Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision
NASA Astrophysics Data System (ADS)
Rojer, Alan S.; Schwartz, Eric L.
1991-02-01
Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1990-01-01
The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.
Euarchontan Opsin Variation Brings New Focus to Primate Origins
Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.
2016-01-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880
'What' and 'where' in the human brain.
Ungerleider, L G; Haxby, J V
1994-04-01
Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.
The adaptive value of primate color vision for predator detection.
Pessoa, Daniel Marques Almeida; Maia, Rafael; de Albuquerque Ajuz, Rafael Cavalcanti; De Moraes, Pedro Zurvaino Palmeira Melo Rosa; Spyrides, Maria Helena Constantino; Pessoa, Valdir Filgueiras
2014-08-01
The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively. © 2014 Wiley Periodicals, Inc.
Euarchontan Opsin Variation Brings New Focus to Primate Origins.
Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J
2016-04-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
Perceptual learning in a non-human primate model of artificial vision
Killian, Nathaniel J.; Vurro, Milena; Keith, Sarah B.; Kyada, Margee J.; Pezaris, John S.
2016-01-01
Visual perceptual grouping, the process of forming global percepts from discrete elements, is experience-dependent. Here we show that the learning time course in an animal model of artificial vision is predicted primarily from the density of visual elements. Three naïve adult non-human primates were tasked with recognizing the letters of the Roman alphabet presented at variable size and visualized through patterns of discrete visual elements, specifically, simulated phosphenes mimicking a thalamic visual prosthesis. The animals viewed a spatially static letter using a gaze-contingent pattern and then chose, by gaze fixation, between a matching letter and a non-matching distractor. Months of learning were required for the animals to recognize letters using simulated phosphene vision. Learning rates increased in proportion to the mean density of the phosphenes in each pattern. Furthermore, skill acquisition transferred from trained to untrained patterns, not depending on the precise retinal layout of the simulated phosphenes. Taken together, the findings suggest that learning of perceptual grouping in a gaze-contingent visual prosthesis can be described simply by the density of visual activation. PMID:27874058
Hiramatsu, Chihiro; Melin, Amanda D; Allen, William L; Dubuc, Constance; Higham, James P
2017-06-14
Primate trichromatic colour vision has been hypothesized to be well tuned for detecting variation in facial coloration, which could be due to selection on either signal wavelengths or the sensitivities of the photoreceptors themselves. We provide one of the first empirical tests of this idea by asking whether, when compared with other visual systems, the information obtained through primate trichromatic vision confers an improved ability to detect the changes in facial colour that female macaque monkeys exhibit when they are proceptive. We presented pairs of digital images of faces of the same monkey to human observers and asked them to select the proceptive face. We tested images that simulated what would be seen by common catarrhine trichromatic vision, two additional trichromatic conditions and three dichromatic conditions. Performance under conditions of common catarrhine trichromacy, and trichromacy with narrowly separated LM cone pigments (common in female platyrrhines), was better than for evenly spaced trichromacy or for any of the dichromatic conditions. These results suggest that primate trichromatic colour vision confers excellent ability to detect meaningful variation in primate face colour. This is consistent with the hypothesis that social information detection has acted on either primate signal spectral reflectance or photoreceptor spectral tuning, or both. © 2017 The Authors.
Higham, James P.
2017-01-01
Primate trichromatic colour vision has been hypothesized to be well tuned for detecting variation in facial coloration, which could be due to selection on either signal wavelengths or the sensitivities of the photoreceptors themselves. We provide one of the first empirical tests of this idea by asking whether, when compared with other visual systems, the information obtained through primate trichromatic vision confers an improved ability to detect the changes in facial colour that female macaque monkeys exhibit when they are proceptive. We presented pairs of digital images of faces of the same monkey to human observers and asked them to select the proceptive face. We tested images that simulated what would be seen by common catarrhine trichromatic vision, two additional trichromatic conditions and three dichromatic conditions. Performance under conditions of common catarrhine trichromacy, and trichromacy with narrowly separated LM cone pigments (common in female platyrrhines), was better than for evenly spaced trichromacy or for any of the dichromatic conditions. These results suggest that primate trichromatic colour vision confers excellent ability to detect meaningful variation in primate face colour. This is consistent with the hypothesis that social information detection has acted on either primate signal spectral reflectance or photoreceptor spectral tuning, or both. PMID:28615496
Vision for perception and vision for action in the primate brain.
Goodale, M A
1998-01-01
Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.
Mapping the Primate Visual System with [2-14C]Deoxyglucose
NASA Astrophysics Data System (ADS)
Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer
1982-10-01
The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.
Perry, George H; Martin, Robert D; Verrelli, Brian C
2007-09-01
While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.
Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness.
Mustari, Michael J
2017-12-01
Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the National Academy of Sciences. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Brief Daily Periods of Unrestricted Vision Can Prevent Form-Deprivation Amblyopia
Wensveen, Janice M.; Harwerth, Ronald S.; Hung, Li-Fang; Ramamirtham, Ramkumar; Kee, Chea-su; Smith, Earl L.
2006-01-01
PURPOSE To characterize how the mechanisms that produce unilateral form-deprivation amblyopia integrate the effects of normal and abnormal vision over time, the effects of brief daily periods of unrestricted vision on the spatial vision losses produced by monocular form deprivation were investigated in infant monkeys. METHODS Beginning at 3 weeks of age, unilateral form deprivation was initiated in 18 infant monkeys by securing a diffuser spectacle lens in front of one eye and a clear plano lens in front of the fellow eye. During the treatment period (18 weeks), three infants wore the diffusers continuously. For the other experimental infants, the diffusers were removed daily and replaced with clear, zero-powered lenses for 1 (n = 5), 2 (n = 6), or 4 (n = 4) hours. Four infants reared with binocular zero-powered lenses and four normally reared monkeys provided control data. RESULTS The degree of amblyopia varied significantly with the daily duration of unrestricted vision. Continuous form deprivation caused severe amblyopia. However, 1 hour of unrestricted vision reduced the degree of amblyopia by 65%, 2 hours reduced the deficits by 90%, and 4 hours preserved near-normal spatial contrast sensitivity. CONCLUSIONS The severely amblyogenic effects of form deprivation in infant primates are substantially reduced by relatively short daily periods of unrestricted vision. The manner in which the mechanisms responsible for amblyopia integrate the effects of normal and abnormal vision over time promotes normal visual development and has important implications for the management of human infants with conditions that potentially cause amblyopia. PMID:16723458
Considering the Influence of Nonadaptive Evolution on Primate Color Vision.
Jacobs, Rachel L; Bradley, Brenda J
2016-01-01
Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to consider adaptive and nonadaptive mechanisms of color vision evolution in primates.
Considering the Influence of Nonadaptive Evolution on Primate Color Vision
Jacobs, Rachel L.; Bradley, Brenda J.
2016-01-01
Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to consider adaptive and nonadaptive mechanisms of color vision evolution in primates. PMID:26959829
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Wiebe, Victor; Przeworski, Molly; Lancet, Doron; Pääbo, Svante
2004-01-01
Olfactory receptor (OR) genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian). Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates. PMID:14737185
Curing Color Blindness—Mice and Nonhuman Primates
Neitz, Maureen; Neitz, Jay
2014-01-01
It has been possible to use viral-mediated gene therapy to transform dichromatic (red-green color-blind) primates to trichromatic. Even though the third cone type was added after the end of developmental critical periods, treated animals acquired red-green color vision. What happened in the treated animals may represent a recapitulation of the evolution of trichromacy, which seems to have evolved with the acquisition of a third cone type without the need for subsequent modification to the circuitry. Some transgenic mice in which a third cone type was added also acquired trichromacy. However, compared with treated primates, red-green color vision in mice is poor, indicating large differences between mice and monkeys in their ability to take advantage of the new input. These results have implications for understanding the limits and opportunities for using gene therapy to treat vision disorders caused by defects in cone function. PMID:25147187
Curing color blindness--mice and nonhuman primates.
Neitz, Maureen; Neitz, Jay
2014-08-21
It has been possible to use viral-mediated gene therapy to transform dichromatic (red-green color-blind) primates to trichromatic. Even though the third cone type was added after the end of developmental critical periods, treated animals acquired red-green color vision. What happened in the treated animals may represent a recapitulation of the evolution of trichromacy, which seems to have evolved with the acquisition of a third cone type without the need for subsequent modification to the circuitry. Some transgenic mice in which a third cone type was added also acquired trichromacy. However, compared with treated primates, red-green color vision in mice is poor, indicating large differences between mice and monkeys in their ability to take advantage of the new input. These results have implications for understanding the limits and opportunities for using gene therapy to treat vision disorders caused by defects in cone function. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Visual responses of ganglion cells of a New-World primate, the capuchin monkey, Cebus apella.
Lee, B B; Silveira, L C; Yamada, E S; Hunt, D M; Kremers, J; Martin, P R; Troy, J B; da Silva-Filho, M
2000-11-01
1. The genetic basis of colour vision in New-World primates differs from that in humans and other Old-World primates. Most New-World primate species show a polymorphism; all males are dichromats and most females trichromats. 2. In the retina of Old-World primates such as the macaque, the physiological correlates of trichromacy are well established. Comparison of the retinae in New- and Old-World species may help constrain hypotheses as to the evolution of colour vision and the pathways associated with it. 3. Ganglion cell behaviour was recorded from trichromatic and dichromatic members of a New-World species (the capuchin monkey, Cebus apella) and compared with macaque data. Despite some differences in quantitative detail (such as a temporal response extended to higher frequencies), results from trichromatic animals strongly resembled those from the macaque. 4. In particular, cells of the parvocellular (PC) pathway showed characteristic frequency-dependent changes in responsivity to luminance and chromatic modulation, cells of the magnocellular (MC) pathway showed frequency-doubled responses to chromatic modulation, and the surround of MC cells received a chromatic input revealed on changing the phase of heterochromatically modulated lights. 5. Ganglion cells of dichromats were colour-blind versions of those of trichromats. 6. This strong physiological homology is consistent with a common origin of trichromacy in New- and Old-World monkeys; in the New-World primate the presence of two pigments in the middle-to-long wavelength range permits full expression of the retinal mechanisms of trichromatic vision.
Kriegeskorte, Nikolaus
2015-11-24
Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.
Mapping nonlinear receptive field structure in primate retina at single cone resolution
Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam
2015-01-01
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879
Receptive-field subfields of V2 neurons in macaque monkeys are adult-like near birth.
Zhang, Bin; Tao, Xiaofeng; Shen, Guofu; Smith, Earl L; Ohzawa, Izumi; Chino, Yuzo M
2013-02-06
Infant primates can discriminate texture-defined form despite their relatively low visual acuity. The neuronal mechanisms underlying this remarkable visual capacity of infants have not been studied in nonhuman primates. Since many V2 neurons in adult monkeys can extract the local features in complex stimuli that are required for form vision, we used two-dimensional dynamic noise stimuli and local spectral reverse correlation to measure whether the spatial map of receptive-field subfields in individual V2 neurons is sufficiently mature near birth to capture local features. As in adults, most V2 neurons in 4-week-old monkeys showed a relatively high degree of homogeneity in the spatial matrix of facilitatory subfields. However, ∼25% of V2 neurons had the subfield map where the neighboring facilitatory subfields substantially differed in their preferred orientations and spatial frequencies. Over 80% of V2 neurons in both infants and adults had "tuned" suppressive profiles in their subfield maps that could alter the tuning properties of facilitatory profiles. The differences in the preferred orientations between facilitatory and suppressive profiles were relatively large but extended over a broad range. Response immaturities in infants were mild; the overall strength of facilitatory subfield responses was lower than that in adults, and the optimal correlation delay ("latency") was longer in 4-week-old infants. These results suggest that as early as 4 weeks of age, the spatial receptive-field structure of V2 neurons is as complex as in adults and the ability of V2 neurons to compare local features of neighboring stimulus elements is nearly adult like.
Heesy, Christopher P
2008-01-01
Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.
Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus
NASA Astrophysics Data System (ADS)
Reid, R. Clay; Shapley, Robert M.
1992-04-01
HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.
Lucas, P W; Darvell, B W; Lee, P K; Yuen, T D; Choong, M F
1998-01-01
Leaf colour, size and toughness were investigated in five plant species important in the diet of Macaca fascicularis in Singapore. Leaf colour and size were examined as potential visual cues for food selection, whereas toughness mirrored fibre content, the inverse of food quality. As leaves matured, they changed colour and toughened. Leaf lightness and yellowness were strongly negatively correlated with toughness, but variation in both the red-green axis of the CIE Lab colour space and leaf size were not. Leaves selected as food by the macaques were distinguished by being very light, yellow to slightly green. Some leaves were dappled with red. The literature suggests that these leaves are relatively rich in protein without being tough and therefore would be sought after by primates. We argue that leaf colour is an important indicator of the nutritive value of leaves. Trichromatic vision is an important advantage in finding those palatable leaves that are dappled red. These would appear dark to dichromatic primates and be deceptive by making leaves look older (lower in quality) than they actually are. This would decrease the perceived window of feeding opportunity for such primates who would be at a disadvantage in trying to find these leaves. It is possible that trichromatic vision in catarrhine primates may have originally evolved for the detection of red coloration in the leaves of shade-tolerant tropical plants, enabling the better exploitation of a food resource.
Melin, Amanda D; Danosi, Christina F; McCracken, Gary F; Dominy, Nathaniel J
2014-12-01
A nocturnal bottleneck during mammalian evolution left a majority of species with two cone opsins, or dichromatic color vision. Primate trichromatic vision arose from the duplication and divergence of an X-linked opsin gene, and is long attributed to tandem shifts from nocturnality to diurnality and from insectivory to frugivory. Opsin gene variation and at least one duplication event exist in the order Chiroptera, suggesting that trichromatic vision could evolve under favorable ecological conditions. The natural history of the Samoan flying fox (Pteropus samoensis) meets these conditions--it is a large bat that consumes nectar and fruit and demonstrates strong diurnal proclivities. It also possesses a visual system that is strikingly similar to that of primates. To explore the potential for opsin gene duplication and divergence in this species, we sequenced the opsin genes of 11 individuals (19 X-chromosomes) from three South Pacific islands. Our results indicate the uniform presence of two opsins with predicted peak sensitivities of ca. 360 and 553 nm. This result fails to support a causal link between diurnal frugivory and trichromatic vision, although it remains plausible that the diurnal activities of P. samoensis have insufficient antiquity to favor opsin gene renovation.
A review of the evolution of animal colour vision and visual communication signals.
Osorio, D; Vorobyev, M
2008-09-01
The visual displays of animals and plants are often colourful, and colour vision allows animals to respond to these signals as they forage for food, choose mates and so-forth. This article discusses the evolutionary relationship between photoreceptor spectral sensitivities of four groups of land animals--birds, butterflies, primates and hymenopteran insects (bees and wasps)--, the colour signals that are relevant to them, and how understanding is informed by models of spectral coding and colour vision. Although the spectral sensitivities of photoreceptors are known to vary adaptively under natural selection there is little evidence that those of hymenopterans, birds and primates are specifically adapted to the reflectance spectra of food plants or animal visual signals. On the other hand, the colours of fruit, flowers and feathers may have evolved to be more discriminable for the colour vision of their natural receivers than for other groups of animals. Butterflies are unusual in that they have enjoyed a major radiation in receptor numbers and spectral sensitivities. The reasons for the radiation and diversity of butterfly colour vision remain unknown, but may include their need to find food plants and to select mates.
Krueger, Ronald R; Uy, Harvey; McDonald, Jared; Edwards, Keith
2012-12-01
To demonstrate that ultrashort-pulse laser treatment in the crystalline lens does not form a focal, progressive, or vision-threatening cataract. An Nd:vanadate picosecond laser (10 ps) with prototype delivery system was used. Primates: 11 rhesus monkey eyes were prospectively treated at the University of Wisconsin (energy 25-45 μJ/pulse and 2.0-11.3M pulses per lens). Analysis of lens clarity and fundus imaging was assessed postoperatively for up to 4½ years (5 eyes). Humans: 80 presbyopic patients were prospectively treated in one eye at the Asian Eye Institute in the Philippines (energy 10 μJ/pulse and 0.45-1.45M pulses per lens). Analysis of lens clarity, best-corrected visual acuity, and subjective symptoms was performed at 1 month, prior to elective lens extraction. Bubbles were immediately seen, with resolution within the first 24 to 48 hours. Afterwards, the laser pattern could be seen with faint, noncoalescing, pinpoint micro-opacities in both primate and human eyes. In primates, long-term follow-up at 4½ years showed no focal or progressive cataract, except in 2 eyes with preexisting cataract. In humans, <25% of patients with central sparing (0.75 and 1.0 mm radius) lost 2 or more lines of best spectacle-corrected visual acuity at 1 month, and >70% reported acceptable or better distance vision and no or mild symptoms. Meanwhile, >70% without sparing (0 and 0.5 mm radius) lost 2 or more lines, and most reported poor or severe vision and symptoms. Focal, progressive, and vision-threatening cataracts can be avoided by lowering the laser energy, avoiding prior cataract, and sparing the center of the lens.
Krueger, Ronald R.; Uy, Harvey; McDonald, Jared; Edwards, Keith
2012-01-01
Purpose: To demonstrate that ultrashort-pulse laser treatment in the crystalline lens does not form a focal, progressive, or vision-threatening cataract. Methods: An Nd:vanadate picosecond laser (10 ps) with prototype delivery system was used. Primates: 11 rhesus monkey eyes were prospectively treated at the University of Wisconsin (energy 25–45 μJ/pulse and 2.0–11.3M pulses per lens). Analysis of lens clarity and fundus imaging was assessed postoperatively for up to 4½ years (5 eyes). Humans: 80 presbyopic patients were prospectively treated in one eye at the Asian Eye Institute in the Philippines (energy 10 μJ/pulse and 0.45–1.45M pulses per lens). Analysis of lens clarity, best-corrected visual acuity, and subjective symptoms was performed at 1 month, prior to elective lens extraction. Results: Bubbles were immediately seen, with resolution within the first 24 to 48 hours. Afterwards, the laser pattern could be seen with faint, noncoalescing, pinpoint micro-opacities in both primate and human eyes. In primates, long-term follow-up at 4½ years showed no focal or progressive cataract, except in 2 eyes with preexisting cataract. In humans, <25% of patients with central sparing (0.75 and 1.0 mm radius) lost 2 or more lines of best spectacle-corrected visual acuity at 1 month, and >70% reported acceptable or better distance vision and no or mild symptoms. Meanwhile, >70% without sparing (0 and 0.5 mm radius) lost 2 or more lines, and most reported poor or severe vision and symptoms. Conclusions: Focal, progressive, and vision-threatening cataracts can be avoided by lowering the laser energy, avoiding prior cataract, and sparing the center of the lens. PMID:23818739
Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi)
Veilleux, Carrie C.; Scarry, Clara J.; Di Fiore, Anthony; Kirk, E. Christopher; Bolnick, Deborah A.; Lewis, Rebecca J.
2016-01-01
In some primate lineages, polymorphisms in the X-linked M/LWS opsin gene have produced intraspecific variation in color vision. In these species, heterozygous females exhibit trichromacy, while males and homozygous females exhibit dichromacy. The evolutionary persistence of these polymorphisms suggests that balancing selection maintains color vision variation, possibly through a ‘trichromat advantage’ in detecting yellow/orange/red foods against foliage. We identified genetic evidence of polymorphic trichromacy in a population of Verreaux’s sifaka (Propithecus verreauxi) at Kirindy Mitea National Park in Madagascar, and explored effects of color vision on reproductive success and feeding behavior using nine years of morphological, demographic, and feeding data. We found that trichromats and dichromats residing in social groups with trichromats exhibit higher body mass indices than individuals in dichromat-only groups. Additionally, individuals in a trichromat social group devoted significantly more time to fruit feeding and had longer fruit feeding bouts than individuals in dichromat-only groups. We hypothesize that, due to small, cohesive sifaka social groups, a trichromat advantage in detecting productive fruit patches during the energetically stressful dry season also benefits dichromats in a trichromat’s group. Our results offer the first support for the ‘mutual benefit of association’ hypothesis regarding the maintenance of polymorphic trichromacy in primates. PMID:27910919
Enhanced HMAX model with feedforward feature learning for multiclass categorization.
Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu
2015-01-01
In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.
Gene therapy for red-green colour blindness in adult primates
Mancuso, Katherine; Hauswirth, William W.; Li, Qiuhong; Connor, Thomas B.; Kuchenbecker, James A.; Mauck, Matthew C.; Neitz, Jay; Neitz, Maureen
2009-01-01
Red-green colour blindness, which results from the absence of either the long- (L) or middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here, the possibility of curing colour blindness using gene therapy was explored in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments1 have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that treatment of congenital vision disorders would be ineffective unless administered to the very young. Here, however, addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders. PMID:19759534
Gene therapy for red-green colour blindness in adult primates.
Mancuso, Katherine; Hauswirth, William W; Li, Qiuhong; Connor, Thomas B; Kuchenbecker, James A; Mauck, Matthew C; Neitz, Jay; Neitz, Maureen
2009-10-08
Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders.
Time, Space and Form in Vision
1988-11-01
design of the eye and visual cortex," The Ferrier Lecture, 1980, Proc. R. Soc. London B 212, 1-34, 1981. Barlow, H.B. & Levick , W.R., "The mechanism... Levick 1965], but things cannot be so simple in primates. This is because cells with significant directional selectivity do not appear in primates...mechanism and that something similar operates in the retina of rabbits [Barlow & Levick 1965]. Motivated by experimental findings (e.g. anti- inhibition
Functional preservation and variation in the cone opsin genes of nocturnal tarsiers
Ong, Perry S.; Perry, George H.
2017-01-01
The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers—which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW—confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey–background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo. This article is part of the themed issue ‘Vision in dim light’. PMID:28193820
Neurons in the monkey amygdala detect eye-contact during naturalistic social interactions
Mosher, Clayton P.; Zimmerman, Prisca E.; Gothard, Katalin M.
2014-01-01
Summary Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea while fixations stabilize the image [1]. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others [2]. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status [3-6]. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations at the eyes of others and to eye contact. These “eye cells” share several features with the canonical, visually responsive neurons in the monkey amygdala, however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade, or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye-movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. PMID:25283782
Neurons in the monkey amygdala detect eye contact during naturalistic social interactions.
Mosher, Clayton P; Zimmerman, Prisca E; Gothard, Katalin M
2014-10-20
Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea, while fixations stabilize the image. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations on the eyes of others and to eye contact. These "eye cells" share several features with the canonical, visually responsive neurons in the monkey amygdala; however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. Copyright © 2014 Elsevier Ltd. All rights reserved.
Serial and Parallel Processing in the Primate Auditory Cortex Revisited
Recanzone, Gregg H.; Cohen, Yale E.
2009-01-01
Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473
Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.
Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M
2011-09-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.
Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia
Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.
2011-01-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036
Transient visual pathway critical for normal development of primate grasping behavior.
Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A
2018-02-06
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
What aspects of vision facilitate haptic processing?
Millar, Susanna; Al-Attar, Zainab
2005-12-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
NASA Astrophysics Data System (ADS)
Hecht, Erin
2016-03-01
As Arbib [1] notes, the two-streams hypothesis [5] has provided a powerful explanatory framework for understanding visual processing. The inferotemporal ventral stream recognizes objects and agents - ;what; one is seeing. The dorsal ;how; or ;where; stream through parietal cortex processes motion, spatial location, and visuo-proprioceptive relationships - ;vision for action.; Hickock and Poeppel's [3] extension of this model to the auditory system raises the question of deeper, multi- or supra-sensory themes in dorsal vs. ventral processing. Petrides and Pandya [10] postulate that the evolution of language may have been influenced by the fact that the dorsal stream terminates in posterior Broca's area (BA44) while the ventral stream terminates in anterior Broca's area (BA45). In an intriguing potential parallel, a recent ALE metanalysis of 54 fMRI studies found that semantic processing is located more anteriorly and superiorly than syntactic processing in Broca's area [13]. But clearly, macaques do not have language, nor other likely pre- or co-adaptations to language, such as complex imitation and tool use. What changed in the brain that enabled these functions to evolve?
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.
2016-01-01
In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315
Melin, Amanda D; Matsushita, Yuka; Moritz, Gillian L; Dominy, Nathaniel J; Kawamura, Shoji
2013-05-22
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal-diurnal dichotomy that has long informed debate on the origin of anthropoid primates.
Melin, Amanda D.; Matsushita, Yuka; Moritz, Gillian L.; Dominy, Nathaniel J.; Kawamura, Shoji
2013-01-01
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates. PMID:23536597
Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim
2012-01-01
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809
Imaging light responses of foveal ganglion cells in the living macaque eye.
Yin, Lu; Masella, Benjamin; Dalkara, Deniz; Zhang, Jie; Flannery, John G; Schaffer, David V; Williams, David R; Merigan, William H
2014-05-07
The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.
Effects of local myopic defocus on refractive development in monkeys.
Smith, Earl L; Hung, Li-Fang; Huang, Juan; Arumugam, Baskar
2013-11-01
Visual signals that produce myopia are mediated by local, regionally selective mechanisms. However, little is known about spatial integration for signals that slow eye growth. The purpose of this study was to determine whether the effects of myopic defocus are integrated in a local manner in primates. Beginning at 24 ± 2 days of age, seven rhesus monkeys were reared with monocular spectacles that produced 3 diopters (D) of relative myopic defocus in the nasal visual field of the treated eye but allowed unrestricted vision in the temporal field (NF monkeys). Seven monkeys were reared with monocular +3 D lenses that produced relative myopic defocus across the entire field of view (FF monkeys). Comparison data from previous studies were available for 11 control monkeys, 8 monkeys that experienced 3 D of hyperopic defocus in the nasal field, and 6 monkeys exposed to 3 D of hyperopic defocus across the entire field. Refractive development, corneal power, and axial dimensions were assessed at 2- to 4-week intervals using retinoscopy, keratometry, and ultrasonography, respectively. Eye shape was assessed using magnetic resonance imaging. In response to full-field myopic defocus, the FF monkeys developed compensating hyperopic anisometropia, the degree of which was relatively constant across the horizontal meridian. In contrast, the NF monkeys exhibited compensating hyperopic changes in refractive error that were greatest in the nasal visual field. The changes in the pattern of peripheral refractions in the NF monkeys reflected interocular differences in vitreous chamber shape. As with form deprivation and hyperopic defocus, the effects of myopic defocus are mediated by mechanisms that integrate visual signals in a local, regionally selective manner in primates. These results are in agreement with the hypothesis that peripheral vision can influence eye shape and potentially central refractive error in a manner that is independent of central visual experience.
NASA Astrophysics Data System (ADS)
Julesz, Bela
1989-08-01
A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)
Role of high-order aberrations in senescent changes in spatial vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliot, S; Choi, S S; Doble, N
2009-01-06
The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18-81 years. Contrast sensitivity was measured monocularly using a two-alternative forced choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefitmore » at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.« less
Smith, Earl L.
2011-01-01
It is well established that refractive development is regulated by visual feedback. However, most optical treatment strategies designed to reduce myopia progression have not produced the desired results, primarily because some of our assumptions concerning the operating characteristics of the vision-dependent mechanisms that regulate refractive development have been incorrect. In particular, because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea determine the effects of vision on refractive development. However, experiments in laboratory animals demonstrate that ocular growth and emmetropization are mediated by local retinal mechanisms and that foveal vision is not essential for many vision-dependent aspects of refractive development. On the other hand, the peripheral retina, in isolation, can effectively regulate emmetropization and mediate many of the effects of vision on the eye’s refractive status. Moreover, when there are conflicting visual signals between the fovea and the periphery, peripheral vision can dominate refractive development. The overall pattern of results suggests that optical treatment strategies for myopia that take into account the effects of peripheral vision are likely to be more successful than strategies that effectively manipulate only central vision. PMID:21747306
The genetics of normal and defective color vision
Neitz, Jay; Neitz, Maureen
2011-01-01
The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectrum of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. PMID:21167193
Gaffan, D
1998-11-01
Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.
Spatial processing in the auditory cortex of the macaque monkey
NASA Astrophysics Data System (ADS)
Recanzone, Gregg H.
2000-10-01
The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.
The primate fovea: Structure, function and development.
Bringmann, Andreas; Syrbe, Steffen; Görner, Katja; Kacza, Johannes; Francke, Mike; Wiedemann, Peter; Reichenbach, Andreas
2018-03-30
A fovea is a pitted invagination in the inner retinal tissue (fovea interna) that overlies an area of photoreceptors specialized for high acuity vision (fovea externa). Although the shape of the vertebrate fovea varies considerably among the species, there are two basic types. The retina of many predatory fish, reptilians, and birds possess one (or two) convexiclivate fovea(s), while the retina of higher primates contains a concaviclivate fovea. By refraction of the incoming light, the convexiclivate fovea may function as image enlarger, focus indicator, and movement detector. By centrifugal displacement of the inner retinal layers, which increases the transparency of the central foveal tissue (the foveola), the primate fovea interna improves the quality of the image received by the central photoreceptors. In this review, we summarize ‒ with the focus on Müller cells of the human and macaque fovea ‒ data regarding the structure of the primate fovea, discuss various aspects of the optical function of the fovea, and propose a model of foveal development. The "Müller cell cone" of the foveola comprises specialized Müller cells which do not support neuronal activity but may serve optical and structural functions. In addition to the "Müller cell cone", structural stabilization of the foveal morphology may be provided by the 'z-shaped' Müller cells of the fovea walls, via exerting tractional forces onto Henle fibers. The spatial distribution of glial fibrillary acidic protein may suggest that the foveola and the Henle fiber layer are subjects to mechanical stress. During development, the foveal pit is proposed to be formed by a vertical contraction of the centralmost Müller cells. After widening of the foveal pit likely mediated by retracting astrocytes, Henle fibers are formed by horizontal contraction of Müller cell processes in the outer plexiform layer and the centripetal displacement of photoreceptors. A better understanding of the molecular, cellular, and mechanical factors involved in the developmental morphogenesis and the structural stabilization of the fovea may help to explain the (patho-) genesis of foveal hypoplasia and macular holes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Visuospatial selective attention in chickens.
Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I
2014-05-13
Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.
Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.
Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas
2014-01-01
The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.
Huang, Juan; Hung, Li-Fang; Smith, Earl L.
2012-01-01
This study aimed to investigate the changes in ocular shape and relative peripheral refraction during the recovery from myopia produced by form deprivation (FD) and hyperopic defocus. FD was imposed in 6 monkeys by securing a diffuser lens over one eye; hyperopic defocus was produced in another 6 monkeys by fitting one eye with -3D spectacle. When unrestricted vision was re-established, the treated eyes recovered from the vision-induced central and peripheral refractive errors. The recovery of peripheral refractive errors was associated with corresponding changes in the shape of the posterior globe. The results suggest that vision can actively regulate ocular shape and the development of central and peripheral refractions in infant primates. PMID:23026012
Image enhancement filters significantly improve reading performance for low vision observers
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1992-01-01
As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.
Melin, Amanda D; Moritz, Gillian L; Fosbury, Robert A E; Kawamura, Shoji; Dominy, Nathaniel J
2012-03-01
The capacity for cone-mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short-wavelength-sensitive-1 (SWS1) opsin pigment gene. In other species, such as the aye-aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye-ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (lambda(max)) of 406 nm, which is -20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual lambda(max) of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye-ayes. We draw attention to the twilight activities of aye-ayes and report that twilight is enriched in short-wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone-mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye-ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.
The evolution of the complex sensory and motor systems of the human brain.
Kaas, Jon H
2008-03-18
Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.
Multisensory guidance of orienting behavior.
Maier, Joost X; Groh, Jennifer M
2009-12-01
We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.
Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.
2015-01-01
The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766
Convergent evolution of complex brains and high intelligence
Roth, Gerhard
2015-01-01
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042
Chinellato, Eris; Del Pobil, Angel P
2009-06-01
The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.
Chen, Yuhan; Wang, Shengjun
2017-01-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong
2017-09-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.
Smith, Earl L; Huang, Juan; Hung, Li-Fang; Blasdel, Terry L; Humbird, Tammy L; Bockhorst, Kurt H
2009-11-01
To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys. Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers. Refractive development was assessed by retinoscopy performed along the pupillary axis and at eccentricities of 15 degrees, 30 degrees, and 45 degrees. Central axial dimensions and eye shape were assessed by A-scan ultrasonography and magnetic resonance imaging, respectively. Hemiretinal form deprivation altered refractive development in a regionally selective manner, typically producing myopia in the treated hemifields. In particular, six of the NFD monkeys exhibited substantial amounts (-1.81 to -9.00 D) of relative myopia in the nasal field that were most obvious at the 15 degrees and 30 degrees nasal field eccentricities. The other three NFD monkeys exhibited small amounts of relative hyperopia in the treated field. The alterations in peripheral refraction were associated with local, region-specific alterations in vitreous chamber depth in the treated hemiretina. The effects of form deprivation on refractive development and eye growth in primates are mediated by mechanisms, presumably retinal, that integrate visual signals in a spatially restricted manner and exert their influence locally.
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610
Multisensory integration and internal models for sensing gravity effects in primates.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
The genetics of normal and defective color vision.
Neitz, Jay; Neitz, Maureen
2011-04-13
The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. Copyright © 2010 Elsevier Ltd. All rights reserved.
Remote monitoring of primates using automated GPS technology in open habitats.
Markham, A Catherine; Altmann, Jeanne
2008-05-01
Automated tracking using a satellite global position system (GPS) has major potential as a research tool in studies of primate ecology. However, implementation has been limited, at least partly because of technological difficulties associated with the dense forest habitat of many primates. In contrast, primates inhabiting relatively open environments may provide ideal subjects for use of GPS collars, yet no empirical tests have evaluated this proposition. Here, we used an automated GPS collar to record the locations, approximate body surface temperature, and activity for an adult female baboon during 90 days in the savannah habitat of Amboseli, Kenya. Given the GPS collar's impressive reliability, high spatial accuracy, other associated measurements, and low impact on the study animal, our results indicate the great potential of applying GPS technology to research on wild primates. © 2008 Wiley-Liss, Inc.
Convergent evolution of complex brains and high intelligence.
Roth, Gerhard
2015-12-19
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).
Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B
2014-01-01
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.
The Impact of Residual Vision in Spatial Skills of Individuals with Visual Impairments
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea
2011-01-01
Loss of vision is believed to have a great impact on the acquisition of spatial knowledge. The aims of the present study are to examine the performance of individuals with visual impairments on spatial tasks and the impact of residual vision on processing these tasks. In all, 28 individuals with visual impairments--blindness or low…
Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J; Cullen, Kathleen E
2017-04-15
In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power-law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self-motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self-motion stimuli are fundamentally different in rodents and primates. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J.
2017-01-01
Key points In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential.Mice and non‐human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies.Here we investigated the structure and statistics of the vestibular input experienced by mice versus non‐human primates during natural behaviours, and found important differences.Our data establish that the structure and statistics of natural signals in non‐human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input.These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. Abstract It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self‐motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self‐motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self‐motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power‐law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self‐motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self‐motion stimuli are fundamentally different in rodents and primates. PMID:28083981
Indoor Spatial Updating With Impaired Vision
Legge, Gordon E.; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-01-01
Purpose Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Methods Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. Results The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. Conclusions People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient. PMID:27978556
Indoor Spatial Updating With Impaired Vision.
Legge, Gordon E; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-12-01
Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient.
Evolution of the circuitry for conscious color vision in primates
Neitz, J; Neitz, M
2017-01-01
There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision. PMID:27935605
Evolution of the circuitry for conscious color vision in primates.
Neitz, J; Neitz, M
2017-02-01
There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.
The evolution of the complex sensory and motor systems of the human brain
Kaas, Jon H.
2008-01-01
Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903
Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.
Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao
2013-11-19
Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.
Chimpanzees and Bonobos Exhibit Divergent Spatial Memory Development
ERIC Educational Resources Information Center
Rosati, Alexandra G.; Hare, Brian
2012-01-01
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can…
Osorio, D; Ruderman, D L; Cronin, T W
1998-01-01
Both long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cones contribute to luminance mechanisms in human vision. This means that luminance and chromatic signals may be confounded. We use power spectra from natural images to estimate the magnitude of the corruption of luminance signals encoded by an array of retinal ganglion cells resembling the primate magnocellular neurons. The magnitude of this corruption is dependent on the cone lattice and is most severe where cones form clumps of a single spectral type. We find that chromatic corruption may equal or exceed the amplitude of other sources of noise and so could impose constraints on visual performance and on eye design.
Reduced vision selectively impairs spatial updating in fall-prone older adults.
Barrett, Maeve M; Doheny, Emer P; Setti, Annalisa; Maguinness, Corrina; Foran, Timothy G; Kenny, Rose Anne; Newell, Fiona N
2013-01-01
The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant's return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.
Mechanisms, functions and ecology of colour vision in the honeybee.
Hempel de Ibarra, N; Vorobyev, M; Menzel, R
2014-06-01
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Why is a landscape perspective important in studies of primates?
Arroyo-Rodríguez, Víctor; Fahrig, Lenore
2014-10-01
With accelerated deforestation and fragmentation through the tropics, assessing the impact that landscape spatial changes may have on biodiversity is paramount, as this information is required to design and implement effective management and conservation plans. Primates are expected to be particularly dependent on the landscape context; yet, our understanding on this topic is limited as the majority of primate studies are at the local scale, meaning that landscape-scale inferences are not possible. To encourage primatologists to assess the impact of landscape changes on primates, and help future studies on the topic, we describe the meaning of a "landscape perspective" and evaluate important assumptions of using such a methodological approach. We also summarize a number of important, but unanswered, questions that can be addressed using a landscape-scale study design. For example, it is still unclear if habitat loss has larger consistent negative effects on primates than habitat fragmentation per se. Furthermore, interaction effects between habitat area and other landscape effects (e.g., fragmentation) are unknown for primates. We also do not know if primates are affected by synergistic interactions among factors at the landscape scale (e.g., habitat loss and diseases, habitat loss and climate change, hunting, and land-use change), or whether landscape complexity (or landscape heterogeneity) is important for primate conservation. Testing for patterns in the responses of primates to landscape change will facilitate the development of new guidelines and principles for improving primate conservation. © 2014 Wiley Periodicals, Inc.
Efferent influences on the bioelectrical activity of the retina in primates.
Ortiz, Gonzalo; Odom, J Vernon; Passaglia, Christopher L; Tzekov, Radouil T
2017-02-01
The existence of retinopetal (sometimes referred to as "efferent" or "centrifugal") axons in the mammalian optic nerve is a topic of long-standing debate. Opposition is fading as efferent innervation of the retina has now been widely documented in rodents and other animals. The existence and function of an efferent system in humans and non-human primates has not, though, been definitively established. Such a feedback pathway could have important functional, clinical, and experimental significance to the field of vision science and ophthalmology. Following a comprehensive literature review (PubMed and Google Scholar, until July 2016), we present evidence regarding a system that can influence the bioelectrical activity of the retina in primates. Anatomical and physiological evidences are presented separately. Improvements in histological staining and the advent of retrograde nerve fiber tracers have allowed for more confidence in the identification of efferent optic nerve fibers, including back to their point of origin. Even with the accumulation of more modern anatomical and physiological evidence, some limitations and uncertainties about crucial details regarding the origins and role of a top-down, efferent system still exist. However, the summary of the evidence from earlier and more modern studies makes a compelling case in support of such a system in humans and non-human primates.
Training improves reading speed in peripheral vision: is it due to attention?
Lee, Hye-Won; Kwon, Miyoung; Legge, Gordon E; Gefroh, Joshua J
2010-06-01
Previous research has shown that perceptual training in peripheral vision, using a letter-recognition task, increases reading speed and letter recognition (S. T. L. Chung, G. E. Legge, & S. H. Cheung, 2004). We tested the hypothesis that enhanced deployment of spatial attention to peripheral vision explains this training effect. Subjects were pre- and post-tested with 3 tasks at 10° above and below fixation-RSVP reading speed, trigram letter recognition (used to construct visual-span profiles), and deployment of spatial attention (measured as the benefit of a pre-cue for target position in a lexical-decision task). Groups of five normally sighted young adults received 4 days of trigram letter-recognition training in upper or lower visual fields, or central vision. A control group received no training. Our measure of deployment of spatial attention revealed visual-field anisotropies; better deployment of attention in the lower field than the upper, and in the lower-right quadrant compared with the other three quadrants. All subject groups exhibited slight improvement in deployment of spatial attention to peripheral vision in the post-test, but this improvement was not correlated with training-related increases in reading speed and the size of visual-span profiles. Our results indicate that improved deployment of spatial attention to peripheral vision does not account for improved reading speed and letter recognition in peripheral vision.
Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex
Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.
2009-01-01
‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492
Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica
2017-01-01
The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040
Death of the (traveling) salesman: primates do not show clear evidence of multi-step route planning.
Janson, Charles
2014-05-01
Several comparative studies have linked larger brain size to a fruit-eating diet in primates and other animals. The general explanation for this correlation is that fruit is a complex resource base, consisting of many discrete patches of many species, each with distinct nutritional traits, the production of which changes predictably both within and between seasons. Using this information to devise optimal spatial foraging strategies is among the most difficult problems to solve in all of mathematics, a version of the famous Traveling Salesman Problem. Several authors have suggested that primates might use their large brains and complex cognition to plan foraging strategies that approximate optimal solutions to this problem. Three empirical studies have examined how captive primates move when confronted with the simplest version of the problem: a spatial array of equally valuable goals. These studies have all concluded that the subjects remember many food source locations and show very efficient travel paths; some authors also inferred that the subjects may plan their movements based on considering combinations of three or more future goals at a time. This analysis re-examines critically the claims of planned movement sequences from the evidence presented. The efficiency of observed travel paths is largely consistent with use of the simplest of foraging rules, such as visiting the nearest unused "known" resource. Detailed movement sequences by test subjects are most consistent with a rule that mentally sums spatial information from all unused resources in a given trial into a single "gravity" measure that guides movements to one destination at a time. © 2013 Wiley Periodicals, Inc.
Noncoding origins of anthropoid traits and a new null model of transposon functionalization
del Rosario, Ricardo C.H.; Rayan, Nirmala Arul
2014-01-01
Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the “gene-battery” model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. PMID:25043600
Deployment of spatial attention to words in central and peripheral vision.
Ducrot, Stéphanie; Grainger, Jonathan
2007-05-01
Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.
Visual development in primates: Neural mechanisms and critical periods
Kiorpes, Lynne
2015-01-01
Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the LGN. In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development. PMID:25649764
TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues
NASA Astrophysics Data System (ADS)
Cohen, Ethan D.
2007-06-01
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Exploration, anxiety, and spatial memory in transgenic anophthalmic mice.
Buhot, M C; Dubayle, D; Malleret, G; Javerzat, S; Segu, L
2001-04-01
Contradictory results are found in the literature concerning the role of vision in the perception of space or in spatial navigation, in part because of the lack of murine models of total blindness used so far. The authors evaluated the spatial abilities of anophthalmic transgenic mice. These mice did not differ qualitatively from their wild-type littermates in general locomotor activity, spontaneous alternation, object exploration, or anxiety, but their level of exploratory activity was generally lower. In the spatial version of the water maze, they displayed persistent thigmotaxic behavior and showed severe spatial learning impairments. However, their performances improved with training, suggesting that they may have acquired a rough representation of the platform position. These results suggest that modalities other than vision enable some degree of spatial processing in proximal and structured spaces but that vision is critical for accurate spatial navigation.
Food color is in the eye of the beholder: the role of human trichromatic vision in food evaluation.
Foroni, Francesco; Pergola, Giulio; Rumiati, Raffaella Ida
2016-11-14
Non-human primates evaluate food quality based on brightness of red and green shades of color, with red signaling higher energy or greater protein content in fruits and leafs. Despite the strong association between food and other sensory modalities, humans, too, estimate critical food features, such as calorie content, from vision. Previous research primarily focused on the effects of color on taste/flavor identification and intensity judgments. However, whether evaluation of perceived calorie content and arousal in humans are biased by color has received comparatively less attention. In this study we showed that color content of food images predicts arousal and perceived calorie content reported when viewing food even when confounding variables were controlled for. Specifically, arousal positively co-varied with red-brightness, while green-brightness was negatively associated with arousal and perceived calorie content. This result holds for a large array of food comprising of natural food - where color likely predicts calorie content - and of transformed food where, instead, color is poorly diagnostic of energy content. Importantly, this pattern does not emerged with nonfood items. We conclude that in humans visual inspection of food is central to its evaluation and seems to partially engage the same basic system as non-human primates.
Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus)
Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida
2015-01-01
New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets’ (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming “U” and inverted “U” patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period. PMID:26047350
Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus).
Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida
2015-01-01
New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets' (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming "U" and inverted "U" patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period.
Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes
Van Le, Quan; Isbell, Lynne A.; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S.; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao
2013-01-01
Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates’ heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage. PMID:24167268
Homman-Ludiye, Jihane; Bourne, James A.
2014-01-01
The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460
Emotion improves and impairs early vision.
Bocanegra, Bruno R; Zeelenberg, René
2009-06-01
Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.
Jordan, Timothy R; McGowan, Victoria A; Paterson, Kevin B
2014-06-01
When reading, low-level visual properties of text are acquired from central vision during brief fixational pauses, but the effectiveness of these properties may differ in older age. To investigate, a filtering technique displayed the low, medium, or high spatial frequencies of text falling within central vision as young (18-28 years) and older (65+ years) adults read. Reading times for normal text did not differ across age groups, but striking differences in the effectiveness of spatial frequencies were observed. Consequently, even when young and older adults read equally well, the effectiveness of spatial frequencies in central vision differs markedly in older age. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Bowler, Mark; Anderson, Matt; Montes, Daniel; Pérez, Pedro; Mayor, Pedro
2014-01-01
Primates are frequently hunted in Amazonia. Assessing the sustainability of hunting is essential to conservation planning. The most-used sustainability model, the ‘Production Model’, and more recent spatial models, rely on basic reproductive parameters for accuracy. These parameters are often crudely estimated. To date, parameters used for the Amazon’s most-hunted primate, the woolly monkey (Lagothrix spp.), come from captive populations in the 1960s, when captive births were rare. Furthermore, woolly monkeys have since been split into five species. We provide reproductive parameters calculated by examining the reproductive organs of female Poeppig’s woolly monkeys (Lagothrix poeppigii), collected by hunters as part of their normal subsistence activity. Production was 0.48–0.54 young per female per year, and an interbirth interval of 22.3 to 25.2 months, similar to parameters from captive populations. However, breeding was seasonal, which imposes limits on the maximum reproductive rate attainable. We recommend the use of spatial models over the Production Model, since they are less sensitive to error in estimated reproductive rates. Further refinements to reproductive parameters are needed for most primate taxa. Methods like ours verify the suitability of captive reproductive rates for sustainability analysis and population modelling for populations under differing conditions of hunting pressure and seasonality. Without such research, population modelling is based largely on guesswork. PMID:24714614
Emotion-induced trade-offs in spatiotemporal vision.
Bocanegra, Bruno R; Zeelenberg, René
2011-05-01
It is generally assumed that emotion facilitates human vision in order to promote adaptive responses to a potential threat in the environment. Surprisingly, we recently found that emotion in some cases impairs the perception of elementary visual features (Bocanegra & Zeelenberg, 2009b). Here, we demonstrate that emotion improves fast temporal vision at the expense of fine-grained spatial vision. We tested participants' threshold resolution with Landolt circles containing a small spatial or brief temporal discontinuity. The prior presentation of a fearful face cue, compared with a neutral face cue, impaired spatial resolution but improved temporal resolution. In addition, we show that these benefits and deficits were triggered selectively by the global configural properties of the faces, which were transmitted only through low spatial frequencies. Critically, the common locus of these opposite effects suggests a trade-off between magno- and parvocellular-type visual channels, which contradicts the common assumption that emotion invariably improves vision. We show that, rather than being a general "boost" for all visual features, affective neural circuits sacrifice the slower processing of small details for a coarser but faster visual signal.
Differential effects of non-informative vision and visual interference on haptic spatial processing
van Rheede, Joram J.; Postma, Albert; Kappers, Astrid M. L.
2008-01-01
The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline to determine the participant-dependent biasing influence of the egocentric reference frame. As expected, large systematic participant-dependent deviations from veridicality were observed. In the second experiment we probed the effect of non-informative vision on the egocentric bias. Moreover, orienting mechanisms (gazing directions) were studied with respect to the presentation of haptic information in a specific hemispace. Non-informative vision proved to have a beneficial effect on haptic spatial processing. No effect of gazing direction or hemispace was observed. In the third experiment we investigated the effect of simultaneously presented interfering visual information on the haptic bias. Interfering visual information parametrically influenced haptic performance. The interplay of reference frames that subserves haptic spatial processing was found to be related to both the effects of non-informative vision and visual interference. These results suggest that spatial representations are influenced by direct cross-modal interactions; inter-participant differences in the haptic modality resulted in differential effects of the visual modality. PMID:18553074
Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging
Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole
2008-01-01
Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742
Spatial Probability Dynamically Modulates Visual Target Detection in Chickens
Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.
2013-01-01
The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188
Long-term consistency in spatial patterns of primate seed dispersal.
Heymann, Eckhard W; Culot, Laurence; Knogge, Christoph; Noriega Piña, Tony Enrique; Tirado Herrera, Emérita R; Klapproth, Matthias; Zinner, Dietmar
2017-03-01
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long-term consistency of spatial patterns of seed dispersal. We examined the long-term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis , the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial-genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long-term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.
Noncoding origins of anthropoid traits and a new null model of transposon functionalization.
del Rosario, Ricardo C H; Rayan, Nirmala Arul; Prabhakar, Shyam
2014-09-01
Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. © 2014 del Rosario et al.; Published by Cold Spring Harbor Laboratory Press.
Semicircular Canal Size and Locomotion in Colobine Monkeys: A Cautionary Tale.
Rae, Todd C; Johnson, Paul Martin; Yano, Wataru; Hirasaki, Eishi
2016-01-01
The semicircular canals of the inner ear constitute the organ of balance, tracking head rotation during movement and facilitating stabilisation of vision. Morphological characteristics of the canals are correlated with agility scores related to locomotion. To date, however, the relationship between canal morphology and specific locomotor behaviours, such as leaping, is unclear. Knowledge of such a relationship could strengthen the inferences of locomotion of extinct taxa. To test this, crania of two sets of closely related primate species (Presbytis melalophos and P. potenziani; Colobus guereza and C. polykomos) that differ in the percentage of leaping in their locomotor repertoire were examined using microscopic computed tomography. Three-dimensional virtual models of the bony labyrinth were derived, and the radius of curvature of each of the three canals was evaluated relative to cranial size. The findings are contradictory; one leaping form (P. melalophos) differs from its congener in possessing significantly larger lateral canals, a pattern seen in previous studies of primates, while the other leaper (C. guereza) has significantly smaller posterior canals than its close relative. These results undermine efforts to determine specific locomotor behaviours from the bony labyrinth of extinct primates. © 2016 S. Karger AG, Basel.
Retinex at 50: color theory and spatial algorithms, a review
NASA Astrophysics Data System (ADS)
McCann, John J.
2017-05-01
Retinex Imaging shares two distinct elements: first, a model of human color vision; second, a spatial-imaging algorithm for making better reproductions. Edwin Land's 1964 Retinex Color Theory began as a model of human color vision of real complex scenes. He designed many experiments, such as Color Mondrians, to understand why retinal cone quanta catch fails to predict color constancy. Land's Retinex model used three spatial channels (L, M, S) that calculated three independent sets of monochromatic lightnesses. Land and McCann's lightness model used spatial comparisons followed by spatial integration across the scene. The parameters of their model were derived from extensive observer data. This work was the beginning of the second Retinex element, namely, using models of spatial vision to guide image reproduction algorithms. Today, there are many different Retinex algorithms. This special section, "Retinex at 50," describes a wide variety of them, along with their different goals, and ground truths used to measure their success. This paper reviews (and provides links to) the original Retinex experiments and image-processing implementations. Observer matches (measuring appearances) have extended our understanding of how human spatial vision works. This paper describes a collection very challenging datasets, accumulated by Land and McCann, for testing algorithms that predict appearance.
Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.
Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M
2017-01-25
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.
Invariant visual object recognition and shape processing in rats
Zoccolan, Davide
2015-01-01
Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
Avian visual behavior and the organization of the telencephalon.
Shimizu, Toru; Patton, Tadd B; Husband, Scott A
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.
Avian Visual Behavior and the Organization of the Telencephalon
Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296
Capruso, Daniel X; Hamsher, Kerry deS
2011-06-01
Clinical evaluation and research on constructional ability have come to rely almost exclusively on two-dimensional tasks such as graphomotor copying or mosaic Block Design (BD). A return to the inclusion of a third dimension in constructional tests may increase the spatial demands of the task, and improve understanding of the relationship between visual perception and constructional ability in patients with cerebral disease. Subjects were patients (n=43) with focal or multifocal cerebrovascular lesions as determined by CT or MRI. Tests of temporal orientation, verbal intelligence, language, object vision and spatial vision were used to determine which factors were predictive of performance on two-dimensional BD and Three-Dimensional Block Construction (3-DBC) tasks. Stepwise linear regression indicated that spatial vision predicted BD performance, and was even more strongly predictive of 3-DBC. Other cognitive domains did not account for significant additional variance in performance of either BD or 3-DBC. Bilateral cerebral lesions produced more severe deficits on BD than did unilateral cerebral lesions. The presence of a posterior cerebral lesion was the significant factor in producing deficits in 3-DBC. The spatial aspect of a constructional task is enhanced when the patient is required to assemble an object in all three dimensions of space. In the typical patient with cerebrovascular disease, constructional deficits typically occur in the context of a wider syndrome of deficits in spatial vision. Copyright © 2010 Elsevier Srl. All rights reserved.
Low, slow, small target recognition based on spatial vision network
NASA Astrophysics Data System (ADS)
Cheng, Zhao; Guo, Pei; Qi, Xin
2018-03-01
Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.
NASA Technical Reports Server (NTRS)
Sutro, L. L.; Lerman, J. B.
1973-01-01
The operation of a system is described that is built both to model the vision of primate animals, including man, and serve as a pre-prototype of possible object recognition system. It was employed in a series of experiments to determine the practicability of matching left and right images of a scene to determine the range and form of objects. The experiments started with computer generated random-dot stereograms as inputs and progressed through random square stereograms to a real scene. The major problems were the elimination of spurious matches, between the left and right views, and the interpretation of ambiguous regions, on the left side of an object that can be viewed only by the left camera, and on the right side of an object that can be viewed only by the right camera.
Moritz, Gillian L; Lim, Norman T-L; Neitz, Maureen; Peichl, Leo; Dominy, Nathaniel J
2013-01-01
A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo ( Galeopterus variegatus ) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.
Maseko, Busisiwe C; Bourne, James A; Manger, Paul R
2007-11-01
Over the past decade much controversy has surrounded the hypothesis that the megachiroptera, or megabats, share unique neural characteristics with the primates. These observations, which include similarities in visual pathways, have suggested that the megabats are more closely related to the primates than to the other group of the Chiropteran order, the microbats, and suggests a diphyletic origin of the Chiroptera. To contribute data relevant to this debate, we used immunohistochemical techniques to reveal the architecture of the neuromodulatory systems of the Egyptian rousette (Rousettus aegypticus), an echolocating megabat. Our findings revealed many similarities in the nuclear parcellation of the cholinergic, putative catecholaminergic and serotonergic systems with that seen in other mammals including the microbat. However, there were 11 discrete nuclei forming part of these systems in the brain of the megabat studied that were not evident in an earlier study of a microbat. The occurrence of these nuclei align the megabat studied more closely with primates than any other mammalian group and clearly distinguishes them from the microbat, which aligns with the insectivores. The neural systems investigated are not related to such Chiropteran specializations as echolocation, flight, vision or olfaction. If neural characteristics are considered strong indicators of phylogenetic relationships, then the data of the current study strongly supports the diphyletic origin of Chiroptera and aligns the megabat most closely with primates in agreement with studies of other neural characters.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Spatial vision in older adults: perceptual changes and neural bases.
McKendrick, Allison M; Chan, Yu Man; Nguyen, Bao N
2018-05-17
The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Knoeferle, Pia
2016-03-01
In his review article [19], Arbib outlines an ambitious research agenda: to accommodate within a unified framework the evolution, the development, and the processing of language in natural settings (implicating other systems such as vision). He does so with neuro-computationally explicit modeling in mind [1,2] and inspired by research on the mirror neuron system in primates. Similar research questions have received substantial attention also among other scientists [3,4,12].
Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.
Schall, J D; Perry, V H; Leventhal, A G
1986-03-12
We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.
Neural correlates of virtual route recognition in congenital blindness.
Kupers, Ron; Chebat, Daniel R; Madsen, Kristoffer H; Paulson, Olaf B; Ptito, Maurice
2010-07-13
Despite the importance of vision for spatial navigation, blind subjects retain the ability to represent spatial information and to move independently in space to localize and reach targets. However, the neural correlates of navigation in subjects lacking vision remain elusive. We therefore used functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind but not blindfolded sighted control subjects activated the parahippocampus and visual cortex during navigation, areas that are recruited during topographical learning and spatial representation in sighted subjects. When the navigation task was performed under full vision in a second group of sighted participants, the activation pattern strongly resembled the one obtained in the blind when using the TDU. This suggests that in the absence of vision, cross-modal plasticity permits the recruitment of the same cortical network used for spatial navigation tasks in sighted subjects.
Corso, Josmael; Bowler, Mark; Heymann, Eckhard W; Roos, Christian; Mundy, Nicholas I
2016-04-13
Colour vision is highly variable in New World monkeys (NWMs). Evidence for the adaptive basis of colour vision in this group has largely centred on environmental features such as foraging benefits for differently coloured foods or predator detection, whereas selection on colour vision for sociosexual communication is an alternative hypothesis that has received little attention. The colour vision of uakaris (Cacajao) is of particular interest because these monkeys have the most dramatic red facial skin of any primate, as well as a unique fission/fusion social system and a specialist diet of seeds. Here, we investigate colour vision in a wild population of the bald uakari,C. calvus, by genotyping the X-linked opsin locus. We document the presence of a polymorphic colour vision system with an unprecedented number of functional alleles (six), including a novel allele with a predicted maximum spectral sensitivity of 555 nm. This supports the presence of strong balancing selection on different alleles at this locus. We consider different hypotheses to explain this selection. One possibility is that trichromacy functions in sexual selection, enabling females to choose high-quality males on the basis of red facial coloration. In support of this, there is some evidence that health affects facial coloration in uakaris, as well as a high prevalence of blood-borne parasitism in wild uakari populations. Alternatively, the low proportion of heterozygous female trichromats in the population may indicate selection on different dichromatic phenotypes, which might be related to cryptic food coloration. We have uncovered unexpected diversity in the last major lineage of NWMs to be assayed for colour vision, which will provide an interesting system to dissect adaptation of polymorphic trichromacy. © 2016 The Author(s).
The Impact of Vision in Spatial Coding
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Koustriava, Eleni
2011-01-01
The aim of this study is to examine the performance in coding and representing of near-space in relation to vision status (blindness vs. normal vision) and sensory modality (touch vs. vision). Forty-eight children and teenagers participated. Sixteen of the participants were totally blind or had only light perception, 16 were blindfolded sighted…
What Aspects of Vision Facilitate Haptic Processing?
ERIC Educational Resources Information Center
Millar, Susanna; Al-Attar, Zainab
2005-01-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and…
Niche partitioning and environmental factors affecting abundance of strepsirrhines in Angola.
Bersacola, Elena; Svensson, Magdalena S; Bearder, Simon K
2015-11-01
The African nocturnal primates (galagos, pottos, and angwantibos: suborder Strepsirrhini) are the result of the first major primate radiation event in Africa, and are found in different primate communities spread across the entire sub-Saharan Africa. Thus, they represent an interesting group of taxa to investigate community strategies to avoid interspecific competition. Here, we present the result of the first study on nocturnal primate communities in western Angola. We aimed to identify habitat factors influencing strepsirrhine abundance, collect evidence of spatial niche segregation, and discuss possible indications of competitive exclusion in this region. We conducted nocturnal surveys at four study sites: Kumbira, Bimbe, Northern Scarp, and Calandula. At each encounter we recorded species, group size, height of animals above ground, and GPS location. We sampled vegetation using the point-centered quarter method and collected data on canopy cover, disturbance, and undergrowth density. We observed a total of five strepsirrhine species with varying community structures. We did not encounter Galagoides thomasi but we recorded a new species Galagoides sp. nov. 4. Levels of disturbance, canopy cover and undergrowth density were the habitat factors that most influenced variation in abundance of Galagoides demidovii and Perodicticus edwardsi, the latter also preferring the habitat with higher tree density. Vertical separation between sympatric strepsirrhines was strongest in Northern Scarp, where overall relative abundance was also highest. Competitive exclusion between G. thomasi and G. sp. nov. 4 may explain why the former was not present within the Angolan Escarpment sites. We observed coexistence between mainly allopatric Otolemur crassicaudatus and P. edwardsi in Kumbira, and of Galago moholi and G. demidovii in Calandula. Both unusual combinations showed some levels of spatial segregation. Habitat characteristics of the Escarpment region are likely to allow for unique nocturnal primate species assemblages. We urge immediate conservation interventions in the Angolan Escarpment. © 2015 Wiley Periodicals, Inc.
Mosher, Clayton P.; Zimmerman, Prisca E.; Fuglevand, Andrew J.
2016-01-01
Abstract The majority of neurophysiological studies that have explored the role of the primate amygdala in the evaluation of social signals have relied on visual stimuli such as images of facial expressions. Vision, however, is not the only sensory modality that carries social signals. Both humans and nonhuman primates exchange emotionally meaningful social signals through touch. Indeed, social grooming in nonhuman primates and caressing touch in humans is critical for building lasting and reassuring social bonds. To determine the role of the amygdala in processing touch, we recorded the responses of single neurons in the macaque amygdala while we applied tactile stimuli to the face. We found that one-third of the recorded neurons responded to tactile stimulation. Although we recorded exclusively from the right amygdala, the receptive fields of 98% of the neurons were bilateral. A fraction of these tactile neurons were monitored during the production of facial expressions and during facial movements elicited occasionally by touch stimuli. Firing rates arising during the production of facial expressions were similar to those elicited by tactile stimulation. In a subset of cells, combining tactile stimulation with facial movement further augmented the firing rates. This suggests that tactile neurons in the amygdala receive input from skin mechanoceptors that are activated by touch and by compressions and stretches of the facial skin during the contraction of the underlying muscles. Tactile neurons in the amygdala may play a role in extracting the valence of touch stimuli and/or monitoring the facial expressions of self during social interactions. PMID:27752543
Mosher, Clayton P; Zimmerman, Prisca E; Fuglevand, Andrew J; Gothard, Katalin M
2016-01-01
The majority of neurophysiological studies that have explored the role of the primate amygdala in the evaluation of social signals have relied on visual stimuli such as images of facial expressions. Vision, however, is not the only sensory modality that carries social signals. Both humans and nonhuman primates exchange emotionally meaningful social signals through touch. Indeed, social grooming in nonhuman primates and caressing touch in humans is critical for building lasting and reassuring social bonds. To determine the role of the amygdala in processing touch, we recorded the responses of single neurons in the macaque amygdala while we applied tactile stimuli to the face. We found that one-third of the recorded neurons responded to tactile stimulation. Although we recorded exclusively from the right amygdala, the receptive fields of 98% of the neurons were bilateral. A fraction of these tactile neurons were monitored during the production of facial expressions and during facial movements elicited occasionally by touch stimuli. Firing rates arising during the production of facial expressions were similar to those elicited by tactile stimulation. In a subset of cells, combining tactile stimulation with facial movement further augmented the firing rates. This suggests that tactile neurons in the amygdala receive input from skin mechanoceptors that are activated by touch and by compressions and stretches of the facial skin during the contraction of the underlying muscles. Tactile neurons in the amygdala may play a role in extracting the valence of touch stimuli and/or monitoring the facial expressions of self during social interactions.
Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.
Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P
2013-07-24
Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.
Rohlfing, Torsten; Kroenke, Christopher D.; Sullivan, Edith V.; Dubach, Mark F.; Bowden, Douglas M.; Grant, Kathleen A.; Pfefferbaum, Adolf
2012-01-01
The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains, created from high-resolution, T1-weighted magnetic resonance (MR) images of 19 rhesus macaque (Macaca mulatta) animals. Combined with the comprehensive cortical and sub-cortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/). PMID:23230398
NASA Technical Reports Server (NTRS)
Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.
2000-01-01
To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.
Feeling form: the neural basis of haptic shape perception.
Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J
2016-02-01
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.
Applying Quantitative Genetic Methods to Primate Social Behavior
Brent, Lauren J. N.
2013-01-01
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839
Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision
Migliaccio, Americo A; Minor, Lloyd B; Santina, Charles C Della
2010-01-01
To maintain visual fixation on a distant target during head rotation, the angular vestibulo-ocular reflex (aVOR) should rotate the eyes at the same speed as the head and in exactly the opposite direction. However, in primates for which the 3-dimensional (3D) aVOR has been extensively characterised (humans and squirrel monkeys (Saimiri sciureus)), the aVOR response to roll head rotation about the naso-occipital axis is lower than that elicited by yaw and pitch, causing errors in aVOR magnitude and direction that vary with the axis of head rotation. In other words, primates keep the central part of the retinal image on the fovea (where photoreceptor density and visual acuity are greatest) but fail to keep that image from twisting about the eyes' resting optic axes. We tested the hypothesis that aVOR direction dependence is an adaptation related to primates' frontal-eyed, foveate status through comparison with the aVOR of a lateral-eyed, afoveate mammal (Chinchilla lanigera). As chinchillas' eyes are afoveate and never align with each other, we predicted that the chinchilla aVOR would be relatively low in gain and isotropic (equal in gain for every head rotation axis). In 11 normal chinchillas, we recorded binocular 3D eye movements in darkness during static tilts, 20–100 deg s−1 whole-body sinusoidal rotations (0.5–15 Hz), and 3000 deg s−2 acceleration steps. Although the chinchilla 3D aVOR gain changed with both frequency and peak velocity over the range we examined, we consistently found that it was more nearly isotropic than the primate aVOR. Our results suggest that primates' anisotropic aVOR represents an adaptation to their forward-eyed, foveate status. In primates, yaw and pitch aVOR must be compensatory to stabilise images on both foveae, whereas roll aVOR can be under-compensatory because the brain tolerates torsion of binocular images that remain on the foveae. In contrast, the lateral-eyed chinchilla faces different adaptive demands and thus enlists a different aVOR strategy. PMID:20724359
NASA Astrophysics Data System (ADS)
Trolliet, Franck; Forget, Pierre-Michel; Doucet, Jean-Louis; Gillet, Jean-François; Hambuckers, Alain
2017-11-01
Animal-mediated seed dispersal is recognized to influence the spatial organization of plant communities but little is known about how frugivores cause such patterns. Here, we explored the role of hornbills and primates in generating recruitment foci under two zoochoric trees, namely Staudtia kamerunensis (Myristicaceae) and Dialium spp. (Fabaceae - Caesalpiniodea) in a forest-savanna mosaic landscape in D.R. Congo. We also examined the influence of the availability of fruits in the neighborhood and the amount of forest cover in the landscape on such clumping patterns. The density and species richness of hornbill-dispersed and the density of primate-dispersed seedlings were significantly higher under Staudtia kamerunensis trees than at control locations. However, we did not find such patterns under Dialium spp. trees compared to control locations except for the density of hornbill-dispersed seedlings which was lower at control locations. Also, we found that an increasing amount of forest cover in the landscape was associated with an increase in the density of hornbill-dispersed seedlings, although the tendency was weak (R2 = 0.065). We concluded that S. kamerunensis acts as a recruitment foci and plays a structuring role in Afrotropical forests. Hornbills were probably the main frugivore taxon responsible for the clumping under that tree and appear as a key ecological component in fragmented and disturbed landscapes where the diversity of large frugivores such as primates is reduced. Our findings improve our understanding of the causal mechanisms responsible for the spatial organization of tropical forests.
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing Perceptibility of Barely Perceptible Targets
1982-12-28
faster to low spatial frequencies (Breitmeyer, 1975; Tolhurst, 1975; Vassilev & Mitov , 1976;.Breitmeyer & Ganz, 1975; Watson & Nachimas, * 1977). If ground...response than those tuned to high spatial frequencies: they appear to have a shorter latency (Breitmeyer, 1975; Vassilev & Mitov , 1975; Lupp, Bauske, & Wolf...1958. Tolhurst, D. J. Sustained and transient channels in human vision. Vision Research, 1975, 15, 1151-1155. Vassilev, A., & Mitov , D. Perception
Recent advances in primate nutritional ecology.
Righini, Nicoletta
2017-04-01
Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a nutritionally balanced diet. © 2017 Wiley Periodicals, Inc.
Spatial imaging in color and HDR: prometheus unchained
NASA Astrophysics Data System (ADS)
McCann, John J.
2013-03-01
The Human Vision and Electronic Imaging Conferences (HVEI) at the IS and T/SPIE Electronic Imaging meetings have brought together research in the fundamentals of both vision and digital technology. This conference has incorporated many color disciplines that have contributed to the theory and practice of today's imaging: color constancy, models of vision, digital output, high-dynamic-range imaging, and the understanding of perceptual mechanisms. Before digital imaging, silver halide color was a pixel-based mechanism. Color films are closely tied to colorimetry, the science of matching pixels in a black surround. The quanta catch of the sensitized silver salts determines the amount of colored dyes in the final print. The rapid expansion of digital imaging over the past 25 years has eliminated the limitations of using small local regions in forming images. Spatial interactions can now generate images more like vision. Since the 1950's, neurophysiology has shown that post-receptor neural processing is based on spatial interactions. These results reinforced the findings of 19th century experimental psychology. This paper reviews the role of HVEI in color, emphasizing the interaction of research on vision and the new algorithms and processes made possible by electronic imaging.
Seeing the Body Distorts Tactile Size Perception
ERIC Educational Resources Information Center
Longo, Matthew R.; Sadibolova, Renata
2013-01-01
Vision of the body modulates somatosensation, even when entirely non-informative about stimulation. For example, seeing the body increases tactile spatial acuity, but reduces acute pain. While previous results demonstrate that vision of the body modulates somatosensory sensitivity, it is unknown whether vision also affects metric properties of…
NASA Astrophysics Data System (ADS)
Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.
The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.
Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki
2015-01-01
Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates. PMID:26387804
Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki
2015-09-21
Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates.
Small or far away? Size and distance perception in the praying mantis
Bissianna, Geoffrey
2016-01-01
Stereo or ‘3D’ vision is an important but costly process seen in several evolutionarily distinct lineages including primates, birds and insects. Many selective advantages could have led to the evolution of stereo vision, including range finding, camouflage breaking and estimation of object size. In this paper, we investigate the possibility that stereo vision enables praying mantises to estimate the size of prey by using a combination of disparity cues and angular size cues. We used a recently developed insect 3D cinema paradigm to present mantises with virtual prey having differing disparity and angular size cues. We predicted that if they were able to use these cues to gauge the absolute size of objects, we should see evidence for size constancy where they would strike preferentially at prey of a particular physical size, across a range of simulated distances. We found that mantises struck most often when disparity cues implied a prey distance of 2.5 cm; increasing the implied distance caused a significant reduction in the number of strikes. We, however, found no evidence for size constancy. There was a significant interaction effect of the simulated distance and angular size on the number of strikes made by the mantis but this was not in the direction predicted by size constancy. This indicates that mantises do not use their stereo vision to estimate object size. We conclude that other selective advantages, not size constancy, have driven the evolution of stereo vision in the praying mantis. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269605
What makes a cell face-selective: the importance of contrast
Ohayon, Shay; Freiwald, Winrich A; Tsao, Doris Y
2012-01-01
Summary Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, e.g., nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition. PMID:22578507
NASA Astrophysics Data System (ADS)
Putnam, Nicole Marie
In order to study the limits of spatial vision in normal human subjects, it is important to look at and near the fovea. The fovea is the specialized part of the retina, the light-sensitive multi-layered neural tissue that lines the inner surface of the human eye, where the cone photoreceptors are smallest (approximately 2.5 microns or 0.5 arcmin) and cone density reaches a peak. In addition, there is a 1:1 mapping from the photoreceptors to the brain in this central region of the retina. As a result, the best spatial sampling is achieved in the fovea and it is the retinal location used for acuity and spatial vision tasks. However, vision is typically limited by the blur induced by the normal optics of the eye and clinical tests of foveal vision and foveal imaging are both limited due to the blur. As a result, it is unclear what the perceptual benefit of extremely high cone density is. Cutting-edge imaging technology, specifically Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO), can be utilized to remove this blur, zoom in, and as a result visualize individual cone photoreceptors throughout the central fovea. This imaging combined with simultaneous image stabilization and targeted stimulus delivery expands our understanding of both the anatomical structure of the fovea on a microscopic scale and the placement of stimuli within this retinal area during visual tasks. The final step is to investigate the role of temporal variables in spatial vision tasks since the eye is in constant motion even during steady fixation. In order to learn more about the fovea, it becomes important to study the effect of this motion on spatial vision tasks. This dissertation steps through many of these considerations, starting with a model of the foveal cone mosaic imaged with AOSLO. We then use this high resolution imaging to compare anatomical and functional markers of the center of the normal human fovea. Finally, we investigate the role of natural and manipulated fixational eye movements in foveal vision, specifically looking at a motion detection task, contrast sensitivity, and image fading.
Song, Feng-wei; Sun, Zhao-hui; Yang, Yi; Wang, Li-ping; Tang, Xia-jing; Chen, Bin-bin; Yu, Xiao-ning
2014-01-01
To investigate the relationship between the characteristics of spatial vision deficit and the degree of amblyopia in monocular amblyopes, and to analyze its mechanism with the theory of Magnocellular and Parvocellular pathways. One hundred and eleven patients with monocular amblyopes aged 7-34 were included in this study. Distance best corrected visual acuity (BCVA) in logMAR units and contrast sensitivity function test were performed on both eyes in all patients with ETDRS digital visual chart and functional test system OPTECR 6500. The spatial vision of amblyopic and non-amblyopic eyes was evaluated by the AULCSF, Smax, Frmax and cutSF derived from the curve of contrast sensitivity function. The degree of amblyopia was significantly correlated with the difference of AULCSF between the amblyopic and non-amblyopia eyes (r=-0.83, P<0.01). BCVA of amblyopic eyes was significantly correlated with AULCSF, CutSF, Smax, Frmax(r=-0.68, -0.80, -0.73, -0.56, respectively; P<0.01). In amblyopic eyes, significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was seen among different amblyopic groups (P<0.01), which was defined by the degree of amblyopia. In non-amblyopic eyes,no significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was noted among different amblyopic groups (P>0.05). In mild amblyopes, no significant difference in AULCSF and Frmax was found between the amblyopic eyes and non-amblyopic eyes (P>0.05), while Smax and CutSF were significantly different. However, in moderate and severe amblyopes, significant differences in BCVA, AULCSF, Smax, Frmax and CutSF was seen between the amblyopic and non-amblyopic eyes (P<0.01). In amblyopic eyes, significant difference in contrast sensitivity was noted in all kinds of spatial frequencies among different amblyopic groups (P<0.01), and in non-amblyopic eyes, significant differences in contrast sensitivity was not seen in all kinds of spatial frequencies among different amblyopic groups. The AULCSF, CutSF, Smax and Frmax are accorded with visual acuity for evaluation of the spatial vision of amblyopia. As the severity of amblyopia increases, the overall function of spatial vision in amblyopic eyes gradually decreases, the resolution ability of high spatial frequency is gradually weaken, the peak of contrast detection function gradually descends, and the optimal spatial frequency for contrast detection offsets toward low level of spatial frequency. Mild monocular amblyopia produces spatial contrast sensitivity loss in high spatial vision, suggesting there may be decreased sensitivity of the Parvocellular pathway, and no significant anomalous processing of Magnocellular Pathway. Whereas, in moderate and severe amblyopes, a generalized loss of sensitivity is observed at each spatial frequency. This result shows that both Magnocellular and Parvocellular pathways are damaged in different degrees, especially in Parvocellular pathway.
Sharpening vision by adapting to flicker.
Arnold, Derek H; Williams, Jeremy D; Phipps, Natasha E; Goodale, Melvyn A
2016-11-01
Human vision is surprisingly malleable. A static stimulus can seem to move after prolonged exposure to movement (the motion aftereffect), and exposure to tilted lines can make vertical lines seem oppositely tilted (the tilt aftereffect). The paradigm used to induce such distortions (adaptation) can provide powerful insights into the computations underlying human visual experience. Previously spatial form and stimulus dynamics were thought to be encoded independently, but here we show that adaptation to stimulus dynamics can sharpen form perception. We find that fast flicker adaptation (FFAd) shifts the tuning of face perception to higher spatial frequencies, enhances the acuity of spatial vision-allowing people to localize inputs with greater precision and to read finer scaled text, and it selectively reduces sensitivity to coarse-scale form signals. These findings are consistent with two interrelated influences: FFAd reduces the responsiveness of magnocellular neurons (which are important for encoding dynamics, but can have poor spatial resolution), and magnocellular responses contribute coarse spatial scale information when the visual system synthesizes form signals. Consequently, when magnocellular responses are mitigated via FFAd, human form perception is transiently sharpened because "blur" signals are mitigated.
Neural mechanisms of coarse-to-fine discrimination in the visual cortex.
Purushothaman, Gopathy; Chen, Xin; Yampolsky, Dmitry; Casagrande, Vivien A
2014-12-01
Vision is a dynamic process that refines the spatial scale of analysis over time, as evidenced by a progressive improvement in the ability to detect and discriminate finer details. To understand coarse-to-fine discrimination, we studied the dynamics of spatial frequency (SF) response using reverse correlation in the primary visual cortex (V1) of the primate. In a majority of V1 cells studied, preferred SF either increased monotonically with time (group 1) or changed nonmonotonically, with an initial increase followed by a decrease (group 2). Monotonic shift in preferred SF occurred with or without an early suppression at low SFs. Late suppression at high SFs always accompanied nonmonotonic SF dynamics. Bayesian analysis showed that SF discrimination performance and best discriminable SF frequencies changed with time in different ways in the two groups of neurons. In group 1 neurons, SF discrimination performance peaked on both left and right flanks of the SF tuning curve at about the same time. In group 2 neurons, peak discrimination occurred on the right flank (high SFs) later than on the left flank (low SFs). Group 2 neurons were also better discriminators of high SFs. We examined the relationship between the time at which SF discrimination performance peaked on either flank of the SF tuning curve and the corresponding best discriminable SFs in both neuronal groups. This analysis showed that the population best discriminable SF increased with time in V1. These results suggest neural mechanisms for coarse-to-fine discrimination behavior and that this process originates in V1 or earlier. Copyright © 2014 the American Physiological Society.
Improvement in spatial imagery following sight onset late in childhood.
Gandhi, Tapan K; Ganesh, Suma; Sinha, Pawan
2014-03-01
The factors contributing to the development of spatial imagery skills are not well understood. Here, we consider whether visual experience shapes these skills. Although differences in spatial imagery between sighted and blind individuals have been reported, it is unclear whether these differences are truly due to visual deprivation or instead are due to extraneous factors, such as reduced opportunities for the blind to interact with their environment. A direct way of assessing vision's contribution to the development of spatial imagery is to determine whether spatial imagery skills change soon after the onset of sight in congenitally blind individuals. We tested 10 children who gained sight after several years of congenital blindness and found significant improvements in their spatial imagery skills following sight-restoring surgeries. These results provide evidence of vision's contribution to spatial imagery and also have implications for the nature of internal spatial representations.
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
Remis, Melissa J; Jost Robinson, Carolyn A
2012-07-01
This article explores spatial and temporal changes in diurnal primate abundance and behavior in response to hunting, logging, and conservation at the Dzanga Sangha Dense Forest Reserve (RDS), Central African Republic over time. We use a combination of line-transect surveys in 2002 and 2009 (N = 540 km) and ethnographic interviews (N = 210) to investigate changes in the status of cercopithecines and colobines at RDS, with additional comparisons to earlier work. This protected area was lightly logged in the 1970s and the park was gazetted in 1990, with multiple-use reserve sectors allocated. Since the park's inception, hunting and the trade of primates have increased, along with human migration, greater accessibility of arms, and reduction of preferred ungulate prey. Primates have declined in both the park and reserve sectors. Our data further suggest that at RDS hunting has had a greater impact on primate diversity and abundance than logging. We have identified changes in species-specific vulnerability to hunting over time, with Cercopithecus nictitans and Lophocebus albigena initially having appeared to be relatively resistant to hunting pressure in 2002. However, subsequently as gun hunting has increased at RDS, these species have become vulnerable. Although monkeys at RDS have been responding behaviorally to increased gun hunting, they are not able to keep pace with changing hunting practices. This study allows us to begin to understand synergistic impacts of hunting and logging, necessary if we are to recommend strategies to better secure the future of primates in multiuse protected areas. © 2012 Wiley Periodicals, Inc.
Schweller, Kenneth; Milne, Scott
2017-01-01
Abstract Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal’s sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species’ daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid. PMID:29491967
Dolins, Francine L; Schweller, Kenneth; Milne, Scott
2017-02-01
Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal's sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species' daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid.
Standardized Full-Field Electroretinography in the Green Monkey (Chlorocebus sabaeus)
Bouskila, Joseph; Javadi, Pasha; Palmour, Roberta M.; Bouchard, Jean-François; Ptito, Maurice
2014-01-01
Abstract Full-field electroretinography is an objective measure of retinal function, serving as an important diagnostic clinical tool in ophthalmology for evaluating the integrity of the retina. Given the similarity between the anatomy and physiology of the human and Green Monkey eyes, this species has increasingly become a favorable non-human primate model for assessing ocular defects in humans. To test this model, we obtained full-field electroretinographic recordings (ERG) and normal values for standard responses required by the International Society for Clinical Electrophysiology of Vision (ISCEV). Photopic and scotopic ERG recordings were obtained by full-field stimulation over a range of 6 log units of intensity in dark-adapted or light-adapted eyes of adult Green Monkeys (Chlorocebus sabaeus). Intensity, duration, and interval of light stimuli were varied separately. Reproducible values of amplitude and latency were obtained for the a- and b-waves, under well-controlled adaptation and stimulus conditions; the i-wave was also easily identifiable and separated from the a-b-wave complex in the photopic ERG. The recordings obtained in the healthy Green Monkey matched very well with those in humans and other non-human primate species (Macaca mulatta and Macaca fascicularis). These results validate the Green Monkey as an excellent non-human primate model, with potential to serve for testing retinal function following various manipulations such as visual deprivation or drug evaluation. PMID:25360686
Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation
Mur, Marieke; Meys, Mirjam; Bodurka, Jerzy; Goebel, Rainer; Bandettini, Peter A.; Kriegeskorte, Nikolaus
2013-01-01
Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions. PMID:23525516
Envisioning a Planetary Spatial Data Infrastructure
NASA Astrophysics Data System (ADS)
Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.
2017-02-01
We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.
Are visual peripheries forever young?
Burnat, Kalina
2015-01-01
The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.
The Ohio Contrast Cards: Visual Performance in a Pediatric Low-vision Site
Hopkins, Gregory R.; Dougherty, Bradley E.; Brown, Angela M.
2017-01-01
SIGNIFICANCE This report describes the first clinical use of the Ohio Contrast Cards, a new test that measures the maximum spatial contrast sensitivity of low-vision patients who cannot recognize and identify optotypes and for whom the spatial frequency of maximum contrast sensitivity is unknown. PURPOSE To compare measurements of the Ohio Contrast Cards to measurements of three other vision tests and a vision-related quality-of-life questionnaire obtained on partially sighted students at Ohio State School for the Blind. METHODS The Ohio Contrast Cards show printed square-wave gratings at very low spatial frequency (0.15 cycle/degree). The patient looks to the left/right side of the card containing the grating. Twenty-five students (13 to 20 years old) provided four measures of visual performance: two grating card tests (the Ohio Contrast Cards and the Teller Acuity Cards) and two letter charts (the Pelli-Robson contrast chart and the Bailey-Lovie acuity chart). Spatial contrast sensitivity functions were modeled using constraints from the grating data. The Impact of Vision Impairment on Children questionnaire measured vision-related quality of life. RESULTS Ohio Contrast Card contrast sensitivity was always less than 0.19 log10 units below the maximum possible contrast sensitivity predicted by the model; average Pelli-Robson letter contrast sensitivity was near the model prediction, but 0.516 log10 units below the maximum. Letter acuity was 0.336 logMAR below the grating acuity results. The model estimated the best testing distance in meters for optimum Pelli-Robson contrast sensitivity from the Bailey-Lovie acuity as distance = 1.5 − logMAR for low-vision patients. Of the four vision tests, only Ohio Contrast Card contrast sensitivity was independently and statistically significantly correlated with students' quality of life. CONCLUSIONS The Ohio Contrast Cards combine a grating stimulus, a looking indicator behavior, and contrast sensitivity measurement. They show promise for the clinical objective of advising the patient and his/her caregivers about the success the patient is likely to enjoy in tasks of everyday life. PMID:28972542
Robust Spatial Autoregressive Modeling for Hardwood Log Inspection
Dongping Zhu; A.A. Beex
1994-01-01
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...
Matsumoto, Yoshifumi; Hiramatsu, Chihiro; Matsushita, Yuka; Ozawa, Norihiro; Ashino, Ryuichi; Nakata, Makiko; Kasagi, Satoshi; Di Fiore, Anthony; Schaffner, Colleen M; Aureli, Filippo; Melin, Amanda D; Kawamura, Shoji
2014-01-01
New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the ‘three-sites’ rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the ‘three-sites’ rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision. PMID:24612406
Applying systems thinking to inform studies of wildlife trade in primates.
Blair, Mary E; Le, Minh D; Thạch, Hoàng M; Panariello, Anna; Vũ, Ngọc B; Birchette, Mark G; Sethi, Gautam; Sterling, Eleanor J
2017-11-01
Wildlife trade presents a major threat to primate populations, which are in demand from local to international scales for a variety of uses from food and traditional medicine to the exotic pet trade. We argue that an interdisciplinary framework to facilitate integration of socioeconomic, anthropological, and biological data across multiple spatial and temporal scales is essential to guide the study of wildlife trade dynamics and its impacts on primate populations. Here, we present a new way to design research on wildlife trade in primates using a systems thinking framework. We discuss how we constructed our framework, which follows a social-ecological system framework, to design an ongoing study of local, regional, and international slow loris (Nycticebus spp.) trade in Vietnam. We outline the process of iterative variable exploration and selection via this framework to inform study design. Our framework, guided by systems thinking, enables recognition of complexity in study design, from which the results can inform more holistic, site-appropriate, and effective trade management practices. We place our framework in the context of other approaches to studying wildlife trade and discuss options to address foreseeable challenges to implementing this new framework. © 2017 Wiley Periodicals, Inc.
Human olfaction: a constant state of change-blindness
Sela, Lee
2010-01-01
Paradoxically, although humans have a superb sense of smell, they don’t trust their nose. Furthermore, although human odorant detection thresholds are very low, only unusually high odorant concentrations spontaneously shift our attention to olfaction. Here we suggest that this lack of olfactory awareness reflects the nature of olfactory attention that is shaped by the spatial and temporal envelopes of olfaction. Regarding the spatial envelope, selective attention is allocated in space. Humans direct an attentional spotlight within spatial coordinates in both vision and audition. Human olfactory spatial abilities are minimal. Thus, with no olfactory space, there is no arena for olfactory selective attention. Regarding the temporal envelope, whereas vision and audition consist of nearly continuous input, olfactory input is discreet, made of sniffs widely separated in time. If similar temporal breaks are artificially introduced to vision and audition, they induce “change blindness”, a loss of attentional capture that results in a lack of awareness to change. Whereas “change blindness” is an aberration of vision and audition, the long inter-sniff-interval renders “change anosmia” the norm in human olfaction. Therefore, attentional capture in olfaction is minimal, as is human olfactory awareness. All this, however, does not diminish the role of olfaction through sub-attentive mechanisms allowing subliminal smells a profound influence on human behavior and perception. PMID:20603708
Syngeneic Schwann cell transplantation preserves vision in RCS rat without immunosuppression.
McGill, Trevor J; Lund, Raymond D; Douglas, Robert M; Wang, Shaomei; Lu, Bin; Silver, Byron D; Secretan, Matt R; Arthur, Jennifer N; Prusky, Glen T
2007-04-01
To evaluate the efficacy of immunologically compatible Schwann cells transplanted without immunosuppression in the RCS rat retina to preserve vision. Syngeneic (dystrophic RCS) Schwann cells harvested from sciatic nerves were cultured and transplanted into one eye of dystrophic RCS rats at an early stage of retinal degeneration. Allogeneic (Long-Evans) Schwann cells and unoperated eyes served as controls. Vision through transplanted and unoperated eyes was then quantified using two visual behavior tasks, one measuring the spatial frequency and contrast sensitivity thresholds of the optokinetic response (OKR) and the other measuring grating acuity in a perception task. Spatial frequency thresholds measured through syngeneically transplanted eyes maintained near normal spatial frequency sensitivity for approximately 30 weeks, whereas thresholds through control eyes deteriorated to less than 20% of normal over the same period. Contrast sensitivity was preserved through syngeneically transplanted eyes better than through allogeneic and unoperated eyes, at all spatial frequencies. Grating acuity measured through syngeneically transplanted eyes was maintained at approximately 60% of normal, whereas acuity of allogeneically transplanted eyes was significantly lower at approximately 40% of normal. The ability of immunoprivileged Schwann cell transplants to preserve vision in RCS rats indicates that transplantation of syngeneic Schwann cells holds promise as a preventive treatment for retinal degenerative disease.
Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A
2012-08-01
Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.
Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao
2016-01-01
Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247
Dark Adaptation of Colour Vision in Diabetic Subjects
NASA Astrophysics Data System (ADS)
Márquez-Gamiño, S.; Cortés-Peñaloza, J. L.; Pérez-Hernández, J. U.; Cruz-Rodríguez, E.; Caudillo, C.
2004-09-01
Eye disease, a late complication of diabetes mellitus (DM) occurs even under a careful glicemic control. It includes optic nerve, retina, vitreous humor, crystalline lens and pupillary affection. The physiopathological process could be independent of blood glucose levels or start at initial stages of the disease. Photoreceptors have specific physiological functions. The functional substrate of day light or colour vision in superior primates, the cones have different spectral sensitivity, 455, 530 and 560 nm. The rods, maximal sensitivity at 505 nm, are much more sensitive to light than are cones. Dark adaptation was tested to evaluate functional impairment differences in photoreceptors of diabetic subjects. 14 DM2 (type 2 DM), and 5 DM1 (type 1 DM) patients, as well as 9 healthy subjects were studied. Retinal affected individuals, were excluded. Dark adaptation curves seemed to be different between DM, and healthy subjects. Cones, specially those sensitive to 560 nm type, seems to be more labile to DM, as demonstrated by the lack of sensitivity to low, and medium intensity stimuli. Medical Physics and elementary Biomedical Engineering exhibited to be useful to discern malfunction between different types of photorreceptors. The inexpensive method used could be applied for early color vision alteration detection.
Effects of Foveal Ablation on Emmetropization and Form-Deprivation Myopia
Smith, Earl L.; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang; Huang, Juan; Kee, Chea-su; Coats, David; Paysse, Evelyn
2009-01-01
Purpose Because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea dominate refractive development. To test this assumption, the authors determined whether an intact fovea was essential for either normal emmetropization or the vision-induced myopic errors produced by form deprivation. Methods In 13 rhesus monkeys at 3 weeks of age, the fovea and most of the perifovea in one eye were ablated by laser photocoagulation. Five of these animals were subsequently allowed unrestricted vision. For the other eight monkeys with foveal ablations, a diffuser lens was secured in front of the treated eyes to produce form deprivation. Refractive development was assessed along the pupillary axis by retinoscopy, keratometry, and A-scan ultrasonography. Control data were obtained from 21 normal monkeys and three infants reared with plano lenses in front of both eyes. Results Foveal ablations had no apparent effect on emmetropization. Refractive errors for both eyes of the treated infants allowed unrestricted vision were within the control range throughout the observation period, and there were no systematic interocular differences in refractive error or axial length. In addition, foveal ablation did not prevent form deprivation myopia; six of the eight infants that experienced monocular form deprivation developed myopic axial anisometropias outside the control range. Conclusions Visual signals from the fovea are not essential for normal refractive development or the vision-induced alterations in ocular growth produced by form deprivation. Conversely, the peripheral retina, in isolation, can regulate emmetropizing responses and produce anomalous refractive errors in response to abnormal visual experience. These results indicate that peripheral vision should be considered when assessing the effects of visual experience on refractive development. PMID:17724167
Mancuso, Katherine; Mauck, Matthew C; Kuchenbecker, James A; Neitz, Maureen; Neitz, Jay
2010-01-01
In 1993, DeValois and DeValois proposed a 'multi-stage color model' to explain how the cortex is ultimately able to deconfound the responses of neurons receiving input from three cone types in order to produce separate red-green and blue-yellow systems, as well as segregate luminance percepts (black-white) from color. This model extended the biological implementation of Hurvich and Jameson's Opponent-Process Theory of color vision, a two-stage model encompassing the three cone types combined in a later opponent organization, which has been the accepted dogma in color vision. DeValois' model attempts to satisfy the long-remaining question of how the visual system separates luminance information from color, but what are the cellular mechanisms that establish the complicated neural wiring and higher-order operations required by the Multi-stage Model? During the last decade and a half, results from molecular biology have shed new light on the evolution of primate color vision, thus constraining the possibilities for the visual circuits. The evolutionary constraints allow for an extension of DeValois' model that is more explicit about the biology of color vision circuitry, and it predicts that human red-green colorblindness can be cured using a retinal gene therapy approach to add the missing photopigment, without any additional changes to the post-synaptic circuitry.
Lacerda, Eliza Maria da Costa Brito; Lima, Monica Gomes; Rodrigues, Anderson Raiol; Teixeira, Cláudio Eduardo Correa; de Lima, Lauro José Barata; Ventura, Dora Fix; Silveira, Luiz Carlos de Lima
2012-01-01
The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test—FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10–30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction. PMID:22220188
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.
Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James
2016-03-21
Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
Texture-dependent motion signals in primate middle temporal area
Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G
2013-01-01
Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175
Same-Different Categorization in Rats
ERIC Educational Resources Information Center
Wasserman, Edward A.; Castro, Leyre; Freeman, John H.
2012-01-01
Same-different categorization is a fundamental feat of human cognition. Although birds and nonhuman primates readily learn same-different discriminations and successfully transfer them to novel stimuli, no such demonstration exists for rats. Using a spatial discrimination learning task, we show that rats can both learn to discriminate arrays of…
Speed, spatial, and temporal tuning of rod and cone vision in mouse.
Umino, Yumiko; Solessio, Eduardo; Barlow, Robert B
2008-01-02
Rods and cones subserve mouse vision over a 100 million-fold range of light intensity (-6 to 2 log cd m(-2)). Rod pathways tune vision to the temporal frequency of stimuli (peak, 0.75 Hz) and cone pathways to their speed (peak, approximately 12 degrees/s). Both pathways tune vision to the spatial components of stimuli (0.064-0.128 cycles/degree). The specific photoreceptor contributions were determined by two-alternative, forced-choice measures of contrast thresholds for optomotor responses of C57BL/6J mice with normal vision, Gnat2(cpfl3) mice without functional cones, and Gnat1-/- mice without functional rods. Gnat2(cpfl3) mice (threshold, -6.0 log cd m(-2)) cannot see rotating gratings above -2.0 log cd m(-2) (photopic vision), and Gnat1-/- mice (threshold, -4.0 log cd m(-2)) are blind below -4.0 log cd m(-2) (scotopic vision). Both genotypes can see in the transitional mesopic range (-4.0 to -2.0 log cd m(-2)). Mouse rod and cone sensitivities are similar to those of human. This parametric study characterizes the functional properties of the mouse visual system, revealing the rod and cone contributions to contrast sensitivity and to the temporal processing of visual stimuli.
Visual Field Map Clusters in Macaque Extrastriate Visual Cortex
Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim
2009-01-01
The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330
Computer retina that models the primate retina
NASA Astrophysics Data System (ADS)
Shah, Samir; Levine, Martin D.
1994-06-01
At the retinal level, the strategies utilized by biological visual systems allow them to outperform machine vision systems, serving to motivate the design of electronic or `smart' sensors based on similar principles. Design of such sensors in silicon first requires a model of retinal information processing which captures the essential features exhibited by biological retinas. In this paper, a simple retinal model is presented, which qualitatively accounts for the achromatic information processing in the primate cone system. The model exhibits many of the properties found in biological retina such as data reduction through nonuniform sampling, adaptation to a large dynamic range of illumination levels, variation of visual acuity with illumination level, and enhancement of spatio temporal contrast information. The model is validated by replicating experiments commonly performed by electrophysiologists on biological retinas and comparing the response of the computer retina to data from experiments in monkeys. In addition, the response of the model to synthetic images is shown. The experiments demonstrate that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an `artificial retina.'
Visual influences on auditory spatial learning
King, Andrew J.
2008-01-01
The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967
Stereo 3-D Vision in Teaching Physics
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2012-01-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…
Parallel Processing Strategies of the Primate Visual System
Nassi, Jonathan J.; Callaway, Edward M.
2009-01-01
Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403
Implicit representations of space after bilateral parietal lobe damage.
Kim, M S; Robertson, L C
2001-11-15
There is substantial evidence that the primate cortex is grossly divided into two functional streams, an occipital-parietal-frontal pathway that processes "where" and an occipital-temporal-frontal pathway that processes "what" (Ungerleider and Mishkin, 1982). In humans, bilateral occipital-parietal damage results in severe spatial deficits and a neuropsychological disorder known as Balint's syndrome in which a single object can be perceived (simultanagnosia) but its location is unknown (Balint, 1995). The data reported here demonstrate that spatial information for visual features that cannot be explicitly located is represented normally below the level of spatial awareness even with large occipital-parietal lesions. They also demonstrate that parietal damage does not affect preattentive spatial coding of feature locations or complex spatial relationships between parts of a stimulus despite explicit spatial deficits and simultanagnosia.
NASA Astrophysics Data System (ADS)
Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang
2017-10-01
Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.
Torres-Oviedo, Gelsy; Bastian, Amy J
2010-12-15
Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.
Albonico, Andrea; Malaspina, Manuela; Bricolo, Emanuela; Martelli, Marialuisa; Daini, Roberta
2016-11-01
Selective attention, i.e. the ability to concentrate one's limited processing resources on one aspect of the environment, is a multifaceted concept that includes different processes like spatial attention and its subcomponents of orienting and focusing. Several studies, indeed, have shown that visual tasks performance is positively influenced not only by attracting attention to the target location (orientation component), but also by the adjustment of the size of the attentional window according to task demands (focal component). Nevertheless, the relative weight of the two components in central and peripheral vision has never been studied. We conducted two experiments to explore whether different components of spatial attention have different effects in central and peripheral vision. In order to do so, participants underwent either a detection (Experiment 1) or a discrimination (Experiment 2) task where different types of cues elicited different components of spatial attention: a red dot, a small square and a big square (an optimal stimulus for the orientation component, an optimal and a sub-optimal stimulus for the focal component respectively). Response times and cue-size effects indicated a stronger effect of the small square or of the dot in different conditions, suggesting the existence of a dissociation in terms of mechanisms between the focal and the orientation components of spatial attention. Specifically, we found that the orientation component was stronger in periphery, while the focal component was noticeable only in central vision and characterized by an exogenous nature. Copyright © 2016 Elsevier B.V. All rights reserved.
Di Fiore, Anthony; Suarez, Scott A
2007-07-01
Many wild primates occupy large home ranges and travel long distances each day. Navigating these ranges to find sufficient food presents a substantial cognitive challenge, but we are still far from understanding either how primates represent spatial information mentally or how they use this information to navigate under natural conditions. In the course of a long-term socioecological study, we investigated and compared the travel paths of sympatric spider monkeys (Ateles belzebuth) and woolly monkeys (Lagothrix poeppigii) in Amazonian Ecuador. During several field seasons spanning an 8-year period, we followed focal individuals or groups of both species continuously for periods of multiple days and mapped their travel paths in detail. We found that both primates typically traveled through their home ranges following repeatedly used paths, or "routes". Many of these routes were common to both species and were stable across study years. Several important routes appeared to be associated with distinct topographic features (e.g., ridgetops), which may constitute easily recognized landmarks useful for spatial navigation. The majority of all location records for both species fell along or near identified routes, as did most of the trees used for fruit feeding. Our results provide strong support for the idea that both woolly and spider monkey use route-based mental maps similar to those proposed by Poucet (Psychol Rev 100:163-182, 1993). We suggest that rather than remembering the specific locations of thousands of individual feeding trees and their phenological schedules, spider and woolly monkeys could nonetheless forage efficiently by committing to memory a series of route segments that, when followed, bring them into contact with many potential feeding sources for monitoring or visitation. Furthermore, because swallowed and defecated seeds are deposited in greater frequency along routes, the repeated use of particular travel paths over generations could profoundly influence the structure and composition of tropical forests, raising the intriguing possibility that these and other primate frugivores are active participants in constructing their own ecological niches. Building upon the insights of Byrne (Q J Exp Psychol 31:147-154, 1979, Normality and pathology in cognitive functions. Academic, London, pp 239-264, 1982) and Milton (The foraging strategy of howler monkeys: a study in primate economics. Columbia University Press, New York, 1980, On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 375-417, 2000), our results highlight the likely general importance of route-based travel in the memory and foraging strategies of nonhuman primates.
Detour Behavior of Mice Trained with Transparent, Semitransparent and Opaque Barriers
Juszczak, Grzegorz R.; Miller, Michal
2016-01-01
Detour tasks are commonly used to study problem solving skills and inhibitory control in canids and primates. However, there is no comparable detour test designed for rodents despite its significance for studying the development of executive skills. Furthermore, mice offer research opportunities that are not currently possible to achieve when primates are used. Therefore, the aim of the study was to translate the classic detour task to mice and to compare obtained data with key findings obtained previously in other mammals. The experiment was performed with V-shaped barriers and was based on the water escape paradigm. The study showed that an apparently simple task requiring mice to move around a small barrier constituted in fact a challenge that was strongly affected by the visibility of the target. The most difficult task involved a completely transparent barrier, which forced the mice to resolve a conflict between vision and tactile perception. The performance depended both on the inhibitory skills and on previous experiences. Additionally, all mice displayed a preference for one side of the barrier and most of them relied on the egocentric strategy. Obtained results show for the first time that the behavior of mice subjected to the detour task is comparable to the behavior of other mammals tested previously with free-standing barriers. This detailed characterization of the detour behavior of mice constitutes the first step toward the substitution of rodents for primates in laboratory experiments employing the detour task. PMID:27588753
Niche convergence suggests functionality of the nocturnal fovea.
Moritz, Gillian L; Melin, Amanda D; Tuh Yit Yu, Fred; Bernard, Henry; Ong, Perry S; Dominy, Nathaniel J
2014-01-01
The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.
Niche convergence suggests functionality of the nocturnal fovea
Moritz, Gillian L.; Melin, Amanda D.; Tuh Yit Yu, Fred; Bernard, Henry; Ong, Perry S.; Dominy, Nathaniel J.
2014-01-01
The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels. PMID:25120441
In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones
Sharma, Robin; Schwarz, Christina; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.
2016-01-01
Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas. PMID:26903225
Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C
2017-07-01
The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Owsley, Cynthia
2010-01-01
Given the increasing size of the older adult population in many countries, there is a pressing need to identify the nature of aging-related vision impairments, their underlying mechanisms, and how they impact older adults’ performance of everyday visual tasks. The results of this research can then be used to develop and evaluate interventions to slow or reverse aging-related declines in vision, thereby improving quality of life. Here we summarize salient developments in research on aging and vision over the past 25 years, focusing on spatial contrast sensitivity, vision under low luminance, temporal sensitivity and motion perception, and visual processing speed. PMID:20974168
Crewther, D P; Crewther, S G
2015-09-01
Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph
2013-09-01
The importance of perceptual-cognitive expertise in sport has been repeatedly demonstrated. In this study we examined the role of different sources of visual information (i.e., foveal versus peripheral) in anticipating volleyball attack positions. Expert (n = 11), advanced (n = 13) and novice (n = 16) players completed an anticipation task that involved predicting the location of volleyball attacks. Video clips of volleyball attacks (n = 72) were spatially and temporally occluded to provide varying amounts of information to the participant. In addition, participants viewed the attacks under three visual conditions: full vision, foveal vision only, and peripheral vision only. Analysis of variance revealed significant between group differences in prediction accuracy with higher skilled players performing better than lower skilled players. Additionally, we found significant differences between temporal and spatial occlusion conditions. Both of those factors interacted separately, but not combined with expertise. Importantly, for experts the sum of both fields of vision was superior to either source in isolation. Our results suggest different sources of visual information work collectively to facilitate expert anticipation in time-constrained sports and reinforce the complexity of expert perception.
Effect of glare on reaction time for peripheral vision at mesopic adaptation.
Aguirre, Rolando C; Colombo, Elisa M; Barraza, José F
2011-10-01
When a bright light is present in the field of view, visibility is dramatically reduced. Many studies have investigated the effect of glare on visibility considering foveal vision. However, the effects on peripheral vision have received little attention. In a previous work [J. Opt. Soc. Am. A 25, 1790 (2008)], we showed that the effect of glare on reaction time (RT) for foveal vision at mesopic adaptation depends on the stimulus spatial frequency. In this work, we extend this study to peripheral vision. We measured the RT of achromatic sinusoidal gratings as a function of contrast for a range of spatial frequency, and eccentricity, and for two glare levels, in addition to the no-glare condition. Data were fitted with Piéron's law, following a linear relationship. We found that glare increases the slope of these lines for all conditions. These slopes seem to depend critically on eccentricity for 4 cycles/degree (c/deg), but not for 1 and 2 c/deg. We explain our results in terms of the contrast sensitivity (gain) of the underlying detection mechanisms.
Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst
2014-01-01
Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284
High-dynamic-range scene compression in humans
NASA Astrophysics Data System (ADS)
McCann, John J.
2006-02-01
Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.
Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D
2016-11-01
To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision.
Vinberg, Frans; Wang, Tian; De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven; Chen, Jeannie; Kefalov, Vladimir J
2017-06-26
Calcium (Ca 2+ ) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca 2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca 2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na + /Ca 2+ , K + exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca 2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.
High-resolution imaging of the large non-human primate brain using microPET: a feasibility study
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.
2007-11-01
The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.
Visual resolution and contrast sensitivity in two benthic sharks.
Ryan, Laura A; Hart, Nathan S; Collin, Shaun P; Hemmi, Jan M
2016-12-15
Sharks have long been described as having 'poor' vision. They are cone monochromats and anatomical estimates suggest they have low spatial resolution. However, there are no direct behavioural measurements of spatial resolution or contrast sensitivity. This study estimates contrast sensitivity and spatial resolution of two species of benthic sharks, the Port Jackson shark, Heterodontus portusjacksoni, and the brown-banded bamboo shark, Chiloscyllium punctatum, by recording eye movements in response to optokinetic stimuli. Both species tracked moving low spatial frequency gratings with weak but consistent eye movements. Eye movements ceased at 0.38 cycles per degree, even for high contrasts, suggesting low spatial resolution. However, at lower spatial frequencies, eye movements were elicited by low contrast gratings, 1.3% and 2.9% contrast in H portusjacksoni and C. punctatum, respectively. Contrast sensitivity was higher than in other vertebrates with a similar spatial resolving power, which may reflect an adaptation to the relatively low contrast encountered in aquatic environments. Optokinetic gain was consistently low and neither species stabilised the gratings on their retina. To check whether restraining the animals affected their optokinetic responses, we also analysed eye movements in free-swimming C. punctatum We found no eye movements that could compensate for body rotations, suggesting that vision may pass through phases of stabilisation and blur during swimming. As C. punctatum is a sedentary benthic species, gaze stabilisation during swimming may not be essential. Our results suggest that vision in sharks is not 'poor' as previously suggested, but optimised for contrast detection rather than spatial resolution. © 2016. Published by The Company of Biologists Ltd.
Houck, M R; Hoffman, J E
1986-05-01
According to feature-integration theory (Treisman & Gelade, 1980), separable features such as color and shape exist in separate maps in preattentive vision and can be integrated only through the use of spatial attention. Many perceptual aftereffects, however, which are also assumed to reflect the features available in preattentive vision, are sensitive to conjunctions of features. One possible resolution of these views holds that adaptation to conjunctions depends on spatial attention. We tested this proposition by presenting observers with gratings varying in color and orientation. The resulting McCollough aftereffects were independent of whether the adaptation stimuli were presented inside or outside of the focus of spatial attention. Therefore, color and shape appear to be conjoined preattentively, when perceptual aftereffects are used as the measure. These same stimuli, however, appeared to be separable in two additional experiments that required observers to search for gratings of a specified color and orientation. These results show that different experimental procedures may be tapping into different stages of preattentive vision.
Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1998-01-01
The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.
Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic
Ebeling, Wiebke; Natoli, Riccardo C.; Hemmi, Jan M.
2010-01-01
Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the “dichromatic” wallaby and the “trichromatic” dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20–25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved. PMID:21151905
Camaratta, Danielle; Chaves, Óscar M; Bicca-Marques, Júlio César
2017-03-01
Understanding the ecological factors that influence the presence, abundance, and distribution of species within their habitats is critical for ensuring their long-term conservation. In the case of primary consumers, such as most primates, the availability and richness of plant foods are considered key drivers of population density at these variables influence the spatial distribution of social units within a finer, habitat patch level scale. We tested the hypothesis that the spatiotemporal availability and richness of plant foods, drive the spatial distribution of brown howler monkeys (Alouatta guariba clamitans) at a fine spatial scale. We established five line transects (2.6-4.3 km long) to census the population of brown howlers in Morro São Pedro, a 1,200 ha Atlantic forest remnant in southern Brazil, every 2 weeks from January to June 2015. We used data from tree inventories performed in sighting and control plots, and phenological surveys of 17 top food tree species to estimate bi-weekly food availability. We recorded a total of 95 sightings. The number of sightings per sampling period ranged from 2 to 12. The availability of fruit (ripe and unripe) was higher in sighting than in control plots, whereas leaf availability and the richness of food tree species was similar. We conclude that the spatial distribution of fruiting trees and the availability of fruit drive the pattern of habitat use, and spacing of brown howler groups in Morro São Pedro. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela
2013-01-01
In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…
An "oblique effect" in the visual evoked potential of the cat.
Bonds, A B
1982-01-01
An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.
Primate-inspired vehicle navigation using optic flow and mental rotations
NASA Astrophysics Data System (ADS)
Arkin, Ronald C.; Dellaert, Frank; Srinivasan, Natesh; Kerwin, Ryan
2013-05-01
Robot navigation already has many relatively efficient solutions: reactive control, simultaneous localization and mapping (SLAM), Rapidly-Exploring Random Trees (RRTs), etc. But many primates possess an additional inherent spatial reasoning capability: mental rotation. Our research addresses the question of what role, if any, mental rotations can play in enhancing existing robot navigational capabilities. To answer this question we explore the use of optical flow as a basis for extracting abstract representations of the world, comparing these representations with a goal state of similar format and then iteratively providing a control signal to a robot to allow it to move in a direction consistent with achieving that goal state. We study a range of transformation methods to implement the mental rotation component of the architecture, including correlation and matching based on cognitive studies. We also include a discussion of how mental rotations may play a key role in understanding spatial advice giving, particularly from other members of the species, whether in map-based format, gestures, or other means of communication. Results to date are presented on our robotic platform.
Local spatio-temporal analysis in vision systems
NASA Astrophysics Data System (ADS)
Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David
1994-07-01
The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.
A neurocomputational model of figure-ground discrimination and target tracking.
Sun, H; Liu, L; Guo, A
1999-01-01
A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.
Vestibular signals in primate cortex for self-motion perception.
Gu, Yong
2018-04-21
The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.
Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.
Dong, Qiulei; Wang, Hong; Hu, Zhanyi
2018-02-01
Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low convolutional layers of VGG19 are considerably larger than the value of approximately 100 reported for IT neurons in Lehky et al. ( 2014 ), whereas those at the high fully connected layers are close to or lower than 100. To the best of our knowledge, this work is the first attempt to analyze the response statistics of DNN neurons with respect to primate IT neurons in image object representation.
Spatial updating depends on gaze direction even after loss of vision.
Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja
2012-02-15
Direction of gaze (eye angle + head angle) has been shown to be important for representing space for action, implying a crucial role of vision for spatial updating. However, blind people have no access to vision yet are able to perform goal-directed actions successfully. Here, we investigated the role of visual experience for localizing and updating targets as a function of intervening gaze shifts in humans. People who differed in visual experience (late blind, congenitally blind, or sighted) were briefly presented with a proprioceptive reach target while facing it. Before they reached to the target's remembered location, they turned their head toward an eccentric direction that also induced corresponding eye movements in sighted and late blind individuals. We found that reaching errors varied systematically as a function of shift in gaze direction only in participants with early visual experience (sighted and late blind). In the late blind, this effect was solely present in people with moveable eyes but not in people with at least one glass eye. Our results suggest that the effect of gaze shifts on spatial updating develops on the basis of visual experience early in life and remains even after loss of vision as long as feedback from the eyes and head is available.
Mundy, N I; Morningstar, N C; Baden, A L; Fernandez-Duque, E; Dávalos, V M; Bradley, B J
2016-01-01
Do evolutionary specializations lead to evolutionary constraint? This appears plausible, particularly when specialization leads to loss of complex adaptations. In the owl monkey lineage, nocturnality clearly arose from a diurnal ancestor. This behavioural shift was accompanied by morphological changes in the eye and orbit and complete loss of colour vision via missense mutations in the gene encoding the short-wave sensitive visual pigment (SWS opsin). Interestingly, at least one subspecies of owl monkey, Azara's owl monkey (Aotus azarae azarae), has regained activity in daylight. Given that all primate species that are active in daylight, including primarily diurnal species and species that are active during both day and night, have at least dichromatic colour vision, it seems reasonable to propose that dichromacy would be adaptive in A. a. azarae. With a disabled SWS opsin, the main avenue available for Azara's owl monkeys to re-evolve colour vision is via a polymorphism in the intact X-linked opsin locus, which commonly occurs in other New World monkeys. To examine this possibility we assayed variation in the X-linked opsin of A. a. azarae, focusing on the three exons (3, 4 and 5) that control spectral sensitivity. We found low opsin genetic variation on a population level, and no differences at the three main sites that lead to variation in spectral sensitivity in the opsins of other New World monkeys. Two rare alleles with single amino acid variants are segregating in the population, but previous functional studies indicate that these are unlikely to affect spectral sensitivity. Genetic constraint on the re-evolution of colour vision is likely operating in Azara's owl monkey, which may affect the niche that this subspecies is able to occupy.
Rebalancing binocular vision in amblyopia.
Ding, Jian; Levi, Dennis M
2014-03-01
Humans with amblyopia have an asymmetry in binocular vision: neural signals from the amblyopic eye are suppressed in the cortex by the fellow eye. The purpose of this study was to develop new models and methods for rebalancing this asymmetric binocular vision by manipulating the contrast and luminance in the two eyes. We measured the perceived phase of a cyclopean sinewave by asking normal and amblyopic observers to indicate the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We varied both the relative contrast and luminance of the two eyes' inputs, in order to rebalance the asymmetric binocular vision. Amblyopic binocular vision becomes more and more asymmetric the higher the stimulus contrast or spatial frequency. Reanalysing our previous data, we found that, at a given spatial frequency, the binocular asymmetry could be described by a log-linear formula with two parameters, one for the maximum asymmetry and one for the rate at which the binocular system becomes asymmetric as the contrast increases. Our new data demonstrates that reducing the dominant eye's mean luminance reduces its suppression of the non-dominant eye, and therefore rebalances the asymmetric binocular vision. While the binocular asymmetry in amblyopic vision can be rebalanced by manipulating the relative contrast or luminance of the two eyes at a given spatial frequency and contrast, it is very difficult or even impossible to rebalance the asymmetry for all visual conditions. Nonetheless, wearing a neutral density filter before the dominant eye (or increasing the mean luminance in the non-dominant eye) may be more beneficial than the traditional method of patching the dominant eye for treating amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Potì, Patrizia; Kanngiesser, Patricia; Saporiti, Martina; Amiconi, Alessandra; Bläsing, Bettina; Call, Josep
2010-01-01
In this study we show that bonobos and capuchin monkeys can learn to search in the middle of a landmark configuration in a small-scale space. Five bonobos (Pan paniscus) and 2 capuchin monkeys (Cebus apella) were tested in a series of experiments with the expansion test paradigm. The primates were trained to search in the middle of a 4- or 2-landmark configuration, and were then tested with the same configuration expanded. Neither species searched in the middle of the expanded 4-landmark configuration. When presented with a 2-landmark configuration and a constant or variable inter-landmark training distance, the subjects sometimes searched preferentially in the middle of the expanded configuration. We discuss 2 alternative explanations of the results: extracting a middle rule or averaging between different goal-landmark vectors. In any case, compared to adult humans, primates appear highly constrained in their abilities to search in the middle of a configuration of detached landmarks. We discuss some of the factors that may influence the primates' behavior in this task.
Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.
2016-01-01
ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452
Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M
2016-01-01
Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.
Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.
Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M
2015-07-01
The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.
Tracking blue cone signals in the primate brain.
Jayakumar, Jaikishan; Dreher, Bogdan; Vidyasagar, Trichur R
2013-05-01
In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
Freeman, Sara M; Inoue, Kiyoshi; Smith, Aaron L; Goodman, Mark M; Young, Larry J
2014-07-01
The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Freeman, Sara M.; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Young, Larry J.
2014-01-01
The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. PMID:24845184
USDA-ARS?s Scientific Manuscript database
Stomoxys calcitrans (L.) is a biting fly of extreme economic importance and can cause adverse economic effects on host animals. Within zoological parks, hosts may include practically any accessible animal (e.g., sheep, goats, cows, camels, equines, primates, canids, and felids). In many animals, e....
The Malcolm horizon: History and future
NASA Technical Reports Server (NTRS)
Malcolm, R.
1984-01-01
The development of the Malcolm Horizon, a peripheral vision horizon used in flight simulation, is discussed. A history of the horizon display is presented as well as a brief overview of vision physiology, and the role balance plays is spatial orientation. Avenues of continued research in subconscious cockpit instrumentation are examined.
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Low--resolution vision in a velvet worm (Onychophora).
Kirwan, John D; Graf, Josefine; Smolka, Jochen; Mayer, Georg; Henze, Miriam J; Nilsson, Dan-Eric
2018-06-04
Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assessed the spatial resolution of the onychophoran Euperipatoides rowelli using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting their spontaneous attraction towards dark objects, we found that E. rowelli can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate the spatial resolution to be in the range 15-40 deg. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high-acuity vision. Our findings suggest that adult specimens of E. rowelli cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely to be sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran. © 2018. Published by The Company of Biologists Ltd.
Ravasi, Damiana F; O'Riain, Mannus J; Davids, Faezah; Illing, Nicola
2012-01-01
Although there has been extensive debate about whether Trichuris suis and Trichuris trichiura are separate species, only one species of the whipworm T. trichiura has been considered to infect humans and non-human primates. In order to investigate potential cross infection of Trichuris sp. between baboons and humans in the Cape Peninsula, South Africa, we sequenced the ITS1-5.8S-ITS2 region of adult Trichuris sp. worms isolated from five baboons from three different troops, namely the Cape Peninsula troop, Groot Olifantsbos troop and Da Gama Park troop. This region was also sequenced from T. trichiura isolated from a human patient from central Africa (Cameroon) for comparison. By combining this dataset with Genbank records for Trichuris isolated from other humans, non-human primates and pigs from several different countries in Europe, Asia, and Africa, we confirmed the identification of two distinct Trichuris genotypes that infect primates. Trichuris sp. isolated from the Peninsula baboons fell into two distinct clades that were found to also infect human patients from Cameroon, Uganda and Jamaica (named the CP-GOB clade) and China, Thailand, the Czech Republic, and Uganda (named the DG clade), respectively. The divergence of these Trichuris clades is ancient and precedes the diversification of T. suis which clustered closely to the CP-GOB clade. The identification of two distinct Trichuris genotypes infecting both humans and non-human primates is important for the ongoing treatment of Trichuris which is estimated to infect 600 million people worldwide. Currently baboons in the Cape Peninsula, which visit urban areas, provide a constant risk of infection to local communities. A reduction in spatial overlap between humans and baboons is thus an important measure to reduce both cross-transmission and zoonoses of helminthes in Southern Africa.
Ravasi, Damiana F.; O’Riain, Mannus J.; Davids, Faezah; Illing, Nicola
2012-01-01
Although there has been extensive debate about whether Trichuris suis and Trichuris trichiura are separate species, only one species of the whipworm T. trichiura has been considered to infect humans and non-human primates. In order to investigate potential cross infection of Trichuris sp. between baboons and humans in the Cape Peninsula, South Africa, we sequenced the ITS1-5.8S-ITS2 region of adult Trichuris sp. worms isolated from five baboons from three different troops, namely the Cape Peninsula troop, Groot Olifantsbos troop and Da Gama Park troop. This region was also sequenced from T. trichiura isolated from a human patient from central Africa (Cameroon) for comparison. By combining this dataset with Genbank records for Trichuris isolated from other humans, non-human primates and pigs from several different countries in Europe, Asia, and Africa, we confirmed the identification of two distinct Trichuris genotypes that infect primates. Trichuris sp. isolated from the Peninsula baboons fell into two distinct clades that were found to also infect human patients from Cameroon, Uganda and Jamaica (named the CP-GOB clade) and China, Thailand, the Czech Republic, and Uganda (named the DG clade), respectively. The divergence of these Trichuris clades is ancient and precedes the diversification of T. suis which clustered closely to the CP-GOB clade. The identification of two distinct Trichuris genotypes infecting both humans and non-human primates is important for the ongoing treatment of Trichuris which is estimated to infect 600 million people worldwide. Currently baboons in the Cape Peninsula, which visit urban areas, provide a constant risk of infection to local communities. A reduction in spatial overlap between humans and baboons is thus an important measure to reduce both cross-transmission and zoonoses of helminthes in Southern Africa. PMID:22952922
Spatial vision processes: From the optical image to the symbolic structures of contour information
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1988-01-01
The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.
Yagi, T; Ohshima, S; Funahashi, Y
1997-09-01
A linear analogue network model is proposed to describe the neuronal circuit of the outer retina consisting of cones, horizontal cells, and bipolar cells. The model reflects previous physiological findings on the spatial response properties of these neurons to dim illumination and is expressed by physiological mechanisms, i.e., membrane conductances, gap-junctional conductances, and strengths of chemical synaptic interactions. Using the model, we characterized the spatial filtering properties of the bipolar cell receptive field with the standard regularization theory, in which the early vision problems are attributed to minimization of a cost function. The cost function accompanying the present characterization is derived from the linear analogue network model, and one can gain intuitive insights on how physiological mechanisms contribute to the spatial filtering properties of the bipolar cell receptive field. We also elucidated a quantitative relation between the Laplacian of Gaussian operator and the bipolar cell receptive field. From the computational point of view, the dopaminergic modulation of the gap-junctional conductance between horizontal cells is inferred to be a suitable neural adaptation mechanism for transition between photopic and mesopic vision.
Understanding the pusher behavior of some stroke patients with spatial deficits: a pilot study.
Pérennou, Dominic Alain; Amblard, Bernard; Laassel, El Mostafa; Benaim, Charles; Hérisson, Christian; Pélissier, Jacques
2002-04-01
To investigate whether pusher behavior (ie, a tendency among stroke patients with spatial deficits to actively push away from the nonparalyzed side and to resist any attempt to hold a more upright posture) affects only the trunk, for which gravitational feedback is given by somesthetic information, or the head as well, whose gravitational information is mainly given by the vestibular system (without vision). Description and measurement of clinical features. Rehabilitation center research laboratory. Eight healthy subjects age matched to 14 patients with left hemiplegia resulting from right-hemisphere stroke (3 pushers showing a severe spatial neglect, 11 without pusher behavior). All participants were asked to actively maintain an erect posture while sitting for 8 seconds on a rocking, laterally unstable platform. The task was performed with (in light) and without (in darkness) vision. The number of trials needed to succeed in the task was monitored. In successful trials, head, shoulders, thoracolumbar spine, and pelvis orientation in roll were measured by means of an automated, optical television image processor. Compared with other patients and healthy subjects, the 3 pushers missed many more trials and displayed a contralesional tilt of the pelvis but kept a correct head orientation. This tilt was especially pronounced without vision. Spatial neglect was a key factor, explaining 56% of patients' misorientation behavior with vision and 61% without vision. This pilot kinematic analysis shows that pusher behavior does not result from disrupted processing of vestibular information (eg, caused by a lesion involving the vestibular cortex); rather, it results from a high-order disruption in the processing of somesthetic information originating in the left hemibody, which could be graviceptive neglect (extinction). This disruption leads pushers to actively adjust their body posture to a subjective vertical biased to the side opposite the cerebral lesion. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
ERIC Educational Resources Information Center
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2011-01-01
This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…
Spatial-frequency dependent binocular imbalance in amblyopia
Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.
2015-01-01
While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125
Spatial-frequency dependent binocular imbalance in amblyopia.
Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J
2015-11-25
While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy.
On the role of spatial phase and phase correlation in vision, illusion, and cognition
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of “cognition by phase correlation.” PMID:25954190
On the role of spatial phase and phase correlation in vision, illusion, and cognition.
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."
Ahuja, A K; Dorn, J D; Caspi, A; McMahon, M J; Dagnelie, G; daCruz, L; Stanga, P; Humayun, M S; Greenberg, R J
2012-01-01
Background/aims To determine to what extent subjects implanted with the Argus II retinal prosthesis can improve performance compared with residual native vision in a spatial-motor task. Methods High-contrast square stimuli (5.85 cm sides) were displayed in random locations on a 19″ (48.3 cm) touch screen monitor located 12″ (30.5 cm) in front of the subject. Subjects were instructed to locate and touch the square centre with the system on and then off (40 trials each). The coordinates of the square centre and location touched were recorded. Results Ninety-six percent (26/27) of subjects showed a significant improvement in accuracy and 93% (25/27) show a significant improvement in repeatability with the system on compared with off (p<0.05, Student t test). A group of five subjects that had both accuracy and repeatability values <250 pixels (7.4 cm) with the system off (ie, using only their residual vision) was significantly more accurate and repeatable than the remainder of the cohort (p<0.01). Of this group, four subjects showed a significant improvement in both accuracy and repeatability with the system on. Conclusion In a study on the largest cohort of visual prosthesis recipients to date, we found that artificial vision augments information from existing vision in a spatial-motor task. Clinical trials registry no NCT00407602. PMID:20881025
Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
Emerling, Christopher A
2017-03-01
Vertebrate color vision has evolved partly through the modification of five ancestral visual opsin proteins via gene duplication, loss, and shifts in spectral sensitivity. While many vertebrates, particularly mammals, birds, and fishes, have had their visual opsin repertoires studied in great detail, testudines (turtles) and crocodylians have largely been neglected. Here I examine the genomic basis for color vision in four species of turtles and four species of crocodylians, and demonstrate that while turtles appear to vary in their number of visual opsins, crocodylians experienced a reduction in their color discrimination capacity after their divergence from Aves. Based on the opsin sequences present in their genomes and previous measurements of crocodylian cones, I provide evidence that crocodylians have co-opted the rod opsin (RH1) for cone function. This suggests that some crocodylians might have reinvented trichromatic color vision in a novel way, analogous to several primate lineages. The loss of visual opsins in crocodylians paralleled the loss of various anatomical features associated with photoreception, attributed to a "nocturnal bottleneck" similar to that hypothesized for Mesozoic mammals. I further queried crocodylian genomes for nonvisual opsins and genes associated with protection from ultraviolet light, and found evidence for gene inactivation or loss for several of these genes. Two genes, encoding parietopsin and parapinopsin, were additionally inactivated in birds and turtles, likely co-occurring with the loss of the parietal eye in these lineages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator)
Chiou, Kenneth L.; Walco, Emily R.; Bergstrom, Mackenzie L.; Kawamura, Shoji; Fedigan, Linda M.
2017-01-01
Intraspecific color vision variation is prevalent among nearly all diurnal monkeys in the neotropics and is seemingly a textbook case of balancing selection acting to maintain genetic polymorphism. Clear foraging advantages to monkeys with trichromatic vision over those with dichromatic “red-green colorblind” vision have been observed in captive studies; however, evidence of trichromatic advantage during close-range foraging has been surprisingly scarce in field studies, perhaps as a result of small sample sizes and strong impacts of environmental or individual variation on foraging performance. To robustly test the effects of color vision type on foraging efficiency in the wild, we conducted an extensive study of dichromatic and trichromatic white-faced capuchin monkeys (Cebus capucinus imitator), controlling for plant-level and monkey-level variables that may affect fruit intake rates. Over the course of 14 months, we collected behavioral data from 72 monkeys in Sector Santa Rosa, Costa Rica. We analyzed 19,043 fruit feeding events within 1,602 foraging bouts across 27 plant species. We find that plant species, color conspicuity category, and monkey age class significantly impact intake rates, while sex does not. When plant species and age are controlled for, we observe that trichromats have higher intake rates than dichromats for plant species with conspicuously colored fruits. This study provides clear evidence of trichromatic advantage in close-range fruit feeding in wild monkeys. Taken together with previous reports of dichromatic advantage for finding cryptic foods, our results illuminate an important aspect of balancing selection maintaining primate opsin polymorphism. PMID:28894009
Ability Structure and Loss of Vision. Research Series, Number 18.
ERIC Educational Resources Information Center
Juurmaa, Jyrki
In the analysis of ability structure and loss of vision, 228 blind persons (153 male, 75 female) heterogenous in respect to chronological age, sex, degree of blindness, age at onset, and duration, were compared to sighted controls. A test battery was administered which included tests for verbal comprehension, mental arithmetic, spatial ability,…
A.M. Skeffington: the father of behavioral optometry--his contributions
NASA Astrophysics Data System (ADS)
Maples, Willis C.
1998-10-01
Life of Dr. A. M. Skeffington, his model of vision, and his contributions to optometry are reviewed. In particular, vision as s spatial information processing system and dual sensing ocular system are discussed to answer the questions: `where is the object in space?' and `what is the object in space?'.
Progress in building a cognitive vision system
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Lyons, Damian; Yue, Hong
2016-05-01
We are building a cognitive vision system for mobile robots that works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion to create a local dynamic spatial model. These local 3D models are composed to create an overall 3D model of the robot and its environment. This approach turns the computer vision problem into a search problem whose goal is the acquisition of sufficient spatial understanding for the robot to succeed at its tasks. The research hypothesis of this work is that the movements of the robot's cameras are only those that are necessary to build a sufficiently accurate world model for the robot's current goals. For example, if the goal is to navigate through a room, the model needs to contain any obstacles that would be encountered, giving their approximate positions and sizes. Other information does not need to be rendered into the virtual world, so this approach trades model accuracy for speed.
The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision
Vinberg, Frans; Wang, Tian; De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven; Chen, Jeannie; Kefalov, Vladimir J
2017-01-01
Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival. DOI: http://dx.doi.org/10.7554/eLife.24550.001 PMID:28650316
Neural Mechanisms of Selective Visual Attention.
Moore, Tirin; Zirnsak, Marc
2017-01-03
Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.
Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.
Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina
2017-07-01
Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.
Advances in color science: from retina to behavior
Chatterjee, Soumya; Field, Greg D.; Horwitz, Gregory D.; Johnson, Elizabeth N.; Koida, Kowa; Mancuso, Katherine
2010-01-01
Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incompletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color computations in the retina, primary visual cortex and higher-order visual areas, focusing on non-human primates, a model of human color vision. PMID:21068298
An Attractor Network in the Hippocampus: Theory and Neurophysiology
ERIC Educational Resources Information Center
Rolls, Edmund T.
2007-01-01
A quantitative computational theory of the operation of the CA3 system as an attractor or autoassociation network is described. Based on the proposal that CA3-CA3 autoassociative networks are important for episodic or event memory in which space is a component (place in rodents and spatial view in primates), it has been shown behaviorally that the…
PixonVision real-time video processor
NASA Astrophysics Data System (ADS)
Puetter, R. C.; Hier, R. G.
2007-09-01
PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.
Limits of colour vision in dim light.
Kelber, Almut; Lind, Olle
2010-09-01
Humans and most vertebrates have duplex retinae with multiple cone types for colour vision in bright light, and one single rod type for achromatic vision in dim light. Instead of comparing signals from multiple spectral types of photoreceptors, such species use one highly sensitive receptor type thus improving the signal-to-noise ratio at night. However, the nocturnal hawkmoth Deilephila elpenor, the nocturnal bee Xylocopa tranquebarica and the nocturnal gecko Tarentola chazaliae can discriminate colours at extremely dim light intensities. To be able to do so, they sacrifice spatial and temporal resolution in favour of colour vision. We review what is known about colour vision in dim light, and compare colour vision thresholds with the optical sensitivity of the photoreceptors in selected animal species with lens and compound eyes. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.
Harnessing color vision for visual oximetry in central cyanosis.
Changizi, Mark; Rio, Kevin
2010-01-01
Central cyanosis refers to a bluish discoloration of the skin, lips, tongue, nails, and mucous membranes, and is due to poor arterial oxygenation. Although skin color is one of its characteristic properties, it has long been realized that by the time skin color signs become visible, oxygen saturation is dangerously low. Here we investigate the visibility of cyanosis in light of recent discoveries on what color vision evolved for in primates. We elucidate why low arterial oxygenation is visible at all, why it is perceived as blue, and why it can be so difficult to perceive. With a better understanding of the relationship between color vision and blood physiology, we suggest two simple techniques for greatly enhancing the clinician's ability to detect cyanosis and other clinical color changes. The first is called "skin-tone adaptation", wherein sheets, gowns, walls and other materials near a patient have a color close to that of the patient's skin, thereby optimizing a color-normal viewer's ability to sense skin color modulations. The second technique is called "biosensor color tabs", wherein adhesive tabs with a color matching the patient's skin tone are placed in several spots on the skin, and subsequent skin color changes have the effect of making the initially-invisible tabs change color, their hue and saturation indicating the direction and magnitude of the skin color shift.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1997-09-01
The interpretation of the 'inverted' retina of primates as an 'optoretina' (a light cones transforming diffractive cellular 3D-phase grating) integrates the functional, structural, and oscillatory aspects of a cortical layer. It is therefore relevant to consider prenatal developments as a basis of the macro- and micro-geometry of the inner eye. This geometry becomes relevant for the postnatal trichromatic synchrony organization (TSO) as well as the adaptive levels of human vision. It is shown that the functional performances, the trichromatism in photopic vision, the monocular spatiotemporal 3D- and 4D-motion detection, as well as the Fourier optical image transformation with extraction of invariances all become possible. To transform light cones into reciprocal gratings especially the spectral phase conditions in the eikonal of the geometrical optical imaging before the retinal 3D-grating become relevant first, then in the von Laue resp. reciprocal von Laue equation for 3D-grating optics inside the grating and finally in the periodicity of Talbot-2/Fresnel-planes in the near-field behind the grating. It is becoming possible to technically realize -- at least in some specific aspects -- such a cortical optoretina sensor element with its typical hexagonal-concentric structure which leads to these visual functions.
Machine Vision Within The Framework Of Collective Neural Assemblies
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1990-03-01
The proposed mechanism for designing a robust machine vision system is based on the dynamic activity generated by the various neural populations embedded in nervous tissue. It is postulated that a hierarchy of anatomically distinct tissue regions are involved in visual sensory information processing. Each region may be represented as a planar sheet of densely interconnected neural circuits. Spatially localized aggregates of these circuits represent collective neural assemblies. Four dynamically coupled neural populations are assumed to exist within each assembly. In this paper we present a state-variable model for a tissue sheet derived from empirical studies of population dynamics. Each population is modelled as a nonlinear second-order system. It is possible to emulate certain observed physiological and psychophysiological phenomena of biological vision by properly programming the interconnective gains . Important early visual phenomena such as temporal and spatial noise insensitivity, contrast sensitivity and edge enhancement will be discussed for a one-dimensional tissue model.
Lambert, Joanna E.; Fellner, Vivek; McKenney, Erin; Hartstone-Rose, Adam
2014-01-01
Exclusive frugivory is rare. As a food resource, fruit is temporally and spatially patchy, low in protein, and variable in terms of energy yield from different carbohydrate types. Here, we evaluate the digestive physiology of two frugivorous Carnivora species (Potos flavus, Arctictis binturong) that converge with primates in a diversity of ecological and anatomical traits related to fruit consumption. We conducted feeding trials to determine mean digestive retention times (MRT) on captive animals at the Carnivore Preservation Trust (now Carolina Tiger Rescue), Pittsboro, NC. Fecal samples were collected on study subjects for in vitro analysis to determine methane, pH, and short chain fatty acid profiles; fiber was assayed using standard neutral detergent (NDF) and acid detergent (ADF) fiber methods. Results indicate that both carnivoran species have rapid digestive passage for mammals that consume a predominantly plant-based diet: A. binturong MRT = 6.5 hrs (0.3); P. flavus MRT = 2.5 hrs (1.6). In vitro experiments revealed no fermentation of structural polysaccharides – methane levels did not shift from 0 h to either 24 or 48 hours and no short chain fatty acids were detected. In both species, however, pH declined from one incubation period to another suggesting acidification and bacterial activity of microbes using soluble carbohydrates. A comparison with primates indicates that the study species are most similar in digestive retention times to Ateles – the most frugivorous anthropoid primate taxon. PMID:25157614
Vijayraghavan, Susheel; Major, Alex J.; Everling, Stefan
2017-01-01
The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease. PMID:29259545
De Lillo, Carlo; Kirby, Melissa; James, Frances C
2014-05-01
Search and serial recall tasks were used in the present study to characterize the factors affecting the ability of humans to keep track of a set of spatial locations while traveling in an immersive virtual reality foraging environment. The first experiment required the exhaustive exploration of a set of locations following a procedure previously used with other primate and non-primate species to assess their sensitivity to the geometric arrangement of foraging sites. The second experiment assessed the dependency of search performance on search organization by requiring the participants to recall specific trajectories throughout the foraging space. In the third experiment, the distance between the foraging sites was manipulated in order to contrast the effects of organization and traveling distance on recall accuracy. The results show that humans benefit from the use of organized search patterns when attempting to monitor their travel though either a clustered "patchy" space or a matrix of locations. Their ability to recall a series of locations is dependent on whether the order in which they are explored conformed or did not conform to specific organization principles. Moreover, the relationship between search efficiency and search organization is not confounded by effects of traveling distance. These results indicate that in humans, organizational factors may play a large role in their ability to forage efficiently. The extent to which such dependency may pertain to other primates and could be accounted for by visual organization processes is discussed on the basis of previous studies focused on perceptual grouping, search, and serial recall in non-human species. © 2013 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2011-06-01
People with vision impairment have different perception and spatial cognition as compared to the sighted people. Blind pedestrians primarily rely on auditory, olfactory, or tactile feedback to determine spatial location and find their way. They gener...
Barium distributions in teeth reveal early-life dietary transitions in primates.
Austin, Christine; Smith, Tanya M; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J; Doble, Philip; Eskenazi, Brenda; Arora, Manish
2013-06-13
Early-life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth. Uncovering early-life dietary history in fossils is hampered by the absence of prospectively validated biomarkers that are not modified during fossilization. Here we show that large dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother's milk through the weaning process. We also document dietary transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, indicating an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history.
Filtering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision.
Cronin, Thomas W; Bok, Michael J; Marshall, N Justin; Caldwell, Roy L
2014-01-01
Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.
Activation of the Hippocampal Complex during Tactile Maze Solving in Congenitally Blind Subjects
ERIC Educational Resources Information Center
Gagnon, Lea; Schneider, Fabien C.; Siebner, Hartwig R.; Paulson, Olaf B.; Kupers, Ron; Ptito, Maurice
2012-01-01
Despite their lack of vision, congenitally blind subjects are able to build and manipulate cognitive maps for spatial navigation. It is assumed that they thereby rely more heavily on echolocation, proprioceptive signals and environmental cues such as ambient temperature and audition to compensate for their lack of vision. Little is known, however,…
Sequence divergence of the red and green visual pigments in great apes and humans.
Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G
1994-01-01
We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777
Setchell, Joanna M; Vaglio, Stefano; Moggi-Cecchi, Jacopo; Boscaro, Francesca; Calamai, Luca; Knapp, Leslie A
2010-03-01
Primates are traditionally considered to be microsmatic, with decreased reliance on olfactory senses in comparison to other sensory modalities such as vision. This is particularly the case for Old World monkeys and apes (catarrhines). However, various lines of evidence suggest that chemical communication may be important in these species, including the presence of a sternal scent-gland in the mandrill. We investigated the volatile components of mandrill odor using gas chromatography-mass spectrometry. We identified a total of 97 volatile components in 88 swabs of the sternal gland secretion and 95 samples of sternal gland hair saturated with scent-gland secretion collected from 27 males and 18 females. We compared odor profiles with features of the signaler using principle components and discriminant function analyses and found that volatile profiles convey both variable (age, dominance rank in males) and fixed (sex, possibly individual identity) information about the signaler. The combination of an odor profile that signals sex, age, and rank with increased motivation to scent-mark and increased production of secretion in high-ranking males leads to a potent signal of the presence of a dominant, adult male with high testosterone levels. This may be particularly relevant in the dense Central African rain forest which mandrills inhabit. By contrast, we were unable to differentiate between either female cycle stage or female rank based on odor profiles, which accords with behavioral studies suggesting that odor signals are not as important in female mandrills as they are in males. The similarity of our findings to those for other mammals and in primates that are more distantly related to humans suggests a broader role for odor in primate communication than is currently recognized.
Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.
2016-01-01
Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178
Comparison of vision through surface modulated and spatial light modulated multifocal optics.
Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana
2017-04-01
Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.
Comparison of vision through surface modulated and spatial light modulated multifocal optics
Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana
2017-01-01
Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655
Local spatial frequency analysis for computer vision
NASA Technical Reports Server (NTRS)
Krumm, John; Shafer, Steven A.
1990-01-01
A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.
Hybrid vision activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1990-01-01
NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.
NASA Astrophysics Data System (ADS)
Fujii, Kenji
2002-06-01
In this dissertation, the correlation mechanism in modeling the process in the visual perception is introduced. It has been well described that the correlation mechanism is effective for describing subjective attributes in auditory perception. The main result is that it is possible to apply the correlation mechanism to the process in temporal vision and spatial vision, as well as in audition. (1) The psychophysical experiment was performed on subjective flicker rates for complex waveforms. A remarkable result is that the phenomenon of missing fundamental is found in temporal vision as analogous to the auditory pitch perception. This implies the existence of correlation mechanism in visual system. (2) For spatial vision, the autocorrelation analysis provides useful measures for describing three primary perceptual properties of visual texture: contrast, coarseness, and regularity. Another experiment showed that the degree of regularity is a salient cue for texture preference judgment. (3) In addition, the autocorrelation function (ACF) and inter-aural cross-correlation function (IACF) were applied for analysis of the temporal and spatial properties of environmental noise. It was confirmed that the acoustical properties of aircraft noise and traffic noise are well described. These analyses provided useful parameters extracted from the ACF and IACF in assessing the subjective annoyance for noise. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Junko Atagi, 6813 Mosonou, Saijo-cho, Higashi-Hiroshima 739-0024, Japan. E-mail address: atagi\\@urban.ne.jp.
The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies.
Kirwan, John D; Bok, Michael J; Smolka, Jochen; Foster, James J; Hernández, José Carlos; Nilsson, Dan-Eric
2018-05-08
Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum , using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at pseudorandom directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range 29°-69°. This corresponds to a theoretical acceptance angle of 38°-89°, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13°-25° angular width, corresponding to an acceptance angle of 60°-116°, assuming the same contrast threshold as above. © 2018. Published by The Company of Biologists Ltd.
Rucker, Janet C.; Sheliga, Boris M.; FitzGibbon, Edmond J.; Miles, Frederick A.; Leigh, R. John
2008-01-01
The ocular following response (OFR) is a measure of motion vision elicited at ultra-short latencies by sudden movement of a large visual stimulus. We compared the OFR to vertical sinusoidal gratings (spatial frequency 0.153 cycles/° or 0.458 cycles/°) of each eye in a subject with evidence of left optic nerve demyelination due to multiple sclerosis (MS). The subject showed substantial differences in vision measured with stationary low-contrast Sloan letters (20/63 OD and 20/200 OS at 2.5% contrast) and the Lanthony Desaturated 15-hue color test (Color Confusion Index 1.11 OD and 2.14 OS). Compared with controls, all of the subject's OFR to increasing contrast showed a higher threshold. The OFR of each of the subject's eyes were similar for the 0.153 cycles/° stimulus, and psychophysical measurements of his ability to detect these moving gratings were also similar for each eye. However, with the 0.458 cycles/° stimulus, the subject's OFR was asymmetric and the affected eye showed decreased responses (smaller slope constant as estimated by the Naka-Rushton equation). These results suggest that, in this case, optic neuritis caused a selective deficit that affected parvocellular pathways mediating higher spatial frequencies, lower-contrast, and color vision, but spared the field-holding mechanism underlying the OFR to lower spatial frequencies. The OFR may provide a useful method to study motion vision in individuals with disorders affecting anterior visual pathways. PMID:16649097
Color-Change Detection Activity in the Primate Superior Colliculus.
Herman, James P; Krauzlis, Richard J
2017-01-01
The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC's involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.
la Cour, L. T.; Stone, B. W.; Hopkins, W.; Menzel, C.; Fragaszy, D.
2013-01-01
Perceptuomotor functions that support using hand tools can be examined in other manipulation tasks, such as alignment of objects to surfaces. We examined tufted capuchin monkeys’ and chimpanzees’ performance at aligning objects to surfaces while managing one or two spatial relations to do so. We presented 6 subjects of each species with a single stick to place into a groove, two sticks of equal length to place into two grooves, or two sticks joined as a T to place into a T-shaped groove. Tufted capuchins and chimpanzees performed equivalently on these tasks, aligning the straight stick to within 22.5° of parallel to the groove in approximately half of their attempts to place it, and taking more attempts to place the T stick than two straight sticks. The findings provide strong evidence that tufted capuchins and chimpanzees do not reliably align even one prominent axial feature of an object to a surface, and that managing two concurrent allocentric spatial relations in an alignment problem is significantly more challenging to them than managing two sequential relations. In contrast, humans from two years of age display very different perceptuomotor abilities in a similar task: they align sticks to a groove reliably on each attempt, and they readily manage two allocentric spatial relations concurrently. Limitations in aligning objects and in managing two or more relations at a time significantly constrain how nonhuman primates can use hand tools. PMID:23820935
ERIC Educational Resources Information Center
Graham, Kim S.; Barense, Morgan D.; Lee, Andy C. H.
2010-01-01
Studies in rats and non-human primates suggest that medial temporal lobe (MTL) structures play a role in perceptual processing, with the hippocampus necessary for spatial discrimination, and the perirhinal cortex for object discrimination. Until recently, there was little convergent evidence for analogous functional specialisation in humans, or…
Sharpening vision by adapting to flicker
Arnold, Derek H.; Williams, Jeremy D.; Phipps, Natasha E.; Goodale, Melvyn A.
2016-01-01
Human vision is surprisingly malleable. A static stimulus can seem to move after prolonged exposure to movement (the motion aftereffect), and exposure to tilted lines can make vertical lines seem oppositely tilted (the tilt aftereffect). The paradigm used to induce such distortions (adaptation) can provide powerful insights into the computations underlying human visual experience. Previously spatial form and stimulus dynamics were thought to be encoded independently, but here we show that adaptation to stimulus dynamics can sharpen form perception. We find that fast flicker adaptation (FFAd) shifts the tuning of face perception to higher spatial frequencies, enhances the acuity of spatial vision—allowing people to localize inputs with greater precision and to read finer scaled text, and it selectively reduces sensitivity to coarse-scale form signals. These findings are consistent with two interrelated influences: FFAd reduces the responsiveness of magnocellular neurons (which are important for encoding dynamics, but can have poor spatial resolution), and magnocellular responses contribute coarse spatial scale information when the visual system synthesizes form signals. Consequently, when magnocellular responses are mitigated via FFAd, human form perception is transiently sharpened because “blur” signals are mitigated. PMID:27791115
Spatial representations in blind people: the role of strategies and mobility skills.
Schmidt, Susanna; Tinti, Carla; Fantino, Micaela; Mammarella, Irene C; Cornoldi, Cesare
2013-01-01
The role of vision in the construction of spatial representations has been the object of numerous studies and heated debate. The core question of whether visual experience is necessary to form spatial representations has found different, often contradictory answers. The present paper examines mental images generated from verbal descriptions of spatial environments. Previous evidence had shown that blind individuals have difficulty remembering information about spatial environments. By testing a group of congenitally blind people, we replicated this result and found that it is also present when the overall mental model of the environment is assessed. This was not always the case, however, but appeared to correlate with some blind participants' lower use of a mental imagery strategy and preference for a verbal rehearsal strategy, which was adopted particularly by blind people with more limited mobility skills. The more independent blind people who used a mental imagery strategy performed as well as sighted participants, suggesting that the difficulty blind people may have in processing spatial descriptions is not due to the absence of vision per se, but could be the consequence of both, their using less efficient verbal strategies and having poor mobility skills. Copyright © 2012 Elsevier B.V. All rights reserved.
Using spatial uncertainty to manipulate the size of the attention focus.
Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao
2016-09-01
Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
How (and why) the visual control of action differs from visual perception
Goodale, Melvyn A.
2014-01-01
Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899
Wave aberrations in rhesus monkeys with vision-induced ametropias
Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.
2007-01-01
The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347
Vision Algorithms Catch Defects in Screen Displays
NASA Technical Reports Server (NTRS)
2014-01-01
Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.
Trutnevyte, Evelina; Stauffacher, Michael; Schlegel, Matthias; Scholz, Roland W
2012-09-04
Conventional energy strategy defines an energy system vision (the goal), energy scenarios with technical choices and an implementation mechanism (such as economic incentives). Due to the lead of a generic vision, when applied in a specific regional context, such a strategy can deviate from the optimal one with, for instance, the lowest environmental impacts. This paper proposes an approach for developing energy strategies by simultaneously, rather than sequentially, combining multiple energy system visions and technically feasible, cost-effective energy scenarios that meet environmental constraints at a given place. The approach is illustrated by developing a residential heat supply strategy for a Swiss region. In the analyzed case, urban municipalities should focus on reducing heat demand, and rural municipalities should focus on harvesting local energy sources, primarily wood. Solar thermal units are cost-competitive in all municipalities, and their deployment should be fostered by information campaigns. Heat pumps and building refurbishment are not competitive; thus, economic incentives are essential, especially for urban municipalities. In rural municipalities, wood is cost-competitive, and community-based initiatives are likely to be most successful. Thus, the paper shows that energy strategies should be spatially differentiated. The suggested approach can be transferred to other regions and spatial scales.
The influence of active vision on the exoskeleton of intelligent agents
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2016-04-01
Chameleonization occurs when a self-learning autonomous mobile system's (SLAMR) active vision scans the surface of which it is perched causing the exoskeleton to changes colors exhibiting a chameleon effect. Intelligent agents having the ability to adapt to their environment and exhibit key survivability characteristics of its environments would largely be due in part to the use of active vision. Active vision would allow the intelligent agent to scan its environment and adapt as needed in order to avoid detection. The SLAMR system would have an exoskeleton, which would change, based on the surface it was perched on; this is known as the "chameleon effect." Not in the common sense of the term, but from the techno-bio inspired meaning as addressed in our previous paper. Active vision, utilizing stereoscopic color sensing functionality would enable the intelligent agent to scan an object within its close proximity, determine the color scheme, and match it; allowing the agent to blend with its environment. Through the use of its' optical capabilities, the SLAMR system would be able to further determine its position, taking into account spatial and temporal correlation and spatial frequency content of neighboring structures further ensuring successful background blending. The complex visual tasks of identifying objects, using edge detection, image filtering, and feature extraction are essential for an intelligent agent to gain additional knowledge about its environmental surroundings.
On the usefulness of 'what' and 'where' pathways in vision.
de Haan, Edward H F; Cowey, Alan
2011-10-01
The primate visual brain is classically portrayed as a large number of separate 'maps', each dedicated to the processing of specific visual cues, such as colour, motion or faces and their many features. In order to understand this fractionated architecture, the concept of cortical 'pathways' or 'streams' was introduced. In the currently prevailing view, the different maps are organised hierarchically into two major pathways, one involved in recognition and memory (the ventral stream or 'what' pathway) and the other in the programming of action (the dorsal stream or 'where' pathway). In this review, we question this heuristically influential but potentially misleading linear hierarchical pathway model and argue instead for a 'patchwork' or network model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Old World Monkeys Compare to Apes in the Primate Cognition Test Battery
Schmitt, Vanessa; Pankau, Birte; Fischer, Julia
2012-01-01
Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and – prima facie – support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences. PMID:22485130
Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.
2015-01-01
Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047
Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects.
Leonard, Timothy K; Hoffman, Kari L
2017-01-23
The hippocampus plays an important role in memory for events that are distinct in space and time. One of the strongest, most synchronous neural signals produced by the hippocampus is the sharp-wave ripple (SWR), observed in a variety of mammalian species during offline behaviors, such as slow-wave sleep [1-3] and quiescent waking and pauses in exploration [4-8], leading to long-standing and widespread theories of its contribution to plasticity and memory during these inactive or immobile states [9-14]. Indeed, during sleep and waking inactivity, hippocampal SWRs in rodents appear to support spatial long-term and working memory [4, 15-23], but so far, they have not been linked to memory in primates. More recently, SWRs have been observed during active, visual scene exploration in macaques [24], opening up the possibility that these active-state ripples in the primate hippocampus are linked to memory for objects embedded in scenes. By measuring hippocampal SWRs in macaques during search for scene-contextualized objects, we found that SWR rate increased with repeated presentations. Furthermore, gaze during SWRs was more likely to be near the target object on repeated than on novel presentations, even after accounting for overall differences in gaze location with scene repetition. This proximity bias with repetition occurred near the time of target object detection for remembered targets. The increase in ripple likelihood near remembered visual objects suggests a link between ripples and memory in primates; specifically, SWRs may reflect part of a mechanism supporting the guidance of search based on past experience. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beyond the Map: Enamel Distribution Characterized from 3D Dental Topography
Thiery, Ghislain; Lazzari, Vincent; Ramdarshan, Anusha; Guy, Franck
2017-01-01
Enamel thickness is highly susceptible to natural selection because thick enamel may prevent tooth failure. Consequently, it has been suggested that primates consuming stress-limited food on a regular basis would have thick-enameled molars in comparison to primates consuming soft food. Furthermore, the spatial distribution of enamel over a single tooth crown is not homogeneous, and thick enamel is expected to be more unevenly distributed in durophagous primates. Still, a proper methodology to quantitatively characterize enamel 3D distribution and test this hypothesis is yet to be developed. Unworn to slightly worn upper second molars belonging to 32 species of anthropoid primates and corresponding to a wide range of diets were digitized using high resolution microcomputed tomography. In addition, their durophagous ability was scored from existing literature. 3D average and relative enamel thickness were computed based on the volumetric reconstruction of the enamel cap. Geometric estimates of their average and relative enamel-dentine distance were also computed using 3D dental topography. Both methods gave different estimations of average and relative enamel thickness. This study also introduces pachymetric profiles, a method inspired from traditional topography to graphically characterize thick enamel distribution. Pachymetric profiles and topographic maps of enamel-dentine distance are combined to assess the evenness of thick enamel distribution. Both pachymetric profiles and topographic maps indicate that thick enamel is not significantly more unevenly distributed in durophagous species, except in Cercopithecidae. In this family, durophagous species such as mangabeys are characterized by an uneven thick enamel and high pachymetric profile slopes at the average enamel thickness, whereas non-durophagous species such as colobine monkeys are not. These results indicate that the distribution of thick enamel follows different patterns across anthropoids. Primates might have developed different durophagous strategies to answer the selective pressure exerted by stress-limited food. PMID:28785226
Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.
2015-01-01
Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Auditory motion-specific mechanisms in the primate brain
Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.
2017-01-01
This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038
NASA Astrophysics Data System (ADS)
Henning, G. Bruce
2004-04-01
A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.
Multi-step routes of capuchin monkeys in a laser pointer traveling salesman task.
Howard, Allison M; Fragaszy, Dorothy M
2014-09-01
Prior studies have claimed that nonhuman primates plan their routes multiple steps in advance. However, a recent reexamination of multi-step route planning in nonhuman primates indicated that there is no evidence for planning more than one step ahead. We tested multi-step route planning in capuchin monkeys using a pointing device to "travel" to distal targets while stationary. This device enabled us to determine whether capuchins distinguish the spatial relationship between goals and themselves and spatial relationships between goals and the laser dot, allocentrically. In Experiment 1, two subjects were presented with identical food items in Near-Far (one item nearer to subject) and Equidistant (both items equidistant from subject) conditions with a laser dot visible between the items. Subjects moved the laser dot to the items using a joystick. In the Near-Far condition, one subject demonstrated a bias for items closest to self but the other subject chose efficiently. In the second experiment, subjects retrieved three food items in similar Near-Far and Equidistant arrangements. Both subjects preferred food items nearest the laser dot and showed no evidence of multi-step route planning. We conclude that these capuchins do not make choices on the basis of multi-step look ahead strategies. © 2014 Wiley Periodicals, Inc.
Will Brazilian Patented Naturoptic Method for Recovery of Healthy Vision be Helpful Linguistically?
NASA Astrophysics Data System (ADS)
de Moraes, Ana Paula; Dos Santos Marques, Rosélia; Mc Leod, Roger David
2008-10-01
Naturoptics Inc. extends its patent(s) to further the teaching of vision-restoring process(es), foster cross-linguistic capabilities, and assist in the educational or financial opportunities of individuals and countries. Directors of Naturoptics Inc. hope to achieve this while testing David Matthew Mc Leod's observations that high visual acuity correlates with other mental and sensory processes. He and RDM often noticed that thought concepts (language percepts) are detectable even across species barriers, as when bears, moose, et c. made their intentions known to us in ways we were culturally willing to accept. This addresses aspects of language that seemed related to our understanding of human vision, and how it encodes cortically by spatial frequency content of a visual scene. Words representing the same meaning in two different languages will encode at precisely the same site in the visual cortex. Predictions: ``our memories,'' and cross-species, detection of certain thoughts, if equivalently ``seen'' as images, (spatial frequency content).
Proposed New Vision Standards for the 1980’s and Beyond: Contrast Sensitivity
1981-09-01
spatial frequency, visual acuity, target aquistion, visual filters, spatial filtering, target detection, recognitio identification, eye charts, workload...visual standards, as well as other performance criteria, are required to be thown relevant to "real-world" performance before acceptance. On the sur- face
Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design
NASA Technical Reports Server (NTRS)
Gille, Jennifer L. (Principal Investigator)
1996-01-01
We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.
Suprathreshold Contrast Sensitivity Vision Test Chart
1991-07-14
with data collected on patients having amblyopia , glaucoma and macular degeneration showed that the SCTS may be effectively used as an initial...dramatically in certain cases of abnormal vision, such as amblyopia (Ginsburg, 1978, 1981; Hess, Bradley and Piotrowski, 1983; Loshin and Levi, 1983). The...combination of frequencies. Amblyopia results in marked losses of contrast sensitivity particularly at high spatial frequencies, but may also result in
Relative advantages of dichromatic and trichromatic color vision in camouflage breaking.
Troscianko, Jolyon; Wilson-Aggarwal, Jared; Griffiths, David; Spottiswoode, Claire N; Stevens, Martin
2017-01-01
There is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal's ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage. However, previous work either has not been able to disentangle camouflage detection from other ecological or social explanations, or did not use biologically relevant cryptic stimuli to test this hypothesis under controlled conditions. Here, we used online "citizen science" games to test how quickly humans could detect cryptic birds (incubating nightjars) and eggs (of nightjars, plovers and coursers) under trichromatic and simulated dichromatic viewing conditions. Trichromats had an overall advantage, although there were significant differences in performance between viewing conditions. When searching for consistently shaped and patterned adult nightjars, simulated dichromats were more heavily influenced by the degree of pattern difference than were trichromats, and were poorer at detecting prey with inferior pattern and luminance camouflage. When searching for clutches of eggs-which were more variable in appearance and shape than the adult nightjars-the simulated dichromats learnt to detect the clutches faster, but were less sensitive to subtle luminance differences. These results suggest there are substantial differences in the cues available under viewing conditions that simulate different receptor types, and that these interact with the scene in complex ways to affect camouflage breaking.
Relative advantages of dichromatic and trichromatic color vision in camouflage breaking
Wilson-Aggarwal, Jared; Griffiths, David; Spottiswoode, Claire N.; Stevens, Martin
2017-01-01
Abstract There is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal’s ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage. However, previous work either has not been able to disentangle camouflage detection from other ecological or social explanations, or did not use biologically relevant cryptic stimuli to test this hypothesis under controlled conditions. Here, we used online “citizen science” games to test how quickly humans could detect cryptic birds (incubating nightjars) and eggs (of nightjars, plovers and coursers) under trichromatic and simulated dichromatic viewing conditions. Trichromats had an overall advantage, although there were significant differences in performance between viewing conditions. When searching for consistently shaped and patterned adult nightjars, simulated dichromats were more heavily influenced by the degree of pattern difference than were trichromats, and were poorer at detecting prey with inferior pattern and luminance camouflage. When searching for clutches of eggs—which were more variable in appearance and shape than the adult nightjars—the simulated dichromats learnt to detect the clutches faster, but were less sensitive to subtle luminance differences. These results suggest there are substantial differences in the cues available under viewing conditions that simulate different receptor types, and that these interact with the scene in complex ways to affect camouflage breaking. PMID:29622920
Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review
Hidaka, Souta; Teramoto, Wataru; Sugita, Yoichi
2015-01-01
Research regarding crossmodal interactions has garnered much interest in the last few decades. A variety of studies have demonstrated that multisensory information (vision, audition, tactile sensation, and so on) can perceptually interact with each other in the spatial and temporal domains. Findings regarding crossmodal interactions in the spatiotemporal domain (i.e., motion processing) have also been reported, with updates in the last few years. In this review, we summarize past and recent findings on spatiotemporal processing in crossmodal interactions regarding perception of the external world. A traditional view regarding crossmodal interactions holds that vision is superior to audition in spatial processing, but audition is dominant over vision in temporal processing. Similarly, vision is considered to have dominant effects over the other sensory modalities (i.e., visual capture) in spatiotemporal processing. However, recent findings demonstrate that sound could have a driving effect on visual motion perception. Moreover, studies regarding perceptual associative learning reported that, after association is established between a sound sequence without spatial information and visual motion information, the sound sequence could trigger visual motion perception. Other sensory information, such as motor action or smell, has also exhibited similar driving effects on visual motion perception. Additionally, recent brain imaging studies demonstrate that similar activation patterns could be observed in several brain areas, including the motion processing areas, between spatiotemporal information from different sensory modalities. Based on these findings, we suggest that multimodal information could mutually interact in spatiotemporal processing in the percept of the external world and that common perceptual and neural underlying mechanisms would exist for spatiotemporal processing. PMID:26733827
Barium distributions in teeth reveal early life dietary transitions in primates
Austin, Christine; Smith, Tanya M.; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J.; Doble, Philip; Eskenazi, Brenda; Arora, Manish
2013-01-01
Early life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations1,2. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth3. Uncovering early life dietary history in fossils is hampered by the absence of prospectively-validated biomarkers that are not modified during fossilisation4. Here we show that major dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively-recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother’s milk and through the weaning process. We also document transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, suggesting an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history. PMID:23698370
NASA Astrophysics Data System (ADS)
Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe
2016-10-01
PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.
Colour vision experimental studies in teaching of optometry
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Ikaunieks, Gatis; Fomins, Sergejs
2005-10-01
Following aspects related to human colour vision are included in experimental lessons for optometry students of University of Latvia. Characteristics of coloured stimuli (emitting and reflective), determination their coordinates in different colour spaces. Objective characteristics of transmitting of colour stimuli through the optical system of eye together with various types of appliances (lenses, prisms, Fresnel prisms). Psychophysical determination of mono- and polychromatic stimuli perception taking into account physiology of eye, retinal colour photoreceptor topography and spectral sensitivity, spatial and temporal characteristics of retinal receptive fields. Ergonomics of visual perception, influence of illumination and glare effects, testing of colour vision deficiencies.
Gallivan, Jason P; Goodale, Melvyn A
2018-01-01
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
The role of vision for navigation in the crown-of-thorns seastar, Acanthaster planci
Sigl, Robert; Steibl, Sebastian; Laforsch, Christian
2016-01-01
Coral reefs all over the Indo-Pacific suffer from substantial damage caused by the crown-of-thorns seastar Acanthaster planci, a voracious predator that moves on and between reefs to seek out its coral prey. Chemoreception is thought to guide A. planci. As vision was recently introduced as another sense involved in seastar navigation, we investigated the potential role of vision for navigation in A. planci. We estimated the spatial resolution and visual field of the compound eye using histological sections and morphometric measurements. Field experiments in a semi-controlled environment revealed that vision in A. planci aids in finding reef structures at a distance of at least 5 m, whereas chemoreception seems to be effective only at very short distances. Hence, vision outweighs chemoreception at intermediate distances. A. planci might use vision to navigate between reef structures and to locate coral prey, therefore improving foraging efficiency, especially when multidirectional currents and omnipresent chemical cues on the reef hamper chemoreception. PMID:27476750
Obstacle Crossing Differences Between Blind and Blindfolded Subjects After Haptic Exploration.
Forner-Cordero, Arturo; Garcia, Valéria D; Rodrigues, Sérgio T; Duysens, Jacques
2016-01-01
Little is known about the ability of blind people to cross obstacles after they have explored haptically their size and position. Long-term absence of vision may affect spatial cognition in the blind while their extensive experience with the use of haptic information for guidance may lead to compensation strategies. Seven blind and 7 sighted participants (with vision available and blindfolded) walked along a flat pathway and crossed an obstacle after a haptic exploration. Blind and blindfolded subjects used different strategies to cross the obstacle. After the first 20 trials the blindfolded subjects reduced the distance between the foot and the obstacle at the toe-off instant, while the blind behaved as the subjects with full vision. Blind and blindfolded participants showed larger foot clearance than participants with vision. At foot landing the hip was more behind the foot in the blindfolded condition, while there were no differences between the blind and the vision conditions. For several parameters of the obstacle crossing task, blind people were more similar to subjects with full vision indicating that the blind subjects were able to compensate for the lack of vision.
Binocular combination in abnormal binocular vision
Ding, Jian; Klein, Stanley A.; Levi, Dennis M.
2013-01-01
We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments and provides new insights into the mechanisms of abnormal binocular vision. PMID:23397039
Binocular combination in abnormal binocular vision.
Ding, Jian; Klein, Stanley A; Levi, Dennis M
2013-02-08
We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments and provides new insights into the mechanisms of abnormal binocular vision.
Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune
2015-01-01
When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not for egocentric position perception. Therefore, the two visual spatial perceptions about observers’ own viewpoints are fundamentally dissociable. PMID:26648895
Indoor Spatial Updating with Reduced Visual Information
Legge, Gordon E.; Gage, Rachel; Baek, Yihwa; Bochsler, Tiana M.
2016-01-01
Purpose Spatial updating refers to the ability to keep track of position and orientation while moving through an environment. People with impaired vision may be less accurate in spatial updating with adverse consequences for indoor navigation. In this study, we asked how artificial restrictions on visual acuity and field size affect spatial updating, and also judgments of the size of rooms. Methods Normally sighted young adults were tested with artificial restriction of acuity in Mild Blur (Snellen 20/135) and Severe Blur (Snellen 20/900) conditions, and a Narrow Field (8°) condition. The subjects estimated the dimensions of seven rectangular rooms with and without these visual restrictions. They were also guided along three-segment paths in the rooms. At the end of each path, they were asked to estimate the distance and direction to the starting location. In Experiment 1, the subjects walked along the path. In Experiment 2, they were pushed in a wheelchair to determine if reduced proprioceptive input would result in poorer spatial updating. Results With unrestricted vision, mean Weber fractions for room-size estimates were near 20%. Severe Blur but not Mild Blur yielded larger errors in room-size judgments. The Narrow Field was associated with increased error, but less than with Severe Blur. There was no effect of visual restriction on estimates of distance back to the starting location, and only Severe Blur yielded larger errors in the direction estimates. Contrary to expectation, the wheelchair subjects did not exhibit poorer updating performance than the walking subjects, nor did they show greater dependence on visual condition. Discussion If our results generalize to people with low vision, severe deficits in acuity or field will adversely affect the ability to judge the size of indoor spaces, but updating of position and orientation may be less affected by visual impairment. PMID:26943674
Indoor Spatial Updating with Reduced Visual Information.
Legge, Gordon E; Gage, Rachel; Baek, Yihwa; Bochsler, Tiana M
2016-01-01
Spatial updating refers to the ability to keep track of position and orientation while moving through an environment. People with impaired vision may be less accurate in spatial updating with adverse consequences for indoor navigation. In this study, we asked how artificial restrictions on visual acuity and field size affect spatial updating, and also judgments of the size of rooms. Normally sighted young adults were tested with artificial restriction of acuity in Mild Blur (Snellen 20/135) and Severe Blur (Snellen 20/900) conditions, and a Narrow Field (8°) condition. The subjects estimated the dimensions of seven rectangular rooms with and without these visual restrictions. They were also guided along three-segment paths in the rooms. At the end of each path, they were asked to estimate the distance and direction to the starting location. In Experiment 1, the subjects walked along the path. In Experiment 2, they were pushed in a wheelchair to determine if reduced proprioceptive input would result in poorer spatial updating. With unrestricted vision, mean Weber fractions for room-size estimates were near 20%. Severe Blur but not Mild Blur yielded larger errors in room-size judgments. The Narrow Field was associated with increased error, but less than with Severe Blur. There was no effect of visual restriction on estimates of distance back to the starting location, and only Severe Blur yielded larger errors in the direction estimates. Contrary to expectation, the wheelchair subjects did not exhibit poorer updating performance than the walking subjects, nor did they show greater dependence on visual condition. If our results generalize to people with low vision, severe deficits in acuity or field will adversely affect the ability to judge the size of indoor spaces, but updating of position and orientation may be less affected by visual impairment.
MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.
Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M
2013-08-01
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.
Evaluation of an organic light-emitting diode display for precise visual stimulation.
Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji
2013-06-11
A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.
NASA Technical Reports Server (NTRS)
Bolton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.
2006-01-01
Synthetic Vision Systems (SVS) depict computer generated views of terrain surrounding an aircraft. In the assessment of textures and field of view (FOV) for SVS, no studies have directly measured the 3 levels of spatial awareness: identification of terrain, its relative spatial location, and its relative temporal location. This work introduced spatial awareness measures and used them to evaluate texture and FOV in SVS displays. Eighteen pilots made 4 judgments (relative angle, distance, height, and abeam time) regarding the location of terrain points displayed in 112 5-second, non-interactive simulations of a SVS heads down display. Texture produced significant main effects and trends for the magnitude of error in the relative distance, angle, and abeam time judgments. FOV was significant for the directional magnitude of error in the relative distance, angle, and height judgments. Pilots also provided subjective terrain awareness ratings that were compared with the judgment based measures. The study found that elevation fishnet, photo fishnet, and photo elevation fishnet textures best supported spatial awareness for both the judgments and the subjective awareness measures.
Machine vision for digital microfluidics
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun; Lee, Jeong-Bong
2010-01-01
Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.
Commanding the Direction of Passive Whole-Body Rotations Facilitates Egocentric Spatial Updating
ERIC Educational Resources Information Center
Fery, Yves-Andre; Magnac, Richard; Israel, Isabelle
2004-01-01
In conditions of slow passive transport without vision, even tenuous inertial signals from semi-circular canals and the haptic-kinaesthetic system should provide information about changes relative to the environment provided that it is possible to command the direction of the body's movements voluntarily. Without such control, spatial updating…
Jonathan P. Dandois; Erle C. Ellis
2013-01-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...
Photographic Mosaics and Geographic Generalizations: A Perceptual Approach to Geographic Education
ERIC Educational Resources Information Center
Castner, Henry W.
2003-01-01
If vision can be considered the basis of geographic inquiry, then it must involve looking with discrimination--the ability to discern clues in our surroundings that speak to spatial processes or patterns in all aspects of geography--physical, cultural, economic, and so on. Geographic thinking also involves making spatial generalizations. We do…
NASA Technical Reports Server (NTRS)
Lawton, Teri B.
1989-01-01
A method to improve the reading performance of subjects with losses in central vision is proposed in which the amplitudes of the intermediate spatial frequencies are boosted relative to the lower spatial frequencies. In the method, words are filtered using an image enhancement function which is based on a subject's losses in visual function relative to a normal subject. It was found that 30-70 percent less magnification was necessary, and that reading rates were improved 2-3 times, using the method. The individualized compensation filters improved the clarity and visibility of words. The shape of the enhancement function was shown to be important in determining the optimum compensation filter for improving reading performance.
NASA Technical Reports Server (NTRS)
Boton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.
2006-01-01
The evaluation of human-centered systems can be performed using a variety of different methodologies. This paper describes a human-centered systems evaluation methodology where participants watch 5-second non-interactive videos of a system in operation before supplying judgments and subjective measures based on the information conveyed in the videos. This methodology was used to evaluate the ability of different textures and fields of view to convey spatial awareness in synthetic vision systems (SVS) displays. It produced significant results for both judgment based and subjective measures. This method is compared to other methods commonly used to evaluate SVS displays based on cost, the amount of experimental time required, experimental flexibility, and the type of data provided.
Approaches to a cortical vision prosthesis: implications of electrode size and placement
NASA Astrophysics Data System (ADS)
Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley
2016-04-01
Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.
Altered vision destabilizes gait in older persons.
Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav
2009-08-01
This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.
Williams, Emma; Cabana, Francis; Nekaris, K A I
2015-01-01
Data on in-situ diet and nutritional requirements should inform the provision of food to captive insectivorous primates. Despite the growing availability of such information an over-reliance on commercially available primate foods and fruit continues in many captive establishments. Wild slender lorises are almost exclusively insectivorous, yet captive conspecifics are fed a primarily frugivorous diet that is likely to contribute to behavioral and health problems. We investigated the effect of naturalizing diet in the Northern Ceylon grey slender loris (Loris lydekkerianus nordicus) by providing live insect prey to a captive group of five individuals. We calculated activity budgets in accordance with six established categories and recorded positional behaviors. We collected data over 30 hours for each of three conditions: pre-enrichment, enrichment, post-enrichment. We hypothesized that increased opportunity for the display of natural behaviors would be stimulated by the dietary enrichment of live insects and made the following predictions; 1) Percentage time spent foraging would increase and time spent inactive would decrease; 2) behavioral repertoires would increase; 3) foraging patterns would be more constant over time with reduced feeding-time peaks. We analyzed time budget and behavioral changes using Friedman tests. We found significant changes in activity budgets with inactivity reduced and foraging levels increased to levels seen in wild slender lorises. We found a significant increase in postures used in foraging and a wider behavioral repertoire. We discuss the benefits of providing free-ranging live food in relation to enhancing the temporal-spatial distribution of food acquisition, satisfying nutritional requirements, balancing energy intake, and expenditure, expanding sensory stimulation, and promoting behavioral competence. We discuss our findings in relation to other insectivorous primates. © 2015 Wiley Periodicals, Inc.
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi
2014-01-01
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110
Observations on the Relationship between Anisometropia, Amblyopia and Strabismus
Smith, Earl L; Hung, Li-Fang; Arumugam, Baskar; Wensveen, Janice M.; Chino, Yuzo M.; Harwerth, Ronald S.
2017-01-01
We investigated the potential causal relationships between anisometropia, amblyopia and strabismus, specifically to determine whether either amblyopia or strabismus interfered with emmetropization. We analyzed data from non-human primates that were relevant to the co-existence of anisometropia, amblyopia and strabismus in children. We relied on interocular comparisons of spatial vision and refractive development in animals reared with 1) monocular form deprivation; 2) anisometropia optically imposed by either contact lenses or spectacle lenses; 3) organic amblyopia produced by laser ablation of the fovea; and 4) strabismus that was either optically imposed with prisms or produced by either surgical or pharmacological manipulation of the extraocular muscles. Hyperopic anisometropia imposed early in life produced amblyopia in a dose-dependent manner. However, when potential methodological confounds were taken into account, there was no support for the hypothesis that the presence of amblyopia interferes with emmetropization or promotes hyperopia or that the degree of image degradation determines the direction of eye growth. To the contrary, there was strong evidence that amblyopic eyes were able to detect the presence of a refractive error and alter ocular growth to eliminate the ametropia. On the other hand, early onset strabismus, both optically and surgically imposed, disrupted the emmetropization process producing anisometropia. In surgical strabismus, the deviating eyes were typically more hyperopic than their fellow fixating eyes. The results show that early hyperopic anisometropia is a significant risk factor for amblyopia. Early esotropia can trigger the onset of both anisometropia and amblyopia. However, amblyopia, in isolation, does not pose a significant risk for the development of hyperopia or anisometropia. PMID:28404522
Observations on the relationship between anisometropia, amblyopia and strabismus.
Smith, Earl L; Hung, Li-Fang; Arumugam, Baskar; Wensveen, Janice M; Chino, Yuzo M; Harwerth, Ronald S
2017-05-01
We investigated the potential causal relationships between anisometropia, amblyopia and strabismus, specifically to determine whether either amblyopia or strabismus interfered with emmetropization. We analyzed data from non-human primates that were relevant to the co-existence of anisometropia, amblyopia and strabismus in children. We relied on interocular comparisons of spatial vision and refractive development in animals reared with 1) monocular form deprivation; 2) anisometropia optically imposed by either contact lenses or spectacle lenses; 3) organic amblyopia produced by laser ablation of the fovea; and 4) strabismus that was either optically imposed with prisms or produced by either surgical or pharmacological manipulation of the extraocular muscles. Hyperopic anisometropia imposed early in life produced amblyopia in a dose-dependent manner. However, when potential methodological confounds were taken into account, there was no support for the hypothesis that the presence of amblyopia interferes with emmetropization or promotes hyperopia or that the degree of image degradation determines the direction of eye growth. To the contrary, there was strong evidence that amblyopic eyes were able to detect the presence of a refractive error and alter ocular growth to eliminate the ametropia. On the other hand, early onset strabismus, both optically and surgically imposed, disrupted the emmetropization process producing anisometropia. In surgical strabismus, the deviating eyes were typically more hyperopic than their fellow fixating eyes. The results show that early hyperopic anisometropia is a significant risk factor for amblyopia. Early esotropia can trigger the onset of both anisometropia and amblyopia. However, amblyopia, in isolation, does not pose a significant risk for the development of hyperopia or anisometropia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Image jitter enhances visual performance when spatial resolution is impaired.
Watson, Lynne M; Strang, Niall C; Scobie, Fraser; Love, Gordon D; Seidel, Dirk; Manahilov, Velitchko
2012-09-06
Visibility of low-spatial frequency stimuli improves when their contrast is modulated at 5 to 10 Hz compared with stationary stimuli. Therefore, temporal modulations of visual objects could enhance the performance of low vision patients who primarily perceive images of low-spatial frequency content. We investigated the effect of retinal-image jitter on word recognition speed and facial emotion recognition in subjects with central visual impairment. Word recognition speed and accuracy of facial emotion discrimination were measured in volunteers with AMD under stationary and jittering conditions. Computer-driven and optoelectronic approaches were used to induce retinal-image jitter with duration of 100 or 166 ms and amplitude within the range of 0.5 to 2.6° visual angle. Word recognition speed was also measured for participants with simulated (Bangerter filters) visual impairment. Text jittering markedly enhanced word recognition speed for people with severe visual loss (101 ± 25%), while for those with moderate visual impairment, this effect was weaker (19 ± 9%). The ability of low vision patients to discriminate the facial emotions of jittering images improved by a factor of 2. A prototype of optoelectronic jitter goggles produced similar improvement in facial emotion discrimination. Word recognition speed in participants with simulated visual impairment was enhanced for interjitter intervals over 100 ms and reduced for shorter intervals. Results suggest that retinal-image jitter with optimal frequency and amplitude is an effective strategy for enhancing visual information processing in the absence of spatial detail. These findings will enable the development of novel tools to improve the quality of life of low vision patients.
Non-human primates in neuroscience research: The case against its scientific necessity.
Bailey, Jarrod; Taylor, Kathy
2016-03-01
Public opposition to non-human primate (NHP) experiments is significant, yet those who defend them cite minimal harm to NHPs and substantial human benefit. Here we review these claims of benefit, specifically in neuroscience, and show that: a) there is a default assumption of their human relevance and benefit, rather than robust evidence; b) their human relevance and essential contribution and necessity are wholly overstated; c) the contribution and capacity of non-animal investigative methods are greatly understated; and d) confounding issues, such as species differences and the effects of stress and anaesthesia, are usually overlooked. This is the case in NHP research generally, but here we specifically focus on the development and interpretation of functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), the understanding of neural oscillations and memory, and investigation of the neural control of movement and of vision/binocular rivalry. The increasing power of human-specific methods, including advances in fMRI and invasive techniques such as electrocorticography and single-unit recordings, is discussed. These methods serve to render NHP approaches redundant. We conclude that the defence of NHP use is groundless, and that neuroscience would be more relevant and successful for humans, if it were conducted with a direct human focus. We have confidence in opposing NHP neuroscience, both on scientific as well as on ethical grounds. 2016 FRAME.
Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space
NASA Astrophysics Data System (ADS)
Jun, Chen; Wenjun, Hou; Qing, Sheng
After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.
Spatial memory and integration processes in congenital blindness.
Vecchi, Tomaso; Tinti, Carla; Cornoldi, Cesare
2004-12-22
The paper tests the hypothesis that difficulties met by the blind in spatial processing are due to the simultaneous treatment of independent spatial representations. Results showed that lack of vision does not impede the ability to process and transform mental images; however, blind people are significantly poorer in the recall of more than a single spatial pattern at a time than in the recall of the corresponding material integrated into a single pattern. It is concluded that the simultaneous maintenance of different spatial information is affected by congenital blindness, while cognitive processes that may involve sequential manipulation are not.
Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool
ERIC Educational Resources Information Center
Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román
2014-01-01
This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…
ERIC Educational Resources Information Center
Cardini, Flavia; Haggard, Patrick; Ladavas, Elisabetta
2013-01-01
We have investigated the relation between visuo-tactile interactions and the self-other distinction. In the Visual Enhancement of Touch (VET) effect, non-informative vision of one's own hand improves tactile spatial perception. Previous studies suggested that looking at "another"person's hand could also enhance tactile perception, but did not…
The Use of Spatialized Speech in Auditory Interfaces for Computer Users Who Are Visually Impaired
ERIC Educational Resources Information Center
Sodnik, Jaka; Jakus, Grega; Tomazic, Saso
2012-01-01
Introduction: This article reports on a study that explored the benefits and drawbacks of using spatially positioned synthesized speech in auditory interfaces for computer users who are visually impaired (that is, are blind or have low vision). The study was a practical application of such systems--an enhanced word processing application compared…
On the efficacy of cinema, or what the visual system did not evolve to do
NASA Technical Reports Server (NTRS)
Cutting, James E.
1989-01-01
Spatial displays, and a constraint that they do not place on the use of spatial instruments are discussed. Much of the work done in visual perception by psychologists and by computer scientists has concerned displays that show the motion of rigid objects. Typically, if one assumes that objects are rigid, one can then proceed to understand how the constant shape of the object can be perceived (or computed) as it moves through space. The author maintains that photographs and cinema are visual displays that are also powerful forms of art. Their efficacy, in part, stems from the fact that, although viewpoint is constrained when composing them, it is not nearly so constrained when viewing them. It is obvious, according to the author, that human visual systems did not evolve to watch movies or look at photographs. Thus, what photographs and movies present must be allowed in the rule-governed system under which vision evolved. Machine-vision algorithms, to be applicable to human vision, should show the same types of tolerance.
Assessment of OLED displays for vision research.
Cooper, Emily A; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E; Norcia, Anthony M
2013-10-23
Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function ("gamma correction"). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Tunnel vision: sharper gradient of spatial attention in autism.
Robertson, Caroline E; Kravitz, Dwight J; Freyberg, Jan; Baron-Cohen, Simon; Baker, Chris I
2013-04-17
Enhanced perception of detail has long been regarded a hallmark of autism spectrum conditions (ASC), but its origins are unknown. Normal sensitivity on all fundamental perceptual measures-visual acuity, contrast discrimination, and flicker detection-is strongly established in the literature. If individuals with ASC do not have superior low-level vision, how is perception of detail enhanced? We argue that this apparent paradox can be resolved by considering visual attention, which is known to enhance basic visual sensitivity, resulting in greater acuity and lower contrast thresholds. Here, we demonstrate that the focus of attention and concomitant enhancement of perception are sharper in human individuals with ASC than in matched controls. Using a simple visual acuity task embedded in a standard cueing paradigm, we mapped the spatial and temporal gradients of attentional enhancement by varying the distance and onset time of visual targets relative to an exogenous cue, which obligatorily captures attention. Individuals with ASC demonstrated a greater fall-off in performance with distance from the cue than controls, indicating a sharper spatial gradient of attention. Further, this sharpness was highly correlated with the severity of autistic symptoms in ASC, as well as autistic traits across both ASC and control groups. These findings establish the presence of a form of "tunnel vision" in ASC, with far-reaching implications for our understanding of the social and neurobiological aspects of autism.
Is vision function related to physical functional ability in older adults?
West, Catherine G; Gildengorin, Ginny; Haegerstrom-Portnoy, Gunilla; Schneck, Marilyn E; Lott, Lori; Brabyn, John A
2002-01-01
To assess the relationship between a broad range of vision functions and measures of physical performance in older adults. Cross-sectional study. Population-based cohort of community-dwelling older adults, subset of an on-going longitudinal study. Seven hundred eighty-two adults aged 55 and older (65% of living eligible subjects) had subjective health measures and objective physical performance evaluated in 1989/91 and again in 1993/95 and a battery of vision functions tested in 1993/95. Comprehensive battery of vision tests (visual acuity, contrast sensitivity, effects of illumination level, contrast and glare on acuity, visual fields with and without attentional load, color vision, temporal sensitivity, and the impact of dimming light on walking ability) and physical function measures (self-reported mobility limitations and observed measures of walking, rising from a chair and tandem balance). The failure rate for all vision functions and physical performance measures increased exponentially with age. Standard high-contrast visual acuity and standard visual fields showed the lowest failure rates. Nonstandard vision tests showed much higher failure rates. Poor performance on many individual vision functions was significantly associated with particular individual measures of physical performance. Using constructed combination vision variables, significant associations were found between spatial vision, field integrity, binocularity and/or adaptation, and each of the functional outcomes. Vision functions other than standard visual acuity may affect day-to-day functioning of older adults. Additional studies of these other aspects of vision and how they can be treated or rehabilitated are needed to determine whether these aspects play a role in strategies for reducing disability in older adults.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992
Cussen, Victoria A; Mench, Joy A
2014-07-01
Psittacines are generally considered to possess cognitive abilities comparable to those of primates. Most psittacine research has evaluated performance on standardized complex cognition tasks, but studies of basic cognitive processes are limited. We tested orange-winged Amazon parrots (Amazona amazonica) on a spatial foraging assessment, the Hamilton search task. This task is a standardized test used in human and non-human primate studies. It has multiple phases, which require trial and error learning, learning set breaking, and spatial memory. We investigated search strategies used to complete the task, cognitive flexibility, and long-term memory for the task. We also assessed the effects of individual strength of motor lateralization (foot preference) and sex on task performance. Almost all (92%) of the parrots acquired the task. All had significant foot preferences, with 69% preferring their left foot, and showed side preferences contralateral to their preferred limb during location selection. The parrots were able to alter their search strategies when reward contingencies changed, demonstrating cognitive flexibility. They were also able to remember the task over a 6-month period. Lateralization had a significant influence on learning set acquisition but no effect on cognitive flexibility. There were no sex differences. To our knowledge, this is the first cognitive study using this particular species and one of the few studies of cognitive abilities in any Neotropical parrot species.
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2017-01-01
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2016-12-28
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus , spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (r s =0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (r s =0.56) and hippocampus (r s =-0.62) or septum (r s =-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.
The crowding factor method applied to parafoveal vision
Ghahghaei, Saeideh; Walker, Laura
2016-01-01
Crowding increases with eccentricity and is most readily observed in the periphery. During natural, active vision, however, central vision plays an important role. Measures of critical distance to estimate crowding are difficult in central vision, as these distances are small. Any overlap of flankers with the target may create an overlay masking confound. The crowding factor method avoids this issue by simultaneously modulating target size and flanker distance and using a ratio to compare crowded to uncrowded conditions. This method was developed and applied in the periphery (Petrov & Meleshkevich, 2011b). In this work, we apply the method to characterize crowding in parafoveal vision (<3.5 visual degrees) with spatial uncertainty. We find that eccentricity and hemifield have less impact on crowding than in the periphery, yet radial/tangential asymmetries are clearly preserved. There are considerable idiosyncratic differences observed between participants. The crowding factor method provides a powerful tool for examining crowding in central and peripheral vision, which will be useful in future studies that seek to understand visual processing under natural, active viewing conditions. PMID:27690170
Robust object tracking techniques for vision-based 3D motion analysis applications
NASA Astrophysics Data System (ADS)
Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.
2016-04-01
Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
Eckhardt, Nadin; Polansky, Leo; Boesch, Christophe
2015-02-01
Group living animals can exhibit fission-fusion behavior whereby individuals temporarily separate to reduce the costs of living in large groups. Primates living in groups with fission-fusion dynamics face numerous challenges in maintaining spatial cohesion, especially in environments with limited visibility. Here we investigated the spatial cohesion of adult male chimpanzees (Pan troglodytes verus) living in Taï National Park, Côte d'Ivoire, to better understand the mechanisms by which individuals maintain group cohesion during fission-fusion events. Over a 3-year period, we simultaneously tracked the movements of 2-4 males for 4-12 hr on up to 12 consecutive days using handheld GPS devices that recorded locations at one-minute intervals. Analyses of the male's inter-individual distance (IID) showed that the maximum, median, and mean IID values across all observations were 7.2 km, 73 m, and 483 m, respectively. These males (a) had maximum daily IID values below the limits of auditory communication (<1 km) for 63% of the observation time, (b) remained out of visual range (≥100 m) for 46% of observation time, and (c) remained within auditory range for 70% of the time when they were in different parties. We compared the observed distribution of IIDs with a random distribution obtained from permutations of the individuals' travel paths using Kolmogorov-Smirnov tests. Observation IID values were significantly smaller than those generated by the permutation procedure. We conclude that these male chimpanzees actively maintain cohesion when out of sight, and that auditory communication is one likely mechanism by which they do so. We discuss mechanisms by which chimpanzees may maintain the level of cohesion observed. This study provides a first analysis of spatial group cohesion over large distances in forest chimpanzees using high-resolution tracking, and illustrates the utility of such data for quantifying socio-ecological processes in primate ecology. © 2014 Wiley Periodicals, Inc.
Evers, Ellen; de Vries, Han; Spruijt, Berry M.; Sterck, Elisabeth H. M.
2011-01-01
In group-living animals, such as primates, the average spatial group structure often reflects the dominance hierarchy, with central dominants and peripheral subordinates. This central-peripheral group structure can arise by self-organization as a result of subordinates fleeing from dominants after losing a fight. However, in real primates, subordinates often avoid interactions with potentially aggressive group members, thereby preventing aggression and subsequent fleeing. Using agent-based modeling, we investigated which spatial and encounter structures emerge when subordinates also avoid known potential aggressors at a distance as compared with the model which only included fleeing after losing a fight (fleeing model). A central-peripheral group structure emerged in most conditions. When avoidance was employed at small or intermediate distances, centrality of dominants emerged similar to the fleeing model, but in a more pronounced way. This result was also found when fleeing after a fight was made independent of dominance rank, i.e. occurred randomly. Employing avoidance at larger distances yielded more spread out groups. This provides a possible explanation of larger group spread in more aggressive species. With avoidance at very large distances, spatially and socially distinct subgroups emerged. We also investigated how encounters were distributed amongst group members. In the fleeing model all individuals encountered all group members equally often, whereas in the avoidance model encounters occurred mostly among similar-ranking individuals. Finally, we also identified a very general and simple mechanism causing a central-peripheral group structure: when individuals merely differed in velocity, faster individuals automatically ended up at the periphery. In summary, a central-peripheral group pattern can easily emerge from individual variation in different movement properties in general, such as fleeing, avoidance or velocity. Moreover, avoidance behavior also affects the encounter structure and can lead to subgroup formation. PMID:22125595
An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange
Hemelrijk, Charlotte K.; Puga-Gonzalez, Ivan
2012-01-01
Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation), their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and ‘spiteful acts’ and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by means of existing data. PMID:22666348
Douglas, Pamela Heidi
2014-10-01
Parturition is one of the most important yet least observed events in studies of primate life history and reproduction. Here, I report the first documented observation of a bonobo (Pan paniscus) birth event in the wild, at the Luikotale Bonobo Project field site, Democratic Republic of the Congo. The nulliparous mother's behaviour before, during and after parturition is described, along with reactions of other community members to the birth and the neonate. Data were collected through focal-animal observations, and the events postpartum were photo-documented. The behaviour and spatial distribution of party members were recorded using scan samples. Parturition occurred during the late morning in a social context, with parous females in close proximity to the parturient mother. Placentophagia occurred immediately after delivery, and the parturient shared the placenta with two of the attending females. I compare this observation with reports of parturition in captive bonobos, and highlight the observed female sociality and social support during the birth event. Plausible adaptive advantages of parturition occurring in a social context are discussed, and accrued observations of birth events in wild and free-ranging primates suggest that females may give birth within proximity of others more frequently than previously thought. This account contributes rare empirical data for examining the interface between female sociality and parturition, and the evolution of parturitional behaviours in primates.
Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J
2016-01-01
Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137
Hunting, law enforcement, and African primate conservation.
N'Goran, Paul K; Boesch, Christophe; Mundry, Roger; N'Goran, Eliezer K; Herbinger, Ilka; Yapi, Fabrice A; Kühl, Hjalmar S
2012-06-01
Primates are regularly hunted for bushmeat in tropical forests, and systematic ecological monitoring can help determine the effect hunting has on these and other hunted species. Monitoring can also be used to inform law enforcement and managers of where hunting is concentrated. We evaluated the effects of law enforcement informed by monitoring data on density and spatial distribution of 8 monkey species in Taï National Park, Côte d'Ivoire. We conducted intensive surveys of monkeys and looked for signs of human activity throughout the park. We also gathered information on the activities of law-enforcement personnel related to hunting and evaluated the relative effects of hunting, forest cover and proximity to rivers, and conservation effort on primate distribution and density. The effects of hunting on monkeys varied among species. Red colobus monkeys (Procolobus badius) were most affected and Campbell's monkeys (Cercopithecus campbelli) were least affected by hunting. Density of monkeys irrespective of species was up to 100 times higher near a research station and tourism site in the southwestern section of the park, where there is little hunting, than in the southeastern part of the park. The results of our monitoring guided law-enforcement patrols toward zones with the most hunting activity. Such systematic coordination of ecological monitoring and law enforcement may be applicable at other sites. ©2012 Society for Conservation Biology.
Funk, Agnes P; Rosa, Marcello G P
1998-01-01
The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
First virtual endocasts of adapiform primates.
Harrington, Arianna R; Silcox, Mary T; Yapuncich, Gabriel S; Boyer, Doug M; Bloch, Jonathan I
2016-10-01
Well-preserved crania of notharctine adapiforms from the Eocene of North America provide the best direct evidence available for inferring neuroanatomy and encephalization in early euprimates (crown primates). Virtual endocasts of the notharctines Notharctus tenebrosus (n = 3) and Smilodectes gracilis (n = 4) from the middle Eocene Bridger formation of Wyoming, and the late Eocene European adapid adapiform Adapis parisiensis (n = 1), were reconstructed from high-resolution X-ray computed tomography (CT) data. While the three species share many neuroanatomical similarities differentiating them from plesiadapiforms (stem primates) and extant euprimates, our sample of N. tenebrosus displays more variation than that of S. gracilis, possibly related to differences in the patterns of cranial sexual dimorphism or within-lineage evolution. Body masses predicted from associated teeth suggest that N. tenebrosus was larger and had a lower encephalization quotient (EQ) than S. gracilis, despite their close relationship and similar inferred ecologies. Meanwhile, body masses predicted from cranial length of the same specimens suggest that the two species were more similar, with overlapping body mass and EQ, although S. gracilis exhibits a range of EQs shifted upwards relative to that of N. tenebrosus. While associated data from other parts of the skeleton are mostly lacking for specimens included in this study, measurements for unassociated postcrania attributed to these species yield body mass and EQ estimates that are also more similar to each other than those based on teeth. Regardless of the body mass prediction method used, results suggest that the average EQ of adapiforms was similar to that of plesiadapiforms, only overlapped the lower quadrant for the range of extant strepsirrhines, and did not overlap with the range of extant haplorhines. However, structural changes evident in these endocasts suggest that early euprimates relied more on vision than olfaction relative to plesiadapiforms, despite having relatively small endocranial volumes compared to extant taxa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vertically integrated photonic multichip module architecture for vision applications
NASA Astrophysics Data System (ADS)
Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong
2000-05-01
The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.
NASA Astrophysics Data System (ADS)
Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo
2008-11-01
Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.
Clinical implications of parallel visual pathways.
Bassi, C J; Lehmkuhle, S
1990-02-01
Visual information travels from the retina to visual cortical areas along at least two parallel pathways. In this paper, anatomical and physiological evidence is presented to demonstrate the existence of, and trace these two pathways throughout the visual systems of the cat, primate, and human. Physiological and behavioral experiments are discussed which establish that these two pathways are differentially sensitive to stimuli that vary in spatial and temporal frequency. One pathway (M-pathway) is more sensitive to coarse visual form that is modulated or moving at fast rates, whereas the other pathway (P-pathway) is more sensitive to spatial detail that is stationary or moving at slow rates. This difference between the M- and P-pathways is related to some spatial and temporal effects observed in humans. Furthermore, evidence is presented that certain diseases selectively comprise the functioning of M- or P-pathways (i.e., glaucoma, Alzheimer's disease, and anisometropic amblyopia), and some of the spatial and temporal deficits observed in these patients are presented within the context of the dysfunction of the M- or P-pathway.
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan
2017-09-01
INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.
Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J
2017-01-01
Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.
Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.
2017-01-01
Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656
Cunningham, Elena; Janson, Charles
2007-07-01
Most studies of spatial memory in primates focus on species that inhabit large home ranges and have dispersed, patchy resources. Researchers assume that primates use memory to minimize distances traveled between resources. We investigated the use of spatial memory in a group of six white-faced sakis (Pithecia pithecia) on 12.8-ha Round Island, Guri Lake, Venezuela during a period of fruit abundance. The sakis' movements were analyzed with logistic regressions, a predictive computer model and a computer model that simulates movements. We considered all the resources available to the sakis and compared observed distances to predicted distances from a computer model for foragers who know nothing about the location of resources. Surprisingly, the observed distances were four times greater than the predicted distances, suggesting that the sakis passed by a majority of the available fruit trees without feeding. The odds of visiting a food tree, however, were significantly increased if the tree had been visited in the previous 3 days and had more than 100 fruit. The sakis' preferred resources were highly productive fruit trees, Capparis trees, and trees with water holes. They traveled efficiently to these sites. The sakis choice of feeding sites indicate that they combined knowledge acquired by repeatedly traveling through their home range with 'what' and 'where' information gained from individual visits to resources. Although the sakis' foraging choices increased the distance they traveled overall, choosing more valued sites allowed the group to minimize intra-group feeding competition, maintain intergroup dominance over important resources, and monitor the state of resources throughout their home range. The sakis' foraging decisions appear to have used spatial memory, elements of episodic-like memory and social and nutritional considerations.
van Kan, Peter L E; McCurdy, Martha L
2002-01-01
Reaching to grasp is of fundamental importance to primate motor behavior. One descending motor pathway that contributes to the control of this behavior is the rubrospinal tract. An important source of origin of the rubrospinal tract is the magnocellular red nucleus (RNm). Forelimb RNm neurons discharge vigorously during reach-to-grasp movements. RNm discharge is important for hand use, as coordinated whole-limb movements without hand use are not associated with strong discharge. Because RNm is functionally linked to muscles of the entire forelimb, RNm discharge may also contribute to use of the proximal limb that accompanies hand use. If RNm contributes to proximal limb use, we predict discharge to differ for reaches that differ in proximal limb involvement but require the same grasp. We tested this prediction by measuring discharge of individual RNm neurons while monkeys reached to grasp objects in four spatial locations in front of them. The animals reached from the waist to locations to the left, right, above, and below the shoulder of the "reaching" limb. RNm neurons of our sample were activated strongly during reach-to-grasp, and discharge of a third of the neurons tested depended on the spatial location of the object grasped. Discharge of RNm neurons and EMG activity of many of the distal and proximal forelimb muscles we tested were larger for reaching to grasp in the upper and/or right than lower and left target locations. Based on comparisons of each individual neuron's discharge patterns during reaches with and without preshaping the hand, we conclude that target location-dependent modulations in discharge rate of the majority of RNm neurons whose discharge differed for reaching to grasp in the four target locations contributed to aspects of hand preshaping that covaried with reach direction.
Cibot, Marie; Guillot, Jacques; Lafosse, Sophie; Bon, Céline; Seguya, Andrew; Krief, Sabrina
2015-01-01
Background Nodular Oesophagostomum genus nematodes are a major public health concern in some African regions because they can be lethal to humans. Their relatively high prevalence in people has been described in Uganda recently. While non-human primates also harbor Oesophagostomum spp., the epidemiology of this oesophagostomosis and the role of these animals as reservoirs of the infection in Eastern Africa are not yet well documented. Methodology/Principal Findings The present study aimed to investigate Oesophagostomum infection in terms of parasite species diversity, prevalence and load in three non-human primates (Pan troglodytes, Papio anubis, Colobus guereza) and humans living in close proximity in a forested area of Sebitoli, Kibale National Park (KNP), Uganda. The molecular phylogenetic analyses provided the first evidence that humans living in the Sebitoli area harbored O. stephanostomum, a common species in free-ranging chimpanzees. Chimpanzees were also infected by O. bifurcum, a common species described in human populations throughout Africa. The recently described Oesophagostomum sp. found in colobine monkeys and humans and which was absent from baboons in the neighboring site of Kanyawara in KNP (10 km from Sebitoli), was only found in baboons. Microscopic analyses revealed that the infection prevalence and parasite load in chimpanzees were significantly lower in Kanyawara than in Sebitoli, an area more impacted by human activities at its borders. Conclusions/Significance Three different Oesophagostomum species circulate in humans and non-human primates in the Sebitoli area and our results confirm the presence of a new genotype of Oesophagostomum recently described in Uganda. The high spatiotemporal overlap between humans and chimpanzees in the studied area coupled with the high infection prevalence among chimpanzees represent factors that could increase the risk of transmission for O. stephanostomum between the two primate species. Finally, the importance of local-scale research for zoonosis risk management is important because environmental disturbance and species contact can differ, leading to different parasitological profiles between sites that are close together within the same forest patches. PMID:26451592
Use of a vision model to quantify the significance of factors effecting target conspicuity
NASA Astrophysics Data System (ADS)
Gilmore, M. A.; Jones, C. K.; Haynes, A. W.; Tolhurst, D. J.; To, M.; Troscianko, T.; Lovell, P. G.; Parraga, C. A.; Pickavance, K.
2006-05-01
When designing camouflage it is important to understand how the human visual system processes the information to discriminate the target from the background scene. A vision model has been developed to compare two images and detect differences in local contrast in each spatial frequency channel. Observer experiments are being undertaken to validate this vision model so that the model can be used to quantify the relative significance of different factors affecting target conspicuity. Synthetic imagery can be used to design improved camouflage systems. The vision model is being used to compare different synthetic images to understand what features in the image are important to reproduce accurately and to identify the optimum way to render synthetic imagery for camouflage effectiveness assessment. This paper will describe the vision model and summarise the results obtained from the initial validation tests. The paper will also show how the model is being used to compare different synthetic images and discuss future work plans.
Identifying and detecting facial expressions of emotion in peripheral vision.
Smith, Fraser W; Rossit, Stephanie
2018-01-01
Facial expressions of emotion are signals of high biological value. Whilst recognition of facial expressions has been much studied in central vision, the ability to perceive these signals in peripheral vision has only seen limited research to date, despite the potential adaptive advantages of such perception. In the present experiment, we investigate facial expression recognition and detection performance for each of the basic emotions (plus neutral) at up to 30 degrees of eccentricity. We demonstrate, as expected, a decrease in recognition and detection performance with increasing eccentricity, with happiness and surprised being the best recognized expressions in peripheral vision. In detection however, while happiness and surprised are still well detected, fear is also a well detected expression. We show that fear is a better detected than recognized expression. Our results demonstrate that task constraints shape the perception of expression in peripheral vision and provide novel evidence that detection and recognition rely on partially separate underlying mechanisms, with the latter more dependent on the higher spatial frequency content of the face stimulus.
Identifying and detecting facial expressions of emotion in peripheral vision
Rossit, Stephanie
2018-01-01
Facial expressions of emotion are signals of high biological value. Whilst recognition of facial expressions has been much studied in central vision, the ability to perceive these signals in peripheral vision has only seen limited research to date, despite the potential adaptive advantages of such perception. In the present experiment, we investigate facial expression recognition and detection performance for each of the basic emotions (plus neutral) at up to 30 degrees of eccentricity. We demonstrate, as expected, a decrease in recognition and detection performance with increasing eccentricity, with happiness and surprised being the best recognized expressions in peripheral vision. In detection however, while happiness and surprised are still well detected, fear is also a well detected expression. We show that fear is a better detected than recognized expression. Our results demonstrate that task constraints shape the perception of expression in peripheral vision and provide novel evidence that detection and recognition rely on partially separate underlying mechanisms, with the latter more dependent on the higher spatial frequency content of the face stimulus. PMID:29847562
Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong
2015-04-14
Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.
You mob my owl, I'll mob yours: birds play tit-for-tat game.
Krama, Tatjana; Vrublevska, Jolanta; Freeberg, Todd M; Kullberg, Cecilia; Rantala, Markus J; Krams, Indrikis
2012-01-01
Reciprocity is fundamental to cooperative behaviour and has been verified in theoretical models. However, there is still limited experimental evidence for reciprocity in non-primate species. Our results more decisively clarify that reciprocity with a tit-for-tat enforcement strategy can occur among breeding pied flycatchers Ficedula hypoleuca separate from considerations of byproduct mutualism. Breeding pairs living in close proximity (20-24 m) did exhibit byproduct mutualism and always assisted in mobbing regardless of their neighbours' prior actions. However, breeding pairs with distant neighbours (69-84 m) either assisted or refused to assist in mobbing a predatory owl based on whether or not the distant pair had previously helped them in their own nest defense against the predator. Clearly, these birds are aware of their specific spatial security context, remember their neighbours' prior behaviour, and choose a situation-specific strategic course of action, which could promote their longer-term security, a capacity previously thought unique to primates.
You mob my owl, I'll mob yours: birds play tit-for-tat game
Krama, Tatjana; Vrublevska, Jolanta; Freeberg, Todd M.; Kullberg, Cecilia; Rantala, Markus J.; Krams, Indrikis
2012-01-01
Reciprocity is fundamental to cooperative behaviour and has been verified in theoretical models. However, there is still limited experimental evidence for reciprocity in non-primate species. Our results more decisively clarify that reciprocity with a tit-for-tat enforcement strategy can occur among breeding pied flycatchers Ficedula hypoleuca separate from considerations of byproduct mutualism. Breeding pairs living in close proximity (20–24 m) did exhibit byproduct mutualism and always assisted in mobbing regardless of their neighbours' prior actions. However, breeding pairs with distant neighbours (69–84 m) either assisted or refused to assist in mobbing a predatory owl based on whether or not the distant pair had previously helped them in their own nest defense against the predator. Clearly, these birds are aware of their specific spatial security context, remember their neighbours' prior behaviour, and choose a situation-specific strategic course of action, which could promote their longer-term security, a capacity previously thought unique to primates. PMID:23150772
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Let the pigeon drive the bus: pigeons can plan future routes in a room.
Gibson, Brett; Wilkinson, Matthew; Kelly, Debbie
2012-05-01
The task of determining an optimal route to several locations is called the traveling salesperson problem (TSP). The TSP has been used recently to examine spatial cognition in humans and non-human animals. It remains unclear whether or not the decision process of animals other than non-human primates utilizes rigid rule-based heuristics, or whether non-human animals are able to flexibly 'plan' future routes/behavior based on their knowledge of multiple locations. We presented pigeons in a One-way and Round-Trip group with TSPs that included two or three destinations (feeders) in a laboratory environment. The pigeons departed a start location, traveled to each feeder once before returning to a final destination. Pigeons weighed the proximity of the next location heavily, but appeared to plan ahead multiple steps when the travel costs for inefficient behavior appeared to increase. The results provide clear and strong evidence that animals other than primates are capable of planning sophisticated travel routes.
Wang, Min; Yang, Yang; Wang, Ching-Jung; Gamo, Nao J.; Jin, Lu E.; Mazer, James A.; Morrison, John H.; Wang, Xiao-Jing; Arnsten, Amy F.T.
2013-01-01
Summary Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPAR) contributed background depolarization to sustain network firing. In contrast, many Response cells -which likely predominate in rodent PFC- were sensitive to AMPAR blockade and increased firing following systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s Disease profoundly impair cognition. PMID:23439125
Fagot, Joël; De Lillo, Carlo
2011-12-01
Two experiments assessed if non-human primates can be meaningfully compared to humans in a non-verbal test of serial recall. A procedure was used that was derived from variations of the Corsi test, designed to test the effects of sequence structure and movement path length in humans. Two baboons were tested in Experiment 1. The monkeys showed several attributes of human serial recall. These included an easier recall of sequences with a shorter number of items and of sequences characterized by a shorter path length when the number of items was kept constant. However, the accuracy and speed of processing did not indicate that the monkeys were able to benefit from the spatiotemporal structure of sequences. Humans tested in Experiment 2 showed a quantitatively longer memory span, and, in contrast with monkeys, benefitted from sequence structure. The results are discussed in relation to differences in how human and non-human primates segment complex visual patterns. Copyright © 2011 Elsevier Ltd. All rights reserved.
Transcriptional architecture of the primate neocortex.
Bernard, Amy; Lubbers, Laura S; Tanis, Keith Q; Luo, Rui; Podtelezhnikov, Alexei A; Finney, Eva M; McWhorter, Mollie M E; Serikawa, Kyle; Lemon, Tracy; Morgan, Rebecca; Copeland, Catherine; Smith, Kimberly; Cullen, Vivian; Davis-Turak, Jeremy; Lee, Chang-Kyu; Sunkin, Susan M; Loboda, Andrey P; Levine, David M; Stone, David J; Hawrylycz, Michael J; Roberts, Christopher J; Jones, Allan R; Geschwind, Daniel H; Lein, Ed S
2012-03-22
Genome-wide transcriptional profiling was used to characterize the molecular underpinnings of neocortical organization in rhesus macaque, including cortical areal specialization and laminar cell-type diversity. Microarray analysis of individual cortical layers across sensorimotor and association cortices identified robust and specific molecular signatures for individual cortical layers and areas, prominently involving genes associated with specialized neuronal function. Overall, transcriptome-based relationships were related to spatial proximity, being strongest between neighboring cortical areas and between proximal layers. Primary visual cortex (V1) displayed the most distinctive gene expression compared to other cortical regions in rhesus and human, both in the specialized layer 4 as well as other layers. Laminar patterns were more similar between macaque and human compared to mouse, as was the unique V1 profile that was not observed in mouse. These data provide a unique resource detailing neocortical transcription patterns in a nonhuman primate with great similarity in gene expression to human. Copyright © 2012 Elsevier Inc. All rights reserved.
Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher
2012-03-01
The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.
Avian binocular vision: It's not just about what birds can see, it's also about what they can't.
Tyrrell, Luke P; Fernández-Juricic, Esteban
2017-01-01
With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to avian binocularity than meets the eye.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Perceptions of nonhuman primates in human-wildlife conflict scenarios.
Hill, Catherine M; Webber, Amanda D
2010-09-01
Nonhuman primates (referred to as primates in this study) are sometimes revered as gods, abhorred as evil spirits, killed for food because they damage crops, or butchered for sport. Primates' perceived similarity to humans places them in an anomalous position. While some human groups accept the idea that primates "straddle" the human-nonhuman boundary, for others this resemblance is a violation of the human-animal divide. In this study we use two case studies to explore how people's perceptions of primates are often influenced by these animals' apparent similarity to humans, creating expectations, founded within a "human morality" about how primates should interact with people. When animals transgress these social rules, they are measured against the same moral framework as humans. This has implications for how people view and respond to certain kinds of primate behaviors, their willingness to tolerate co-existence with primates and their likely support for primate conservation initiatives. 2010 Wiley-Liss, Inc.
Spatial-frequency requirements for reading revisited
Kwon, MiYoung; Legge, Gordon E.
2012-01-01
Blur is one of many visual factors that can limit reading in both normal and low vision. Legge et al. [Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading. I. Normal vision. Vision Research, 25, 239–252.] measured reading speed for text that was low-pass filtered with a range of cutoff spatial frequencies. Above 2 cycles per letter (CPL) reading speed was constant at its maximum level, but decreased rapidly for lower cutoff frequencies. It remains unknown why the critical cutoff for reading speed is near 2 CPL. The goal of the current study was to ask whether the spatial-frequency requirement for rapid reading is related to the effects of cutoff frequency on letter recognition and the size of the visual span. Visual span profiles were measured by asking subjects to recognize letters in trigrams (random strings of three letters) flashed for 150 ms at varying letter positions left and right of the fixation point. Reading speed was measured with Rapid Serial Visual Presentation (RSVP). The size of the visual span and reading speed were measured for low-pass filtered stimuli with cutoff frequencies from 0.8 to 8 CPL. Low-pass letter recognition data, obtained under similar testing conditions, were available from our previous study (Kwon & Legge, 2011). We found that the spatial-frequency requirement for reading is very similar to the spatial-frequency requirements for the size of the visual span and single letter recognition. The critical cutoff frequencies for reading speed, the size of the visual span and a contrast-invariant measure of letter recognition were all near 1.4 CPL, which is lower than the previous estimate of 2 CPL for reading speed. Although correlational in nature, these results are consistent with the hypothesis that the size of the visual span is closely linked to reading speed. PMID:22521659
The Aging Navigational System.
Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas
2017-08-30
The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
How dolphins see the world: a comparison with chimpanzees and humans.
Tomonaga, Masaki; Uwano, Yuka; Saito, Toyoshi
2014-01-16
Bottlenose dolphins use auditory (or echoic) information to recognise their environments, and many studies have described their echolocation perception abilities. However, relatively few systematic studies have examined their visual perception. We tested dolphins on a visual-matching task using two-dimensional geometric forms including various features. Based on error patterns, we used multidimensional scaling to analyse perceptual similarities among stimuli. In addition to dolphins, we conducted comparable tests with terrestrial species: chimpanzees were tested on a computer-controlled matching task and humans were tested on a rating task. The overall perceptual similarities among stimuli in dolphins were similar to those in the two species of primates. These results clearly indicate that the visual world is perceived similarly by the three species of mammals, even though each has adapted to a different environment and has differing degrees of dependence on vision.
Human pheromones and sexual attraction.
Grammer, Karl; Fink, Bernhard; Neave, Nick
2005-02-01
Olfactory communication is very common amongst animals, and since the discovery of an accessory olfactory system in humans, possible human olfactory communication has gained considerable scientific interest. The importance of the human sense of smell has by far been underestimated in the past. Humans and other primates have been regarded as primarily 'optical animals' with highly developed powers of vision but a relatively undeveloped sense of smell. In recent years this assumption has undergone major revision. Several studies indicate that humans indeed seem to use olfactory communication and are even able to produce and perceive certain pheromones; recent studies have found that pheromones may play an important role in the behavioural and reproduction biology of humans. In this article we review the present evidence of the effect of human pheromones and discuss the role of olfactory cues in human sexual behaviour.
Five Year Plan for Fiscal Years 1992-1996
1991-10-01
for the detection of line sig- nals in visual noise. JQ 1 ...o. Am. Vol 4, No. 12, pgs. 2342-2354. 4) Kersten , D. (1987) Statistical efficiency for...the detection of visual noise. Vision Res. Vol 27, No. 6 pgs. 1029-1040. 5) Legge, G. E., Kersten , D., Burgess, A. E. (1987) Contrast discrimination in...noise. J. Opt. Soc. Am. Vol 4, No. 2, pgs 391-404. 6) Kersten , D. (1984) Spatial summation in visual noise. Vision Res. Vol 24, No. 12, pgs. 1977
From dichoptic to dichotic: historical contrasts between binocular vision and binaural hearing.
Wade, Nicholas J; Ono, Hiroshi
2005-01-01
Phenomena involving vision with two eyes have been commented upon for several thousand years whereas those concerned with hearing with two ears have a much more recent history. Studies of binocular vision and binaural hearing are contrasted with respect to the singleness of the percept, experimental manipulations of dichoptic and dichotic stimuli, eye and ear dominance, spatial localisation, and the instruments used to stimulate the paired organs. One of the principal phenomena that led to studies of dichotic hearing was dichoptic colour mixing. There was similar disagreement regarding whether colours or sounds could be combined when presented to different paired organs. Direction and distance in visual localisation were analysed before those for auditory localisation, partly due to difficulties in controlling the stimuli. Instruments for investigating binocular vision, like the stereoscope and pseudoscope, were invented before those for binaural hearing, like the stethophone and pseudophone.
Camera calibration method of binocular stereo vision based on OpenCV
NASA Astrophysics Data System (ADS)
Zhong, Wanzhen; Dong, Xiaona
2015-10-01
Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.
Development of a micromachined epiretinal vision prosthesis
NASA Astrophysics Data System (ADS)
Stieglitz, Thomas
2009-12-01
Microsystems engineering offers the tools to develop highly sophisticated miniaturized implants to interface with the nervous system. One challenging application field is the development of neural prostheses to restore vision in persons that have become blind by photoreceptor degeneration due to retinitis pigmentosa. The fundamental work that has been done in one approach is presented here. An epiretinal vision prosthesis has been developed that allows hybrid integration of electronics on one part of a thin and flexible substrate. Polyimide as a substrate material is proven to be non-cytotoxic. Non-hermetic encapsulation with parylene C was stable for at least 3 months in vivo. Chronic animal experiments proved spatially selective cortical activation after epiretinal stimulation with a 25-channel implant. Research results have been transferred successfully to companies that currently work on the medical device approval of these retinal vision prostheses in Europe and in the USA.
Mediated-reality magnification for macular degeneration rehabilitation
NASA Astrophysics Data System (ADS)
Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir
2014-10-01
Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.
Rooney, Kevin K.; Condia, Robert J.; Loschky, Lester C.
2017-01-01
Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one’s fist at arm’s length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words) PMID:28360867
Rooney, Kevin K; Condia, Robert J; Loschky, Lester C
2017-01-01
Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one's fist at arm's length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words).
Paintings, photographs, and computer graphics are calculated appearances
NASA Astrophysics Data System (ADS)
McCann, John
2012-03-01
Painters reproduce the appearances they see, or visualize. The entire human visual system is the first part of that process, providing extensive spatial processing. Painters have used spatial techniques since the Renaissance to render HDR scenes. Silver halide photography responds to the light falling on single film pixels. Film can only mimic the retinal response of the cones at the start of the visual process. Film cannot mimic the spatial processing in humans. Digital image processing can. This talk studies three dramatic visual illusions and uses the spatial mechanisms found in human vision to interpret their appearances.
Three-dimensional vision enhances task performance independently of the surgical method.
Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A
2012-10-01
Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.
Unlike fellows - a review of primate-non-primate associations.
Heymann, Eckhard W; Hsia, Shin S
2015-02-01
Throughout many regions of the tropics, non-primate animals - mainly birds and mammals - have been observed to follow primate groups and to exploit dropped food and flushed prey. The anecdotal nature of most of the numerous reports on these primate-non-primate associations (PNPAs) may obscure the biological significance of such associations. We review the existing literature and test predictions concerning the influence of primate traits (body size, activity patterns, dietary strategies, habitat, group size) on the occurrence of PNPAs. Furthermore, we examine the influence of non-primates' dietary strategies on the occurrence of PNPAs, and the distribution of benefits and costs. We detected a strong signal in the geographic distribution of PNPAs, with a larger number of such associations in the Neotropics compared to Africa and Asia. Madagascar lacks PNPAs altogether. Primate body size, activity patterns, habitat and dietary strategies as well as non-primate dietary strategies affect the occurrence of PNPAs, while primate group size did not play a role. Benefits are asymmetrically distributed and mainly accrue to non-primates. They consist of foraging benefits through the consumption of dropped leaves and fruits and flushed prey, and anti-predation benefits through eavesdropping on primate alarm calls and vigilance. Where quantitative information is available, it has been shown that benefits for non-primates can be substantial. The majority of PNPAs can thus be categorized as cases of commensalism, while mutualism is very rare. Our review provides evidence that the ecological function of primates extends beyond their manifold interactions with plants, but may remain underestimated. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Spectral and spatial selectivity of luminance vision in reef fish.
Siebeck, Ulrike E; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha
2014-01-01
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective-it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors ("bright green", "dark green" and "blue") were used to create two sets of color and two sets of pattern stimuli. The "bright green" and "dark green" were similar in their chromatic properties for fish, but differed in their lightness; the "dark green" differed from "blue" in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate "bright green" from "dark green" and "dark green" from "blue" stimuli. Fish also could discriminate the fine patterns created from "dark green" and "bright green". However, fish failed to discriminate fine patterns created from "blue" and "dark green" colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.
Spatial contrast sensitivity vision loss in children with cortical visual impairment.
Good, William V; Hou, Chuan; Norcia, Anthony M
2012-11-19
Although cortical visual impairment (CVI) is the leading cause of bilateral vision impairment in children in Western countries, little is known about the effects of CVI on visual function. The aim of this study was to compare visual evoked potential measures of contrast sensitivity and grating acuity in children with CVI with those of age-matched typically developing controls. The swept parameter visual evoked potential (sVEP) was used to measure contrast sensitivity and grating acuity in 34 children with CVI at 5 months to 5 years of age and in 16 age-matched control children. Contrast thresholds and spatial frequency thresholds (grating acuities) were derived by extrapolating the tuning functions to zero amplitude. These thresholds and maximal suprathreshold response amplitudes were compared between groups. Among 34 children with CVI, 30 had measurable but reduced contrast sensitivity with a median threshold of 10.8% (range 5.0%-30.0% Michelson), and 32 had measurable but reduced grating acuity with median threshold 0.49 logMAR (9.8 c/deg, range 5-14 c/deg). These thresholds were significantly reduced, compared with age-matched control children. In addition, response amplitudes over the entire sweep range for both measures were significantly diminished in children with CVI compared with those of control children. Our results indicate that spatial contrast sensitivity and response amplitudes are strongly affected by CVI. The substantial degree of loss in contrast sensitivity suggests that contrast is a sensitive measure for evaluating vision deficits in patients with CVI.
Field of Vision Influences Sensory-Motor Control of Skilled and Less-Skilled Dart Players
Rienhoff, Rebecca; Baker, Joseph; Fischer, Lennart; Strauss, Bernd; Schorer, Jörg
2012-01-01
One characteristic of perceptual expertise in sport and other domains is known as ’the quiet eye', which assumes that fixated information is processed during gaze stability and insufficient spatial information leads to a decrease in performance. The aims of this study were a) replicating inter- and intra-group variability and b) investigating the extent to which quiet eye supports information pick-up of varying fields of vision (i.e., central versus peripheral) using a specific eye-tracking paradigm to compare different skill levels in a dart throwing task. Differences between skill levels were replicated at baseline, but no significant differences in throwing performance were revealed among the visual occlusion conditions. Findings are generally in line with the association between quiet eye duration and aiming performance, but raise questions regarding the relevance of central vision information pick-up for the quiet eye. Key pointsInvestigation of throwing performance and quiet eye duration in dart throwing under several vision conditionsFirst investigation using a dynamic occlusion paradigm, manipulating field of vision in situReplication of previous findings concerning throwing performance and quiet eye durationNew insights about the role of central (and peripheral) vision concerning the quiet eye phenomena PMID:24149366
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept. PMID:29593521
Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.
2016-01-01
Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630
Assessment of OLED displays for vision research
Cooper, Emily A.; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E.; Norcia, Anthony M.
2013-01-01
Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function (“gamma correction”). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications. PMID:24155345
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.
2015-01-01
We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.
Improvement of individual camouflage through background choice in ground-nesting birds.
Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K; Spottiswoode, Claire N
2017-09-01
Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.
Improvement of individual camouflage through background choice in ground-nesting birds
Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K.; Spottiswoode, Claire N.
2017-01-01
Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales. PMID:28890937
Facilitation of contrast detection in near-peripheral vision.
Giorgi, Robert G; Soong, Grace P; Woods, Russell L; Peli, Eli
2004-12-01
Foveal detection of a Gabor patch (target) is facilitated by collinear, displaced high-contrast flankers. Polat and Sagi reported that the same phenomenon occurred in the periphery, but no data were presented [Proc. Natl. Acad. Sci. 91 (1994) 1206]. Others have found no facilitation in a limited number of conditions tested. To resolve this apparent conflict, we measured lateral facilitation in the near-periphery using a range of stimulus parameters. We found facilitation for a range of target-flanker distances for peripheral eccentricities up to 6 degrees , but the magnitude of the effect was less than found in central vision. Facilitation varied across subjects and with spatial frequency. Flanker contrast had no effect over the range evaluated (10-80%). Equal facilitation was found for two global arrangements of the stimulus pattern. Facilitation was found using a temporal, but not a spatial two-alternative forced-choice paradigm, accounting for the different results among previous studies. This finding supports previous indications of the role of attention in altering such facilitation. The value of facilitation from lateral interactions for persons with central vision impairment, who have to shift their attention to a peripheral locus constantly, needs to be examined.
Primate Info Net Related Databases NCRR PrimateLit: A bibliographic database for primatology Top of any problems with this service. We welcome your feedback. The PrimateLit database is no longer being Resources, National Institutes of Health. The database is a collaborative project of the Wisconsin Primate
A Molecular Phylogeny of Living Primates
Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill
2011-01-01
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896
Perception of 3-D location based on vision, touch, and extended touch
Giudice, Nicholas A.; Klatzky, Roberta L.; Bennett, Christopher R.; Loomis, Jack M.
2012-01-01
Perception of the near environment gives rise to spatial images in working memory that continue to represent the spatial layout even after cessation of sensory input. As the observer moves, these spatial images are continuously updated.This research is concerned with (1) whether spatial images of targets are formed when they are sensed using extended touch (i.e., using a probe to extend the reach of the arm) and (2) the accuracy with which such targets are perceived. In Experiment 1, participants perceived the 3-D locations of individual targets from a fixed origin and were then tested with an updating task involving blindfolded walking followed by placement of the hand at the remembered target location. Twenty-four target locations, representing all combinations of two distances, two heights, and six azimuths, were perceived by vision or by blindfolded exploration with the bare hand, a 1-m probe, or a 2-m probe. Systematic errors in azimuth were observed for all targets, reflecting errors in representing the target locations and updating. Overall, updating after visual perception was best, but the quantitative differences between conditions were small. Experiment 2 demonstrated that auditory information signifying contact with the target was not a factor. Overall, the results indicate that 3-D spatial images can be formed of targets sensed by extended touch and that perception by extended touch, even out to 1.75 m, is surprisingly accurate. PMID:23070234
Ruotolo, Francesco; Ruggiero, Gennaro; Vinciguerra, Michela; Iachini, Tina
2012-02-01
The aim of this research is to assess whether the crucial factor in determining the characteristics of blind people's spatial mental images is concerned with the visual impairment per se or the processing style that the dominant perceptual modalities used to acquire spatial information impose, i.e. simultaneous (vision) vs sequential (kinaesthesis). Participants were asked to learn six positions in a large parking area via movement alone (congenitally blind, adventitiously blind, blindfolded sighted) or with vision plus movement (simultaneous sighted, sequential sighted), and then to mentally scan between positions in the path. The crucial manipulation concerned the sequential sighted group. Their visual exploration was made sequential by putting visual obstacles within the pathway in such a way that they could not see simultaneously the positions along the pathway. The results revealed a significant time/distance linear relation in all tested groups. However, the linear component was lower in sequential sighted and blind participants, especially congenital. Sequential sighted and congenitally blind participants showed an almost overlapping performance. Differences between groups became evident when mentally scanning farther distances (more than 5m). This threshold effect could be revealing of processing limitations due to the need of integrating and updating spatial information. Overall, the results suggest that the characteristics of the processing style rather than the visual impairment per se affect blind people's spatial mental images. Copyright © 2011 Elsevier B.V. All rights reserved.
Estrada, Alejandro; Garber, Paul A; Mittermeier, Russell A; Wich, Serge; Gouveia, Sidney; Dobrovolski, Ricardo; Nekaris, K A I; Nijman, Vincent; Rylands, Anthony B; Maisels, Fiona; Williamson, Elizabeth A; Bicca-Marques, Julio; Fuentes, Agustin; Jerusalinsky, Leandro; Johnson, Steig; Rodrigues de Melo, Fabiano; Oliveira, Leonardo; Schwitzer, Christoph; Roos, Christian; Cheyne, Susan M; Martins Kierulff, Maria Cecilia; Raharivololona, Brigitte; Talebi, Mauricio; Ratsimbazafy, Jonah; Supriatna, Jatna; Boonratana, Ramesh; Wedana, Made; Setiawan, Arif
2018-01-01
Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.
Mittermeier, Russell A.; Wich, Serge; Gouveia, Sidney; Dobrovolski, Ricardo; Nijman, Vincent; Rylands, Anthony B.; Johnson, Steig; Rodrigues de Melo, Fabiano; Schwitzer, Christoph; Roos, Christian; Cheyne, Susan M.; Martins Kierulff, Maria Cecilia; Raharivololona, Brigitte; Ratsimbazafy, Jonah; Supriatna, Jatna; Boonratana, Ramesh; Wedana, Made; Setiawan, Arif
2018-01-01
Primates occur in 90 countries, but four—Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)—harbor 65% of the world’s primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems. PMID:29922508
Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.
Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan
2017-01-01
Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.
Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST
Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan
2017-01-01
Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773
High-Resolution Adaptive Optics Test-Bed for Vision Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Thomspon, C A; Olivier, S S
2001-09-27
We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less
Baig, Kamran; Shaw-Ridley, Mary; Munoz, Oscar J
2016-10-01
Colonias are sub standardized and unincorporated areas located along the US-Mexico border, with severely lacking infrastructure. Residents have poor health and limited availability, accessibility and/or utilization of healthcare services in the region. Using 2006-2007 community needs assessment (CNA) surveys collected by the Center for Housing and Urban Development of Texas A&M University, 410 randomly selected surveys from Hidalgo County, Texas were analyzed. Descriptive and spatial analyses were performed and Odds ratio (OR) was calculated. Out of 410 surveys, 333 were geo-coded to identify areas most in need of dental and vision care. Two hospitals existed within 5 miles radius of the mean centers for the two areas. Distance to health care facility was not statistically predictive of the need of dental care OR=0.96 (95% CI=0.855-1.078, p value=0.492) and vision care OR=1.083 (95% CI=0.968-1.212, p value=0.164). Integrating spatial analysis and CNA enhances planning to improve service accessibility and utilization in underserved areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Image gathering and processing - Information and fidelity
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.
1985-01-01
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
Cognitive load of navigating without vision when guided by virtual sound versus spatial language.
Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M
2006-12-01
A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.
Three-dimensional imaging in degraded visual field
NASA Astrophysics Data System (ADS)
Oran, A.; Ozharar, S.; Ozdur, I.
2016-04-01
Imaging at degraded visual environments is one of the biggest challenges in today’s imaging technologies. Especially military and commercial rotary wing aviation is suffering from impaired visual field in sandy, dusty, marine and snowy environments. For example during landing the rotor churns up the particles and creates dense clouds of highly scattering medium, which limits the vision of the pilot and may result in an uncontrolled landing. The vision in such environments is limited because of the high ratio of scattered photons over the ballistic photons which have the image information. We propose to use optical spatial filtering (OSF) method in order to eliminate the scattered photons and only collect the ballistic photons at the receiver. OSF is widely used in microscopy, to the best of our knowledge this will be the first application of OSF for macroscopic imaging. Our experimental results show that most of the scattered photons are eliminated using the spatial filtering in a highly scattering impaired visual field. The results are compared with a standard broad area photo detector which shows the effectiveness of spatial filtering.
Labhart, T; Petzold, J; Helbling, H
2001-07-01
Many insects exploit the polarization pattern of the sky for compass orientation in navigation or cruising-course control. Polarization-sensitive neurones (POL1-neurones) in the polarization vision pathway of the cricket visual system have wide visual fields of approximately 60 degrees diameter, i.e. these neurones integrate information over a large area of the sky. This results from two different mechanisms. (i) Optical integration; polarization vision is mediated by a group of specialized ommatidia at the dorsal rim of the eye. These ommatidia lack screening pigment, contain a wide rhabdom and have poor lens optics. As a result, the angular sensitivity of the polarization-sensitive photoreceptors is very wide (median approximately 20 degrees ). (ii) Neural integration; each POL1-neurone receives input from a large number of dorsal rim photoreceptors with diverging optical axes. Spatial integration in POL1-neurones acts as a spatial low-pass filter. It improves the quality of the celestial polarization signal by filtering out cloud-induced local disturbances in the polarization pattern and increases sensitivity.
Cappagli, Giulia; Finocchietti, Sara; Baud-Bovy, Gabriel; Cocchi, Elena; Gori, Monica
2017-01-01
Since it has been shown that spatial development can be delayed in blind children, focused sensorimotor trainings that associate auditory and motor information might be used to prevent the risk of spatial-related developmental delays or impairments from an early age. With this aim, we proposed a new technological device based on the implicit link between action and perception: ABBI (Audio Bracelet for Blind Interaction) is an audio bracelet that produces a sound when a movement occurs by allowing the substitution of the visuo-motor association with a new audio-motor association. In this study, we assessed the effects of an extensive but entertaining sensorimotor training with ABBI on the development of spatial hearing in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR). The training required the participants to play several spatial games individually and/or together with the psychomotor therapist 1 h per week for 3 months: the spatial games consisted of exercises meant to train their ability to associate visual and motor-related signals from their body, in order to foster the development of multisensory processes. We measured spatial performance by asking participants to indicate the position of one single fixed (static condition) or moving (dynamic condition) sound source on a vertical sensorized surface. We found that spatial performance of congenitally blind but not low vision children is improved after the training, indicating that early interventions with the use of science-driven devices based on multisensory capabilities can provide consistent advancements in therapeutic interventions, improving the quality of life of children with visual disability. PMID:29097987
Sensory substitution information informs locomotor adjustments when walking through apertures.
Kolarik, Andrew J; Timmis, Matthew A; Cirstea, Silvia; Pardhan, Shahina
2014-03-01
The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0, +18, +35 and +70 % of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35 % for apertures of +18 % of body width) suggests that spatial representations are not as accurate as offered by full vision.
Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles
Treue, Stefan
2018-01-01
Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798
O'Shea, Daniel J; Trautmann, Eric; Chandrasekaran, Chandramouli; Stavisky, Sergey; Kao, Jonathan C; Sahani, Maneesh; Ryu, Stephen; Deisseroth, Karl; Shenoy, Krishna V
2017-01-01
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S
2017-01-01
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei
2014-01-01
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576
Home range overlap as a driver of intelligence in primates.
Grueter, Cyril C
2015-04-01
Various socioecological factors have been suggested to influence cognitive capacity in primates, including challenges associated with foraging and dealing with the complexities of social life. Alexander [Alexander, 1989]. Evolution of the human psyche. In: Mellars P, Stringer C, editors. The human revolution: Behavioural and biological perspectives on the origins of modern humans. Princeton: Princeton University Press. p 455-513] proposed an integrative model for the evolution of human cognitive abilities and complex sociality that incorporates competition among coalitions of conspecifics (inter-group conflict) as a major selective pressure. However, one of the premises of this model, i.e., that when confronted with inter-group conflict selection should favor enhanced cognition, has remained empirically untested. Using a comparative approach on species data, I aimed to test the prediction that primate species (n = 104) that face greater inter-group conflict have higher cognitive abilities (indexed by endocranial volume). The degree of inter-group conflict/complexity was approximated via the variable home range overlap among groups. I found a significant relationship between home range overlap and endocranial volume, even after controlling for other predictor variables and covariates such as group size and body mass. I conclude that brain size evolution cannot be attributed exclusively to social factors such as group size, but likely reflects a variety of social and ecological determinants including inter-group conflict which poses cognitive demands on monitoring both the wider social milieu as well as spatial attributes of the habitat. © 2014 Wiley Periodicals, Inc.
Soge, Olusegun O; No, David; Michael, Karen E; Dankoff, Jennifer; Lane, Jennifer; Vogel, Keith; Smedley, Jeremy; Roberts, Marilyn C
2016-10-01
MDR MRSA isolates cultured from primates, their facility and primate personnel from the Washington National Primate Research Center were characterized to determine whether they were epidemiologically related to each other and if they represented common local human-associated MRSA strains. Human and primate nasal and composite environmental samples were collected, enriched and selected on medium supplemented with oxacillin and polymyxin B. Isolates were biochemically verified as Staphylococcus aureus and screened for the mecA gene. Selected isolates were characterized using SCCmec typing, MLST and WGS. Nasal cultures were performed on 596 primates and 105 (17.6%) were MRSA positive. Two of 79 (2.5%) personnel and two of 56 (3.6%) composite primate environmental facility samples were MRSA positive. Three MRSA isolates from primates, one MRSA from personnel, two environmental MRSA and one primate MSSA were ST188 and were the same strain type by conventional typing methods. ST188 isolates were related to a 2007 ST188 human isolate from Hong Kong. Both MRSA isolates from out-of-state primates had a novel MLST type, ST3268, and an unrelated group. All isolates carried ≥1 other antibiotic resistance gene(s), including tet(38), the only tet gene identified. ST188 is very rare in North America and has almost exclusively been identified in people from Pan-Asia, while ST3268 is a newly reported MRSA type. The data suggest that the primate MDR MRSA was unlikely to come from primate centre employees. Captive primates are likely to be an unappreciated source of MRSA. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Schmidtke, Daniel; Ammersdörfer, Sandra; Joly, Marine; Zimmermann, Elke
2018-05-10
A recent study suggests that a specific, touchscreen-based task on visual object-location paired-associates learning (PAL), the so-called Different PAL (dPAL) task, allows effective translation from animal models to humans. Here, we adapted the task to a nonhuman primate (NHP), the gray mouse lemur, and provide first evidence for the successful comparative application of the task to humans and NHPs. Young human adults reach the learning criterion after considerably less sessions (one order of magnitude) than young, adult NHPs, which is likely due to faster and voluntary rejection of ineffective learning strategies in humans and almost immediate rule generalization. At criterion, however, all human subjects solved the task by either applying a visuospatial rule or, more rarely, by memorizing all possible stimulus combinations and responding correctly based on global visual information. An error-profile analysis in humans and NHPs suggests that successful learning in NHPs is comparably based either on the formation of visuospatial associative links or on more reflexive, visually guided stimulus-response learning. The classification in the NHPs is further supported by an analysis of the individual response latencies, which are considerably higher in NHPs classified as spatial learners. Our results, therefore, support the high translational potential of the standardized, touchscreen-based dPAL task by providing first empirical and comparable evidence for two different cognitive processes underlying dPAL performance in primates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Heymann, Eckhard W.; Lüttmann, Kathrin; Michalczyk, Inga M.; Saboya, Pedro Pablo Pinedo; Ziegenhagen, Birgit; Bialozyt, Ronald
2012-01-01
Background Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. Methodology/Principal Findings In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Conclusions/Significance Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants. PMID:22514748
Responses of Rostral Fastigial Nucleus Neurons of Conscious Cats to Rotations in Vertical Planes
Miller, D. M.; Cotter, L.A.; Gandhi, N. J.; Schor, R. H.; Huff, N. O.; Raj, S. G.; Shulman, J. A.; Yates, B. J.
2008-01-01
The rostral fastigial nucleus (RFN) of the cerebellum is thought to play an important role in postural control, and recent studies in conscious nonhuman primates suggest that this region also participates in the sensory processing required to compute body motion in space. The goal of the present study was to examine the dynamic and spatial responses to sinusoidal rotations in vertical planes of RFN neurons in conscious cats, and determine if they are similar to responses reported for monkeys. Approximately half of the RFN neurons examined were classified as graviceptive, since their firing was synchronized with stimulus position and the gain of their responses was relatively unaffected by the frequency of the tilts. The large majority (80%) of graviceptive RFN neurons were activated by pitch rotations. Most of the remaining RFN units exhibited responses to vertical oscillations that encoded stimulus velocity, and approximately 50% of these velocity units had a response vector orientation aligned near the plane of a single vertical semicircular canal. Unlike in primates, few feline RFN neurons had responses to vertical rotations that suggested integration of graviceptive (otolith) and velocity (vertical semicircular canal) signals. These data indicate that the physiological role of the RFN may differ between primates and lower mammals. The RFN in rats and cats in known to be involved in adjusting blood pressure and breathing during postural alterations in the transverse (pitch) plane. The relatively simple responses of many RFN neurons in cats are appropriate for triggering such compensatory autonomic responses. PMID:18571332
Poirier, Frédéric J A M; Gurnsey, Rick
2005-08-01
Eccentricity-dependent resolution losses are sometimes compensated for in psychophysical experiments by magnifying (scaling) stimuli at each eccentricity. The use of either pre-selected scaling factors or unscaled stimuli sometimes leads to non-monotonic changes in performance as a function of eccentricity. We argue that such non-monotonic changes arise when performance is limited by more than one type of constraint at each eccentricity. Building on current methods developed to investigate peripheral perception [e.g., Watson, A. B. (1987). Estimation of local spatial scale. Journal of the Optical Society of America A, 4 (8), 1579-1582; Poirier, F. J. A. M., & Gurnsey, R. (2002). Two eccentricity dependent limitations on subjective contour discrimination. Vision Research, 42, 227-238; Strasburger, H., Rentschler, I., & Harvey Jr., L. O. (1994). Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience, 6, 1583-1588], we show how measured scaling can deviate from a linear function of eccentricity in a grating acuity task [Thibos, L. N., Still, D. L., & Bradley, A. (1996). Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research, 36(2), 249-258]. This framework can also explain the central performance drop [Kehrer, L. (1989). Central performance drop on perceptual segregation tasks. Spatial Vision, 4, 45-62] and a case of "reverse scaling" of the integration window in symmetry [Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919-922]. These cases of non-monotonic performance are shown to be consistent with multiple sources of resolution loss, each of which increases linearly with eccentricity. We conclude that most eccentricity research, including "oddities", can be explained by multiple-scaling theory as extended here, where the receptive field properties of all underlying mechanisms in a task increase in size with eccentricity, but not necessarily at the same rate.
Crown-of-thorns starfish have true image forming vision.
Petie, Ronald; Garm, Anders; Hall, Michael R
2016-01-01
Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained. The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area's of the visual stimuli and were found to be both attracted and repelled by the visual targets. For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata.
Lack of oblique astigmatism in the chicken eye.
Maier, Felix M; Howland, Howard C; Ohlendorf, Arne; Wahl, Siegfried; Schaeffel, Frank
2015-04-01
Primate eyes display considerable oblique off-axis astigmatism which could provide information on the sign of defocus that is needed for emmetropization. The pattern of peripheral astigmatism is not known in the chicken eye, a common model of myopia. Peripheral astigmatism was mapped out over the horizontal visual field in three chickens, 43 days old, and in three near emmetropic human subjects, average age 34.7years, using infrared photoretinoscopy. There were no differences in astigmatism between humans and chickens in the central visual field (chicks -0.35D, humans -0.65D, n.s.) but large differences in the periphery (i.e. astigmatism at 40° in the temporal visual field: humans -4.21D, chicks -0.63D, p<0.001, unpaired t-test). The lack of peripheral astigmatism in chicks was not due to differences in corneal shape. Perhaps related to their superior peripheral optics, we found that chickens had excellent visual performance also in the far periphery. Using an automated optokinetic nystagmus paradigm, no difference was observed in spatial visual performance with vision restricted to either the central 67° of the visual field or to the periphery beyond 67°. Accommodation was elicited by stimuli presented far out in the visual field. Transscleral images of single infrared LEDs showed no sign of peripheral astigmatism. The chick may be the first terrestrial vertebrate described to lack oblique astigmatism. Since corneal shape cannot account for the difference in astigmatism in humans and chicks, it must trace back to the design of the crystalline lens. The lack of peripheral astigmatism in chicks also excludes a role in emmetropization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M
2014-10-08
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.
The Dorsal Visual System Predicts Future and Remembers Past Eye Position
Morris, Adam P.; Bremmer, Frank; Krekelberg, Bart
2016-01-01
Eye movements are essential to primate vision but introduce potentially disruptive displacements of the retinal image. To maintain stable vision, the brain is thought to rely on neurons that carry both visual signals and information about the current direction of gaze in their firing rates. We have shown previously that these neurons provide an accurate representation of eye position during fixation, but whether they are updated fast enough during saccadic eye movements to support real-time vision remains controversial. Here we show that not only do these neurons carry a fast and accurate eye-position signal, but also that they support in parallel a range of time-lagged variants, including predictive and post dictive signals. We recorded extracellular activity in four areas of the macaque dorsal visual cortex during a saccade task, including the lateral and ventral intraparietal areas (LIP, VIP), and the middle temporal (MT) and medial superior temporal (MST) areas. As reported previously, neurons showed tonic eye-position-related activity during fixation. In addition, they showed a variety of transient changes in activity around the time of saccades, including relative suppression, enhancement, and pre-saccadic bursts for one saccade direction over another. We show that a hypothetical neuron that pools this rich population activity through a weighted sum can produce an output that mimics the true spatiotemporal dynamics of the eye. Further, with different pooling weights, this downstream eye position signal (EPS) could be updated long before (<100 ms) or after (<200 ms) an eye movement. The results suggest a flexible coding scheme in which downstream computations have access to past, current, and future eye positions simultaneously, providing a basis for visual stability and delay-free visually-guided behavior. PMID:26941617
Azzopardi, George; Petkov, Nicolai
2014-01-01
The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068
Jacobs, Gerald H
2013-03-01
All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.
3-D vision and figure-ground separation by visual cortex.
Grossberg, S
1994-01-01
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)
Schmucker, Christine; Schaeffel, Frank
2006-03-01
To find out how spatial vision in mice is affected by wearing of spectacle lenses or diffusers, and by atropine eye drops. This information is necessary to determine which treatments could effectively induce refractive errors in young mice. Whole-body optomotor responses were recorded by automated video analysis in freely ranging mice in a large rotating drum that was covered inside with vertical square-wave gratings with spatial frequencies of 0.03, 0.10 and 0.30 cyc/deg, both at "dim light" (0.10 cd/m(2)), and under photopic conditions (30 cd/m(2)). Contrast thresholds were determined by varying the contrasts of the gratings. Mice wore either no lenses, or binocular plano lenses, or lenses with powers ranging from +25 D to -25 D, or diffusers. In another experiment, contrast thresholds were determined 30 min after binocular installation of one drop of 1% atropine solution which is known to suppress myopia development in other animal models. The range of spatial frequencies, at which the mice still responded to stripes with less than the maximal grating contrast, was rather small. At 0.03 cyc/deg, the mice responded to stripes with low contrast down to 24%. At 0.10 cyc/deg, the minimal contrast was 45%, but at 0.30 cyc/deg, only the maximum contrast elicited a significant response. In dim light, spatial vision was severely impaired and only the lowest spatial frequencies, presented at the highest contrast (91%), were detected. The whole-body optomotor response was largest with spectacle lens powers of plano diopters and +7D lenses. The magnitude of the response decreased symmetrically with increasing lens powers for both signs, providing information on the behavioral depth of field (a second-order fit through the data placed the extreme limits of a response at around +25 D and -25 D lens powers). Finally, atropine improved contrast sensitivity, at least at the lowest spatial frequency tested, a result that was previously obtained also in the chicken and could help to explain the inhibitory effect of atropine on myopia. The study shows that mice have sufficient spatial vision to respond to treatment with powerful spectacle lenses or diffusers. Accordingly, these devices should be effective in inducing refractive errors in this animal model, although primarily under photopic conditions.
[Diversity and development of positional behavior in non-human primates].
Zhang, Jing; Qi, Xiao-Guang; Zhang, Kan; Zhang, Pei; Guo, Song-Tao; Wei, Wei; Li, Bao-Guo
2012-10-01
In long-term evolution, wildlife in general and primates in particular have formed specific patterns of behavior to adapt to a diverse variety of habitat environments. Current research on positional behavior in non-human primates has been found to explain a great deal about primate adaptability diversification, ecology, anatomy and evolution. Here, we summarize the noted classifications and differences in seasonal, site-specific and sex-age positional behaviors while also reviewing the development and status of non-human primate positional behavior research. This review is intended to provide reference for the future research of non-human primates and aid in further research on behavioral ecology of primates.
Sayers, Ken
2013-04-01
Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this "fruit/leaf dichotomy" has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships and is explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characteristics that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to Liem's Paradox, the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs-and, in actuality, many leaf-eating primates-range widely, engage in resource competition (both of which have previously been noted for primate folivores), and solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the use of mainstream evolutionary ecology and thorough linkage of both proximate and ultimate mechanisms.
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).
Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan
2017-01-01
A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.
Gillespie, Thomas R.; Rwego, Innocent B.; Estoff, Elizabeth L.; Chapman, Colin A.
2008-01-01
We conducted a prospective study of bacterial transmission among humans, nonhuman primates (primates hereafter), and livestock in western Uganda. Humans living near forest fragments harbored Escherichia coli bacteria that were ≈75% more similar to bacteria from primates in those fragments than to bacteria from primates in nearby undisturbed forests. Genetic similarity between human/livestock and primate bacteria increased ≈3-fold as anthropogenic disturbance within forest fragments increased from moderate to high. Bacteria harbored by humans and livestock were approximately twice as similar to those of red-tailed guenons, which habitually enter human settlements to raid crops, than to bacteria of other primate species. Tending livestock, experiencing gastrointestinal symptoms, and residing near a disturbed forest fragment increased genetic similarity between a participant’s bacteria and those of nearby primates. Forest fragmentation, anthropogenic disturbance within fragments, primate ecology, and human behavior all influence bidirectional, interspecific bacterial transmission. Targeted interventions on any of these levels should reduce disease transmission and emergence. PMID:18760003
PrimateLit Database: Submit Literature for Indexing
Access PrimateLit Using this Site About the Project Submit Literature for Indexing Copyright Info Center WI Regional Primate Resource Center Submit Literature for Indexing PrimateLit has not been
Oligocene primates from China reveal divergence between African and Asian primate evolution.
Ni, Xijun; Li, Qiang; Li, Lüzhou; Beard, K Christopher
2016-05-06
Profound environmental and faunal changes are associated with climatic deterioration during the Eocene-Oligocene transition (EOT) roughly 34 million years ago. Reconstructing how Asian primates responded to the EOT has been hindered by a sparse record of Oligocene primates on that continent. Here, we report the discovery of a diverse primate fauna from the early Oligocene of southern China. In marked contrast to Afro-Arabian Oligocene primate faunas, this Asian fauna is dominated by strepsirhines. There appears to be a strong break between Paleogene and Neogene Asian anthropoid assemblages. Asian and Afro-Arabian primate faunas responded differently to EOT climatic deterioration, indicating that the EOT functioned as a critical evolutionary filter constraining the subsequent course of primate evolution across the Old World. Copyright © 2016, American Association for the Advancement of Science.
Impending extinction crisis of the world's primates: Why primates matter.
Estrada, Alejandro; Garber, Paul A; Rylands, Anthony B; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K Anne-Isola; Nijman, Vincent; Heymann, Eckhard W; Lambert, Joanna E; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M; Gillespie, Thomas R; Mittermeier, Russell A; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A; Fuentes, Agustin; MacKinnon, Katherine C; Amato, Katherine R; Meyer, Andreas L S; Wich, Serge; Sussman, Robert W; Pan, Ruliang; Kone, Inza; Li, Baoguo
2017-01-01
Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.
Impending extinction crisis of the world’s primates: Why primates matter
Estrada, Alejandro; Garber, Paul A.; Rylands, Anthony B.; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K. Anne-Isola; Nijman, Vincent; Heymann, Eckhard W.; Lambert, Joanna E.; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M.; Gillespie, Thomas R.; Mittermeier, Russell A.; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A.; Fuentes, Agustin; MacKinnon, Katherine C.; Amato, Katherine R.; Meyer, Andreas L. S.; Wich, Serge; Sussman, Robert W.; Pan, Ruliang; Kone, Inza; Li, Baoguo
2017-01-01
Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats—mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world’s primates and the costs of their loss to ecosystem health and human society is imperative. PMID:28116351
Precortical dysfunction of spatial and temporal visual processing in migraine.
Coleston, D M; Chronicle, E; Ruddock, K H; Kennard, C
1994-01-01
This paper examines spatial and temporal processing in migraineurs (diagnosed according to International Headache Society criteria, 1988), using psychophysical tests that measure spatial and temporal responses. These tests are considered to specifically assess precortical mechanisms. Results suggest precortical dysfunction for processing of spatial and temporal visual stimuli in 11 migraineurs with visual aura and 13 migraineurs without aura; the two groups could not be distinguished. As precortical dysfunction seems to be common to both groups of patients, it is suggested that symptoms that are experienced by both groups, such as blurring of vision and photophobia, may have their basis at a precortical level. PMID:7931382
Selective attention within the foveola.
Poletti, Martina; Rucci, Michele; Carrasco, Marisa
2017-10-01
Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking-that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.
van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W
2010-01-22
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Latency Requirements for Head-Worn Display S/EVS Applications
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Trey Arthur, J. J., III; Williams, Steven P.
2004-01-01
NASA s Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas flight control, flight simulation, and virtual reality are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
NASA Astrophysics Data System (ADS)
Madokoro, H.; Tsukada, M.; Sato, K.
2013-07-01
This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
Selective attention within the foveola
Poletti, Martina; Rucci, Michele; Carrasco, Marisa
2018-01-01
Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer already looks, i.e., within the high-acuity foveola, the small, yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds-up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field. PMID:28805816
Latency requirements for head-worn display S/EVS applications
NASA Astrophysics Data System (ADS)
Bailey, Randall E.; Arthur, Jarvis J., III; Williams, Steven P.
2004-08-01
NASA's Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas - flight control, flight simulation, and virtual reality - are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
Photometric and colorimetric measurements of CRT and TFT monitors for vision research
NASA Astrophysics Data System (ADS)
Klein, Johann; Zlatkova, Margarita; Lauritzen, Jan; Pierscionek, Barbara
2013-08-01
Visual displays have various limitations that can affect the results of vision research experiments. This study compares several characteristics of CRT (Hewlett Packard 7650) and TFT (LG Flatron L227 WT and Samsung 2233 RZ) monitors, including luminance and colour spatial homogeneity, luminance changes with viewing angle, contrast linearity and warm-up characteristics. In addition, the psychophysical performance in grating contrast sensitivity test for both CRT and TFT monitors was compared. The TFT monitors demonstrated spatial non-homogeneity ('mura') with up to 50% of luminance change across the screen and a more significant luminance viewing angle dependence compared with CRT. The chromaticity of the white point showed negligible variation across the screen. Both types of monitors required a warm-up time of the order of 60 min. Despite the physical differences between monitors, visual contrast sensitivity performance measured with the two types of monitors was similar using both static and flickering gratings.
Fighting blindness with microelectronics.
Zrenner, Eberhart
2013-11-06
There is no approved cure for blindness caused by degeneration of the photoreceptor cells of the retina. However, there has been encouraging progress with attempts to restore vision using microelectronic retinal implant devices. Yet many questions remain to be addressed. Where is the best location to implant multielectrode arrays? How can spatial and temporal resolution be improved? What are the best ways to ensure the safety and longevity of these devices? Will color vision be possible? This Perspective discusses the current state of the art of retinal implants and attempts to address some of the outstanding questions.
Duarte-Quiroga, Alejandra; Estrada, Alejandro
2003-10-01
The large human populations in cities are an important source of demand for wildlife pets, including primates, and not much is known about the primate species involved in terms of their general origin, the length of time they are kept as pets, and some of the maintenance problems encountered with their use as pets. We report the results of a survey conducted in Mexico City among primate pet owners, which was aimed at providing some of the above information. We used an ethnographic approach, and pet owners were treated as informants to gain their trust so that we could enter their homes and learn about the life of their primate pets. We surveyed 179 owners of primate pets, which included 12 primate species. Of these, three were native species (Ateles geoffroyi, Alouatta pigra, and A. palliata). The rest were other neotropical primate species not native to Mexico, and some paleotropical species. Spider monkeys and two species of howler monkeys native to Mexico accounted for 67% and 15%, respectively, of the primate cases investigated. The most expensive primate pets were those imported from abroad, while the least expensive were the Mexican species. About 45% of the native primate pets were obtained by their owners in a large market in Mexico City, and the rest were obtained in southern Mexico. Although they can provide companionship for children and adults, primate pets are subject to a number of hazards, some of which put their lives at risk. The demand by city dwellers for primate pets, along with habitat destruction and fragmentation, exerts a significant pressure on wild populations in southern Mexico. Copyright 2003 Wiley-Liss, Inc.
Using non-human primates to benefit humans: research and organ transplantation.
Shaw, David; Dondorp, Wybo; de Wert, Guido
2014-11-01
Emerging biotechnology may soon allow the creation of genetically human organs inside animals, with non-human primates (henceforth simply "primates") and pigs being the best candidate species. This prospect raises the question of whether creating organs in primates in order to then transplant them into humans would be more (or less) acceptable than using them for research. In this paper, we examine the validity of the purported moral distinction between primates and other animals, and analyze the ethical acceptability of using primates to create organs for human use.
How dolphins see the world: A comparison with chimpanzees and humans
Tomonaga, Masaki; Uwano, Yuka; Saito, Toyoshi
2014-01-01
Bottlenose dolphins use auditory (or echoic) information to recognise their environments, and many studies have described their echolocation perception abilities. However, relatively few systematic studies have examined their visual perception. We tested dolphins on a visual-matching task using two-dimensional geometric forms including various features. Based on error patterns, we used multidimensional scaling to analyse perceptual similarities among stimuli. In addition to dolphins, we conducted comparable tests with terrestrial species: chimpanzees were tested on a computer-controlled matching task and humans were tested on a rating task. The overall perceptual similarities among stimuli in dolphins were similar to those in the two species of primates. These results clearly indicate that the visual world is perceived similarly by the three species of mammals, even though each has adapted to a different environment and has differing degrees of dependence on vision. PMID:24435017
Russo, Gabrielle A
2016-01-01
This study evaluated the relationship between the morphology of the sacrum-the sole bony link between the tail or coccyx and the rest of the body-and tail length (including presence/absence) and function using a comparative sample of extant mammals spanning six orders (Primates, Carnivora, Rodentia, Diprotodontia, Pilosa, Scandentia; N = 472). Phylogenetically-informed regression methods were used to assess how tail length varied with respect to 11 external and internal (i.e., trabecular) bony sacral variables with known or suspected biomechanical significance across all mammals, only primates, and only non-primates. Sacral variables were also evaluated for primates assigned to tail categories ('tailless,' 'nonprehensile short-tailed,' 'nonprehensile long-tailed,' and 'prehensile-tailed'). Compared to primates with reduced tail lengths, primates with longer tails generally exhibited sacra having larger caudal neural openings than cranial neural openings, and last sacral vertebrae with more mediolaterally-expanded caudal articular surfaces than cranial articular surfaces, more laterally-expanded transverse processes, more dorsally-projecting spinous processes, and larger caudal articular surface areas. Observations were corroborated by the comparative sample, which showed that shorter-tailed (e.g., Lynx rufus [bobcat]) and longer-tailed (e.g., Acinonyx jubatus [cheetah]) non-primate mammals morphologically converge with shorter-tailed (e.g., Macaca nemestrina) and longer-tailed (e.g., Macaca fascicularis) primates, respectively. 'Prehensile-tailed' primates exhibited last sacral vertebrae with more laterally-expanded transverse processes and greater caudal articular surface areas than 'nonprehensile long-tailed' primates. Internal sacral variables performed poorly compared to external sacral variables in analyses of extant primates, and were thus deemed less useful for making inferences concerning tail length and function in extinct primates. The tails lengths of five extinct primates were reconstructed from the external sacral variables: Archaeolemur edwardsi had a 'nonprehensile long tail,' Megaladapis grandidieri, Palaeopropithecus kelyus, and Epipliopithecus vindobonensis probably had 'nonprehensile short tails,' and Proconsul heseloni was 'tailless.' Copyright © 2015 Elsevier Ltd. All rights reserved.
Dangerous animals capture and maintain attention in humans.
Yorzinski, Jessica L; Penkunas, Michael J; Platt, Michael L; Coss, Richard G
2014-05-28
Predation is a major source of natural selection on primates and may have shaped attentional processes that allow primates to rapidly detect dangerous animals. Because ancestral humans were subjected to predation, a process that continues at very low frequencies, we examined the visual processes by which men and women detect dangerous animals (snakes and lions). We recorded the eye movements of participants as they detected images of a dangerous animal (target) among arrays of nondangerous animals (distractors) as well as detected images of a nondangerous animal (target) among arrays of dangerous animals (distractors). We found that participants were quicker to locate targets when the targets were dangerous animals compared with nondangerous animals, even when spatial frequency and luminance were controlled. The participants were slower to locate nondangerous targets because they spent more time looking at dangerous distractors, a process known as delayed disengagement, and looked at a larger number of dangerous distractors. These results indicate that dangerous animals capture and maintain attention in humans, suggesting that historical predation has shaped some facets of visual orienting and its underlying neural architecture in modern humans.
Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway
2016-09-01
Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5°), and low system latency (∼1.8ms, 0.32ms STD) at a relatively low-cost. Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Primate vocal communication: a useful tool for understanding human speech and language evolution?
Fedurek, Pawel; Slocombe, Katie E
2011-04-01
Language is a uniquely human trait, and questions of how and why it evolved have been intriguing scientists for years. Nonhuman primates (primates) are our closest living relatives, and their behavior can be used to estimate the capacities of our extinct ancestors. As humans and many primate species rely on vocalizations as their primary mode of communication, the vocal behavior of primates has been an obvious target for studies investigating the evolutionary roots of human speech and language. By studying the similarities and differences between human and primate vocalizations, comparative research has the potential to clarify the evolutionary processes that shaped human speech and language. This review examines some of the seminal and recent studies that contribute to our knowledge regarding the link between primate calls and human language and speech. We focus on three main aspects of primate vocal behavior: functional reference, call combinations, and vocal learning. Studies in these areas indicate that despite important differences, primate vocal communication exhibits some key features characterizing human language. They also indicate, however, that some critical aspects of speech, such as vocal plasticity, are not shared with our primate cousins. We conclude that comparative research on primate vocal behavior is a very promising tool for deepening our understanding of the evolution of human speech and language, but much is still to be done as many aspects of monkey and ape vocalizations remain largely unexplored.
Tropical warming and the dynamics of endangered primates.
Wiederholt, Ruscena; Post, Eric
2010-04-23
Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.
Lerner, Amit; Shmulevitz, Ron; Browman, Howard I; Shashar, Nadav
2017-02-01
Polarized light detection has been documented in only a small number of fish species. The benefit of polarization vision for fish is not fully understood, nor is the transduction mechanism that underlies it. Past studies proposed that one possible advantage of polarization vision is that it enhances the contrast of zooplankton targets by breaking their transparency. Here, we used an optomotor apparatus to test the responses of the planktivorous Hardyhead silverside fish Atherinomorus forskalii (Atherinidae) to vertical unpolarized (intensity) and polarized gratings. We also tested and compared the spatial and temporal resolutions of A. forskalii in the intensity and polarization domains. A. forskalii responded to the polarization pattern, but only under illumination that included ultraviolet-blue (λ>380nm) wavelengths. The spatial resolution of A. forskalii was measured as a minimum separable angle of 0.57° (a 1-mm prey viewed from 100-mm distance). The temporal resolution to unpolarized vs. polarized gratings was constant, at 33 and 10Hz respectively at most of the stripe widths tested. At the smallest stripe width tested (1mm=the minimal separable angle), which correlates with the size of prey typically consumed by these fish, the temporal resolution to the polarized grating increased to 42Hz. We conclude that A. forskalii is polarization sensitive, may use polarization vision to improve detection of its planktonic prey, and that polarization may be perceived by the fish via a separate visual pathway than intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Social Behavior, Prolactin and the Immune Response
1989-04-01
an ubiquitous characteristic of primate societies , including man’s. While social behavior and organization confer definite advantages on primate...groups, is characteristic of most primate species, including man. The ubiquity of primate societies makes the study of nonhuman primate groups of...organizations, man is much more flexible in terms of the kinds of social organization exhibited in his societies . Thus, generalizations from studies of
Sayers, Ken
2013-01-01
Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this “fruit/leaf dichotomy” has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships, and explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characters that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to “Liem’s paradox,” the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs—and, in actuality, many leaf eating primates—range widely and engage in resource competition (both of which have previously been noted for primate folivores) as well as solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the utilization of mainstream evolutionary ecology, and thorough linkage of both proximate and ultimate mechanisms. PMID:23263563
Seeing the body distorts tactile size perception.
Longo, Matthew R; Sadibolova, Renata
2013-03-01
Vision of the body modulates somatosensation, even when entirely non-informative about stimulation. For example, seeing the body increases tactile spatial acuity, but reduces acute pain. While previous results demonstrate that vision of the body modulates somatosensory sensitivity, it is unknown whether vision also affects metric properties of touch, and if so how. This study investigated how non-informative vision of the body modulates tactile size perception. We used the mirror box illusion to induce the illusion that participants were directly seeing their stimulated left hand, though they actually saw their reflected right hand. We manipulated whether participants: (a) had the illusion of directly seeing their stimulated left hand, (b) had the illusion of seeing a non-body object at the same location, or (c) looked directly at their non-stimulated right-hand. Participants made verbal estimates of the perceived distance between two tactile stimuli presented simultaneously to the dorsum of the left hand, either 20, 30, or 40mm apart. Vision of the body significantly reduced the perceived size of touch, compared to vision of the object or of the contralateral hand. In contrast, no apparent changes of perceived hand size were found. These results show that seeing the body distorts tactile size perception. Copyright © 2012 Elsevier B.V. All rights reserved.
Image processing analysis of traditional Gestalt vision experiments
NASA Astrophysics Data System (ADS)
McCann, John J.
2002-06-01
In the late 19th century, the Gestalt Psychology rebelled against the popular new science of Psychophysics. The Gestalt revolution used many fascinating visual examples to illustrate that the whole is greater than the sum of all the parts. Color constancy was an important example. The physical interpretation of sensations and their quantification by JNDs and Weber fractions were met with innumerable examples in which two 'identical' physical stimuli did not look the same. The fact that large changes in the color of the illumination failed to change color appearance in real scenes demanded something more than quantifying the psychophysical response of a single pixel. The debates continues today with proponents of both physical, pixel-based colorimetry and perceptual, image- based cognitive interpretations. Modern instrumentation has made colorimetric pixel measurement universal. As well, new examples of unconscious inference continue to be reported in the literature. Image processing provides a new way of analyzing familiar Gestalt displays. Since the pioneering experiments by Fergus Campbell and Land, we know that human vision has independent spatial channels and independent color channels. Color matching data from color constancy experiments agrees with spatial comparison analysis. In this analysis, simple spatial processes can explain the different appearances of 'identical' stimuli by analyzing the multiresolution spatial properties of their surrounds. Benary's Cross, White's Effect, the Checkerboard Illusion and the Dungeon Illusion can all be understood by the analysis of their low-spatial-frequency components. Just as with color constancy, these Gestalt images are most simply described by the analysis of spatial components. Simple spatial mechanisms account for the appearance of 'identical' stimuli in complex scenes. It does not require complex, cognitive processes to calculate appearances in familiar Gestalt experiments.
Pozzi, Luca; Hodgson, Jason A; Burrell, Andrew S; Sterner, Kirstin N; Raaum, Ryan L; Disotell, Todd R
2014-06-01
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled. Copyright © 2014 Elsevier Inc. All rights reserved.
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.
Martin, Graham R
2017-01-01
Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as "a bill guided by an eye" and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control.
What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight
Martin, Graham R.
2017-01-01
Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as “a bill guided by an eye” and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control. PMID:29163020
The evolution of neocortex in primates
Kaas, Jon H.
2013-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624
The evolution of neocortex in primates.
Kaas, Jon H
2012-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.
Stereo vision for ecohydraulic research: Seashell reconstruction
NASA Astrophysics Data System (ADS)
Friedrich, H.; Bertin, S.; Montgomery, J. C.; Thrush, S. F.; Delmas, P.
2016-12-01
3D information of underwater topographies can be obtained more easily nowadays. In general, those measurements do not provide the spatial nor temporal detail for more specific research of dynamic processes, such as sediment transport. More recently, we have seen the advance of true interdisciplinary ecohydraulics research initiatives. One important research avenue is the interaction of organisms with flow and sediment. We have used stereo vision substantially for fluvial morphology studies over the last years, and will present and discuss the use of stereo vision in ecohydraulic research. The work is undertaken in the laboratory, and we present a workflow of reconstructing seashells. We obtain shape and dimensional information, which are important to better understand the organism's interaction in the natural water environment. Although we find that stereo vision is suitable to capture our studied organisms, the challenge of studying organisms in their natural environments persists. We discuss the limitations of our approach, and the need to fuse technical and behavioural knowledge to better manage our ecosystems.
Networks for image acquisition, processing and display
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1990-01-01
The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.
High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.
Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean
2015-08-01
Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.
Cognitive cladistics and cultural override in Hominid spatial cognition
Haun, Daniel B. M.; Rapold, Christian J.; Call, Josep; Janzen, Gabriele; Levinson, Stephen C.
2006-01-01
Current approaches to human cognition often take a strong nativist stance based on Western adult performance, backed up where possible by neonate and infant research and almost never by comparative research across the Hominidae. Recent research suggests considerable cross-cultural differences in cognitive strategies, including relational thinking, a domain where infant research is impossible because of lack of cognitive maturation. Here, we apply the same paradigm across children and adults of different cultures and across all nonhuman great ape genera. We find that both child and adult spatial cognition systematically varies with language and culture but that, nevertheless, there is a clear inherited bias for one spatial strategy in the great apes. It is reasonable to conclude, we argue, that language and culture mask the native tendencies in our species. This cladistic approach suggests that the correct perspective on human cognition is neither nativist uniformitarian nor “blank slate” but recognizes the powerful impact that language and culture can have on our shared primate cognitive biases. PMID:17079489