholding a vocal reply. Although the contributions of individual neurons were relatively small, large populations of neurons were able to clearly distinguish between these social contexts. Most significantly, this social context-dependent change in firing rate was evident even before subjects heard the vocalization, indicating that the probability of a conversational exchange was determined by the state of the frontal cortex at the time a vocalization was heard, and not by a decision driven by acoustic characteristics of the vocalization. We found that changes in neural activity scaled with the length of the conversation, with greater changes in firing rate evident for longer conversations. These data reveal specific and important facets of this neural activity that constrain its possible roles in active social signaling, and we hypothesize that the close coupling between frontal cortex activity and this natural, active primate social-signaling behavior facilitates social-monitoring mechanisms critical to conversational exchanges. SIGNIFICANCE STATEMENT We provide evidence for a novel pattern of neural activity in the frontal cortex of freely moving, naturally behaving, marmoset monkeys that may facilitate natural primate conversations. We discovered small (∼1 Hz), but reliable, changes in neural activity that occurred before marmosets even heard a conspecific vocalization that, as a population, almost perfectly predicted whether subjects would produce a vocalization in response. The change in the state of the frontal cortex persisted throughout the conversation and its magnitude scaled linearly with the length of the interaction. We hypothesize that this social context-dependent change in frontal cortex activity is supported by several mechanisms, such as social arousal and attention, and facilitates social monitoring critical for vocal coordination characteristic of human and nonhuman primate conversations. PMID:28630255

  11. Deep hierarchies in the primate visual cortex: what can we learn for computer vision?

    PubMed

    Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz

    2013-08-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.

  12. Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision

    NASA Astrophysics Data System (ADS)

    Rojer, Alan S.; Schwartz, Eric L.

    1991-02-01

    Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for

  13. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  14. Harmonic template neurons in primate auditory cortex underlying complex sound processing

    PubMed Central

    Feng, Lei

    2017-01-01

    Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music. PMID:28096341

  15. Articulatory movements modulate auditory responses to speech

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Banks, B.; Scott, S.K.

    2013-01-01

    Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior–posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information. PMID:22982103

  16. Cortical orofacial motor representation in Old World monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture.

    PubMed

    Sherwood, Chet C; Holloway, Ralph L; Erwin, Joseph M; Hof, Patrick R

    2004-01-01

    This study presents a comparative stereologic investigation of neurofilament protein- and calcium-binding protein-immunoreactive neurons within the region of orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens). Results showed that the density of interneurons involved in vertical interlaminar processing (i.e., calbindin- and calretinin-immunoreactive neurons) as well pyramidal neurons that supply heavily-myelinated projections (i.e., neurofilament protein-immunoreactive neurons) are correlated with overall neuronal density, whereas interneurons making transcolumnar connections (i.e., parvalbumin-immunoreactive neurons) do not exhibit such a relationship. These results suggest that differential scaling rules apply to different neuronal subtypes depending on their functional role in cortical circuitry. For example, cortical columns across catarrhine species appear to involve a similar conserved network of intracolumnar inhibitory interconnections, as represented by the distribution of calbindin- and calretinin-immunoreactive neurons. The subpopulation of horizontally-oriented wide-arbor interneurons, on the other hand, increases in density relative to other interneuron subpopulations in large brains. Due to these scaling trends, the region of orofacial representation of primary motor cortex in great apes and humans is characterized by a greater proportion of neurons enriched in neurofilament protein and parvalbumin compared to the Old World monkeys examined. These modifications might contribute to the voluntary dexterous control of orofacial muscles in great ape and human communication. Copyright 2004 S. Karger AG, Basel

  17. Decoding 3-D Reach and Grasp Kinematics from High-Frequency Local Field Potentials in Primate Primary Motor Cortex

    PubMed Central

    Zhuang, Jun; Vargas-Irwin, Carlos; Donoghue, John P.

    2011-01-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics. PMID:20403782

  18. Spoken language and arm gestures are controlled by the same motor control system.

    PubMed

    Gentilucci, Maurizio; Dalla Volta, Riccardo

    2008-06-01

    Arm movements can influence language comprehension much as semantics can influence arm movement planning. Arm movement itself can be used as a linguistic signal. We reviewed neurophysiological and behavioural evidence that manual gestures and vocal language share the same control system. Studies of primate premotor cortex and, in particular, of the so-called "mirror system", including humans, suggest the existence of a dual hand/mouth motor command system involved in ingestion activities. This may be the platform on which a combined manual and vocal communication system was constructed. In humans, speech is typically accompanied by manual gesture, speech production itself is influenced by executing or observing transitive hand actions, and manual actions play an important role in the development of speech, from the babbling stage onwards. Behavioural data also show reciprocal influence between word and symbolic gestures. Neuroimaging and repetitive transcranial magnetic stimulation (rTMS) data suggest that the system governing both speech and gesture is located in Broca's area. In general, the presented data support the hypothesis that the hand motor-control system is involved in higher order cognition.

  19. The prefrontal cortex: categories, concepts and cognition.

    PubMed Central

    Miller, Earl K; Freedman, David J; Wallis, Jonathan D

    2002-01-01

    The ability to generalize behaviour-guiding principles and concepts from experience is key to intelligent, goal-directed behaviour. It allows us to deal efficiently with a complex world and to adapt readily to novel situations. We review evidence that the prefrontal cortex-the cortical area that reaches its greatest elaboration in primates-plays a central part in acquiring and representing this information. The prefrontal cortex receives highly processed information from all major forebrain systems, and neurophysiological studies suggest that it synthesizes this into representations of learned task contingencies, concepts and task rules. In short, the prefrontal cortex seems to underlie our internal representations of the 'rules of the game'. This may provide the necessary foundation for the complex behaviour of primates, in whom this structure is most elaborate. PMID:12217179

  20. Tracking blue cone signals in the primate brain.

    PubMed

    Jayakumar, Jaikishan; Dreher, Bogdan; Vidyasagar, Trichur R

    2013-05-01

    In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  1. A little more conversation, a little less action - candidate roles for motor cortex in speech perception

    PubMed Central

    Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank

    2014-01-01

    The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052

  2. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and neurofilament protein content. Thus, although the neurons that provide the anterior and posterior cingulate motor projections to area M1 differ morphologically and in laminar origin, their neurochemical profiles are similar with respect to neurofilament protein. This suggests that neurochemical phenotype may be a more important unifying feature for corticocortical projections than morphology.

  3. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305

  4. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  5. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies

    PubMed Central

    Koželj, Saša

    2014-01-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6–13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. PMID:24572094

  6. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    PubMed

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. Copyright © 2014 the American Physiological Society.

  7. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke

    PubMed Central

    Rüber, Theodor

    2012-01-01

    Objectives: Studies on nonhuman primates have demonstrated that the cortico-rubro-spinal system can compensate for damage to the pyramidal tract (PT). In humans, so-called alternate motor fibers (aMF), which may comprise the cortico-rubro-spinal tract, have been suggested to play a similar role in motor recovery after stroke. Using diffusion tensor imaging, we examined PT and aMF in the context of human motor recovery by relating their microstructural properties to functional outcome in chronic stroke patients. Methods: PT and aMF were reconstructed based on their origins in primary motor, dorsal premotor, and supplementary motor cortices in 18 patients and 10 healthy controls. The patients' degree of motor recovery was assessed using the Wolf Motor Function Test (WMFT). Results: Compared to controls, fractional anisotropy (FA) was lower along ipsilesional PT and aMF in chronic stroke patients, but clusters of higher FA were found bilaterally in aMF within the vicinity of the red nuclei. FA along ipsilesional PT and aMF and within the red nuclei correlated significantly with WMFT scores. Probabilistic connectivity of aMF originating from ipsilesional primary motor cortex was higher in patients, whereas the ipsilesional PT exhibited lower connectivity compared to controls. Conclusions: The strong correlations observed between microstructural properties of bilateral red nuclei and the level of motor function in chronic stroke patients indicate possible remodeling during recovery. Our results shed light on the role of different corticofugal motor tracts, and highlight a compensatory function of the cortico-rubro-spinal system which may be used as a target in future restorative treatments. PMID:22843266

  8. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    PubMed Central

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  10. No relative expansion of the number of prefrontal neurons in primate and human evolution.

    PubMed

    Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F M; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H; Herculano-Houzel, Suzana

    2016-08-23

    Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume.

  11. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A Map of Anticipatory Activity in Mouse Motor Cortex.

    PubMed

    Chen, Tsai-Wen; Li, Nuo; Daie, Kayvon; Svoboda, Karel

    2017-05-17

    Activity in the mouse anterior lateral motor cortex (ALM) instructs directional movements, often seconds before movement initiation. It is unknown whether this preparatory activity is localized to ALM or widely distributed within motor cortex. Here we imaged activity across motor cortex while mice performed a whisker-based object localization task with a delayed, directional licking response. During tactile sensation and the delay epoch, object location was represented in motor cortex areas that are medial and posterior relative to ALM, including vibrissal motor cortex. Preparatory activity appeared first in deep layers of ALM, seconds before the behavioral response, and remained localized to ALM until the behavioral response. Later, widely distributed neurons represented the outcome of the trial. Cortical area was more predictive of neuronal selectivity than laminar location or axonal projection target. Motor cortex therefore represents sensory, motor, and outcome information in a spatially organized manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.

    PubMed

    Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2014-01-29

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.

  14. EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex

    PubMed Central

    Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348

  15. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  16. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  17. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Critical Involvement of the Motor Cortex in the Pathophysiology and Treatment of Parkinson’s Disease

    PubMed Central

    Lindenbach, David; Bishop, Christopher

    2013-01-01

    This review examines the involvement of the motor cortex in Parkinson’s disease (PD), a debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra. While much of PD research has focused on the caudate/putamen, many aspects of motor cortex function are abnormal in PD patients and in animal models of PD, implicating motor cortex involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to functional reorganization of motor maps and excessive corticostriatal synchrony when movement is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical benefit for PD patients. Based on extant research, we identify a number of unanswered questions regarding the motor cortex in PD and argue that a better understanding of the contribution of the motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches. PMID:24113323

  19. Cortical Substrate of Haptic Representation

    DTIC Science & Technology

    1993-08-24

    experience and data from primates , we have developed computational models of short-term active memory. Such models may have technological interest...neurobiological work on primate memory. It is on that empirical work that our current theoretical efforts are 5 founded. Our future physiological research...Academy of Sciences, New York, vol. 608, pp. 318-329, 1990. J.M. Fuster - Behavioral electrophysiology of the prefrontal cortex of the primate . Progress

  20. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    PubMed

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  1. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  2. A hierarchical, retinotopic proto-organization of the primate visual system at birth

    PubMed Central

    Arcaro, Michael J; Livingstone, Margaret S

    2017-01-01

    The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience DOI: http://dx.doi.org/10.7554/eLife.26196.001 PMID:28671063

  3. The auditory representation of speech sounds in human motor cortex

    PubMed Central

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  4. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis

    PubMed Central

    Patel, Aniruddh D.; Iversen, John R.

    2013-01-01

    Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement). More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This “action simulation for auditory prediction” (ASAP) hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in non-human primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi. PMID:24860439

  5. Evolution of the central sulcus morphology in primates.

    PubMed

    Hopkins, William D; Meguerditchian, Adrien; Coulon, Olivier; Bogart, Stephanie; Mangin, Jean-François; Sherwood, Chet C; Grabowski, Mark W; Bennett, Allyson J; Pierre, Peter J; Fears, Scott; Woods, Roger; Hof, Patrick R; Vauclair, Jacques

    2014-01-01

    The central sulcus (CS) divides the pre- and postcentral gyri along the dorsal-ventral plane of which all motor and sensory functions are topographically organized. The motor-hand area of the precentral gyrus or KNOB has been described as the anatomical substrate of the hand in humans. Given the importance of the hand in primate evolution, here we examine the evolution of the motor-hand area by comparing the relative size and pattern of cortical folding of the CS surface area from magnetic resonance images in 131 primates, including Old World monkeys, apes and humans. We found that humans and great apes have a well-formed motor-hand area that can be seen in the variation in depth of the CS along the dorsal-ventral plane. We further found that great apes have relatively large CS surface areas compared to Old World monkeys. However, relative to great apes, humans have a small motor-hand area in terms of both adjusted and absolute surface areas. © 2014 S. Karger AG, Basel.

  6. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  7. A neuronal morphologic type unique to humans and great apes

    PubMed Central

    Nimchinsky, Esther A.; Gilissen, Emmanuel; Allman, John M.; Perl, Daniel P.; Erwin, Joseph M.; Hof, Patrick R.

    1999-01-01

    We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher primates. These observations are of particular interest when considering primate neocortical evolution, as they reveal possible adaptive changes and functional modifications over the last 15–20 million years in the anterior cingulate cortex, a region that plays a major role in the regulation of many aspects of autonomic function and of certain cognitive processes. That in humans these unique neurons have been shown previously to be severely affected in the degenerative process of Alzheimer’s disease suggests that some of the differential neuronal susceptibility that occurs in the human brain in the course of age-related dementing illnesses may have appeared only recently during primate evolution. PMID:10220455

  8. Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?

    PubMed

    Brasil-Neto, Joaquim P

    2016-01-01

    Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain.

  9. Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity.

    PubMed

    Barcia, C; De Pablos, V; Bautista-Hernández, V; Sanchez-Bahillo, A; Fernández-Barreiro, A; Poza, M; Herrero, M T

    2004-03-15

    The parkinsonian symptoms of primates after MPTP exposure can be measured by several visual methods (classical motor scores). However, these methods have a subjective bias, especially as regards the evaluation of the motor activity. Computerized monitoring systems represent an unbiased method for measuring the motor disability of monkeys after MPTP administration. In this work the motor activity of monkeys before and after MPTP administration is measured and compared with the activity of a control intact group by means of a telemetry system. A pronounced decrease in motor activity was observed after MPTP administration. These results suggest the monitoring method used is suited for characterizing the motor incapacity and possible improvements following treatments to test different therapies to control Parkinson's disease in MPTP models involving primates.

  10. Neuroanatomical correlates of personality in chimpanzees (Pan troglodytes): Associations between personality and frontal cortex.

    PubMed

    Latzman, Robert D; Hecht, Lisa K; Freeman, Hani D; Schapiro, Steven J; Hopkins, William D

    2015-12-01

    Converging empirical data suggests that a set of largely consistent personality traits exist in both human and nonhuman primates; despite these similarities, almost nothing is known concerning the neurobiological basis of these traits in nonhuman primates. The current study examined associations between chimpanzee personality traits and the grey matter volume and asymmetry of various frontal cortex regions in 107 captive chimpanzees. Chimpanzees rated as higher on Openness and Extraversion had greater bilateral grey matter volumes in the anterior cingulate cortex. Further, chimpanzee rated as higher on Dominance had larger grey volumes in the left anterior cingulate cortex and right Prefrontal Cortex (PFC). Finally, apes rated higher on Reactivity/Unpredictability had higher grey matter volumes in the right mesial PFC. All associations survived after applying False Discovery Rate (FDR) thresholds. Results are discussed in terms of current neuroscientific models of personality which suggest that the frontal cortex, and asymmetries in this region, play an important role in the neurobiological foundation of broad dispositional traits. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey

    PubMed Central

    Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime

    2015-01-01

    Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates. PMID:25989598

  12. Representation of the Numerosity 'zero' in the Parietal Cortex of the Monkey.

    PubMed

    Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime

    2015-05-22

    Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity 'zero'. 'Zero' neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. "Numerosity-zero" neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.

  13. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  14. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  15. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  16. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates.

    PubMed

    Yao, Dongyuan; Lavigne, Gilles J; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J

    2013-02-01

    To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Polysomnographic recordings in the electrophysiological study. University sleep research laboratories. The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.

  17. Modeling motor connectivity using TMS/PET and structural equation modeling

    PubMed Central

    Laird, Angela R.; Robbins, Jacob M.; Li, Karl; Price, Larry R.; Cykowski, Matthew D.; Narayana, Shalini; Laird, Robert W.; Franklin, Crystal; Fox, Peter T.

    2010-01-01

    Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally-imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (χ2=22.150, df = 38, P = 0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity. PMID:18387823

  18. High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M

    2016-03-01

    Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.

  19. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    PubMed Central

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  20. Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio)

    PubMed Central

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Mahaney, Michael C.; Cox, Laura A.; Cheverud, James M.

    2015-01-01

    Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution. PMID:25873632

  1. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  2. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    PubMed

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Anticipatory activity in primary motor cortex codes memorized movement sequences.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2005-03-24

    Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.

  4. Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar.

    PubMed

    Shokur, Solaiman; O'Doherty, Joseph E; Winans, Jesse A; Bleuler, Hannes; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2013-09-10

    The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema.

  5. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution

    PubMed Central

    Homman-Ludiye, Jihane; Bourne, James A.

    2014-01-01

    The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460

  6. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings.

    PubMed

    Halje, Pär; Seeck, Margitta; Blanke, Olaf; Ionta, Silvio

    2015-12-01

    The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Signals from the ventrolateral thalamus to the motor cortex during locomotion

    PubMed Central

    Marlinski, Vladimir; Nilaweera, Wijitha U.; Zelenin, Pavel V.; Sirota, Mikhail G.

    2012-01-01

    The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL neurons projecting to the motor cortex were identified by antidromic responses. During locomotion, the activity of 92% of neurons was modulated in the rhythm of strides; 67% of cells discharged one activity burst per stride, a pattern typical for the motor cortex. The characteristics of these discharges in most VL neurons appeared to be well suited to contribute to the locomotion-related activity of the motor cortex. In addition to simple locomotion, we examined VL activity during walking on a horizontal ladder, a task that requires vision for correct foot placement. Upon transition from simple to ladder locomotion, the activity of most VL neurons exhibited the same changes that have been reported for the motor cortex, i.e., an increase in the strength of stride-related modulation and shortening of the discharge duration. Five modes of integration of simple and ladder locomotion-related information were recognized in the VL. We suggest that, in addition to contributing to the locomotion-related activity in the motor cortex during simple locomotion, the VL integrates and transmits signals needed for correct foot placement on a complex terrain to the motor cortex. PMID:21994259

  8. Neurocognitive Predictions of Performance.

    DTIC Science & Technology

    1987-09-25

    feedback (see Section 1V.A). Many of these results, along with pilot analyses of intracerebral recordings using a. primate model, cannot be explained by...are subject to considerable distortion by the intervening media of cerebrum, cerebro -spinal fluid, skull, and scalp. The result is a smeaxing or...parietal component is consistent with evidence from primates and humans for neuronal firing in motor and somatost.nsory cortices prior to motor responses

  9. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    PubMed

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  10. A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing

    PubMed Central

    Aboitiz, Francisco

    2018-01-01

    In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication. PMID:29636657

  11. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    PubMed

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  12. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.

    PubMed

    Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  13. Enhanced HMAX model with feedforward feature learning for multiclass categorization.

    PubMed

    Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu

    2015-01-01

    In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  14. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    PubMed

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study.

    PubMed

    Rule, R R; Suhy, J; Schuff, N; Gelinas, D F; Miller, R G; Weiner, M W

    2004-09-01

    After replication of previous findings we aimed to: 1) determine if previously reported (1)H MRSI differences between ALS patients and control subjects are limited to the motor cortex; and 2) determine the longitudinal metabolic changes corresponding to varying levels of diagnostic certainty. Twenty-one patients with possible/suspected ALS, 24 patients with probable/definite ALS and 17 control subjects underwent multislice (1)H MRSI co-registered with tissue-segmented MRI to obtain concentrations of the brain metabolites N-acetylaspartate (NAA), creatine, and choline in the left and right motor cortex and in gray matter and white matter of non-motor regions in the brain. In the more affected hemisphere, reductions in the ratios, NAA/Cho and NAA/Cre+Cho were observed both within (12.6% and 9.5% respectively) and outside (9.2% and 7.3% respectively) the motor cortex in probable/definite ALS. However, these reductions were significantly greater within the motor cortex (P<0.05 for NAA/Cho and P<0.005 for NAA/Cre+Cho). Longitudinal changes in NAA were observed at three months within the motor cortex of both possible/suspected ALS patients (P<0.005) and at nine months outside the motor cortex of probable/definite patients (P<0.005). However, there was no clear pattern of progressive change over time. NAA ratios are reduced in the motor cortex and outside the motor cortex in ALS, suggesting widespread neuronal injury. Longitudinal changes of NAA are not reliable, suggesting that NAA may not be a useful surrogate marker for treatment trials.

  16. Processing Of Visual Information In Primate Brains

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H.; Van Essen, David C.

    1991-01-01

    Report reviews and analyzes information-processing strategies and pathways in primate retina and visual cortex. Of interest both in biological fields and in such related computational fields as artificial neural networks. Focuses on data from macaque, which has superb visual system similar to that of humans. Authors stress concept of "good engineering" in understanding visual system.

  17. A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA

    PubMed Central

    Rani, Neha; Nowakowski, Tomasz J; Zhou, Hongjun; Godshalk, Sirie E.; Lisi, Véronique; Kriegstein, Arnold R.; Kosik, Kenneth S.

    2016-01-01

    Summary Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified a lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p, by LncND, controls the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Down-regulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression. Gain-of-function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex. PMID:27263970

  18. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    NASA Astrophysics Data System (ADS)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few channels of neural signal for possible use in a cortical neuroprosthetic system.

  19. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  20. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    PubMed

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  1. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  2. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements

    PubMed Central

    Gonzalez, Claudia L. R.

    2016-01-01

    Long-train electrical stimulation of the motor and premotor cortices of nonhuman primates can produce either hand-to-mouth or grasp-to-inspect movements, depending on the precise location of stimulation. Furthermore, single-neuron recording studies identify discrete neuronal populations in the inferior parietal and ventral premotor cortices that respond uniquely to either grasp-to-eat or grasp-to-place movements, despite their identical mechanistic requirements. These studies demonstrate that the macaque motor cortex is organized around producing functional, goal-oriented movements, rather than simply fulfilling muscular prerequisites of action. In humans, right-handed hand-to-mouth movements have a unique kinematic signature; smaller maximum grip apertures are produced when grasping to eat than when grasping to place identical targets. This is evidence that the motor cortex in humans is also organized around producing functional movements. However, in both macaques and humans, grasp-to-eat/hand-to-mouth movements have always been elicited using edible targets and have (necessarily) been paired with mouth movement. It is therefore unknown whether the kinematic distinction is a natural result of grasping food and/or is simply attributable to concurrent opening of the mouth while grasping. In experiment 1, we used goal-differentiated grasping tasks, directed toward edible and inedible targets, to show that the unique kinematic signature is present even with inedible targets. In experiment 2, we used the same goal-differentiated grasping tasks, either coupled with or divorced from an open-mouth movement, to show that the signature is not attributable merely to a planned opening of the mouth during the grasp. These results are discussed in relation to the role of hand-to-mouth movements in human development, independently of grasp-to-eat behavior. PMID:27512020

  3. Properties of primary motor cortex output to hindlimb muscles in the macaque monkey

    PubMed Central

    Hudson, Heather M.; Griffin, Darcy M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The cortical control of forelimb motor function has been studied extensively, especially in the primate. In contrast, cortical control of the hindlimb has been relatively neglected. This study assessed the output properties of the primary motor cortex (M1) hindlimb representation in terms of the sign, latency, magnitude, and distribution of effects in stimulus-triggered averages (StTAs) of electromyography (EMG) activity recorded from 19 muscles, including hip, knee, ankle, digit, and intrinsic foot muscles, during a push-pull task compared with data reported previously on the forelimb. StTAs (15, 30, and 60 μA at 15 Hz) of EMG activity were computed at 317 putative layer V sites in two rhesus macaques. Poststimulus facilitation (PStF) was distributed equally between distal and proximal muscles, whereas poststimulus suppression (PStS) was more common in distal muscles than proximal muscles (51/49%, respectively, for PStF; 72/28%, respectively, for PStS) at 30 μA. Mean PStF and PStS onset latency generally increased the more distal the joint of a muscle's action. Most significantly, the average magnitude of hindlimb poststimulus effects was considerably weaker than the average magnitude of effects from forelimb M1. In addition, forelimb PStF magnitude increased consistently from proximal to distal joints, whereas hindlimb PStF magnitude was similar at all joints except the intrinsic foot muscles, which had a magnitude of approximately double that of all of the other muscles. The results suggest a greater monosynaptic input to forelimb compared with hindlimb motoneurons, as well as a more direct synaptic linkage for the intrinsic foot muscles compared with the other hindlimb muscles. PMID:25411454

  4. A graph-theoretical analysis algorithm for quantifying the transition from sensory input to motor output by an emotional stimulus.

    PubMed

    Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G

    2013-01-01

    Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.

  5. Functional subregions of the human entorhinal cortex

    PubMed Central

    Maass, Anne; Berron, David; Libby, Laura A; Ranganath, Charan; Düzel, Emrah

    2015-01-01

    The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC. DOI: http://dx.doi.org/10.7554/eLife.06426.001 PMID:26052749

  6. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex

    PubMed Central

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  7. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.

    PubMed

    Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M

    2018-04-01

    Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  8. DIFFUSION-WEIGHTED IMAGING TRACTOGRAPHY-BASED PARCELLATION OF THE HUMAN PARIETAL CORTEX AND COMPARISON WITH HUMAN AND MACAQUE RESTING STATE FUNCTIONAL CONNECTIVITY

    PubMed Central

    Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.

    2011-01-01

    Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650

  9. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  10. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    PubMed Central

    Jacobs, Bob; Johnson, Nicholas L.; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C.; Lewandowski, Albert; Raghanti, Mary A.; Wicinski, Bridget; Butti, Camilla; Hopkins, William D.; Bertelsen, Mads F.; Walsh, Timothy; Roberts, John R.; Reep, Roger L.; Hof, Patrick R.; Sherwood, Chet C.; Manger, Paul R.

    2014-01-01

    Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures. PMID:24795574

  11. Dissociating Contributions of the Motor Cortex to Speech Perception and Response Bias by Using Transcranial Magnetic Stimulation

    PubMed Central

    Smalle, Eleonore H. M.; Rogers, Jack; Möttönen, Riikka

    2015-01-01

    Recent studies using repetitive transcranial magnetic stimulation (TMS) have demonstrated that disruptions of the articulatory motor cortex impair performance in demanding speech perception tasks. These findings have been interpreted as support for the idea that the motor cortex is critically involved in speech perception. However, the validity of this interpretation has been called into question, because it is unknown whether the TMS-induced disruptions in the motor cortex affect speech perception or rather response bias. In the present TMS study, we addressed this question by using signal detection theory to calculate sensitivity (i.e., d′) and response bias (i.e., criterion c). We used repetitive TMS to temporarily disrupt the lip or hand representation in the left motor cortex. Participants discriminated pairs of sounds from a “ba”–“da” continuum before TMS, immediately after TMS (i.e., during the period of motor disruption), and after a 30-min break. We found that the sensitivity for between-category pairs was reduced during the disruption of the lip representation. In contrast, disruption of the hand representation temporarily reduced response bias. This double dissociation indicates that the hand motor cortex contributes to response bias during demanding discrimination tasks, whereas the articulatory motor cortex contributes to perception of speech sounds. PMID:25274987

  12. Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds

    PubMed Central

    Arriaga, Gustavo; Zhou, Eric P.; Jarvis, Erich D.

    2012-01-01

    Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning. PMID:23071596

  13. Motor output evoked by subsaccadic stimulation of primate frontal eye fields.

    PubMed

    Corneil, Brian D; Elsley, James K; Nagy, Benjamin; Cushing, Sharon L

    2010-03-30

    In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades

  14. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior.

    PubMed

    Rajan, Alexander T; Boback, Jessica L; Dammann, John F; Tenore, Francesco V; Wester, Brock A; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J

    2015-12-01

    One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal's ability to use their hand--the cortical representation of which is targeted by the ICMS--as a further assay of possible neuronal damage. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  15. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior

    NASA Astrophysics Data System (ADS)

    Rajan, Alexander T.; Boback, Jessica L.; Dammann, John F.; Tenore, Francesco V.; Wester, Brock A.; Otto, Kevin J.; Gaunt, Robert A.; Bensmaia, Sliman J.

    2015-12-01

    Objective. One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal’s ability to use their hand—the cortical representation of which is targeted by the ICMS—as a further assay of possible neuronal damage. Approach. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. Main results. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Significance. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  16. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques.

    PubMed

    Rogers, Christina N; Ross, Amy P; Sahu, Shweta P; Siegel, Ethan R; Dooyema, Jeromy M; Cree, Mary Ann; Stopa, Edward G; Young, Larry J; Rilling, James K; Albers, H Elliott; Preuss, Todd M

    2018-05-24

    Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions. © 2018 Wiley Periodicals, Inc.

  17. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.

    PubMed

    Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E

    2017-01-01

    Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Motor learning in animal models of Parkinson’s Disease: Aberrant synaptic plasticity in the motor cortex

    PubMed Central

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R.; Ding, Jun B

    2017-01-01

    In Parkinson’s disease (PD), dopamine depletion causes dramatic changes in the brain resulting in debilitating cognitive and motor deficits. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time point of PD progression. Models of PD where dopamine tone in the brain are chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this paper, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo, time-lapse imaging and motor-skill behavior assays. In combination with previous studies, a role of the motor cortex in skill-learning, and the impairment of this ability with the loss of dopamine, is becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in the motor-skill learning and cognitive impairments of PD, with the possibility of targeting the motor cortex for future PD therapeutics. PMID:28343366

  19. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    PubMed

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  20. Learning-Dependent Potentiation in the Vibrissal Motor Cortex Is Closely Related to the Acquisition of Conditioned Whisker Responses in Behaving Mice

    ERIC Educational Resources Information Center

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2007-01-01

    The role of the primary motor cortex in the acquisition of new motor skills was evaluated during classical conditioning of vibrissal protraction responses in behaving mice, using a trace paradigm. Conditioned stimulus (CS) presentation elicited a characteristic field potential in the vibrissal motor cortex, which was dependent on the synchronized…

  1. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    PubMed Central

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N. Jeremy; Carmel, Jason B.

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy. PMID:29706871

  2. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    PubMed

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  3. Motor cortex plasticity can indicate vulnerability to motor fluctuation and high L-DOPA need in drug-naïve Parkinson's disease.

    PubMed

    Kishore, Asha; James, Praveen; Krishnan, Syam; Yahia-Cherif, Lydia; Meunier, Sabine; Popa, Traian

    2017-02-01

    Motor cortex plasticity is reported to be decreased in Parkinson's disease in studies which pooled patients in various stages of the disease. Whether the early decrease in plasticity is related to the motor signs or is linked to the future development of motor complications of treatment is unclear. The aim of the study was to test if motor cortex plasticity and its cerebellar modulation are impaired in treatment-naïve Parkinson's disease, are related to the motor signs of the disease and predict occurrence of motor complications of treatment. Twenty-nine denovo patients with Parkinson's disease were longitudinally assessed for motor complications for four years. Using transcranial magnetic stimulation, the plasticity of the motor cortex and its cerebellar modulation were measured (response to paired-associative stimulation alone or preceded by 2 active cerebellar stimulation protocols), both in the untreated state and after a single dose of L-DOPA. Twenty-six matched, healthy volunteers were tested, only without L-DOPA. Patients and healthy controls had similar proportions of responders and non-responders to plasticity induction. In the untreated state, the more efficient was the cerebellar modulation of motor cortex plasticity, the lower were the bradykinesia and rigidity scores. The extent of the individual plastic response to paired associative stimulation could indicate a vulnerability to develop early motor fluctuation but not dyskinesia. Measuring motor cortex plasticity in denovo Parkinson's disease could be a neurophysiological parameter that may help identify patients with greater propensity for early motor fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses

    PubMed Central

    Mishra, Asht M.; Pal, Ajay; Gupta, Disha

    2017-01-01

    Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord.The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone.Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal.Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. PMID:28752624

  5. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    PubMed

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  6. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    PubMed

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  7. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Tim; Ledochowitsch, Peter; Maharabiz, Michel M.; Sabes, Philip N.

    2015-03-01

    Although several studies have shown the feasibility of using optogenetics in non-human primates (NHP), reliable largescale chronic interfaces have not yet been reported for such studies in NHP. Here we introduce a chronic setup that permits repeated, daily optogenetic stimulation and large-scale recording from the same sites in NHP cortex. The setup combines optogenetics with a transparent artificial dura (AD) and high-density micro-electrocorticography (μECoG). To obtain expression across large areas of cortex, we infused AAV5-CamKIIa-C1V1-EYFP viral vector using an infusion technique based on convection-enhanced delivery (CED) in primary somatosensory (S1) and motor (M1) cortices. By epifluorescent imaging through AD we were able to confirm high levels of expression covering about 110 mm2 of S1 and M1. We then incorporated a 192-channel μECoG array spanning 192 mm2 into the AD for simultaneous electrophysiological recording during optical stimulation. The array consists of patterned Pt-Au-Pt metal traces embedded in ~10 μm Parylene-C insulator. The parylene is sufficiently transparent to allow minimally attenuated optical access for optogenetic stimulation. The array was chronically implanted over the opsin-expressing areas in M1 and S1 for over two weeks. Optical stimulation was delivered via a fiber optic placed on the surface of the AD. With this setup, we recorded reliable evoked activity following light stimulation at several locations. Similar responses were recorded across tens of days, however a decline in the light-evoked signal amplitude was observed during this period due to the growth of dural tissue over the array. These results show the feasibility of a chronic interface for combined largescale optogenetic stimulation and cortical recordings across days.

  8. Modulation of value representation by social context in the primate orbitofrontal cortex.

    PubMed

    Azzi, João C B; Sirigu, Angela; Duhamel, Jean-René

    2012-02-07

    Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.

  9. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  10. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Neural Basis of Vocal Pitch Imitation in Humans.

    PubMed

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.

  12. Human primary motor cortex is both activated and stabilized during observation of other person's phasic motor actions.

    PubMed

    Hari, Riitta; Bourguignon, Mathieu; Piitulainen, Harri; Smeds, Eero; De Tiège, Xavier; Jousmäki, Veikko

    2014-01-01

    When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, 'mirroring' or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer's primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex-muscle coherence at 16-20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person's actions, thereby withholding unintentional imitation.

  13. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.

    PubMed

    Porter, Benjamin A; Khodaparast, Navid; Fayyaz, Tabbassum; Cheung, Ryan J; Ahmed, Syed S; Vrana, William A; Rennaker, Robert L; Kilgard, Michael P

    2012-10-01

    Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.

  14. Functional specialization of the primate frontal cortex during decision making.

    PubMed

    Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E; Watanabe, Masataka; Sakagami, Masamichi

    2007-08-01

    Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work. In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in maintaining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.

  15. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  16. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  17. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    PubMed Central

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  18. The basic nonuniformity of the cerebral cortex

    PubMed Central

    Herculano-Houzel, Suzana; Collins, Christine E.; Wong, Peiyan; Kaas, Jon H.; Lent, Roberto

    2008-01-01

    Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244], who found a steady number of approximately 110 neurons underneath a surface area of 750 μm2 (147,000 underneath 1 mm2) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm2 of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons. PMID:18689685

  19. The basic nonuniformity of the cerebral cortex.

    PubMed

    Herculano-Houzel, Suzana; Collins, Christine E; Wong, Peiyan; Kaas, Jon H; Lent, Roberto

    2008-08-26

    Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221-244], who found a steady number of approximately 110 neurons underneath a surface area of 750 microm(2) (147,000 underneath 1 mm(2)) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm(2) of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons.

  20. Variable temporo-insular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas

    PubMed Central

    Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.

    2013-01-01

    In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630

  1. Action comprehension in non-human primates: motor simulation or inferential reasoning?

    PubMed

    Wood, Justin N; Hauser, Marc D

    2008-12-01

    Some argue that action comprehension is intimately connected with the observer's own motor capacities, whereas others argue that action comprehension depends on non-motor inferential mechanisms. We address this debate by reviewing comparative studies that license four conclusions: monkeys and apes extract the meaning of an action (i) by going beyond the surface properties of actions, attributing goals and intentions to the agent; (ii) by using environmental information to infer when actions are rational; (iii) by making predictions about an agent's goal, and the most probable action to obtain the goal given environmental constraints; (iv) in situations in which they are physiologically incapable of producing the actions. Motor theories are, thus, insufficient to account for primate action comprehension in the absence of inferential mechanisms.

  2. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  3. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons

    PubMed Central

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-01-01

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions. PMID:24928956

  4. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.

    PubMed

    Hermer-Vazquez, Linda; Moshtagh, Nasim

    2009-05-01

    Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.

  5. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray.

    PubMed

    Dampney, Roger

    2018-01-01

    The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates.

  6. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray

    PubMed Central

    Dampney, Roger

    2018-01-01

    The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates. PMID:29881334

  7. A simpler primate brain: the visual system of the marmoset monkey

    PubMed Central

    Solomon, Samuel G.; Rosa, Marcello G. P.

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716

  8. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  9. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    PubMed

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures of the motor affordance while working memory load was varied. We observed a typical motor affordance signature when working memory load was low; however, it was abolished when load was high. Further, there was increased intracortical inhibition in primary motor cortex under high working memory load. This suggests that being in a state of high cognitive load "sets" the motor system to be imperturbable to distracting motor influences. This makes a novel link between working memory load and the balance of excitatory/inhibitory activity in the motor cortex and potentially has implications for disorders of impulsivity. Copyright © 2016 the authors 0270-6474/16/365544-12$15.00/0.

  10. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.

    PubMed

    Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-10-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.

  11. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence

    PubMed Central

    Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-01-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575

  12. Histological Evaluation of a Chronically-implanted Electrocorticographic Electrode Grid in a Non-human Primate

    PubMed Central

    Degenhart, Alan D.; Eles, James; Dum, Richard; Mischel, Jessica L.; Smalianchuk, Ivan; Endler, Bridget; Ashmore, Robin C.; Tyler-Kabara, Elizabeth C.; Hatsopoulos, Nicholas G.; Wang, Wei; Batista, Aaron P.; Cui, X. Tracy

    2016-01-01

    Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically-implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. We implanted a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 days. Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically-viable brain-machine interface systems. PMID:27351722

  13. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate

    NASA Astrophysics Data System (ADS)

    Degenhart, Alan D.; Eles, James; Dum, Richard; Mischel, Jessica L.; Smalianchuk, Ivan; Endler, Bridget; Ashmore, Robin C.; Tyler-Kabara, Elizabeth C.; Hatsopoulos, Nicholas G.; Wang, Wei; Batista, Aaron P.; Cui, X. Tracy

    2016-08-01

    Objective. Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. Approach. We implanted and recorded from a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 d. Main results. Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. Significance. These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically viable BMI systems.

  14. Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar

    PubMed Central

    Shokur, Solaiman; O’Doherty, Joseph E.; Winans, Jesse A.; Bleuler, Hannes; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2013-01-01

    The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema. PMID:23980141

  15. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  16. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  17. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  18. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  19. Dynamic Increase in Corticomuscular Coherence during Bilateral, Cyclical Ankle Movements

    PubMed Central

    Yoshida, Takashi; Masani, Kei; Zabjek, Karl; Chen, Robert; Popovic, Milos R.

    2017-01-01

    In humans, the midline primary motor cortex is active during walking. However, the exact role of such cortical participation is unknown. To delineate the role of the primary motor cortex in walking, we examined whether the primary motor cortex would activate leg muscles during movements that retained specific requirements of walking (i.e., locomotive actions). We recorded electroencephalographic and electromyographic signals from 15 healthy, young men while they sat and performed bilateral, cyclical ankle movements. During dorsiflexion, near-20-Hz coherence increased cyclically between the midline primary motor cortex and the co-contracting antagonistic pair (i.e., tibialis anterior and medial gastrocnemius muscles) in both legs. Thus, we have shown that dynamic increase in corticomuscular coherence, which has been observed during walking, also occurs during simple bilateral cyclical movements of the feet. A possible mechanism for such coherence is corticomuscular communication, in which the primary motor cortex participates in the control of movement. Furthermore, because our experimental task isolated certain locomotive actions, the observed coherence suggests that the human primary motor cortex may participate in these actions (i.e., maintaining a specified movement frequency, bilaterally coordinating the feet, and stabilizing the posture of the feet). Additional studies are needed to identify the exact cortical and subcortical interactions that cause corticomuscular coherence and to further delineate the functional role of the primary motor cortex during bilateral cyclical movements such as walking. PMID:28420971

  20. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  1. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  2. Perspectives on classical controversies about the motor cortex.

    PubMed

    Omrani, Mohsen; Kaufman, Matthew T; Hatsopoulos, Nicholas G; Cheney, Paul D

    2017-09-01

    Primary motor cortex has been studied for more than a century, yet a consensus on its functional contribution to movement control is still out of reach. In particular, there remains controversy as to the level of control produced by motor cortex ("low-level" movement dynamics vs. "high-level" movement kinematics) and the role of sensory feedback. In this review, we present different perspectives on the two following questions: What does activity in motor cortex reflect? and How do planned motor commands interact with incoming sensory feedback during movement? The four authors each present their independent views on how they think the primary motor cortex (M1) controls movement. At the end, we present a dialogue in which the authors synthesize their views and suggest possibilities for moving the field forward. While there is not yet a consensus on the role of M1 or sensory feedback in the control of upper limb movements, such dialogues are essential to take us closer to one. Copyright © 2017 the American Physiological Society.

  3. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    PubMed

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  4. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter

    PubMed Central

    Hoang, T. N. Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-01-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23–44) and 13 adults who stutter (four females, nine males, aged 21–55) were asked to build verbs with the verbal prefix ‘auf’. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative correlation between the amount of facilitation and stuttering severity suggests that we discovered a main physiological principle of fluent speech production and its role in stuttering. PMID:25595146

  5. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  6. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  7. Relationship between physiological excitatory and inhibitory measures of excitability in the left vs. right human motor cortex and peripheral electrodermal activity.

    PubMed

    Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano

    2017-02-22

    The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.

  8. A quantitative meta-analysis and review of motor learning in the human brain

    PubMed Central

    Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.

    2013-01-01

    Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819

  9. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  10. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  11. A neurocomputational model of figure-ground discrimination and target tracking.

    PubMed

    Sun, H; Liu, L; Guo, A

    1999-01-01

    A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.

  12. Vestibular signals in primate cortex for self-motion perception.

    PubMed

    Gu, Yong

    2018-04-21

    The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.

  13. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.

    PubMed

    Curado, Marco; Fritsch, Brita; Reis, Janine

    2016-02-04

    Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.

  14. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  15. Cleveland Clinic Rehabilitation Research Program

    DTIC Science & Technology

    2015-12-01

    Study 1: The penicillin-induced seizure animal model has been generated by acute focal intracortical injection of penicillin in the motor cortex of rats ... motor cortex of rats . The effects of transcranial magnetic stimulation (TMS) on penicillin-induced seizure have been investigated using behavioral...electroencephalographic (EEG) recording. Study 2: The motor cortex (M1) and the corticospinal tracts (CST) will be directly modulated using brain stimulation

  16. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    PubMed

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  17. A three-layered model of primate prefrontal cortex encodes identity and abstract categorical structure of behavioral sequences.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2011-01-01

    Categorical encoding is crucial for mastering large bodies of related sensory-motor experiences, but what is its neural substrate? In an effort to respond to this question, recent single-unit recording studies in the macaque lateral prefrontal cortex (LPFC) have demonstrated two characteristic forms of neural encoding of the sequential structure of the animal's sensory-motor experience. One population of neurons encodes the specific behavioral sequences. A second population of neurons encodes the sequence category (e.g. ABAB, AABB or AAAA) and does not differentiate sequences within the category (Shima, K., Isoda, M., Mushiake, H., Tanji, J., 2007. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315-318.). Interestingly these neurons are intermingled in the lateral prefrontal cortex, and not topographically segregated. Thus, LPFC may provide a neurophysiological basis for sensorimotor categorization. Here we report on a neural network simulation study that reproduces and explains these results. We model a cortical circuit composed of three layers (infragranular, granular, and supragranular) of 5*5 leaky integrator neurons with a sigmoidal output function, and we examine 1000 such circuits running in parallel. Crucially the three layers are interconnected with recurrent connections, thus producing a dynamical system that is inherently sensitive to the spatiotemporal structure of the sequential inputs. The model is presented with 11 four-element sequences following Shima et al. We isolated one subpopulation of neurons each of whose activity predicts individual sequences, and a second population that predicts category independent of the specific sequence. We argue that a richly interconnected cortical circuit is capable of internally generating a neural representation of category membership, thus significantly extending the scope of recurrent network computation. In order to demonstrate that these representations can be used to create an explicit categorization capability, we introduced an additional neural structure corresponding to the striatum. We showed that via cortico-striatal plasticity, neurons in the striatum could produce an explicit representation both of the identity of each sequence, and its category membership. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Motor cortex inhibition

    PubMed Central

    Isaacs, K.M.; Augusta, M.; MacNeil, L.K.; Mostofsky, S.H.

    2011-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)–evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. Methods: In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8–12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. Results: In children with ADHD, mean SICI was reduced by 40% (p < 0.0001) and less SICI correlated with higher ADHD severity (r = −0.52; p = 0.002). Mean PANESS motor development scores were 59% worse in children with ADHD (p < 0.0001). Worse PANESS scores correlated modestly with less SICI (r = −.30; p = 0.01). Conclusion: Reduced TMS-evoked SICI correlates with ADHD diagnosis and symptom severity and also reflects motor skill development in children. PMID:21321335

  19. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.

    PubMed

    Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q

    2008-09-05

    Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.

  20. Atlas of optimal coil orientation and position for TMS: A computational study.

    PubMed

    Gomez-Tames, Jose; Hamasaka, Atsushi; Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2018-04-17

    Transcranial magnetic stimulation (TMS) activates target brain structures in a non-invasive manner. The optimal orientation of the TMS coil for the motor cortex is well known and can be estimated using motor evoked potentials. However, there are no easily measurable responses for activation of other cortical areas and the optimal orientation for these areas is currently unknown. This study investigated the electric field strength, optimal coil orientation, and relative locations to optimally stimulate the target cortex based on computed electric field distributions. A total of 518,616 stimulation scenarios were studied using realistic head models (2401 coil locations × 12 coil angles × 18 head models). Inter-subject registration methods were used to generate an atlas of optimized TMS coil orientations on locations on the standard brain. We found that the maximum electric field strength is greater in primary somatosensory cortex and primary motor cortex than in other cortical areas. Additionally, a universal optimal coil orientation applicable to most subjects is more feasible at the primary somatosensory cortex and primary motor cortex. We confirmed that optimal coil angle follows the anatomical shape of the hand motor area to realize personalized optimization of TMS. Finally, on average, the optimal coil positions for TMS on the scalp deviated 5.5 mm from the scalp points with minimum cortex-scalp distance. This deviation was minimal at the premotor cortex and primary motor cortex. Personalized optimal coil orientation is preferable for obtaining the most effective stimulation. Copyright © 2018. Published by Elsevier Inc.

  1. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: A TMS study

    PubMed Central

    van Elswijk, Gijs; Schot, Willemijn D; Stegeman, Dick F; Overeem, Sebastiaan

    2008-01-01

    Background Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. Results When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. Conclusion Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation. PMID:18559096

  2. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability.

    PubMed

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.

  3. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.

    PubMed

    Reillo, Isabel; Borrell, Víctor

    2012-09-01

    Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.

  4. Lateralization of the human mirror neuron system.

    PubMed

    Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2006-03-15

    A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.

  5. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    PubMed

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  7. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    PubMed

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P < 0.01) at the 1st day [(4.90 ± 0.54) ms] and the 14th day [(4.64 ± 1.71) ms], and an increase in amplitude (F = 1.905, P < 0.05) at the 1st day [(2.28 ± 0.57) mV] and the 7th day [(1.89 ± 0.20) mV]. Intermittent hypoxia could increase the transcranial magnetic stimulation response of genioglossus motor cortex in rats.

  8. Neural substrates of visuomotor learning based on improved feedback control and prediction

    PubMed Central

    Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn

    2008-01-01

    Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069

  9. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  10. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    PubMed Central

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    2016-01-01

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output. PMID:27568501

  11. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala

    PubMed Central

    Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.

    2010-01-01

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403

  12. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  13. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    PubMed

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  14. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    PubMed Central

    Teixeira, Francisco B.; de Oliveira, Ana C. A.; Leão, Luana K. R.; Fagundes, Nathália C. F.; Fernandes, Rafael M.; Fernandes, Luanna M. P.; da Silva, Márcia C. F.; Amado, Lilian L.; Sagica, Fernanda E. S.; de Oliveira, Edivaldo H. C.; Crespo-Lopez, Maria E.; Maia, Cristiane S. F.; Lima, Rafael R.

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats. PMID:29867340

  15. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  16. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys.

    PubMed

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  17. Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys

    PubMed Central

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254

  18. Scalable Inference and Learning in Very Large Graphical Models Patterned after the Primate Visual Cortex

    DTIC Science & Technology

    2008-04-07

    Chbelazzi. Atteni onal modulation of visial po e,- Iig . .Anmial R/evictr of Neltroscience, 27:611 617, 2004. [26] \\M. Ri(,seiiiihear and T. Popoio. ierar...cortex-like mechanisms. IEEE Transactions on Pattern Analysis and aloinc Intc/byocc.e 2)9(3)AI :A126. 2007. 130] Erik B. Sudderth. Antonio B. Torralba

  19. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke.

    PubMed

    Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A

    2018-05-01

    Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.

  20. Responses of primate taste cortex neurons to the astringent tastant tannic acid.

    PubMed

    Critchley, H D; Rolls, E T

    1996-04-01

    In order to advance knowledge of the neural control of feeding, we investigated the cortical representation of the taste of tannic acid, which produces the taste of astringency. It is a dietary component of biological importance particularly to arboreal primates. Recordings were made from 74 taste responsive neurons in the orbitofrontal cortex. Single neurons were found that were tuned to respond to 0.001 M tannic acid, and represented a subpopulation of neurons that was distinct from neurons responsive to the tastes of glucose (sweet), NaCl (salty), HCl (sour), quinine (bitter) and monosodium glutamate (umami). In addition, across the population of 74 neurons, tannic acid was as well represented as the tastes of NaCl, HCl quinine or monosodium glutamate. Multidimensional scaling analysis of the neuronal responses to the tastants indicates that tannic acid lies outside the boundaries of the four conventional taste qualities (sweet, sour, bitter and salty). Taken together these data indicate that the astringent taste of tannic acid should be considered as a taste quality, which receives a separate representation from sweet, salt, bitter and sour in the primate cortical taste areas.

  1. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    PubMed

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  2. Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates.

    PubMed

    Boutte, Ronald W; Merlin, Sam; Yona, Guy; Griffiths, Brandon; Angelucci, Alessandra; Kahn, Itamar; Shoham, Shy; Blair, Steve

    2017-10-01

    As the optogenetic field expands, the need for precise targeting of neocortical circuits only grows more crucial. This work demonstrates a technique for using Solidworks ® computer-aided design (CAD) and readily available stereotactic brain atlases to create a three-dimensional (3-D) model of the dorsal region of area visual cortex 4 (V4D) of the macaque monkey ( Macaca fascicularis ) visual cortex. The 3-D CAD model of the brain was used to customize an [Formula: see text] Utah optrode array (UOA) after it was determined that a high-density ([Formula: see text]) UOA caused extensive damage to marmoset ( Callithrix jacchus ) primary visual cortex as assessed by electrophysiological recording of spiking activity through a 1.5-mm-diameter through glass via. The [Formula: see text] UOA was customized for optrode length ([Formula: see text]), optrode width ([Formula: see text]), optrode pitch ([Formula: see text]), backplane thickness ([Formula: see text]), and overall form factor ([Formula: see text]). Two [Formula: see text] UOAs were inserted into layer VI of macaque V4D cortices with minimal damage as assessed in fixed tissue cytochrome oxidase staining in nonrecoverable surgeries. Additionally, two [Formula: see text] arrays were implanted in mice ( Mus musculus ) motor cortices, providing early evidence for long-term tolerability (over 6 months), and for the ability to integrate the UOA with a Holobundle light delivery system toward patterned optogenetic stimulation of cortical networks.

  3. Time, Space and Form in Vision

    DTIC Science & Technology

    1988-11-01

    design of the eye and visual cortex," The Ferrier Lecture, 1980, Proc. R. Soc. London B 212, 1-34, 1981. Barlow, H.B. & Levick , W.R., "The mechanism... Levick 1965], but things cannot be so simple in primates. This is because cells with significant directional selectivity do not appear in primates...mechanism and that something similar operates in the retina of rabbits [Barlow & Levick 1965]. Motivated by experimental findings (e.g. anti- inhibition

  4. The role of hearing ability and speech distortion in the facilitation of articulatory motor cortex.

    PubMed

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Devlin, Joseph T; Adank, Patti

    2017-01-08

    Excitability of articulatory motor cortex is facilitated when listening to speech in challenging conditions. Beyond this, however, we have little knowledge of what listener-specific and speech-specific factors engage articulatory facilitation during speech perception. For example, it is unknown whether speech motor activity is independent or dependent on the form of distortion in the speech signal. It is also unknown if speech motor facilitation is moderated by hearing ability. We investigated these questions in two experiments. We applied transcranial magnetic stimulation (TMS) to the lip area of primary motor cortex (M1) in young, normally hearing participants to test if lip M1 is sensitive to the quality (Experiment 1) or quantity (Experiment 2) of distortion in the speech signal, and if lip M1 facilitation relates to the hearing ability of the listener. Experiment 1 found that lip motor evoked potentials (MEPs) were larger during perception of motor-distorted speech that had been produced using a tongue depressor, and during perception of speech presented in background noise, relative to natural speech in quiet. Experiment 2 did not find evidence of motor system facilitation when speech was presented in noise at signal-to-noise ratios where speech intelligibility was at 50% or 75%, which were significantly less severe noise levels than used in Experiment 1. However, there was a significant interaction between noise condition and hearing ability, which indicated that when speech stimuli were correctly classified at 50%, speech motor facilitation was observed in individuals with better hearing, whereas individuals with relatively worse but still normal hearing showed more activation during perception of clear speech. These findings indicate that the motor system may be sensitive to the quantity, but not quality, of degradation in the speech signal. Data support the notion that motor cortex complements auditory cortex during speech perception, and point to a role for the motor cortex in compensating for differences in hearing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning.

    PubMed

    Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn

    2017-08-02

    What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained hand. Collectively, our findings suggest a cooperative rather than a competitive role of the hemispheres and imply that it is most beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits. Copyright © 2017 Waters et al.

  6. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269

  7. Orientation selectivity in the visual cortex of the nine-banded armadillo

    PubMed Central

    Scholl, Benjamin; Rylee, Johnathan; Luci, Jeffrey J.; Priebe, Nicholas J.

    2017-01-01

    Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals. NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials. PMID:28053246

  8. An Analysis of Entorhinal Cortex Projections to the Dentate Gyrus, Hippocampus, and Subiculum of the Neonatal Macaque Monkey

    PubMed Central

    Amaral, David G.; Kondo, Hideki; Lavenex, Pierre

    2015-01-01

    The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers 3H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory. PMID:24122645

  9. Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease

    ERIC Educational Resources Information Center

    Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.

    2004-01-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…

  10. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  11. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks

    PubMed Central

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-01-01

    Abstract. Neurofeedback is a method for using neural activity displayed on a computer to regulate one’s own brain function and has been shown to be a promising technique for training individuals to interact with brain–machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain–machine interface applications. PMID:28680906

  12. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks.

    PubMed

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-04-01

    Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.

  13. Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex

    PubMed Central

    Schluppeck, Denis; Glimcher, Paul; Heeger, David J.

    2008-01-01

    Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644

  14. The somatotopy of speech: Phonation and articulation in the human motor cortex

    PubMed Central

    Brown, Steven; Laird, Angela R.; Pfordresher, Peter Q.; Thelen, Sarah M.; Turkeltaub, Peter; Liotti, Mario

    2010-01-01

    A sizable literature on the neuroimaging of speech production has reliably shown activations in the orofacial region of the primary motor cortex. These activations have invariably been interpreted as reflecting “mouth” functioning and thus articulation. We used functional magnetic resonance imaging to compare an overt speech task with tongue movement, lip movement, and vowel phonation. The results showed that the strongest motor activation for speech was the somatotopic larynx area of the motor cortex, thus reflecting the significant contribution of phonation to speech production. In order to analyze further the phonatory component of speech, we performed a voxel-based meta-analysis of neuroimaging studies of syllable-singing (11 studies) and compared the results with a previously-published meta-analysis of oral reading (11 studies), showing again a strong overlap in the larynx motor area. Overall, these findings highlight the under-recognized presence of phonation in imaging studies of speech production, and support the role of the larynx motor cortex in mediating the “melodicity” of speech. PMID:19162389

  15. Changes in Somatosensory Responsiveness in Behaving Primates

    DTIC Science & Technology

    1988-08-01

    visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the

  16. Auditory cortex of bats and primates: managing species-specific calls for social communication

    PubMed Central

    Kanwal, Jagmeet S.; Rauschecker, Josef P.

    2014-01-01

    Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400

  17. Defective cerebellar control of cortical plasticity in writer’s cramp

    PubMed Central

    Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha

    2013-01-01

    A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734

  18. Correlates of stimulus-response congruence in the posterior parietal cortex.

    PubMed

    Stoet, Gijsbert; Snyder, Lawrence H

    2007-02-01

    Primate behavior is flexible: The response to a stimulus often depends on the task in which it occurs. Here we study how single neurons in the posterior parietal cortex (PPC) respond to stimuli which are associated with different responses in different tasks. Two rhesus monkeys performed a task-switching paradigm. Each trial started with a task cue instructing which of two tasks to perform, followed by a stimulus requiring a left or right button press. For half the stimuli, the associated responses were different in the two tasks, meaning that the task context was necessary to disambiguate the incongruent stimuli. The other half of stimuli required the same response irrespective of task context (congruent). Using this paradigm, we previously showed that behavioral responses to incongruent stimuli are significantly slower than to congruent stimuli. We now demonstrate a neural correlate in the PPC of the additional processing time required for incongruent stimuli. Furthermore, we previously found that 29% of parietal neurons encode the task being performed (task-selective cells). We now report differences in neuronal timing related to congruency in task-selective versus task nonselective cells. These differences in timing suggest that the activity in task nonselective cells reflects a motor command, whereas activity in task-selective cells reflects a decision process.

  19. Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Chen, Arnold; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L and 7b and motor/premotor cortex (M1/PM) with microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and after cooling deactivation. Together the deactivated fields and areas 1 and 2 form part of a network for reaching and grasping in human and nonhuman primates. Cooling area 7b had a dramatic effect on receptive field size for neurons in areas 1 and 2, while cooling area 5 had moderate effects and cooling M1/PM had little effect. Specifically, cooling discrete locations in 7b resulted in expansions of the receptive fields for neurons in areas 1 and 2 that were greater in magnitude and occurred in a higher proportion of sites than similar changes evoked by cooling the other fields. At some sites, the neural receptive field returned to the precooling configuration within 5–22 min of rewarming, but at other sites changes in receptive fields persisted. These results indicate that there are profound top-down influences on sensory processing of early cortical areas in the somatosensory cortex. PMID:25143546

  20. State-Dependent Spike and Local Field Synchronization between Motor Cortex and Substantia Nigra in Hemiparkinsonian Rats

    PubMed Central

    Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.

    2012-01-01

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263

  1. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    PubMed

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Influence of mirror therapy on human motor cortex.

    PubMed

    Fukumura, Kenji; Sugawara, Kenichi; Tanabe, Shigeo; Ushiba, Junichi; Tomita, Yutaka

    2007-07-01

    This article investigates whether or not mirror therapy alters the neural mechanisms in human motor cortex. Six healthy volunteers participated. The study investigated the effects of three main factors of mirror therapy (observation of hand movements in a mirror, motor imagery of an assumed affected hand, and assistance in exercising the assumed affected hand) on excitability changes in the human motor cortex to clarify the contribution of each factor. The increase in motor-evoked potential (MEP) amplitudes during motor imagery tended to be larger with a mirror than without one. Moreover, MEP amplitudes increased greatly when movements were assisted. Watching the movement of one hand in a mirror makes it easier to move the other hand in the same way. Moreover, the increase in MEP amplitudes is related to the synergic effects of afferent information and motor imagery.

  3. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    PubMed Central

    Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.

    2015-01-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. PMID:25192655

  5. Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.

    PubMed

    Spampinato, Danny A; Block, Hannah J; Celnik, Pablo A

    2017-03-01

    One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar-M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning. SIGNIFICANCE STATEMENT Connectivity between the cerebellum and motor cortex is a critical pathway for the integrity of everyday movements and understanding the somatotopic specificity of this pathway in the context of motor learning is critical to advancing the efficacy of neurorehabilitation. We found that adaptive learning with the hand affects cerebellar-motor cortex connectivity, not only for the trained hand, but also for an untrained leg muscle, an effect likely related to intereffector transfer of learning. Furthermore, we introduce a novel method to measure cerebellar-motor cortex connectivity during movement preparation. With this technique, we show that, outside the context of learning, modulation of cerebellar-motor cortex connectivity is somatotopically specific to the effector being moved. Copyright © 2017 the authors 0270-6474/17/372377-10$15.00/0.

  6. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  7. Visual guidance in control of grasping.

    PubMed

    Janssen, Peter; Scherberger, Hansjörg

    2015-07-08

    Humans and other primates possess a unique capacity to grasp and manipulate objects skillfully, a facility pervasive in everyday life that has undoubtedly contributed to the success of our species. When we reach and grasp an object, various cortical areas in the parietal and frontal lobes work together effortlessly to analyze object shape and position, transform this visual information into useful motor commands, and implement these motor representations to preshape the hand before contact with the object is made. In recent years, a growing number of studies have investigated the neural circuits underlying object grasping in both the visual and motor systems of the macaque monkey. The accumulated knowledge not only helps researchers understand how object grasping is implemented in the primate brain but may also contribute to the development of novel neural interfaces and neuroprosthetics.

  8. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  9. The extended object-grasping network.

    PubMed

    Gerbella, Marzio; Rozzi, Stefano; Rizzolatti, Giacomo

    2017-10-01

    Grasping is the most important skilled motor act of primates. It is based on a series of sensorimotor transformations through which the affordances of the objects to be grasped are transformed into appropriate hand movements. It is generally accepted that a circuit formed by inferior parietal areas AIP and PFG and ventral premotor area F5 represents the core circuit for sensorimotor transformations for grasping. However, selection and control of appropriate grip should also depend on higher-order information, such as the meaning of the object to be grasped, and the overarching goal of the action in which grasping is embedded. In this review, we describe recent findings showing that specific sectors of the ventrolateral prefrontal cortex are instrumental in controlling higher-order aspects of grasping. We show that these prefrontal sectors control the premotor cortex through two main gateways: the anterior subdivision of ventral area F5-sub-area F5a-, and the pre-supplementary area (area F6). We then review functional studies showing that both F5a and F6, besides being relay stations of prefrontal information, also play specific roles in grasping. Namely, sub-area F5a is involved in stereoscopic analysis of 3D objects, and in planning cue-dependent grasping activity. As for area F6, this area appears to play a crucial role in determining when to execute the motor program encoded in the parieto-premotor circuit. The recent discovery that area F6 contains a set of neurons encoding specific grip types suggests that this area, besides controlling "when to go", also may control the grip type, i.e., "how to go". We conclude by discussing clinical syndromes affecting grasping actions and their possible mechanisms.

  10. Neurofeedback training of alpha-band coherence enhances motor performance.

    PubMed

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. From the motor cortex to the movement and back again.

    PubMed

    Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I

    2017-01-01

    The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.

  12. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with stepping longer or less successful. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Visual Field Map Clusters in Macaque Extrastriate Visual Cortex

    PubMed Central

    Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim

    2009-01-01

    The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330

  14. Prediction of movement intention using connectivity within motor-related network: An electrocorticography study.

    PubMed

    Kang, Byeong Keun; Kim, June Sic; Ryun, Seokyun; Chung, Chun Kee

    2018-01-01

    Most brain-machine interface (BMI) studies have focused only on the active state of which a BMI user performs specific movement tasks. Therefore, models developed for predicting movements were optimized only for the active state. The models may not be suitable in the idle state during resting. This potential maladaptation could lead to a sudden accident or unintended movement resulting from prediction error. Prediction of movement intention is important to develop a more efficient and reasonable BMI system which could be selectively operated depending on the user's intention. Physical movement is performed through the serial change of brain states: idle, planning, execution, and recovery. The motor networks in the primary motor cortex and the dorsolateral prefrontal cortex are involved in these movement states. Neuronal communication differs between the states. Therefore, connectivity may change depending on the states. In this study, we investigated the temporal dynamics of connectivity in dorsolateral prefrontal cortex and primary motor cortex to predict movement intention. Movement intention was successfully predicted by connectivity dynamics which may reflect changes in movement states. Furthermore, dorsolateral prefrontal cortex is crucial in predicting movement intention to which primary motor cortex contributes. These results suggest that brain connectivity is an excellent approach in predicting movement intention.

  15. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically.

    PubMed

    Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell

    2015-01-01

    Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  17. Studies of sensory and motor cortex physiology: with observations on akinesia in Parkinson's disease.

    PubMed

    Hallett, M; Cohen, L G; Bierner, S M

    1991-01-01

    Magnetic stimulation of the brain can be used to investigate sensory and motor physiology and pathophysiology in intact humans. Although uncommon, it is possible for magnetic stimulation over sensorimotor cortex to produce paresthesis. With magnetic stimulation, it is also possible to block the conscious sensation of an electrical shock delivered to the index finger. The magnetic stimulus must be delivered in the interval from 300 msec before to 200 msec after the cutaneous shock and must be delivered over the contralateral hand region of the sensorimotor cortex. In a reaction time situation, the expected voluntary response may be delayed by a magnetic stimulus delivered over the sensorimotor cortex just before the movement. With the use of a relatively weak magnetic stimulus that does not produce a motor evoked potential (MEP) when the body part is at rest, but that will produce a response when the body part is activated, the reaction time can be divided into two periods. In the first period, there is no MEP and the motor cortex remains 'inexcitable'. In the second period, there is a gradual increase in MEP amplitude even though the voluntary electromyographic activity has not yet appeared. This 'excitable' period indicates the activation of motor cortex before the motor command is delivered. Application of this technique to the analysis of prolonged reaction time (akinesia) in patients with Parkinson's disease shows that the excitable period is prolonged. This describes the mechanism underlying the difficulty in the generation of a motor command in these patients.

  18. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    PubMed

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Current Stimulation Alters Task Performance.

    PubMed

    Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin

    Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. tDCS over the motor cortex improves lexical retrieval of action words in poststroke aphasia.

    PubMed

    Branscheidt, Meret; Hoppe, Julia; Zwitserlood, Pienie; Liuzzi, Gianpiero

    2018-02-01

    One-third of stroke survivors worldwide suffer from aphasia. Speech and language therapy (SLT) is considered effective in treating aphasia, but because of time constraints, improvements are often limited. Noninvasive brain stimulation is a promising adjuvant strategy to facilitate SLT. However, stroke might render "classical" language regions ineffective as stimulation sites. Recent work showed the effectiveness of motor cortex stimulation together with intensive naming therapy to improve outcomes in aphasia (Meinzer et al. 2016). Although that study highlights the involvement of the motor cortex, the functional aspects by which it influences language remain unclear. In the present study, we focus on the role of motor cortex in language, investigating its functional involvement in access to specific lexico-semantic (object vs. action relatedness) information in poststroke aphasia. To this end, we tested effects of anodal transcranial direct current stimulation (tDCS) to the left motor cortex on lexical retrieval in 16 patients with poststroke aphasia in a sham-controlled, double-blind study design. Critical stimuli were action and object words, and pseudowords. Participants performed a lexical decision task, deciding whether stimuli were words or pseudowords. Anodal tDCS improved accuracy in lexical decision, especially for words with action-related content and for pseudowords with an "action-like" ending ( t 15  = 2.65, P = 0.036), but not for words with object-related content and pseudowords with "object-like" characteristics. We show as a proof-of-principle that the motor cortex may play a specific role in access to lexico-semantic content. Thus motor-cortex stimulation may strengthen content-specific word-to-semantic concept associations during language treatment in poststroke aphasia. NEW & NOTEWORTHY The role of motor cortex (MC) in language processing has been debated in both health and disease. Recent work has suggested that MC stimulation together with speech and language therapy enhances outcomes in aphasia. We show that MC stimulation has a differential effect on object- and action-word processing in poststroke aphasia. We propose that MC stimulation may specifically strengthen word-to-semantic concept association in aphasia. Our results potentially provide a way to tailor therapies for language rehabilitation.

  1. Face-selective and auditory neurons in the primate orbitofrontal cortex.

    PubMed

    Rolls, Edmund T; Critchley, Hugo D; Browning, Andrew S; Inoue, Kazuo

    2006-03-01

    Neurons with responses selective for faces are described in the macaque orbitofrontal cortex. The neurons typically respond 2-13 times more to the best face than to the best non-face stimulus, and have response latencies which are typically in the range of 130-220 ms. Some of these face-selective neurons respond to identity, and others to facial expression. Some of the neurons do not have different responses to different views of a face, which is a useful property of neurons responding to face identity. Other neurons have view-dependent responses, and some respond to moving but not still heads. The neurons with face expression, face movement, or face view-dependent responses would all be useful as part of a system decoding and representing signals important in social interactions. The representation of face identity is also important in social interactions, for it provides some of the information needed in order to make different responses to different individuals. In addition, some orbitofrontal cortex neurons were shown to be tuned to auditory stimuli, including for some neurons, the sound of vocalizations. The findings are relevant to understanding the functions of the primate including human orbitofrontal cortex in normal behaviour, and to understanding the effects of damage to this region in humans.

  2. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex.

    PubMed

    Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing

    2016-11-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

  3. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

    PubMed Central

    Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing

    2016-01-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530

  4. Physiology of the motor cortex in polio survivors.

    PubMed

    Lupu, Vitalie D; Danielian, Laura; Johnsen, Jacqueline A; Vasconcelos, Olavo M; Prokhorenko, Olga A; Jabbari, Bahman; Campbell, William W; Floeter, Mary Kay

    2008-02-01

    We hypothesized that the corticospinal system undergoes functional changes in long-term polio survivors. Central motor conduction times (CMCTs) to the four limbs were measured in 24 polio survivors using transcranial magnetic stimulation (TMS). Resting motor thresholds and CMCTs were normal. In 17 subjects whose legs were affected by polio and 13 healthy controls, single- and paired-pulse TMS was used to assess motor cortex excitability while recording from tibialis anterior (TA) muscles at rest and following maximal contraction until fatigue. In polio survivors the slope of the recruitment curve was normal, but maximal motor evoked potentials (MEPs) were larger than in controls. MEPs were depressed after fatiguing exercise. Three patients with central fatigue by twitch interpolation had a trend toward slower recovery. There was no association with symptoms of post-polio syndrome. These changes occurring after polio may allow the motor cortex to activate a greater proportion of the motor neurons innervating affected muscles.

  5. Refinement of learned skilled movement representation in motor cortex deep output layer

    PubMed Central

    Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho

    2017-01-01

    The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433

  6. Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2017-01-01

    The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI) data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct “the internal representation of music performance” by integrating multimodal information required for the performance. PMID:29311870

  7. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.

    PubMed

    Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M

    2017-01-01

    Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.

  8. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  9. [CHANGES IN THE NUMBER OF NEURONS IN THE MOTOR CORTEX OF RATS AND THEIR LOCOMOTOR ACTIVITY IN THE AGE ASPECT].

    PubMed

    Piavchenko, G A; Shmarkova, L I; Nozdrin, V I

    2015-01-01

    Using Laboras hardware-software complex, which is a system of automatic registration of behavioral reactions, the locomotor activity 1-, 8- and 16-month-old male rats (12 animals in each group) was recorded followed by counting the number of neuron cell bodies of in the layer V of the motor cortex in Nissl stained slides. It was found that the number of neurons in the motor cortex varied in different age groups. Maximal number of neurons was observed in 8-month-old animals. Motor activity was found to correlate with the number of neurons.

  10. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.

    PubMed

    Martin, J H; Donarummo, L; Hacking, A

    2000-02-01

    This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.

  11. Neuron activity in rat hippocampus and motor cortex during discrimination reversal.

    PubMed

    Disterhoft, J F; Segal, M

    1978-01-01

    Chronic unit activity and gross movement were recorded from rats during two discrimination reversals in a classical appetitive conditioning situation. The anticipatory movement decreased in response to the former CS+ tone and increased to the previous CS- tone after each reversal. Hippocampus and motor cortex were differently related to these two kinds of behavioral change. Response rates of hippocampal neurons were more closely related to the increased movement response to the former CS- which now signaled food. Motor cortex neuron responses were more closely correlated with the decrease in movement responses to the former CS+ which became neutral after the reversal. It appeared that hippocampal neurons could have been involved in one cognitive aspect of the situation, motor cortex neurons in another. The data were related to current functional concepts of these brain regions.

  12. High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial.

    PubMed

    Flood, Andrew; Waddington, Gordon; Cathcart, Stuart

    2016-05-01

    Transcranial direct current stimulation (tDCS) is a form of brain stimulation that allows for the selective increase or decrease in the cortical excitability of a targeted region. When applied over the motor cortex it has been shown to induce changes in cortical and subcortical brain regions involved in descending pain inhibition or conditioned pain modulation (CPM). The aim of the current study was to assess whether activation of pain inhibitory pathways via tDCS of the motor cortex facilitates the CPM response. Elevated CPM after active tDCS of the motor cortex was hypothesized. Thirty healthy male volunteers attended 2 experimental sessions separated by 7 days. Both sessions consisted of CPM assessment after 20 minutes of either active or sham (placebo) tDCS over the motor cortex. CPM capacity was assessed via the pain-inhibits-pain protocol; CPM responses were shown to be elevated after active compared with sham tDCS. This report concludes that tDCS of the motor cortex enhances the CPM response in healthy men. This finding supports the potential utility of tDCS interventions in clinical pain treatment. The use of noninvasive brain stimulation over the motor cortex was shown to enhance the CPM effect. This finding supports the use of tDCS in the treatment of chronic pain, particularly in sufferers exhibiting maladaptive CPM. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex

    PubMed Central

    Tsunada, Joji; Sawaguchi, Toshiyuki

    2012-01-01

    It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments. PMID:23285110

  14. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  15. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans.

    PubMed

    Smaers, Jeroen B; Gómez-Robles, Aida; Parks, Ashley N; Sherwood, Chet C

    2017-03-06

    One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270

  17. Somatotopic Semantic Priming and Prediction in the Motor System

    PubMed Central

    Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann

    2016-01-01

    The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635

  18. Walking the talk--speech activates the leg motor cortex.

    PubMed

    Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan

    2008-09-01

    Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.

  19. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  1. Prediction of Imagined Single-Joint Movements in a Person with High Level Tetraplegia

    PubMed Central

    Simeral, John D.; Donoghue, John P.; Hochberg, Leigh R.; Kirsch, Robert F.

    2013-01-01

    Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements while SUA, multi-spike trains (MSP), multi-unit activity (MUA), and local field potential time (LFPrms) and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20 – 60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints. PMID:22851229

  2. [The pedunculopontine nucleus. A structure involved in motor and emotional processing].

    PubMed

    Blanco-Lezcano, L; Pavón-Fuentes, N; Serrano-Sánchez, T; Blanco-Lezcano, V; Coro-Grave de Peralta, Y; Joseph-Bouza, Y

    There is currently a growing interest for conducting studies into the electrical and neurochemical activity of the pedunculopontine nucleus (PPN) due to the privileged position occupied by this structure in the flow of information to and from the cortex. This nucleus acts as a relay, not only for the motor information that is processed in the basal ganglia but also for information of an emotional type, whose main centre is the nucleus accumbens. It is also strongly linked with the aspects that determine the mechanisms governing addiction to certain drugs. We conduct a detailed analysis of the main findings from studies of the role played by the PPN in the physiopathology of Parkinsonism, namely the study of metabolic activity, immunohistochemical studies with different tracers, electrophysiological studies that have confirmed the immunohistochemical observations, as well as deep electrical stimulation carried out in non human primates. Furthermore, we also examine the part played by this structure in the processing of emotional information associated with different learning tasks. Overall, the authors grant the PPN a privileged position in the physiopathology of the axial disorders related to Parkinson s disease; its most important afference, stemming from the subthalamic nucleus, appears to play a key role in the understanding of the part played by the PPN in Parkinsonism.

  3. Rapid focal cooling attenuates cortical seizures in a primate epilepsy model.

    PubMed

    Ren, Guoping; Yan, Jiaqing; Tao, Guoxian; Gan, Yunmeng; Li, Donghong; Yan, Xi; Fu, Yongjuan; Wang, Leiming; Wang, Weimin; Zhang, Zhiming; Yue, Feng; Yang, Xiaofeng

    2017-09-01

    Rapid focal cooling is an attractive nondestructive strategy to control and possibly prevent focal seizures. However, the temperature threshold necessary to abort seizures in primates is still unknown. Here, we explored this issue in a primate epilepsy model and observed the effect of rapid cooling on different electroencephalogram frequency bands, aiming at providing necessary experimental data for future clinical translational studies and exploring the mechanism of focal cooling in terminating seizures. We induced focal neocortical seizures using microinjection of 4-aminopyridine into premotor cortex in five anesthetized cynomolgus monkeys. The rapid focal cooling was implemented by using a thermoelectric (Peltier) device. As a result, the average durations of seizures and interictal intervals before cooling were 94.3±4.0s and 62.3±6.9s, respectively. When the cortex was cooled to 20°C or 18°C, there was no effect on seizure duration (109.4±30.0s, 91.3±19.3s) or interictal duration (99.4±26.8s, 83.2±11.5s, P>0.05). But when the cortex was cooled to 16°C, the seizure duration was reduced to 54.1±4.9s and the interictal duration was extended to 175.0±16.7s (P<0.05). Electroencephalogram spectral analysis showed that the power of delta, alpha, beta, gamma and ripples bands in seizures were significantly reduced at 20°C and 18°C. At 16°C, the power of theta band in seizures was also significantly reduced along with the other bands. Our data reveal that the temperature threshold in rapid focal cooling required to significantly shorten neocortical seizures in nonhuman primates is 16°C, and inhibition of electroencephalogram broadband spectrum power, especially power of theta band, may be the underlying mechanism to control seizures. Copyright © 2017. Published by Elsevier Inc.

  4. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex

    PubMed Central

    Cai, Xinying; Padoa-Schioppa, Camillo

    2012-01-01

    We examined the activity of individual cells in the primate anterior cingulate cortex during an economic choice task. In the experiments, monkeys chose between different juices offered in variables amounts and subjective values were inferred from the animals’ choices. We analyzed neuronal firing rates in relation to a large number of behaviorally relevant variables. We report three main results. First, there were robust differences between the dorsal bank (ACCd) and the ventral bank (ACCv) of the cingulate sulcus. Specifically, neurons in ACCd but not in ACCv were modulated by the movement direction. Furthermore, neurons in ACCd were most active prior to movement initiation whereas neurons in ACCv were most active after juice delivery. Second, neurons in both areas encoded the identity and the subjective value of the juice chosen by the animal. In contrast, neither region encoded the value of individual offers. Third, the population of value-encoding neurons in both ACCd and ACCv underwent range adaptation. With respect to economic choice, it is interesting to compare these areas with the orbitofrontal cortex (OFC), previously examined. While neurons in OFC encoded both pre-decision and post-decision variables, neurons in ACCd and ACCv only encoded post-decision variables. Moreover, the encoding of chosen value in ACCd and ACCv trailed that found in OFC. These observations indicate that economic decisions (value comparisons) take place upstream of ACCd and ACCv. The coexistence of choice outcome and movement signals in ACCd suggests that this area constitutes a getaway through which the choice system informs motor systems. PMID:22423100

  5. The Role of Dopamine in Normal Rodent Motor Cortex: Physiological Effects and Structural Correlates

    DTIC Science & Technology

    1999-04-05

    things she does on a daily basis made the lab a great place to do research. Susan’s expertise in molecular techniques was evident from day one , and I...applied OA on the spontaneous activity (SA) of PTNs. the receptors that mediate these effects, and DA’s effects on glutamate induced excitation of PTNs...numerous neurons in the motor cortex and may have profound effects on motor cortex activity, through its influence on PTNs. iv The Role of Dopamine in

  6. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    PubMed

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  7. Different forms of effective connectivity in primate frontotemporal pathways.

    PubMed

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-23

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.

  8. Different forms of effective connectivity in primate frontotemporal pathways

    PubMed Central

    Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  9. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex.

    PubMed

    Bancroft, Tyler D; Hogeveen, Jeremy; Hockley, William E; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.

  10. Transient visual pathway critical for normal development of primate grasping behavior.

    PubMed

    Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A

    2018-02-06

    An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.

  11. Balkanizing the primate orbitofrontal cortex: Distinct subregions for comparing and contrasting values

    PubMed Central

    Rudebeck, Peter H.; Murray, Elisabeth A.

    2014-01-01

    The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicates that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing and updating specific object–reward associations. Medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial MFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. PMID:22145870

  12. Mediodorsal thalamus and cognition in non-human primates

    PubMed Central

    Baxter, Mark G.

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits. PMID:23964206

  13. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  14. Mediodorsal thalamus and cognition in non-human primates.

    PubMed

    Baxter, Mark G

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits.

  15. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease.

    PubMed

    Santana, Maxwell B; Halje, Pär; Simplício, Hougelle; Richter, Ulrike; Freire, Marco Aurelio M; Petersson, Per; Fuentes, Romulo; Nicolelis, Miguel A L

    2014-11-19

    Although deep brain electrical stimulation can alleviate the motor symptoms of Parkinson disease (PD), just a small fraction of patients with PD can take advantage of this procedure due to its invasive nature. A significantly less invasive method--epidural spinal cord stimulation (SCS)--has been suggested as an alternative approach for symptomatic treatment of PD. However, the mechanisms underlying motor improvements through SCS are unknown. Here, we show that SCS reproducibly alleviates motor deficits in a primate model of PD. Simultaneous neuronal recordings from multiple structures of the cortico-basal ganglia-thalamic loop in parkinsonian monkeys revealed abnormal highly synchronized neuronal activity within each of these structures and excessive functional coupling among them. SCS disrupted this pathological circuit behavior in a manner that mimics the effects caused by pharmacological dopamine replacement therapy or deep brain stimulation. These results suggest that SCS should be considered as an additional treatment option for patients with PD. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Computing Arm Movements with a Monkey Brainet.

    PubMed

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  17. Computing Arm Movements with a Monkey Brainet

    PubMed Central

    Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.

    2015-01-01

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523

  18. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  19. Prefrontal rTMS for treating depression: location and intensity results from the OPT-TMS multi-site clinical trial.

    PubMed

    Johnson, Kevin A; Baig, Mirza; Ramsey, Dave; Lisanby, Sarah H; Avery, David; McDonald, William M; Li, Xingbao; Bernhardt, Elisabeth R; Haynor, David R; Holtzheimer, Paul E; Sackeim, Harold A; George, Mark S; Nahas, Ziad

    2013-03-01

    Motor cortex localization and motor threshold determination often guide Transcranial Magnetic Stimulation (TMS) placement and intensity settings for non-motor brain stimulation. However, anatomic variability results in variability of placement and effective intensity. Post-study analysis of the OPT-TMS Study reviewed both the final positioning and the effective intensity of stimulation (accounting for relative prefrontal scalp-cortex distances). We acquired MRI scans of 185 patients in a multi-site trial of left prefrontal TMS for depression. Scans had marked motor sites (localized with TMS) and marked prefrontal sites (5 cm anterior of motor cortex by the "5 cm rule"). Based on a visual determination made before the first treatment, TMS therapy occurred either at the 5 cm location or was adjusted 1 cm forward. Stimulation intensity was 120% of resting motor threshold. The "5 cm rule" would have placed stimulation in premotor cortex for 9% of patients, which was reduced to 4% with adjustments. We did not find a statistically significant effect of positioning on remission, but no patients with premotor stimulation achieved remission (0/7). Effective stimulation ranged from 93 to 156% of motor threshold, and no seizures were induced across this range. Patients experienced remission with effective stimulation intensity ranging from 93 to 146% of motor threshold, and we did not find a significant effect of effective intensity on remission. Our data indicates that individualized positioning methods are useful to reduce variability in placement. Stimulation at 120% of motor threshold, unadjusted for scalp-cortex distances, appears safe for a broad range of patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2009-04-01

    To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.

  1. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    PubMed

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    PubMed

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  3. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    PubMed Central

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  4. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    PubMed

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    PubMed

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Influence of stimulant medication and response speed on lateralization of movement-related potentials in attention-deficit/hyperactivity disorder.

    PubMed

    Bender, Stephan; Resch, Franz; Klein, Christoph; Renner, Tobias; Fallgatter, Andreas J; Weisbrod, Matthias; Romanos, Marcel

    2012-01-01

    Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD). However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP) can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP) in patients with ADHD. Fast reactions (indicating increased visuo-motor attention) led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes. A reduced focal (lateralized) motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre-) motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology.

  7. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study.

    PubMed

    Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  8. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study

    PubMed Central

    Grau-Sánchez, Jennifer; Amengual, Julià L.; Rojo, Nuria; Veciana de las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F.; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy. PMID:24027507

  9. Motor and mental training in older people: Transfer, interference, and associated functional neural responses.

    PubMed

    Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip

    2016-08-01

    Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Winning the game: brain processes in expert, young elite and amateur table tennis players.

    PubMed

    Wolf, Sebastian; Brölz, Ellen; Scholz, David; Ramos-Murguialday, Ander; Keune, Philipp M; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

    2014-01-01

    (1) compared with amateurs and young elite, expert table tennis players are characterized by enhanced cortical activation in the motor and fronto-parietal cortex during motor imagery in response to table tennis videos; (2) in elite athletes, world rank points are associated with stronger cortical activation. To this aim, electroencephalographic data were recorded in 14 expert, 15 amateur and 15 young elite right-handed table tennis players. All subjects watched videos of a serve and imagined themselves responding with a specific table tennis stroke. With reference to a baseline period, power decrease/increase of the sensorimotor rhythm (SMR) during the pretask- and task period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding hypothesis (1), 8-10 Hz SMR ERD was stronger in elite athletes than in amateurs with an intermediate ERD in young elite athletes in the motor cortex. Regarding hypothesis (2), there was no correlation between ERD/ERS in the motor cortex and world rank points in elite experts, but a weaker ERD in the fronto-parietal cortex was associated with higher world rank points. These results suggest that motor skill in table tennis is associated with focused excitability of the motor cortex during reaction, movement planning and execution with high attentional demands. Among elite experts, less activation of the fronto-parietal attention network may be necessary to become a world champion.

  11. Inter-cortical Modulation from Premotor to Motor Plasticity.

    PubMed

    Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song

    2018-06-11

    Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Restoring cortical control of functional movement in a human with quadriplegia.

    PubMed

    Bouton, Chad E; Shaikhouni, Ammar; Annetta, Nicholas V; Bockbrader, Marcia A; Friedenberg, David A; Nielson, Dylan M; Sharma, Gaurav; Sederberg, Per B; Glenn, Bradley C; Mysiw, W Jerry; Morgan, Austin G; Deogaonkar, Milind; Rezai, Ali R

    2016-05-12

    Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology for people worldwide living with the effects of paralysis.

  13. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex

    PubMed Central

    Mars, Rogier B.; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F. S.

    2013-01-01

    The human ability to infer the thoughts and beliefs of others, often referred to as “theory of mind,” as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor. PMID:23754406

  14. Re-thinking the role of motor cortex: Context-sensitive motor outputs?

    PubMed Central

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S.

    2014-01-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530

  15. Re-thinking the role of motor cortex: context-sensitive motor outputs?

    PubMed

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S

    2014-05-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top-down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Copyright © 2014 unknown. Published by Elsevier Inc. All rights reserved.

  16. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species

    PubMed Central

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M.; de Castro Leal, Maria E.; Bertelsen, Mads F.; Alagaili, Abdulaziz N.; Mohammad, Osama B.; Manger, Paul R.; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons. PMID:29311850

  17. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species.

    PubMed

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M; de Castro Leal, Maria E; Bertelsen, Mads F; Alagaili, Abdulaziz N; Mohammad, Osama B; Manger, Paul R; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.

  18. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    PubMed

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  19. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats.

    PubMed

    Koo, Ho; Kim, Min Sun; Han, Sang Who; Paulus, Walter; Nitche, Michael A; Kim, Yun-Hee; Kim, Hyoung-Ihl; Ko, Sung-Hwa; Shin, Yong-Il

    2016-09-21

    Transcranial direct current stimulation (tDCS) is increasingly seen as a useful tool for noninvasive cortical neuromodulation. A number of studies in humans have shown that when tDCS is applied to the motor cortex it can modulate cortical excitability. It is especially interesting to note that when applied with sufficient duration and intensity, tDCS can enable long-lasting neuroplastic effects. However, the mechanism by which tDCS exerts its effects on the cortex is not fully understood. We investigated the effects of anodal tDCS under urethane anesthesia on field potentials in in vivo rats. These were measured on the skull over the right motor cortex of rats immediately after stimulating the left corpus callosum. Evoked field potentials in the motor cortex were gradually increased for more than one hour after anodal tDCS. To induce these long-lasting effects, a sufficient duration of stimulation (20 minutes or more) was found to may be required rather than high stimulation intensity. We propose that anodal tDCS with a sufficient duration of stimulation may modulate transcallosal plasticity.

  20. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  1. Ventral Premotor to Primary Motor Cortical Interactions during Noxious and Naturalistic Action Observation

    ERIC Educational Resources Information Center

    Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel

    2010-01-01

    Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…

  2. Activation of the Parieto-Premotor Network Is Associated with Vivid Motor Imagery—A Parametric fMRI Study

    PubMed Central

    Lorey, Britta; Pilgramm, Sebastian; Bischoff, Matthias; Stark, Rudolf; Vaitl, Dieter; Kindermann, Stefan; Munzert, Jörn; Zentgraf, Karen

    2011-01-01

    The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas. PMID:21655298

  3. Behavioural exposure and sleep do not modify corticospinal and intracortical excitability in the human motor system.

    PubMed

    Doeltgen, Sebastian H; Ridding, Michael C

    2010-03-01

    Behavioural exposure and sleep may bidirectionally modify the excitability of cortical networks including those in the motor cortex. Here we tested whether the excitability of intracortical inhibitory and excitatory networks within the primary motor cortex exhibited changes suggestive of a time of day influence. Short-interval intracortical inhibition (SICI) and facilitation (ICF), and input-output curves (IO curves) were investigated using transcranial magnetic stimulation (TMS). Recordings were made from the resting right first dorsal interosseous (FDI) muscle in 10 healthy subjects on three occasions: 9A.M. and 4P.M. of the same day, and 9A.M. of the following day. There was no significant change in any of the measures across the three assessments. These findings provide evidence that time of day does not significantly influence corticospinal and intracortical excitability in the primary motor cortex. These results provide no support for the hypothesis that synapses within the motor cortex undergo potentiation due to daytime use and behavioural experiences. Additionally, these findings provide evidence that measurement of motor cortical excitability is not systematically biased by time-of-day dependent variability and thus does not pose a confound in studies assessing corticospinal excitability longitudinally.

  4. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    PubMed

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  5. The Influence of rTMS over Prefrontal and Motor Areas in a Morphological Task: Grammatical vs. Semantic Effects

    ERIC Educational Resources Information Center

    LoGerfo, Emanuele; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-01

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also…

  6. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia.

    PubMed

    Zittel, S; Helmich, R C; Demiralay, C; Münchau, A; Bäumer, T

    2015-08-01

    Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration, before and after inhibitory 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex in patients with cervical dystonia (n = 12). Motor evoked potentials were recorded from the right first dorsal interosseous muscle after application of unconditioned transcranial magnetic test stimuli and after previous conditioning electrical stimulation of the right index finger at short interstimulus intervals of 25, 30 and 40 ms. Results were compared to a group of healthy age-matched controls. At baseline, motor evoked potential amplitudes did not differ between groups. Short latency afferent inhibition was reduced in cervical dystonia patients compared to healthy controls. Inhibitory 1 Hz sensory cortex repetitive transcranial magnetic stimulation but not motor cortex repetitive transcranial magnetic stimulation increased motor evoked potential amplitudes in cervical dystonia patients. Additionally, both 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex normalized short latency afferent inhibition in these patients. In healthy subjects, sensory repetitive transcranial magnetic stimulation had no influence on motor evoked potential amplitudes and short latency afferent inhibition. Plasticity of sensorimotor circuits is altered in cervical dystonia patients.

  7. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice.

    PubMed

    Auffret, Matthieu; Ravano, Veronica L; Rossi, Giulia M C; Hankov, Nicolas; Petersen, Merissa F A; Petersen, Carl C H

    2018-01-01

    Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  9. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study

    PubMed Central

    Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David

    2010-01-01

    Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699

  10. [Facial nerve injuries cause changes in central nervous system microglial cells].

    PubMed

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  11. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum

    PubMed Central

    Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2015-01-01

    We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772

  12. Multisensory Integration in Non-Human Primates during a Sensory-Motor Task

    PubMed Central

    Lanz, Florian; Moret, Véronique; Rouiller, Eric Michel; Loquet, Gérard

    2013-01-01

    Daily our central nervous system receives inputs via several sensory modalities, processes them and integrates information in order to produce a suitable behavior. The amazing part is that such a multisensory integration brings all information into a unified percept. An approach to start investigating this property is to show that perception is better and faster when multimodal stimuli are used as compared to unimodal stimuli. This forms the first part of the present study conducted in a non-human primate’s model (n = 2) engaged in a detection sensory-motor task where visual and auditory stimuli were displayed individually or simultaneously. The measured parameters were the reaction time (RT) between stimulus and onset of arm movement, successes and errors percentages, as well as the evolution as a function of time of these parameters with training. As expected, RTs were shorter when the subjects were exposed to combined stimuli. The gains for both subjects were around 20 and 40 ms, as compared with the auditory and visual stimulus alone, respectively. Moreover the number of correct responses increased in response to bimodal stimuli. We interpreted such multisensory advantage through redundant signal effect which decreases perceptual ambiguity, increases speed of stimulus detection, and improves performance accuracy. The second part of the study presents single-unit recordings derived from the premotor cortex (PM) of the same subjects during the sensory-motor task. Response patterns to sensory/multisensory stimulation are documented and specific type proportions are reported. Characterization of bimodal neurons indicates a mechanism of audio-visual integration possibly through a decrease of inhibition. Nevertheless the neural processing leading to faster motor response from PM as a polysensory association cortical area remains still unclear. PMID:24319421

  13. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  15. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.

    PubMed

    Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco

    2011-03-23

    Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.

  16. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    PubMed

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Low signal intensity in motor cortex on susceptibility-weighted MR imaging is correlated with clinical signs of amyotrophic lateral sclerosis: a pilot study.

    PubMed

    Endo, Hironobu; Sekiguchi, Kenji; Shimada, Hitoshi; Ueda, Takehiro; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2018-03-01

    There is no reliable objective indicator for upper motor neuron dysfunction in amyotrophic lateral sclerosis (ALS). To determine the clinical significance and potential utility of magnetic resonance (MR) signals, we investigated the relationship between clinical symptoms and susceptibility changes in the motor cortex measured using susceptibility-weighted MR imaging taken by readily available 3-T MRI in clinical practice. Twenty-four ALS patients and 14 control subjects underwent 3-T MR T1-weighted imaging and susceptibility-weighted MR imaging with the principles of echo-shifting with a train of observations (PRESTO) sequence. We analysed relationships between relative susceptibility changes in the motor cortex assessed using voxel-based analysis (VBA) and clinical scores, including upper motor neuron score, ALS functional rating scale revised score, and Medical Research Council sum score on physical examination. Patients with ALS exhibited significantly lower signal intensity in the precentral gyrus on susceptibility-weighted MR imaging compared with controls. Clinical scores were significantly correlated with susceptibility changes. Importantly, the extent of the susceptibility changes in the bilateral precentral gyri was significantly correlated with upper motor neuron scores. The results of our pilot study using VBA indicated that low signal intensity in motor cortex on susceptibility-weighted MR imaging may correspond to clinical symptoms, particularly upper motor neuron dysfunction. Susceptibility-weighted MR imaging may be a useful diagnostic tool as an objective indicator of upper motor neuron dysfunction.

  18. Different Types of Laughter Modulate Connectivity within Distinct Parts of the Laughter Perception Network

    PubMed Central

    Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin

    2013-01-01

    Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619

  19. Different types of laughter modulate connectivity within distinct parts of the laughter perception network.

    PubMed

    Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin

    2013-01-01

    Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter.

  20. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  1. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction.

    PubMed

    Watanabe, Kosuke; Kudo, Yosuke; Sugawara, Eriko; Nakamizo, Tomoki; Amari, Kazumitsu; Takahashi, Koji; Tanaka, Osamu; Endo, Miho; Hayakawa, Yuko; Johkura, Ken

    2018-01-15

    Repetitive transcranial magnetic stimulation (rTMS) is reported to improve chronic post-stoke hemiparesis. However, application of rTMS during the acute phase of post-stroke has not fully been investigated. We investigated the safety and the efficacy of intermittent theta-burst stimulation (iTBS) of the affected motor cortex and 1-Hz stimulation of the unaffected hemisphere during the acute phase in patients with hemiparesis due to capsular infarction. Twenty one patients who met the study criteria were randomly assigned to receive, starting within 7days after stroke onset and for a period of 10days, iTBS of the affected motor cortex hand area (n=8), 1-Hz stimulation of the unaffected motor cortex hand area (n=7), or sham stimulation (n=6). Upper limb motor function was evaluated before rTMS and 12weeks after onset of the stroke. Evaluation was based on the Fugl-Meyer Assessment (FMA), Stroke Impairment Assessment Set (SIAS), Modified Ashworth Scale (MAS), grip strength, and motor evoked potential (MEP) amplitude in the first dorsal interosseous (FDI) muscle. Both iTBS applied to the affected motor cortex hand area and 1-Hz stimulation applied to the unaffected motor cortex hand area enhanced motor recovery. In comparison to sham stimulation, iTBS increased the SIAS finger-function test score, and 1-Hz stimulation decreased the MAS wrist and finger score. Ipsilesional iTBS and contralesional 1-Hz stimulation applied during the acute phase of stroke have different effects: ipsilesional iTBS improves movement of the affected limb, whereas contralesional 1-Hz stimulation reduces spasticity of the affected limb. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    PubMed

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the first principles of sensorimotor integration.

  3. Lateralization in motor facilitation during action observation: a TMS study.

    PubMed

    Aziz-Zadeh, Lisa; Maeda, Fumiko; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2002-05-01

    Action observation facilitates corticospinal excitability. This is presumably due to a premotor neural system that is active when we perform actions and when we observe actions performed by others. It has been speculated that this neural system is a precursor of neural systems subserving language. If this theory is true, we may expect hemispheric differences in the motor facilitation produced by action observation, with the language-dominant left hemisphere showing stronger facilitation than the right hemisphere. Furthermore, it has been suggested that body parts are recognized via cortical regions controlling sensory and motor processing associated with that body part. If this is true, then corticospinal facilitation during action observation should be modulated by the laterality of the observed body part. The present study addressed these two issues using TMS for each motor cortex separately as participants observed actions being performed by a left hand, a right hand, or a control stimulus on the computer screen. We found no overall difference between the right and left hemisphere for motor-evoked potential (MEP) size during action observation. However, when TMS was applied to the left motor cortex, MEPs were larger while observing right hand actions. Likewise, when TMS was applied to the right motor cortex, MEPs were larger while observing left hand actions. Our data do not suggest left hemisphere superiority in the facilitating effects of action observation on the motor system. However, they do support the notion of a sensory-motor loop according to which sensory stimulus properties (for example, the image of a left hand or a right hand) directly affect motor cortex activity, even when no motor output is required. The pattern of this effect is congruent with the pattern of motor representation in each hemisphere.

  4. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  5. The Puzzle of Visual Development: Behavior and Neural Limits.

    PubMed

    Kiorpes, Lynne

    2016-11-09

    The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.

  6. Neural correlates of conversion disorder: overview and meta-analysis of neuroimaging studies on motor conversion disorder.

    PubMed

    Boeckle, Markus; Liegl, Gregor; Jank, Robert; Pieh, Christoph

    2016-06-10

    Conversion Disorders (CD) are prevalent functional disorders. Although the pathogenesis is still not completely understood, an interaction of genetic, neurobiological, and psychosocial factors is quite likely. The aim of this study is to provide a systematic overview on imaging studies on CDs and investigate neuronal areas involved in Motor Conversion Disorders (MCD). A systematic literature search was conducted on CD. Subsequently a meta-analysis of functional neuroimaging studies on MCD was implemented using an Activation Likelihood Estimation (ALE). We calculated differences between patients and healthy controls as well as between affected versus unaffected sides in addition to an overall analysis in order to identify neuronal areas related to MCD. Patients with MCD differ from healthy controls in the amygdala, superior temporal lobe, retrosplenial area, primary motor cortex, insula, red nucleus, thalamus, anterior as well as dorsolateral prefrontal and frontal cortex. When comparing affected versus unaffected sides, temporal cortex, dorsal anterior cingulate cortex, supramarginal gyrus, dorsal temporal lobe, anterior insula, primary somatosensory cortex, superior frontal gyrus and anterior prefrontal as well as frontal cortex show significant differences. Neuronal areas seem to be involved in the pathogenesis, maintenance or as a result of MCD. Areas that are important for motor-planning, motor-selection or autonomic response seem to be especially relevant. Our results support the emotional unawareness theory but also underline the need of more support by conduction imaging studies on both CD and MCD.

  7. Managing competing goals - a key role for the frontopolar cortex.

    PubMed

    Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J

    2017-11-01

    Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.

  8. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats

    PubMed Central

    Combs, Hannah L.; Jones, Theresa A.; Kozlowski, Dorothy A.

    2016-01-01

    Abstract Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI. PMID:26421759

  9. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    PubMed

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  10. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    ERIC Educational Resources Information Center

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  11. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  12. Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys.

    PubMed

    Huang, Ying; Mylius, Judith; Scheich, Henning; Brosch, Michael

    2016-03-01

    This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.

  13. TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex

    PubMed Central

    Koch, Giacomo; Ruge, Diane; Cheeran, Binith; Fernandez Del Olmo, Miguel; Pecchioli, Cristiano; Marconi, Barbara; Versace, Viviana; Lo Gerfo, Emanuele; Torriero, Sara; Oliveri, Massimiliano; Caltagirone, Carlo; Rothwell, John C

    2009-01-01

    Using a twin coil transcranial magnetic stimulation (tc-TMS) approach we have previously demonstrated that facilitation may be detected in the primary motor cortex (M1) following stimulation over the ipsilateral caudal intraparietal sulcus (cIPS). Here we tested the interhemispheric interactions between the IPS and the contralateral motor cortex (M1). We found that conditioning the right cIPS facilitated contralateral M1 when the conditioning stimulus had an intensity of 90% resting motor threshold (RMT) but not at 70% or 110% RMT. Facilitation was maximal when the interstimulus interval (ISI) between cIPS and M1 was 6 or 12 ms. These facilitatory effects were mediated by interactions with specific groups of interneurons in the contralateral M1. In fact, short intracortical inhibition (SICI) was reduced following cIPS stimulation. Moreover, additional comparison of facilitation of responses evoked by anterior–posterior versus posterior–anterior stimulation of M1 suggested that facilitation was more effective on early I1/I2 circuits than on I3 circuits. In contrast to these effects, stimulation of anterior IPS (aIPS) at 90% RMT induced inhibition, instead of facilitation, of contralateral M1 at ISIs of 10–12 ms. Finally, we found similar facilitation between left cIPS and right M1 although the conditioning stimuli had to have a higher intensity compared with stimulation of right cIPS (110% instead of 90% RMT). These findings demonstrate that different subregions of the posterior parietal cortex (PPC) in humans exert both facilitatory and inhibitory effects towards the contralateral primary motor cortex. These corticocortical projections could contribute to a variety of motor tasks such as bilateral manual coordination, movement planning in space and grasping. PMID:19622612

  14. Differential Effects of HRAS Mutation on LTP-Like Activity Induced by Different Protocols of Repetitive Transcranial Magnetic Stimulation.

    PubMed

    Dileone, Michele; Ranieri, Federico; Florio, Lucia; Capone, Fioravante; Musumeci, Gabriella; Leoni, Chiara; Mordillo-Mateos, Laura; Tartaglia, Marco; Zampino, Giuseppe; Di Lazzaro, Vincenzo

    2016-01-01

    Costello syndrome (CS) is a rare congenital disorder due to a G12S amino acid substitution in HRAS protoncogene. Previous studies have shown that Paired Associative Stimulation (PAS), a repetitive brain stimulation protocol inducing motor cortex plasticity by coupling peripheral nerve stimulation with brain stimulation, leads to an extremely pronounced motor cortex excitability increase in CS patients. Intermittent Theta Burst Stimulation (iTBS) represents a protocol able to induce motor cortex plasticity by trains of stimuli at 50 Hz. In healthy subjects PAS and iTBS produce similar after-effects in motor cortex excitability. Experimental models showed that HRAS-dependent signalling pathways differently affect LTP induced by different patterns of repetitive synaptic stimulation. We aimed to compare iTBS-induced after-effects on motor cortex excitability with those produced by PAS in CS patients and to observe whether HRAS mutation differentially affects two different forms of neuromodulation protocols. We evaluated in vivo after-effects induced by PAS and iTBS applied over the right motor cortex in 4 CS patients and in 21 healthy age-matched controls. Our findings confirmed HRAS-dependent extremely pronounced PAS-induced after-effects and showed for the first time that iTBS induces no change in MEP amplitude in CS patients whereas both protocols lead to an increase of about 50% in controls. CS patients are characterized by an impairment of iTBS-related LTP-like phenomena besides enhanced PAS-induced after-effects, suggesting that HRAS-dependent signalling pathways have a differential influence on PAS- and iTBS-induced plasticity in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of light on the activity of motor cortex neurons during locomotion

    PubMed Central

    Armer, Madison C.; Nilaweera, Wijitha U.; Rivers, Trevor J.; Dasgupta, Namrata M.; Beloozerova, Irina N.

    2013-01-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately four seconds when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats’ movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. PMID:23680161

  16. Effect of light on the activity of motor cortex neurons during locomotion.

    PubMed

    Armer, Madison C; Nilaweera, Wijitha U; Rivers, Trevor J; Dasgupta, Namrata M; Beloozerova, Irina N

    2013-08-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately 4s when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats' movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Neural dynamics and information representation in microcircuits of motor cortex.

    PubMed

    Tsubo, Yasuhiro; Isomura, Yoshikazu; Fukai, Tomoki

    2013-01-01

    The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves (PRCs) of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs), in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  18. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  19. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  20. Winning the game: brain processes in expert, young elite and amateur table tennis players

    PubMed Central

    Wolf, Sebastian; Brölz, Ellen; Scholz, David; Ramos-Murguialday, Ander; Keune, Philipp M.; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

    2014-01-01

    This study tested two hypotheses: (1) compared with amateurs and young elite, expert table tennis players are characterized by enhanced cortical activation in the motor and fronto-parietal cortex during motor imagery in response to table tennis videos; (2) in elite athletes, world rank points are associated with stronger cortical activation. To this aim, electroencephalographic data were recorded in 14 expert, 15 amateur and 15 young elite right-handed table tennis players. All subjects watched videos of a serve and imagined themselves responding with a specific table tennis stroke. With reference to a baseline period, power decrease/increase of the sensorimotor rhythm (SMR) during the pretask- and task period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding hypothesis (1), 8–10 Hz SMR ERD was stronger in elite athletes than in amateurs with an intermediate ERD in young elite athletes in the motor cortex. Regarding hypothesis (2), there was no correlation between ERD/ERS in the motor cortex and world rank points in elite experts, but a weaker ERD in the fronto-parietal cortex was associated with higher world rank points. These results suggest that motor skill in table tennis is associated with focused excitability of the motor cortex during reaction, movement planning and execution with high attentional demands. Among elite experts, less activation of the fronto-parietal attention network may be necessary to become a world champion. PMID:25386126

  1. The cerebellum: a neuronal learning machine?

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.; Mauk, M. D.

    1996-01-01

    Comparison of two seemingly quite different behaviors yields a surprisingly consistent picture of the role of the cerebellum in motor learning. Behavioral and physiological data about classical conditioning of the eyelid response and motor learning in the vestibulo-ocular reflex suggests that (i) plasticity is distributed between the cerebellar cortex and the deep cerebellar nuclei; (ii) the cerebellar cortex plays a special role in learning the timing of movement; and (iii) the cerebellar cortex guides learning in the deep nuclei, which may allow learning to be transferred from the cortex to the deep nuclei. Because many of the similarities in the data from the two systems typify general features of cerebellar organization, the cerebellar mechanisms of learning in these two systems may represent principles that apply to many motor systems.

  2. Corticomotor Responses to Attentionally Demanding Motor Performance: A Mini-Review

    PubMed Central

    Corp, Daniel  T.; Drury, Hannah G. K.; Young, Kayleigh; Do, Michael; Perkins, Tom; Pearce, Alan J.

    2013-01-01

    Increased attentional demand has been shown to reduce motor performance, leading to increases in accidents, particularly in elderly populations. While these deficits have been well documented behaviorally, their cortical correlates are less well known. Increased attention has been shown to affect activity in prefrontal regions of the cortex. However there have been varying results within past research investigating corticomotor regions, mediating motor performance. This mini-review initially discusses past behavioral research, before moving to studies investigating corticomotor areas in response to changes in attention. Recent dual task studies have revealed a possible decline in the ability of older, but not younger, adults to activate inhibitory processes within the motor cortex, which may be correlated with poor motor performance, and thus accidents. A reduction in cortical inhibition may be caused by neurodegeneration within prefrontal regions of the cortex with age, rendering older adults less able to allocate attention to corticomotor regions. PMID:23579267

  3. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

    PubMed Central

    Nozaki, Daichi; Yokoi, Atsushi; Kimura, Takahiro; Hirashima, Masaya; Orban de Xivry, Jean-Jacques

    2016-01-01

    We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories. DOI: http://dx.doi.org/10.7554/eLife.15378.001 PMID:27472899

  4. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Resting-state Functional Magnetic Resonance Imaging Analysis of Brain Functional Activity in Rats with Ischemic Stroke Treated by Electro-acupuncture.

    PubMed

    Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing

    2017-09-01

    To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    PubMed Central

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  7. Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review.

    PubMed

    Gaffan, D

    1998-11-01

    Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.

  8. The missing link: evolution of the primate cerebellum.

    PubMed

    MacLeod, Carol

    2012-01-01

    The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Neural correlates of motor recovery after stroke: a longitudinal fMRI study

    PubMed Central

    Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.

    2013-01-01

    Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084

  10. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback

    PubMed Central

    Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark

    2011-01-01

    Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163

  11. [Anticipatory postural adjustment in bimanual unloading: role of the motor cortex in motor learning].

    PubMed

    Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E

    2006-01-01

    The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.

  12. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    PubMed Central

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  13. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    PubMed

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  14. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    PubMed

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  15. Role of cerebellum in learning postural tasks.

    PubMed

    Ioffe, M E; Chernikova, L A; Ustinova, K I

    2007-01-01

    For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

  16. Spontaneous brain activity in the sensorimotor cortex in amyotrophic lateral sclerosis can be negatively regulated by corticospinal fiber integrity.

    PubMed

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Yamazaki, Hiroki; Matsui, Naoko; Harada, Masafumi; Kaji, Ryuji

    2017-05-01

    Previous studies failed to detect reduced value of the amplitude of low frequency fluctuation (ALFF) derived from resting state functional magnetic resonance imaging in the primary motor cortex in amyotrophic lateral sclerosis (ALS) though primary motor cortex was mainly affected with ALS. We aimed to investigate the cause of masking the abnormality in the primary motor cortex in ALS and usefulness of ALFF for differential diagnosis among diseases showing muscle weakness. We enrolled ten patients with ALS and eleven disease controls showing muscle weakness. Voxel-wise analysis revealed that significant reduction of ALFF value was present in the right sensorimotor cortex in ALS. There was a significant negative correlation between ALFF value in the right sensorimotor cortex and fractional anisotropy (FA) value in the posterior limbs of the internal capsule (PLIC). For a diagnostic tool, the area under receiver operating characteristic curve improved if the ALS patients with disease duration >1 year were excluded. The present findings raised the possibility of usefulness of ALFF value in the sensorimotor cortex for differential diagnosis of ALS, and supported the notion that adjustment for FA value in the PLIC could improve accuracy.

  17. Seeing fearful body language rapidly freezes the observer's motor cortex.

    PubMed

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Primary motor cortex activity reduction under the regulation of SMA by real-time fMRI

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Zhao, Xiaojie; Li, Yi; Yao, Li; Chen, Kewei

    2012-03-01

    Real-time fMRI (rtfMRI) is a new technology which allows human subjects to observe and control their own BOLD signal change from one or more localized brain regions during scanning. Current rtfMRI-neurofeedback studies mainly focused on the target region itself without considering other related regions influenced by the real-time feedback. However, there always exits important directional influence between many of cooperative regions. On the other hand, rtfMRI based on motor imagery mainly aimed at somatomotor cortex or primary motor area, whereas supplement motor area (SMA) was a relatively more integrated and pivotal region. In this study, we investigated whether the activities of SMA can be controlled utilizing different motor imagery strategies, and whether there exists any possible impact on an unregulated but related region, primary motor cortex (M1). SMA was first localized using overt finger tapping task, the activities of SMA were feedback to subjects visually on line during each of two subsequent imagery motor movement sessions. All thirteen healthy participants were found to be able to successfully control their SMA activities by self-fit imagery strategies which involved no actual motor movements. The activation of right M1 was also found to be significantly reduced in both intensity and extent with the neurofeedback process targeted at SMA, suggestive that not only the part of motor cortex activities were influenced under the regulation of a key region SMA, but also the increased difference between SMA and M1 might reflect the potential learning effect.

  19. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans

    PubMed Central

    Poliva, Oren

    2017-01-01

    In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls. PMID:28928931

  20. Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

    PubMed Central

    Cadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J.

    2014-01-01

    The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of “kernel analysis” that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds. PMID:25521294

  1. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity.

    PubMed

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a "state" condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (P<0.05; Hedge's g or Cohen's dunbiased = 1.054, i.e. large effect size), suggesting a "state" condition of higher intracortical inhibition in left motor cortex networks. Differences in motor thresholds (different excitatory/inhibitory ratios in DS) were evident, as well as significant differences in SPT. In fluent speakers, the left hemisphere may be marginally more excitable than the right one in motor thresholds at lower muscular activation, while active motor thresholds and SPT were higher in the left hemisphere of DS with respect to the right one, resulting also in a positive correlation with stuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering "state" in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).

  2. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity

    PubMed Central

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a “state” condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (P<0.05; Hedge’s g or Cohen’s dunbiased = 1.054, i.e. large effect size), suggesting a “state” condition of higher intracortical inhibition in left motor cortex networks. Differences in motor thresholds (different excitatory/inhibitory ratios in DS) were evident, as well as significant differences in SPT. In fluent speakers, the left hemisphere may be marginally more excitable than the right one in motor thresholds at lower muscular activation, while active motor thresholds and SPT were higher in the left hemisphere of DS with respect to the right one, resulting also in a positive correlation with stuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering “state” in persistent DS, helping to define more focused treatments (e.g. neuro-modulation). PMID:27711148

  3. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    PubMed

    Heitmann, Stewart; Rule, Michael; Truccolo, Wilson; Ermentrout, Bard

    2017-01-01

    Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  4. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming.

    PubMed

    Kim, Woojong; Chang, Yongmin; Kim, Jingu; Seo, Jeehye; Ryu, Kwangmin; Lee, Eunkyung; Woo, Minjung; Janelle, Christopher M

    2014-12-01

    We investigated brain activity in elite, expert, and novice archers during a simulated archery aiming task to determine whether neural correlates of performance differ by skill level. Success in shooting sports depends on complex mental routines just before the shot, when the brain prepares to execute the movement. During functional magnetic resonance imaging, 40 elite, expert, or novice archers aimed at a simulated 70-meter-distant target and pushed a button when they mentally released the bowstring. At the moment of optimal aiming, the elite and expert archers relied primarily on a dorsal pathway, with greatest activity in the occipital lobe, temporoparietal lobe, and dorsolateral pre-motor cortex. The elites showed activity in the supplementary motor area, temporoparietal area, and cerebellar dentate, while the experts showed activity only in the superior frontal area. The novices showed concurrent activity in not only the dorsolateral pre-motor cortex but also the ventral pathways linked to the ventrolateral pre-motor cortex. The novices exhibited broad activity in the superior frontal area, inferior frontal area, ventral prefrontal cortex, primary motor cortex, superior parietal lobule, and primary somatosensory cortex. The more localized neural activity of elite and expert archers than novices permits greater efficiency in the complex processes subserved by these regions. The elite group's high activity in the cerebellar dentate indicates that the cerebellum is involved in automating simultaneous movements by integrating the sensorimotor memory enabled by greater expertise in self-paced aiming tasks. A companion article comments on and generalizes our findings.

  5. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum.

    PubMed

    Riecker, A; Ackermann, H; Wildgruber, D; Dogil, G; Grodd, W

    2000-06-26

    Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the right motor cortex, the right anterior insula, and the left cerebellum whereas the opposite response pattern emerged during a speech task. In contrast to the hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. These findings corroborate the assumption that the left insula supports the coordination of speech articulation. Similarly, the right insula might mediate temporo-spatial control of vocal tract musculature during overt singing. Both speech and melody production require the integration of sound structure or tonal patterns, respectively, with a speaker's emotions and attitudes. Considering the widespread interconnections with premotor cortex and limbic structures, the insula is especially suited for this task.

  6. The motor cortex: a network tuned to 7-14 Hz

    PubMed Central

    Castro-Alamancos, Manuel A.

    2013-01-01

    The neocortex or six layer cortex consists of at least 52 cytoarchitectonically distinct areas in humans, and similar areas can be distinguished in rodents. Each of these areas has a defining set of extrinsic connections, identifiable functional roles, a distinct laminar arrangement, etc. Thus, neocortex is extensively subdivided into areas of anatomical and functional specialization, but less is known about the specialization of cellular and network physiology across areas. The motor cortex appears to have a distinct propensity to oscillate in the 7–14 Hz frequency range. Augmenting responses, normal mu and beta oscillations, and abnormal oscillations or after discharges caused by enhancing excitation or suppressing inhibition are all expressed around this frequency range. The substrate for this activity may be an excitatory network that is unique to the motor cortex or that is more strongly suppressed in other areas, such as somatosensory cortex. Interestingly, augmenting responses are dependent on behavioral state. They are abolished during behavioral arousal. Here, I briefly review this evidence. PMID:23439785

  7. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    ERIC Educational Resources Information Center

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  8. The Anatomical and Functional Organization of the Human Visual Pulvinar

    PubMed Central

    Pinsk, Mark A.; Kastner, Sabine

    2015-01-01

    The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication. PMID:26156987

  9. Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of γ-aminobutyric acid signaling

    PubMed Central

    Lee, S; Ueno, M; Yamashita, T

    2011-01-01

    Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling. PMID:21412279

  10. Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)

    PubMed Central

    Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.

    2014-01-01

    We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475

  11. NMDA Receptors Subserve Persistent Neuronal Firing During Working Memory In Dorsolateral Prefrontal Cortex

    PubMed Central

    Wang, Min; Yang, Yang; Wang, Ching-Jung; Gamo, Nao J.; Jin, Lu E.; Mazer, James A.; Morrison, John H.; Wang, Xiao-Jing; Arnsten, Amy F.T.

    2013-01-01

    Summary Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPAR) contributed background depolarization to sustain network firing. In contrast, many Response cells -which likely predominate in rodent PFC- were sensitive to AMPAR blockade and increased firing following systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s Disease profoundly impair cognition. PMID:23439125

  12. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats

    PubMed Central

    Laing, R.J.; Turecek, J.; Takahata, T.; Olavarria, J.F.

    2015-01-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. PMID:24969475

  13. Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values.

    PubMed

    Rudebeck, Peter H; Murray, Elisabeth A

    2011-12-01

    The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicate that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing, and updating specific object-reward associations. The medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial OFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. © 2011 New York Academy of Sciences.

  14. Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.

    PubMed

    Hage, Steffen R

    2018-03-20

    Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    PubMed

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  16. Life history, cognition and the evolution of complex foraging niches.

    PubMed

    Schuppli, Caroline; Graber, Sereina M; Isler, Karin; van Schaik, Carel P

    2016-03-01

    Animal species that live in complex foraging niches have, in general, improved access to energy-rich and seasonally stable food sources. Because human food procurement is uniquely complex, we ask here which conditions may have allowed species to evolve into such complex foraging niches, and also how niche complexity is related to relative brain size. To do so, we divided niche complexity into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65 carnivoran species, we found that two life-history features are consistently correlated with complex niches: slow, conservative development or provisioning of offspring over extended periods of time. Both act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the evolution of complex niches. Our results further showed that the knowledge and motor dimensions of niche complexity were correlated with pace of development in primates only, and with the length of provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups of mammals show that selection favors evolution into complex niches (in either the knowledge or motor dimension) in species that either develop more slowly or provision their young for an extended period of time. These findings help to explain how humans constructed by far the most complex niche: our ancestors managed to combine slow development (as in other primates) with systematic provisioning of immatures and even adults (as in carnivorans). This study also provides strong support for the importance of ecological factors in brain size evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Information processing in the primate visual system - An integrated systems perspective

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  18. Evaluation of [11C]metergoline as a PET radiotracer for 5HTR in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2010-04-20

    Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [{sup 11}C]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [{sup 11}C]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology.

  19. Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates.

    PubMed

    Maier, M A; Shupe, L E; Fetz, E E

    2005-10-01

    Dynamic recurrent neural networks were derived to simulate neuronal populations generating bidirectional wrist movements in the monkey. The models incorporate anatomical connections of cortical and rubral neurons, muscle afferents, segmental interneurons and motoneurons; they also incorporate the response profiles of four populations of neurons observed in behaving monkeys. The networks were derived by gradient descent algorithms to generate the eight characteristic patterns of motor unit activations observed during alternating flexion-extension wrist movements. The resulting model generated the appropriate input-output transforms and developed connection strengths resembling those in physiological pathways. We found that this network could be further trained to simulate additional tasks, such as experimentally observed reflex responses to limb perturbations that stretched or shortened the active muscles, and scaling of response amplitudes in proportion to inputs. In the final comprehensive network, motor units are driven by the combined activity of cortical, rubral, spinal and afferent units during step tracking and perturbations. The model displayed many emergent properties corresponding to physiological characteristics. The resulting neural network provides a working model of premotoneuronal circuitry and elucidates the neural mechanisms controlling motoneuron activity. It also predicts several features to be experimentally tested, for example the consequences of eliminating inhibitory connections in cortex and red nucleus. It also reveals that co-contraction can be achieved by simultaneous activation of the flexor and extensor circuits without invoking features specific to co-contraction.

  20. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.

    PubMed

    Xie, Ni; Yang, Qiuhong; Chappell, Tyson D; Li, Cheng-Xiang; Waters, Robert S

    2010-03-01

    Children with fetal alcohol spectrum disorder (FASD) often exhibit sensorimotor dysfunctions that include deficits in motor coordination and fine motor control. Although the underlying causes for these motor abnormalities are unknown, they likely involve interactions between sensory and motor systems. Rodent animal models have been used to study the effects of prenatal alcohol exposure (PAE) on skilled reaching and on the development and organization of somatosensory barrel field cortex. To this end, PAE delayed the development of somatosensory cortex, reduced the size of whisker and forelimb representations in somatosensory barrel field cortex, and delayed acquisition time to learn a skilled reaching task. However, whether PAE also affects the motor cortex (MI) remains to be determined. In the present study, we investigated the effect of PAE on the size of the forelimb representation in rat MI, thresholds for activation, and the overlap between motor and sensory cortical forelimb maps in sensorimotor cortex. Pregnant Sprague-Dawley rats were assigned to alcohol (Alc), pair-fed (PF), and chow-fed (CF) groups on gestation day 1 (GD1). Rats in the Alc group (n=4) were chronically intubated daily with binge doses of alcohol (6g/kg body weight) from GD1 to GD20 that resulted in averaged blood alcohol levels measured on GD10 (mean=191.5+/-41.9mg/dL) and on GD17 (mean=247.0+/-72.4mg/dL). PF (n=2) and CF (n=3) groups of pregnant rats served as controls. The effect of PAE on the various dependent measures was obtained from multiple male offspring from each dam within treatment groups, and litter means were compared between the groups from alcohol-treated and control (Ct: CF and PF) dams. At approximately 8 weeks of age, rats were anesthetized with ketamine/xylazine and the skull opened over sensorimotor cortex. A tungsten microelectrode was then inserted into the depths of layer V and intracortical microstimulation was used to deliver trains of pulses to evoke muscle contractions and/or movements; maximum stimulating < or =100microA. When a motor response was observed, the threshold for movement was measured and the motor receptive field projected to the cortical surface to serve as representative point for that location. A motor map for the forelimb representation was generated by systematically stimulating at adjacent sites until current thresholds reached the maximum and/or motor responses were no longer evoked. The major findings in this study were as follows: (1) PAE significantly reduced the area of the forelimb representation in the Alc offspring (6.01mm(2), standard error of the mean=+/-0.278) compared with the Ct offspring (8.03mm(2)+/-0.586), (2) PAE did not significantly reduce the averaged threshold for activation of movements between groups, (3) PAE significantly reduced the percent overlap (Alc=31.1%, Ct=55.4%) between the forelimb representation in sensory and motor cortices, and (4) no significant differences were observed in averaged body weight, hemisphere weight, or age of animal between treatment groups. These findings suggest that the effects of PAE are not restricted to somatosensory barrel field cortex but also involve the MI and may underlie deficits in motor control and sensorimotor integration observed among children with FASD. 2010. Published by Elsevier Inc.

  1. Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex.

    PubMed

    Martínez-Torres, N I; González-Tapia, D; Flores-Soto, M; Vázquez-Hernández, N; Salgado-Ceballos, H; González-Burgos, I

    2018-03-16

    Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord. Spinophilin, synaptophysin, and β iii-tubulin expression was also measured. Pharmacological lesions resulted in poor motor performance. Spine density and the proportion of thin and stubby spines were greater. We also observed increased expression of the 3 proteins analysed. The clinical symptoms of neurological damage secondary to Wallerian degeneration of the corticospinal tract are associated with spontaneous, compensatory plastic changes at the synaptic level. Based on these findings, spontaneous plasticity is a factor to consider when designing more efficient strategies in the early phase of rehabilitation. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.

    PubMed

    Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P

    2013-07-24

    Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.

  3. Functional correlates of the anterolateral processing hierarchy in human auditory cortex.

    PubMed

    Chevillet, Mark; Riesenhuber, Maximilian; Rauschecker, Josef P

    2011-06-22

    Converging evidence supports the hypothesis that an anterolateral processing pathway mediates sound identification in auditory cortex, analogous to the role of the ventral cortical pathway in visual object recognition. Studies in nonhuman primates have characterized the anterolateral auditory pathway as a processing hierarchy, composed of three anatomically and physiologically distinct initial stages: core, belt, and parabelt. In humans, potential homologs of these regions have been identified anatomically, but reliable and complete functional distinctions between them have yet to be established. Because the anatomical locations of these fields vary across subjects, investigations of potential homologs between monkeys and humans require these fields to be defined in single subjects. Using functional MRI, we presented three classes of sounds (tones, band-passed noise bursts, and conspecific vocalizations), equivalent to those used in previous monkey studies. In each individual subject, three regions showing functional similarities to macaque core, belt, and parabelt were readily identified. Furthermore, the relative sizes and locations of these regions were consistent with those reported in human anatomical studies. Our results demonstrate that the functional organization of the anterolateral processing pathway in humans is largely consistent with that of nonhuman primates. Because our scanning sessions last only 15 min/subject, they can be run in conjunction with other scans. This will enable future studies to characterize functional modules in human auditory cortex at a level of detail previously possible only in visual cortex. Furthermore, the approach of using identical schemes in both humans and monkeys will aid with establishing potential homologies between them.

  4. Mesenchymal stem cells restore orientation and exploratory behavior of rats after brain injury.

    PubMed

    Sokolova, I B; Fedotova, O R; Tsikunov, S G; Polyntsev, D G

    2011-05-01

    We studied the effects of intravenous and intracerebral transplantation of MSC on restoration of orientation and exploratory behavior of Wistar-Kyoto rats after removal of the left motor cortex. Removal of the motor cortex led to a significant reduction of the number of behavioral acts in the open field test. Two weeks after removal of the motor cortex and intravenous transplantation, the animals were as inhibited as the controls, but during the next 10 weeks, the behavioral status of these rats remained unchanged, while controls exhibited further behavioral degradation. After injection of MSC into the brain, the behavior of rats with trauma did not change in comparison with intact rats over 10 weeks.

  5. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    NASA Astrophysics Data System (ADS)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  6. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  8. Neural Correlate of the Thatcher Face Illusion in a Monkey Face-Selective Patch.

    PubMed

    Taubert, Jessica; Van Belle, Goedele; Vanduffel, Wim; Rossion, Bruno; Vogels, Rufin

    2015-07-08

    Compelling evidence that our sensitivity to facial structure is conserved across the primate order comes from studies of the "Thatcher face illusion": humans and monkeys notice changes in the orientation of facial features (e.g., the eyes) only when faces are upright, not when faces are upside down. Although it is presumed that face perception in primates depends on face-selective neurons in the inferior temporal (IT) cortex, it is not known whether these neurons respond differentially to upright faces with inverted features. Using microelectrodes guided by functional MRI mapping, we recorded cell responses in three regions of monkey IT cortex. We report an interaction in the middle lateral face patch (ML) between the global orientation of a face and the local orientation of its eyes, a response profile consistent with the perception of the Thatcher illusion. This increased sensitivity to eye orientation in upright faces resisted changes in screen location and was not found among face-selective neurons in other areas of IT cortex, including neurons in another face-selective region, the anterior lateral face patch. We conclude that the Thatcher face illusion is correlated with a pattern of activity in the ML that encodes faces according to a flexible holistic template. Copyright © 2015 the authors 0270-6474/15/359872-07$15.00/0.

  9. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    PubMed

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Convergent evolution of complex brains and high intelligence

    PubMed Central

    Roth, Gerhard

    2015-01-01

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  11. Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury

    DTIC Science & Technology

    2012-09-01

    pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051

  12. Generation of novel motor sequences: the neural correlates of musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  13. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease.

    PubMed

    Eggers, Carsten; Fink, Gereon R; Nowak, Dennis A

    2010-10-01

    The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson's disease. In eight patients with Parkinson's disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson's disease. We interpret these data to reflect impaired cortical plasticity in Parkinson's disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson's disease.

  14. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  15. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons.

    PubMed

    Khateb, Mohamed; Schiller, Jackie; Schiller, Yitzhak

    2017-01-06

    The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.

  16. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  17. Motor Deficits Are Produced By Removing Some Cortical Transplants Grafted Into Injured Sensorimotor Cortex of Neonatal Rats

    PubMed Central

    Sandor, Rick; Gonzalez, Manuel F.; Moseley, Michael; Sharp, Frank R.

    1991-01-01

    Fetal frontal cortex was transplanted into cavities formed in the right, motor cortex of neonatal rats. As adults, the animals were trained to press two levers in rapid succession with their left forelimb to receive food rewards. Once they had reached an optimal level of performance, the effect of removing their transplants was assessed. Surgical removal of transplants significantly impaired the performance of 2 of 4 subjects. Placing a crossstrain skin graft to induce the immunological rejection of the transplants produced a behavioral deficit in 1 of 2 subjects with complete transplant removal. Skin grafts produced no behavioral effects in four subjects that had surviving transplants. Since the motor deficit produced by transplant removal resembled those observed following the removal of normal motor cortex, we propose that these three transplants functioned within the host brain. Histology Showed that the procedures used to remove cortical grafts did not injure any host brains. Therefore, host brain damage is unlikely to account for the behavioral deterioration that followed transplant removals. PMID:1782254

  18. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway

    PubMed Central

    Hackett, Troy A.; Takahata, Toru; Balaram, Pooja

    2011-01-01

    The vesicular glutamate transporters (VGLUTs) regulate storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II – VI of the core, belt and parabelt regions. VGLUT2 was most strongly expressed by neurons in layers IIIb and IV, weakly by neurons in layers II – IIIa, and at very low levels in layers V – VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in cortico-cortical (CC) and cortico-thalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establishes a baseline for detailed studies of these transporters in selected circuits of the auditory system. PMID:21111036

  19. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway.

    PubMed

    Hackett, Troy A; Takahata, Toru; Balaram, Pooja

    2011-04-01

    The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. A θ-γ oscillation code for neuronal coordination during motor behavior.

    PubMed

    Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki

    2013-11-20

    Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.

  1. Grasping Ideas with the Motor System: Semantic Somatotopy in Idiom Comprehension

    PubMed Central

    Hauk, Olaf; Pulvermüller, Friedemann

    2009-01-01

    Single words and sentences referring to bodily actions activate the motor cortex. However, this semantic grounding of concrete language does not address the critical question whether the sensory–motor system contributes to the processing of abstract meaning and thought. We examined functional magnetic resonance imaging activation to idioms and literal sentences including arm- and leg-related action words. A common left fronto-temporal network was engaged in sentence reading, with idioms yielding relatively stronger activity in (pre)frontal and middle temporal cortex. Crucially, somatotopic activation along the motor strip, in central and precentral cortex, was elicited by idiomatic and literal sentences, reflecting the body part reference of the words embedded in the sentences. Semantic somatotopy was most pronounced after sentence ending, thus reflecting sentence-level processing rather than that of single words. These results indicate that semantic representations grounded in the sensory–motor system play a role in the composition of sentence-level meaning, even in the case of idioms. PMID:19068489

  2. A cortical-spinal prosthesis for targeted limb movement in paralyzed primate avatars

    PubMed Central

    Shanechi, Maryam M.; Hu, Rollin C.; Williams, Ziv M.

    2014-01-01

    Motor paralysis is among the most disabling aspects of injury to the central nervous system. Here we develop and test a target-based cortical-spinal neural prosthesis that employs neural activity recorded from pre-motor neurons to control limb movements in functionally paralyzed primate avatars. Given the complexity by which muscle contractions are naturally controlled, we approach the problem of eliciting goal-directed limb movement in paralyzed animals by focusing on the intended targets of movement rather than their intermediate trajectories. We then match this information in real-time with spinal cord and muscle stimulation parameters that produce free planar limb movements to those intended target locations. We demonstrate that both the decoded activities of pre-motor populations and their adaptive responses can be used, after brief training, to effectively direct an avatar’s limb to distinct targets variably displayed on a screen. These findings advance the future possibility of reconstituting targeted limb movement in paralyzed subjects. PMID:24549394

  3. State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.

    PubMed

    Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone

    2013-10-30

    Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.

  4. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  5. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    PubMed

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural plasticity in M1 associated with learning to use a brain-machine interface.

  6. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells.

    PubMed

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori; Takahashi, Jun

    2016-04-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron diseases or insults. ©AlphaMed Press.

  7. A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?

    PubMed

    Sheelakumari, R; Madhusoodanan, M; Radhakrishnan, A; Ranjith, G; Thomas, B

    2016-02-01

    Iron-mediated oxidative stress plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis. This study aimed to assess iron deposition qualitatively and quantitatively by using SWI and microstructural changes in the corticospinal tract by using DTI in patients with amyotrophic lateral sclerosis. Seventeen patients with amyotrophic lateral sclerosis and 15 age- and sex-matched controls underwent brain MR imaging with SWI and DTI. SWI was analyzed for both signal-intensity scoring and quantitative estimation of iron deposition in the anterior and posterior banks of the motor and sensory cortices and deep gray nuclei. The diffusion measurements along the corticospinal tract at the level of pons and medulla were obtained by ROI analysis. Patients with amyotrophic lateral sclerosis showed reduced signal-intensity grades in the posterior bank of the motor cortex bilaterally. Quantitative analysis confirmed significantly higher iron content in the posterior bank of the motor cortex in patients with amyotrophic lateral sclerosis. In contrast, no significant differences were noted for the anterior bank of the motor cortex, anterior and posterior banks of the sensory cortex, and deep nuclei. Receiver operating characteristic comparison showed a cutoff of 35μg Fe/g of tissue with an area under the curve of 0.78 (P = .008) for the posterior bank of the motor cortex in discriminating patients with amyotrophic lateral sclerosis from controls. Fractional anisotropy was lower in the pyramidal tracts of patients with amyotrophic lateral sclerosis at the pons and medulla on either side, along with higher directionally averaged mean diffusivity values. The combination of SWI and DTI revealed an area under the curve of 0.784 for differentiating patients with amyotrophic lateral sclerosis from controls. Measurements of motor cortex iron deposition and diffusion tensor parameters of the corticospinal tract may be useful biomarkers for the diagnosis of clinically suspected amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.

  8. Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation

    PubMed Central

    Mur, Marieke; Meys, Mirjam; Bodurka, Jerzy; Goebel, Rainer; Bandettini, Peter A.; Kriegeskorte, Nikolaus

    2013-01-01

    Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions. PMID:23525516

  9. Facilitation and Restoration of Cognitive Function in Primate Prefrontal Cortex by a Neuroprosthesis that Utilizes Minicolumn-Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Gerhardt, Greg A.; Marmarelis, Vasilis; Song, Dong; Opris, Ioan; Santos, Lucas; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    Problem addressed Maintenance of cognitive control is a major concern for many human disease condition, therefore a major goal of human neuroprosthetics is to facilitate and/or recover cognitive function when such circumstances impair appropriate decision making. Methodology Nonhuman primates trained to perform a delayed match to sample (DMS) were employed to record mini-columnar activity in the prefrontal cortex (PFC) via custom designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multi-columnar firing patterns during DMS performance. Results The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation facilitated normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following pharmacological disruption of decision making in the same task. Significance and potential impact These findings provide the first successful application of a neuroprosthesis in primate brain designed specifically to restore or repair disrupted cognitive function. PMID:22976769

  10. Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex

    PubMed Central

    Funk, Agnes P; Rosa, Marcello G P

    1998-01-01

    The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999

  11. Rapid treatment-induced brain changes in pediatric CRPS.

    PubMed

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2016-03-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.

  12. A discrepancy within primate spatial vision and its bearing on the definition of edge detection processes in machine vision

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1990-01-01

    The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.

  13. Production of verbs related to body movement in amyotrophic lateral sclerosis (ALS) and Parkinson's Disease (PD).

    PubMed

    Cousins, Katheryn A Q; Ash, Sharon; Grossman, Murray

    2018-03-01

    Theories of grounded cognition propose that action verb knowledge relies in part on motor processing regions, including premotor cortex. Accordingly, impaired action verb knowledge in patients with amyotrophic lateral sclerosis (ALS) and Parkinson's Disease (PD) is thought to be due to motor system degeneration. Upper motor neuron disease in ALS degrades the motor cortex and related pyramidal motor system, while disease in PD is centered in the basal ganglia and can spread to frontostriatal areas that are important to language functioning. These anatomical distinctions in disease may yield subtle differences in the action verb impairment between patient groups. Here we compare verbs where the body is the agent of the action to verbs where the body is the theme. To examine the role of motor functioning in body verb production, we split patient groups into patients with high motor impairment (HMI) and those with low motor impairment (LMI), using disease-specific measures of motor impairment. Regression analyses assessed how verb production in ALS and PD was related to motor system atrophy. We find a dissociation between agent- and theme-body verbs in ALS: ALS HMI were impaired for agent body verbs but not theme verbs, compared to ALS LMI. This dissociation was not present in PD patients, who instead show depressed production for all body verbs. Although patients with cognitive impairment were excluded from this study, cognitive performance significantly correlated with the production of theme verbs in ALS and cognitive/stative verbs in PD. Finally, regression analyses related the agent-theme dissociation in ALS to grey matter atrophy of premotor cortex. These findings support the view that motor dysfunction and disease in premotor cortex contributes to the agent body verb deficit in ALS, and begin to identify some distinct characteristics of impairment for verbs in ALS and PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The coevolution of play and the cortico-cerebellar system in primates.

    PubMed

    Kerney, Max; Smaers, Jeroen B; Schoenemann, P Thomas; Dunn, Jacob C

    2017-10-01

    Primates are some of the most playful animals in the natural world, yet the reason for this remains unclear. One hypothesis posits that primates are so playful because playful activity functions to help develop the sophisticated cognitive and behavioural abilities that they are also renowned for. If this hypothesis were true, then play might be expected to have coevolved with the neural substrates underlying these abilities in primates. Here, we tested this prediction by conducting phylogenetic comparative analyses to determine whether play has coevolved with the cortico-cerebellar system, a neural system known to be involved in complex cognition and the production of complex behaviour. We used phylogenetic generalised least squares analyses to compare the relative volume of the largest constituent parts of the primate cortico-cerebellar system (prefrontal cortex, non-prefrontal heteromodal cortical association areas, and posterior cerebellar hemispheres) to the mean percentage of time budget spent in play by a sample of primate species. Using a second categorical data set on play, we also used phylogenetic analysis of covariance to test for significant differences in the volume of the components of the cortico-cerebellar system among primate species exhibiting one of three different levels of adult-adult social play. Our results suggest that, in general, a positive association exists between the amount of play exhibited and the relative size of the main components of the cortico-cerebellar system in our sample of primate species. Although the explanatory power of this study is limited by the correlational nature of its analyses and by the quantity and quality of the data currently available, this finding nevertheless lends support to the hypothesis that play functions to aid the development of cognitive and behavioural abilities in primates.

  15. Motor facilitation during observation of implied motion: Evidence for a role of the left dorsolateral prefrontal cortex.

    PubMed

    Mineo, Ludovico; Fetterman, Alexander; Concerto, Carmen; Warren, Michael; Infortuna, Carmenrita; Freedberg, David; Chusid, Eileen; Aguglia, Eugenio; Battaglia, Fortunato

    2018-06-01

    The phenomenon of motor resonance (the increase in motor cortex excitability during observation of actions) has been previously described. Transcranial magnetic stimulation (TMS) studies have demonstrated a similar effect during perception of implied motion (IM). The left dorsolateral prefrontal cortex (DLPFC) seems to be activated during action observation. Furthermore, the role of this brain area in motor resonance to IM is yet to be investigated. Fourteen healthy volunteers were enrolled into the study. We used transcranial direct current stimulation (tDCS) to stimulate DLPFC aiming to investigate whether stimulation with different polarities would affect the amplitude of motor evoked potential collected during observation of images with and without IM. The results of our experiment indicated that Cathodal tDCS over the left DLPFC prevented motor resonance during observation of IM. On the contrary, anodal and sham tDCS did not significantly modulate motor resonance to IM. The current study expands the understanding of the neural circuits engaged during observation of IM. Our results are consistent with the hypothesis that action understanding requires the interaction of large networks and that the left DLPFC plays a crucial role in generating motor resonance to IM. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Commentary on "The Cerebellar System and What it Signifies from a Biological Perspective: A Communication by Christofredo Jakob (1866-1956) Before the Society of Neurology and Psychiatry of Buenos Aires, December 1938".

    PubMed

    Tzouma, Anny; Margulies, Daniel S; Triarhou, Lazaros C

    2016-08-01

    This commentary highlights a "cerebellar classic" by a pioneer of neurobiology, Christfried Jakob. Jakob discussed the connectivity between the cerebellum and mesencephalic, diencephalic, and telencephalic structures in an evolutionary, developmental, and histophysiological perspective. He proposed three evolutionary morphofunctional stages, the archicerebellar, paleocerebellar, and neocerebellar; he attributed the reduced cerebellospinal connections in humans, compared to other primates, to the perfection of the rubrolenticular and thalamocortical systems and the intense ascending pathways to the red nucleus in exchange for the more elementary descending efferent pathways. Jakob hypothesized the convergence of cerebellar pathways in associative cortical regions, insisting on the intimate collaboration of the cerebellum with the frontal lobe. The extensive lines of communication between regions throughout the association cortex substantiate Jakob's intuition and begin to outline the mechanisms for substantial cerebellar involvement in functions beyond the purely motor domain. Atop a foundation of anatomical and phylogenetic mastery, Jakob conceived ideas that were noteworthy, timely, and have much relevance to our current thinking on cerebellar structure and function.

  17. Cortical activity in the null space: permitting preparation without movement

    PubMed Central

    Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-01-01

    Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233

  18. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque

    PubMed Central

    Soares, David; Goldrick, Isabelle; Lemon, Roger N.; Kraskov, Alexander; Greensmith, Linda

    2017-01-01

    Abstract There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. PMID:28213922

  19. Age-related Differences in Pre- and Post-synaptic Motor Cortex Inhibition are Task Dependent.

    PubMed

    Opie, George M; Ridding, Michael C; Semmler, John G

    2015-01-01

    Previous research has shown age-related differences in short- (SICI) and long-interval intracortical inhibition (LICI) in both resting and active hand muscles, suggesting that healthy ageing influences post-synaptic motor cortex inhibition. However, it is not known how the ageing process effects the pre-synaptic interaction of SICI by LICI, and how these pre- and post-synaptic intracortical inhibitory circuits are modulated by the performance of different motor tasks in older adults. To examine age-related differences in pre- and post-synaptic motor cortex inhibition at rest, and during index finger abduction and precision grip. In 13 young (22.3 ± 3.8 years) and 15 old (73.7 ± 4.0 years) adults, paired-pulse transcranial magnetic stimulation (TMS) was used to measure SICI (2 ms inter-stimulus interval; ISI) and LICI (100 and 150 ms ISI), whereas triple-pulse TMS was used to investigate SICI when primed by LICI. We found no age-related difference in SICI at rest or during index finger abduction, but significantly greater SICI in older subjects during precision grip. Older adults showed reduced LICI in resting muscle (at an ISI of 150 ms), with no age-related differences in LICI during either task. When SICI was primed by LICI, disinhibition of motor cortex was reduced in older adults at rest (100 ms ISI) and during index finger abduction (150 ms ISI), but not during precision grip. Our results support age-related differences in pre- and post-synaptic motor cortex inhibition, which may contribute to impaired hand function during task performance in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach

    PubMed Central

    Shaylor, Lara A.; Hwang, Sung Jin; Sanders, Kenton M.

    2016-01-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1−/−) and P2Y1 receptors (P2ry1−/−) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1−/− mice IJPs and relaxations persisted whereas in P2ry1−/− mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species. PMID:27634009

Top