Sample records for primate specific manner

  1. Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys

    PubMed Central

    Nakamura, Tomonori; Yabuta, Yukihiro; Okamoto, Ikuhiro; Sasaki, Kotaro; Iwatani, Chizuru; Tsuchiya, Hideaki; Saitou, Mitinori

    2017-01-01

    In mammals, the development of pluripotency and specification of primordial germ cells (PGCs) have been studied predominantly using mice as a model organism. However, divergences among mammalian species for such processes have begun to be recognized. Between humans and mice, pre-implantation development appears relatively similar, but the manner and morphology of post-implantation development are significantly different. Nevertheless, the embryogenesis just after implantation in primates, including the specification of PGCs, has been unexplored due to the difficulties in analyzing the embryos at relevant developmental stages. Here, we present a comprehensive single-cell transcriptome dataset of pre- and early post-implantation embryo cells, PGCs and embryonic stem cells (ESCs) of cynomolgus monkeys as a model of higher primates. The identities of each transcriptome were also validated rigorously by other way such as immunofluorescent analysis. The information reported here will serve as a foundation for our understanding of a wide range of processes in the developmental biology of primates, including humans. PMID:28649393

  2. Stable carbon and nitrogen isotope enrichment in primate tissues

    PubMed Central

    Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1701-6) contains supplementary material, which is available to authorized users. PMID:20628886

  3. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  4. A solution to the worn tooth conundrum in primate functional anatomy

    PubMed Central

    Ungar, Peter S.; M'Kirera, Francis

    2003-01-01

    Worn teeth are a bane to paleobiologists interested in the diets of human ancestors and other fossil primates. Although worn teeth dominate fossil assemblages, their shapes are usually not used to reconstruct the diets of extinct species. The problem is that traditional studies of primate dental functional anatomy have focused on unworn morphology. This has limited most functional analyses to only a few well-represented fossil species. This paper introduces a method to characterize and compare worn occlusal morphology in primates using laser scanning and geographic information systems technologies. A study of variably worn chimpanzee and gorilla molars indicates that differences between these species in tooth shape remain consistent at given stages of wear. Although cusp slope decreases with wear in both taxa, angularity values remain unchanged. These results indicate that African ape teeth wear in a manner that keeps them mechanically efficient for fracturing specific foods. Studies of changes in tooth shape with wear add a new dimension to dental functional anatomy, and offer a more complete picture of dental-dietary adaptations. Also, given how rare unworn teeth are in the fossil record, the ability to include worn specimens in analyses opens the door to reconstructing the diets of many more extinct primate groups, allowing us to better understand the adaptive radiation of our order. PMID:12634426

  5. Selective and graded coding of reward-uncertainty by neurons in the primate anterodorsal septal region

    PubMed Central

    Monosov, Ilya E.; Hikosaka, Okihide

    2014-01-01

    Natural environments are uncertain. Uncertainty of emotional outcomes can induce anxiety and raise vigilance, promote and signal the opportunity for learning, modulate economic choice, and regulate risk seeking. Here we demonstrate that a subset of neurons in the anterodorsal region of the primate septum (ADS) are primarily devoted to processing uncertainty in a highly specific manner. Those neurons were selectively activated by visual cues indicating probabilistic delivery of reward (e.g. 25%, 50%, 75% reward) and did not respond to cues indicating certain outcomes (0% and 100% reward). The average ADS uncertainty response was graded with the magnitude of reward uncertainty, and selectively signaled uncertainty about rewards rather than punishments. The selective and graded information about reward uncertainty encoded by many neurons in the ADS may underlie uncertainty-modulation of value- and sensorimotor- related areas to regulate goal-directed behavior. PMID:23666181

  6. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    PubMed Central

    Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261

  7. Clues to evolution of the SERA multigene family in 18 Plasmodium species.

    PubMed

    Arisue, Nobuko; Kawai, Satoru; Hirai, Makoto; Palacpac, Nirianne M Q; Jia, Mozhi; Kaneko, Akira; Tanabe, Kazuyuki; Horii, Toshihiro

    2011-03-15

    SERA gene sequences were newly determined from 11 primate Plasmodium species including two human parasites, P. ovale and P. malariae, and the evolutionary history of SERA genes was analyzed together with 7 known species. All have one each of Group I to III cysteine-type SERA genes and varying number of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA genes were ascertained in all mammalian parasite lineages; and in two primate parasite lineages gene events such as duplication, truncation, fragmentation and gene loss occurred at high frequency in a manner that mimics the birth-and-death evolution model. Transcription profile of individual SERA genes varied greatly among rodent and monkey parasites. Results support the lineage-specific evolution of the Plasmodium SERA gene family. These findings provide further impetus for studies that could clarify/provide proof-of-concept that duplications of SERA genes were associated with the parasites' expansion of host range and the evolutionary conundrums of multigene families in Plasmodium.

  8. Pharmacological validation of a novel nonhuman primate measure of thermal responsivity with utility for predicting analgesic effects.

    PubMed

    Vardigan, Joshua D; Houghton, Andrea K; Lange, Henry S; Adarayan, Emily D; Pall, Parul S; Ballard, Jeanine E; Henze, Darrell A; Uslaner, Jason M

    2018-01-01

    The development of novel analgesics to treat acute or chronic pain has been a challenge due to a lack of translatable measurements. Preclinical end points with improved translatability are necessary to more accurately inform clinical testing paradigms, which may help guide selection of viable drug candidates. In this study, a nonhuman primate biomarker which is sensitive to standard analgesics at clinically relevant plasma concentrations, can differentiate analgesia from sedation and utilizes a protocol very similar to that which can be employed in human clinical studies is described. Specifically, acute heat stimuli were delivered to the volar forearm using a contact heat thermode in the same manner as the clinical setting. Clinically efficacious exposures of morphine, fentanyl, and tramadol produced robust analgesic effects, whereas doses of diazepam that produce sedation had no effect. We propose that this assay has predictive utility that can help improve the probability of success for developing novel analgesics.

  9. Pharmacological validation of a novel nonhuman primate measure of thermal responsivity with utility for predicting analgesic effects

    PubMed Central

    Vardigan, Joshua D; Houghton, Andrea K; Lange, Henry S; Adarayan, Emily D; Pall, Parul S; Ballard, Jeanine E; Henze, Darrell A; Uslaner, Jason M

    2018-01-01

    Introduction The development of novel analgesics to treat acute or chronic pain has been a challenge due to a lack of translatable measurements. Preclinical end points with improved translatability are necessary to more accurately inform clinical testing paradigms, which may help guide selection of viable drug candidates. Methods In this study, a nonhuman primate biomarker which is sensitive to standard analgesics at clinically relevant plasma concentrations, can differentiate analgesia from sedation and utilizes a protocol very similar to that which can be employed in human clinical studies is described. Specifically, acute heat stimuli were delivered to the volar forearm using a contact heat thermode in the same manner as the clinical setting. Results Clinically efficacious exposures of morphine, fentanyl, and tramadol produced robust analgesic effects, whereas doses of diazepam that produce sedation had no effect. Conclusion We propose that this assay has predictive utility that can help improve the probability of success for developing novel analgesics. PMID:29692626

  10. [Diversity and development of positional behavior in non-human primates].

    PubMed

    Zhang, Jing; Qi, Xiao-Guang; Zhang, Kan; Zhang, Pei; Guo, Song-Tao; Wei, Wei; Li, Bao-Guo

    2012-10-01

    In long-term evolution, wildlife in general and primates in particular have formed specific patterns of behavior to adapt to a diverse variety of habitat environments. Current research on positional behavior in non-human primates has been found to explain a great deal about primate adaptability diversification, ecology, anatomy and evolution. Here, we summarize the noted classifications and differences in seasonal, site-specific and sex-age positional behaviors while also reviewing the development and status of non-human primate positional behavior research. This review is intended to provide reference for the future research of non-human primates and aid in further research on behavioral ecology of primates.

  11. [Comparative studies of face recognition].

    PubMed

    Kawai, Nobuyuki

    2012-07-01

    Every human being is proficient in face recognition. However, the reason for and the manner in which humans have attained such an ability remain unknown. These questions can be best answered-through comparative studies of face recognition in non-human animals. Studies in both primates and non-primates show that not only primates, but also non-primates possess the ability to extract information from their conspecifics and from human experimenters. Neural specialization for face recognition is shared with mammals in distant taxa, suggesting that face recognition evolved earlier than the emergence of mammals. A recent study indicated that a social insect, the golden paper wasp, can distinguish their conspecific faces, whereas a closely related species, which has a less complex social lifestyle with just one queen ruling a nest of underlings, did not show strong face recognition for their conspecifics. Social complexity and the need to differentiate between one another likely led humans to evolve their face recognition abilities.

  12. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses

    PubMed Central

    Hopkins, William D.; Misiura, Maria; Pope, Sarah M.; Latash, Elitaveta M.

    2015-01-01

    Contrary to many historical views, recent evidence suggest that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence of that genes play specific roles in determining left–right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the size of the corpus callosum in different primate species. Lastly, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. PMID:26426409

  13. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses.

    PubMed

    Hopkins, William D; Misiura, Maria; Pope, Sarah M; Latash, Elitaveta M

    2015-11-01

    Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. © 2015 New York Academy of Sciences.

  14. Visuospatial selective attention in chickens.

    PubMed

    Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I

    2014-05-13

    Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.

  15. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains

    PubMed Central

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  16. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys.

    PubMed

    Smith, Earl L; Huang, Juan; Hung, Li-Fang; Blasdel, Terry L; Humbird, Tammy L; Bockhorst, Kurt H

    2009-11-01

    To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys. Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers. Refractive development was assessed by retinoscopy performed along the pupillary axis and at eccentricities of 15 degrees, 30 degrees, and 45 degrees. Central axial dimensions and eye shape were assessed by A-scan ultrasonography and magnetic resonance imaging, respectively. Hemiretinal form deprivation altered refractive development in a regionally selective manner, typically producing myopia in the treated hemifields. In particular, six of the NFD monkeys exhibited substantial amounts (-1.81 to -9.00 D) of relative myopia in the nasal field that were most obvious at the 15 degrees and 30 degrees nasal field eccentricities. The other three NFD monkeys exhibited small amounts of relative hyperopia in the treated field. The alterations in peripheral refraction were associated with local, region-specific alterations in vitreous chamber depth in the treated hemiretina. The effects of form deprivation on refractive development and eye growth in primates are mediated by mechanisms, presumably retinal, that integrate visual signals in a spatially restricted manner and exert their influence locally.

  17. Phylogenetic shadowing of primate sequences to find functional regions of the human genome.

    PubMed

    Boffelli, Dario; McAuliffe, Jon; Ovcharenko, Dmitriy; Lewis, Keith D; Ovcharenko, Ivan; Pachter, Lior; Rubin, Edward M

    2003-02-28

    Nonhuman primates represent the most relevant model organisms to understand the biology of Homo sapiens. The recent divergence and associated overall sequence conservation between individual members of this taxon have nonetheless largely precluded the use of primates in comparative sequence studies. We used sequence comparisons of an extensive set of Old World and New World monkeys and hominoids to identify functional regions in the human genome. Analysis of these data enabled the discovery of primate-specific gene regulatory elements and the demarcation of the exons of multiple genes. Much of the information content of the comprehensive primate sequence comparisons could be captured with a small subset of phylogenetically close primates. These results demonstrate the utility of intraprimate sequence comparisons to discover common mammalian as well as primate-specific functional elements in the human genome, which are unattainable through the evaluation of more evolutionarily distant species.

  18. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance.

    PubMed

    Yildirim, Suleyman; Yeoman, Carl J; Janga, Sarath Chandra; Thomas, Susan M; Ho, Mengfei; Leigh, Steven R; White, Bryan A; Wilson, Brenda A; Stumpf, Rebecca M

    2014-12-01

    Bacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors. We conducted comparative analyses of the primate vaginal microbiome using pyrosequencing of the 16S rRNA genes of a phylogenetically broad range of primates to test for factors affecting the diversity of primate vaginal ecosystems. The nine primate species included: humans (Homo sapiens), yellow baboons (Papio cynocephalus), olive baboons (Papio anubis), lemurs (Propithecus diadema), howler monkeys (Alouatta pigra), red colobus (Piliocolobus rufomitratus), vervets (Chlorocebus aethiops), mangabeys (Cercocebus atys) and chimpanzees (Pan troglodytes). Our results indicated that all primates exhibited host-specific vaginal microbiota and that humans were distinct from other primates in both microbiome composition and diversity. In contrast to the gut microbiome, the vaginal microbiome showed limited congruence with host phylogeny, and neither captivity nor diet elicited substantial effects on the vaginal microbiomes of primates. Permutational multivariate analysis of variance and Wilcoxon tests revealed correlations among vaginal microbiota and host species-specific socioecological factors, particularly related to sexuality, including: female promiscuity, baculum length, gestation time, mating group size and neonatal birth weight. The proportion of unclassified taxa observed in nonhuman primate samples increased with phylogenetic distance from humans, indicative of the existence of previously unrecognized microbial taxa. These findings contribute to our understanding of host-microbe variation and coevolution, microbial biogeography, and disease risk, and have important implications for the use of animal models in studies of human sexual and reproductive diseases.

  19. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  20. The primate vaginal microbiome: comparative context and implications for human health and disease.

    PubMed

    Stumpf, Rebecca M; Wilson, Brenda A; Rivera, Angel; Yildirim, Suleyman; Yeoman, Carl J; Polk, John D; White, Bryan A; Leigh, Steven R

    2013-12-01

    The primate body hosts trillions of microbes. Interactions between primate hosts and these microbes profoundly affect primate physiology, reproduction, health, survival, and ultimately, evolution. It is increasingly clear that primate health cannot be understood fully without knowledge of host-microbial interactions. Our goals here are to review what is known about microbiomes of the female reproductive tract and to explore several factors that influence variation within individuals, as well as within and between primate species. Much of our knowledge of microbial variation derives from studies of humans, and from microbes located in nonreproductive regions (e.g., the gut). We review work suggesting that the vaginal microbiota affects female health, fecundity, and pregnancy outcomes, demonstrating the selective potential for these agents. We explore the factors that correlate with microbial variation within species. Initial colonization by microbes depends on the manner of birth; most microbial variation is structured by estrogen levels that change with age (i.e., at puberty and menopause) and through the menstrual cycle. Microbial communities vary by location within the vagina and can depend on the sampling methods used (e.g., swab, lavage, or pap smear). Interindividual differences also exist, and while this variation is not completely understood, evidence points more to differences in estrogen levels, rather than differences in external physical environment. When comparing across species, reproductive-age humans show distinct microbial communities, generally dominated by Lactobacillus, unlike other primates. We develop evolutionary hypotheses to explain the marked differences in microbial communities. While much remains to be done to test these hypotheses, we argue that the ample variation in primate mating and reproductive behavior offers excellent opportunities to evaluate host-microbe coevolution and adaptation. Copyright © 2013 Wiley Periodicals, Inc.

  1. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.

    PubMed

    Namdar-Aligoodarzi, P; Mohammadparast, S; Zaker-Kandjani, B; Talebi Kakroodi, S; Jafari Vesiehsari, M; Ohadi, M

    2015-09-10

    We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation

    PubMed Central

    Wirth, Sylvia; Baraduc, Pierre; Planté, Aurélie; Pinède, Serge; Duhamel, Jean-René

    2017-01-01

    To elucidate how gaze informs the construction of mental space during wayfinding in visual species like primates, we jointly examined navigation behavior, visual exploration, and hippocampal activity as macaque monkeys searched a virtual reality maze for a reward. Cells sensitive to place also responded to one or more variables like head direction, point of gaze, or task context. Many cells fired at the sight (and in anticipation) of a single landmark in a viewpoint- or task-dependent manner, simultaneously encoding the animal’s logical situation within a set of actions leading to the goal. Overall, hippocampal activity was best fit by a fine-grained state space comprising current position, view, and action contexts. Our findings indicate that counterparts of rodent place cells in primates embody multidimensional, task-situated knowledge pertaining to the target of gaze, therein supporting self-awareness in the construction of space. PMID:28241007

  3. 9 CFR 3.82 - Feeding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Nonhuman Primates 2 Animal Health and Husbandry Standards § 3.82 Feeding. (a) The diet for nonhuman primates must be... nonhuman primate is maintained, according to generally accepted professional and husbandry practices and...

  4. Fecal Microbiomes of Non-Human Primates in Western Uganda Reveal Species-Specific Communities Largely Resistant to Habitat Perturbation

    PubMed Central

    McCORD, ALEIA I.; CHAPMAN, COLIN A.; WENY, GEOFFREY; TUMUKUNDE, ALEX; HYEROBA, DAVID; KLOTZ, KELLY; KOBLINGS, AVERY S.; MBORA, DAVID N.M.; CREGGER, MELISSA; WHITE, BRYAN A.; LEIGH, STEVEN R.; GOLDBERG, TONY L.

    2014-01-01

    Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. PMID:24285224

  5. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.

    PubMed

    Hermer-Vazquez, Linda; Moshtagh, Nasim

    2009-05-01

    Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.

  6. 50 CFR 14.123 - Care in transit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.123 Care in transit. (a) A primate shall be observed for signs of distress and given food and water according to the... to keep enclosures containing primates sufficiently separated in the conveyance or holding area to...

  7. 50 CFR 14.121 - Primary enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.121 Primary enclosures. (a) No more than one primate shall be transported in a primary enclosure. However, a mother and... animals that have been habitually housed together may be shipped in the same primary enclosure. Primates...

  8. 50 CFR 14.123 - Care in transit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.123 Care in transit. (a) A primate shall be observed for signs of distress and given food and water according to the... to keep enclosures containing primates sufficiently separated in the conveyance or holding area to...

  9. 50 CFR 14.121 - Primary enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.121 Primary enclosures. (a) No more than one primate shall be transported in a primary enclosure. However, a mother and... animals that have been habitually housed together may be shipped in the same primary enclosure. Primates...

  10. Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities

    PubMed Central

    Yildirim, Suleyman; Yeoman, Carl J.; Sipos, Maksim; Torralba, Manolito; Wilson, Brenda A.; Goldberg, Tony L.; Stumpf, Rebecca M.; Leigh, Steven R.; White, Bryan A.; Nelson, Karen E.

    2010-01-01

    Background Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. Methodology/Principal Findings We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. Conclusion/Significance Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome. PMID:21103066

  11. Primate enamel evinces long period biological timing and regulation of life history.

    PubMed

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate the underlying physiological mechanism responsible for the HHO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Modulation of visual physiology by behavioral state in monkeys, mice, and flies.

    PubMed

    Maimon, Gaby

    2011-08-01

    When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Mechanisms of Dietary Response in Mice and Primates: A Role for EGR1 in Regulating the Reaction to Human-Specific Nutritional Content

    PubMed Central

    Weng, Kai; Hu, Haiyang; Xu, Augix Guohua; Khaitovich, Philipp; Somel, Mehmet

    2012-01-01

    Background Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees. Results Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1) as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa. Conclusion Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies. PMID:22937124

  14. Primate-specific evolution of an LDLR enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian-Fei; Prabhakar, Shyam; Wang, Qianben

    2005-12-01

    Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain. In this study we identified an anthropoid primate-specific sequence element that contributed to the regulatory evolution of the low-density lipoprotein receptor. Using a combination of close and distant species genomic sequence comparisons coupled with in vivo and in vitro studies, we found that a functional cholesterol-sensing sequence motif arose and was fixed within a pre-existing enhancer in the common ancestor of anthropoid primates. Our study demonstrates one molecular mechanism by which ancestral mammalian regulatory elementsmore » can evolve to perform new functions in the primate lineage leading to human.« less

  15. The behavioral genetics of nonhuman primates: Status and prospects.

    PubMed

    Rogers, Jeffrey

    2018-01-01

    The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.

  16. Aging in the natural world: comparative data reveal similar mortality patterns across primates.

    PubMed

    Bronikowski, Anne M; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Fedigan, Linda M; Pusey, Anne; Stoinski, Tara; Morris, William F; Strier, Karen B; Alberts, Susan C

    2011-03-11

    Human senescence patterns-late onset of mortality increase, slow mortality acceleration, and exceptional longevity-are often described as unique in the animal world. Using an individual-based data set from longitudinal studies of wild populations of seven primate species, we show that contrary to assumptions of human uniqueness, human senescence falls within the primate continuum of aging; the tendency for males to have shorter life spans and higher age-specific mortality than females throughout much of adulthood is a common feature in many, but not all, primates; and the aging profiles of primate species do not reflect phylogenetic position. These findings suggest that mortality patterns in primates are shaped by local selective forces rather than phylogenetic history.

  17. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    PubMed

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Viral hepatitis and primates: historical and molecular analysis of human and nonhuman primate hepatitis A, B, and the GB-related viruses.

    PubMed

    Robertson, B H

    2001-07-01

    The hepatitis viruses have long been assumed to be highly host-specific, with infection of other nonhuman primates occurring due to inoculation with, or exposure to, human viruses. This paradigm has slowly changed over the last 10 years, as mounting data has revealed nonhuman primate equivalents of hepatitis A virus, hepatitis B virus, and the hepatitis C-related viruses GBV-C and GBV-A. This review summarizes the historical and molecular information for each of these groups and highlights the impact of these nonhuman primate hepatitis viruses on our understanding of the evolution of each of these viruses.

  19. Impact of Visual Context on Public Perceptions of Non-Human Primate Performers

    PubMed Central

    Leighty, Katherine A.; Valuska, Annie J.; Grand, Alison P.; Bettinger, Tamara L.; Mellen, Jill D.; Ross, Stephen R.; Boyle, Paul; Ogden, Jacqueline J.

    2015-01-01

    Prior research has shown that the use of apes, specifically chimpanzees, as performers in the media negatively impacts public attitudes of their conservation status and desirability as a pet, yet it is unclear whether these findings generalize to other non-human primates (specifically non-ape species). We evaluated the impact of viewing an image of a monkey or prosimian in an anthropomorphic or naturalistic setting, either in contact with or in the absence of a human. Viewing the primate in an anthropomorphic setting while in contact with a person significantly increased their desirability as a pet, which also correlated with increased likelihood of believing the animal was not endangered. The majority of viewers felt that the primates in all tested images were “nervous.” When shown in contact with a human, viewers felt they were “sad” and “scared”, while also being less “funny.” Our findings highlight the potential broader implications of the use of non-human primate performers by the entertainment industry. PMID:25714101

  20. Impact of visual context on public perceptions of non-human primate performers.

    PubMed

    Leighty, Katherine A; Valuska, Annie J; Grand, Alison P; Bettinger, Tamara L; Mellen, Jill D; Ross, Stephen R; Boyle, Paul; Ogden, Jacqueline J

    2015-01-01

    Prior research has shown that the use of apes, specifically chimpanzees, as performers in the media negatively impacts public attitudes of their conservation status and desirability as a pet, yet it is unclear whether these findings generalize to other non-human primates (specifically non-ape species). We evaluated the impact of viewing an image of a monkey or prosimian in an anthropomorphic or naturalistic setting, either in contact with or in the absence of a human. Viewing the primate in an anthropomorphic setting while in contact with a person significantly increased their desirability as a pet, which also correlated with increased likelihood of believing the animal was not endangered. The majority of viewers felt that the primates in all tested images were "nervous." When shown in contact with a human, viewers felt they were "sad" and "scared", while also being less "funny." Our findings highlight the potential broader implications of the use of non-human primate performers by the entertainment industry.

  1. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  2. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex

    PubMed Central

    Mars, Rogier B.; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F. S.

    2013-01-01

    The human ability to infer the thoughts and beliefs of others, often referred to as “theory of mind,” as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor. PMID:23754406

  3. Evolutionary and ecological implications of primate seed dispersal.

    PubMed

    Lambert, J E; Garber, P A

    1998-01-01

    In this paper, we evaluate patterns of fruit eating and seed dispersal in monkeys and apes and draw an important distinction between 1) the ecological consequences of primates as seed dispersers and 2) the evolutionary implications of primates on the seed and fruit traits of the plant species they exploit. In many forest communities, primates act as both seed predators and seed dispersers and are likely to have an important ecological impact on patterns of forest regeneration and tree species diversity. Evidence from Kibale National Park, Uganda, and Manu National Park, Peru, as well as several other South American sites indicates that monkeys and apes display a wide range of fruit-processing behaviors, including spitting seeds, dropping seeds, masticating seeds, and swallowing seeds. Differences in consumer body size, diet, ranging patterns, and oral and digestive morphology result in different patterns in the distance and distribution of seeds from the parent plant. In the case of South American monkeys, for example, despite their relatively small body size, platyrrhines were found to exploit larger fruits and swallow larger seeds on average than did Old World monkeys and apes of the Kibale forest. We found little evidence to support the existence of a coevolutionary relationship between a single or set of primate dispersers and the particular plant species they disperse. This is due to variability in the manner in which monkeys and apes select fruits and treat seeds, the fact that many species of primates and nonprimates exploit and disperse the same fruit species, and the fact that extremely high levels of postdispersal seed, seedling, and sapling mortality serve to dilute the influence that any primate species may have on the recruitment of the next generation of adult trees. It is apparent that many primate lineages exhibit dental, digestive, and/or sensory adaptations that aid in the exploitation of particular food types and that many lineages of flowering plants have evolved characteristics of fruits and seeds that facilitate seed dispersal. However, in light of currently available data, we argue that these represent evolutionary rather than more strictly defined coevolutionary relationships.

  4. Hidden Population Structure and Cross-species Transmission of Whipworms (Trichuris sp.) in Humans and Non-human Primates in Uganda

    PubMed Central

    Ghai, Ria R.; Simons, Noah D.; Chapman, Colin A.; Omeja, Patrick A.; Davies, T. Jonathan; Ting, Nelson; Goldberg, Tony L.

    2014-01-01

    Background Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. Methods and Findings We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Conclusions and Significance Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health. PMID:25340752

  5. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda.

    PubMed

    Ghai, Ria R; Simons, Noah D; Chapman, Colin A; Omeja, Patrick A; Davies, T Jonathan; Ting, Nelson; Goldberg, Tony L

    2014-10-01

    Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.

  6. Gain in Transcriptional Activity by Primate-specific Coevolution of Melanoma Antigen-A11 and Its Interaction Site in Androgen Receptor*

    PubMed Central

    Liu, Qiang; Su, Shifeng; Blackwelder, Amanda J.; Minges, John T.; Wilson, Elizabeth M.

    2011-01-01

    Male sex development and growth occur in response to high affinity androgen binding to the androgen receptor (AR). In contrast to complete amino acid sequence conservation in the AR DNA and ligand binding domains among mammals, a primate-specific difference in the AR NH2-terminal region that regulates the NH2- and carboxyl-terminal (N/C) interaction enables direct binding to melanoma antigen-A11 (MAGE-11), an AR coregulator that is also primate-specific. Human, mouse, and rat AR share the same NH2-terminal 23FQNLF27 sequence that mediates the androgen-dependent N/C interaction. However, the mouse and rat AR FXXLF motif is flanked by Ala33 that evolved to Val33 in primates. Human AR Val33 was required to interact directly with MAGE-11 and for the inhibitory effect of the AR N/C interaction on activation function 2 that was relieved by MAGE-11. The functional importance of MAGE-11 was indicated by decreased human AR regulation of an androgen-dependent endogenous gene using lentivirus short hairpin RNAs and by the greater transcriptional strength of human compared with mouse AR. MAGE-11 increased progesterone and glucocorticoid receptor activity independently of binding an FXXLF motif by interacting with p300 and p160 coactivators. We conclude that the coevolution of the AR NH2-terminal sequence and MAGE-11 expression among primates provides increased regulatory control over activation domain dominance. Primate-specific expression of MAGE-11 results in greater steroid receptor transcriptional activity through direct interactions with the human AR FXXLF motif region and indirectly through steroid receptor-associated p300 and p160 coactivators. PMID:21730049

  7. A non-human primate model of radiation-induced cachexia.

    PubMed

    Cui, Wanchang; Bennett, Alexander W; Zhang, Pei; Barrow, Kory R; Kearney, Sean R; Hankey, Kim G; Taylor-Howell, Cheryl; Gibbs, Allison M; Smith, Cassandra P; MacVittie, Thomas J

    2016-03-31

    Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.

  8. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    PubMed Central

    Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877

  9. Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates.

    PubMed

    Chester, Stephen G B; Bloch, Jonathan I; Boyer, Doug M; Clemens, William A

    2015-02-03

    Earliest Paleocene Purgatorius often is regarded as the geologically oldest primate, but it has been known only from fossilized dentitions since it was first described half a century ago. The dentition of Purgatorius is more primitive than those of all known living and fossil primates, leading some researchers to suggest that it lies near the ancestry of all other primates; however, others have questioned its affinities to primates or even to placental mammals. Here we report the first (to our knowledge) nondental remains (tarsal bones) attributed to Purgatorius from the same earliest Paleocene deposits that have yielded numerous fossil dentitions of this poorly known mammal. Three independent phylogenetic analyses that incorporate new data from these fossils support primate affinities of Purgatorius among euarchontan mammals (primates, treeshrews, and colugos). Astragali and calcanei attributed to Purgatorius indicate a mobile ankle typical of arboreal euarchontan mammals generally and of Paleocene and Eocene plesiadapiforms specifically and provide the earliest fossil evidence of arboreality in primates and other euarchontan mammals. Postcranial specializations for arboreality in the earliest primates likely played a key role in the evolutionary success of this mammalian radiation in the Paleocene.

  10. Primate-Specific Evolution of an LDLR Enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian-fei; Prabhakar, Shyam; Wang, Qianben

    2006-06-28

    Sequence changes in regulatory regions have often beeninvoked to explain phenotypic divergence among species, but molecularexamples of this have been difficult to obtain. In this study, weidentified an anthropoid primate specific sequence element thatcontributed to the regulatory evolution of the LDL receptor. Using acombination of close and distant species genomic sequence comparisonscoupled with in vivo and in vitro studies, we show that a functionalcholesterol-sensing sequence motif arose and was fixed within apre-existing enhancer in the common ancestor of anthropoid primates. Ourstudy demonstrates one molecular mechanism by which ancestral mammalianregulatory elements can evolve to perform new functions in the primatelineage leadingmore » to human.« less

  11. Alu elements shape the primate transcriptome by cis-regulation of RNA editing

    PubMed Central

    2014-01-01

    Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196

  12. Effects of support size and orientation on symmetric gaits in free-ranging tamarins of Amazonian Peru: implications for the functional significance of primate gait sequence patterns.

    PubMed

    Nyakatura, John A; Heymann, Eckhard W

    2010-03-01

    The adoption of a specific gait sequence pattern during symmetrical locomotion has been proposed to have been a key advantage for the exploitation of the fine branch niche in early primates. Diverse aspects of primate locomotion have been extensively studied in technically equipped laboratory settings, but evolutionary conclusions derived from these investigations have rarely been verified in wild primates. Bridging the gap from the lab to the field, we conducted an actual performance determination of symmetrical gaits in two free-ranging tamarin species (Saguinus mystax and Saguinus fuscicollis) of Amazonian Peru by analyzing high-speed video recordings of naturally occurring locomotor bouts. Tamarins arguably represent viable models for aspects of early primate locomotion. We tested three specific hypotheses derived from laboratory studies to test for the influence of support size and orientation and to gain further insight into the functional significance of primate gait sequence patterns: (1) The tamarins utilize symmetrical gaits at a higher rate on small supports than on larger ones. (2) During symmetrical locomotion on small supports, diagonal sequences are utilized at a higher rate than on larger supports. (3) On inclines, diagonal sequences are predominantly used and on declines, lateral sequences are predominantly used. Our results corroborated hypotheses 1 and 3. We found no clear support for hypothesis 2. In conclusion, our results add to the notion that primate gait plasticity, rather than uniform adoption of diagonal sequence gaits, enabled early primates to accommodate different support types and effectively exploit the small branch niche. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine

    PubMed Central

    Lavelle, Donald; Vaitkus, Kestis; Ling, Yonghua; Ruiz, Maria A.; Mahfouz, Reda; Ng, Kwok Peng; Negrotto, Soledad; Smith, Nicola; Terse, Pramod; Engelke, Kory J.; Covey, Joseph; Chan, Kenneth K.; DeSimone, Joseph

    2012-01-01

    The deoxycytidine analog decitabine (DAC) can deplete DNA methyl-transferase 1 (DNMT1) and thereby modify cellular epigenetics, gene expression, and differentiation. However, a barrier to efficacious and accessible DNMT1-targeted therapy is cytidine deaminase, an enzyme highly expressed in the intestine and liver that rapidly metabolizes DAC into inactive uridine counterparts, severely limiting exposure time and oral bioavailability. In the present study, the effects of tetrahydrouridine (THU), a competitive inhibitor of cytidine deaminase, on the pharmacokinetics and pharmacodynamics of oral DAC were evaluated in mice and nonhuman primates. Oral administration of THU before oral DAC extended DAC absorption time and widened the concentration-time profile, increasing the exposure time for S-phase–specific depletion of DNMT1 without the high peak DAC levels that can cause DNA damage and cytotoxicity. THU also decreased interindividual variability in pharmacokinetics seen with DAC alone. One potential clinical application of DNMT1-targeted therapy is to increase fetal hemoglobin and treat hemoglobinopathy. Oral THU-DAC at a dose that would produce peak DAC concentrations of less than 0.2μM administered 2×/wk for 8 weeks to nonhuman primates was not myelotoxic, hypomethylated DNA in the γ-globin gene promoter, and produced large cumulative increases in fetal hemoglobin. Combining oral THU with oral DAC changes DAC pharmacology in a manner that may facilitate accessible noncytotoxic DNMT1-targeted therapy. PMID:22160381

  14. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, D.H.; Batzer, M.A.; Deininger, P.L.

    The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome.more » However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.« less

  15. Naturally occurring pepsin agglutinators in the serum of subhuman primates*

    PubMed Central

    Litwin, S. D.

    1970-01-01

    Antibodies directed against both human and infrahuman pepsin digested γ-globulin were present in a majority of the primate sera tested. The subhuman pepsin agglutinators paralleled previously described human pepsin agglutinators in respect to their wide distribution in normal sera, their specificity and cross-reactivity, and their immunochemical features. The pepsin agglutinators† at different primate levels appeared closely related. Among the subhuman pepsin agglutinators a subspecificity was described for a subhuman primate antigen. This finding suggested some limited differences between the subhuman pepsin agglutinators and the human pepsin agglutinators. Experimental immunization of four cynomologous monkeys failed to elicit or alter these serum reactants. PMID:4097824

  16. Evidence of Public Engagement with Science: Visitor Learning at a Zoo-Housed Primate Research Centre

    PubMed Central

    Waller, Bridget M.; Peirce, Kate; Mitchell, Heidi; Micheletta, Jerome

    2012-01-01

    Primate behavioural and cognitive research is increasingly conducted on direct public view in zoo settings. The potential of such facilities for public engagement with science is often heralded, but evidence of tangible, positive effects on public understanding is rare. Here, the effect of a new zoo-based primate research centre on visitor behaviour, learning and attitudes was assessed using a quasi-experimental design. Zoo visitors approached the primate research centre more often when a scientist was present and working with the primates, and reported greater awareness of primates (including conservation) compared to when the scientist was not present. Visitors also reported greater perceived learning when the scientist was present. Installation of information signage had no main effect on visitor attitudes or learning. Visitors who interacted with the signage, however, demonstrated increased knowledge and understanding when asked about the specific information present on the signs (which was related to the ongoing facial expression research at the research centre). The findings show that primate behaviour research centres on public view can have a demonstrable and beneficial effect on public understanding of science. PMID:23028580

  17. Evidence of public engagement with science: visitor learning at a zoo-housed primate research centre.

    PubMed

    Waller, Bridget M; Peirce, Kate; Mitchell, Heidi; Micheletta, Jerome

    2012-01-01

    Primate behavioural and cognitive research is increasingly conducted on direct public view in zoo settings. The potential of such facilities for public engagement with science is often heralded, but evidence of tangible, positive effects on public understanding is rare. Here, the effect of a new zoo-based primate research centre on visitor behaviour, learning and attitudes was assessed using a quasi-experimental design. Zoo visitors approached the primate research centre more often when a scientist was present and working with the primates, and reported greater awareness of primates (including conservation) compared to when the scientist was not present. Visitors also reported greater perceived learning when the scientist was present. Installation of information signage had no main effect on visitor attitudes or learning. Visitors who interacted with the signage, however, demonstrated increased knowledge and understanding when asked about the specific information present on the signs (which was related to the ongoing facial expression research at the research centre). The findings show that primate behaviour research centres on public view can have a demonstrable and beneficial effect on public understanding of science.

  18. Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth

    PubMed Central

    2010-01-01

    Background The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance. Methods We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292 control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers. Results Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C activity. Conclusions Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels of prostaglandins, which are known to regulate labor. PMID:21184677

  19. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials

    PubMed Central

    Lorenz, Joseph G; Jackson, Whitney E; Beck, Jeanne C; Hanner, Robert

    2005-01-01

    The Integrated Primate Biomaterials and Information Resource (www.IPBIR.org) provides essential research reagents to the scientific community by establishing, verifying, maintaining, and distributing DNA and RNA derived from primate cell cultures. The IPBIR uses mitochondrial cytochrome c oxidase subunit I sequences to verify the identity of samples for quality control purposes in the accession, cell culture, DNA extraction processes and prior to shipping to end users. As a result, IPBIR is accumulating a database of ‘DNA barcodes’ for many species of primates. However, this quality control process is complicated by taxon specific patterns of ‘universal primer’ failure, as well as the amplification or co-amplification of nuclear pseudogenes of mitochondrial origins. To overcome these difficulties, taxon specific primers have been developed, and reverse transcriptase PCR is utilized to exclude these extraneous sequences from amplification. DNA barcoding of primates has applications to conservation and law enforcement. Depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, makes this species identification technique widely accessible. Reference DNA barcode sequences should be derived from, and linked to, specimens of known provenance in web-accessible collections in order to validate this system of molecular diagnostics. PMID:16214744

  20. Tissue-specific expression of squirrel monkey chorionic gonadotropin

    PubMed Central

    Vasauskas, Audrey A.; Hubler, Tina R.; Boston, Lori; Scammell, Jonathan G.

    2010-01-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (−1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. PMID:21130091

  1. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.

  2. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T. Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L.; Peterson, James J.; Boye, Shannon E.; Hauswirth, William W.; Chulay, Jeffrey D.

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia. PMID:26603570

  3. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.

    PubMed

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.

  4. Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity

    PubMed Central

    Baena, Andres; Ligeiro, Filipa; Diop, Ousmane M.; Brieva, Claudia; Gagneux, Pascal; O'Brien, Stephen J.; Ryder, Oliver A.; Goldfeld, Anne E.

    2007-01-01

    Background Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF. PMID:17637837

  5. Species-Specific Exon Loss in Human Transcriptomes

    PubMed Central

    Wang, Jinkai; Lu, Zhi-xiang; Tokheim, Collin J.; Miller, Sara E.; Xing, Yi

    2015-01-01

    Changes in exon–intron structures and splicing patterns represent an important mechanism for the evolution of gene functions and species-specific regulatory networks. Although exon creation is widespread during primate and human evolution and has been studied extensively, much less is known about the scope and potential impact of human-specific exon loss events. Historically, transcriptome data and exon annotations are significantly biased toward humans over nonhuman primates. This ascertainment bias makes it challenging to discover human-specific exon loss events. We carried out a transcriptome-wide search of human-specific exon loss events, by taking advantage of RNA sequencing (RNA-seq) as a powerful and unbiased tool for exon discovery and annotation. Using RNA-seq data of humans, chimpanzees, and other primates, we reconstructed and compared transcript structures across the primate phylogeny. We discovered 33 candidate human-specific exon loss events, among which six exons passed stringent experimental filters for the complete loss of splicing activities in diverse human tissues. These events may result from human-specific deletion of genomic DNA, or small-scale sequence changes that inactivated splicing signals. The impact of human-specific exon loss events is predominantly regulatory. Three of the six events occurred in the 5′ untranslated region (5′-UTR) and affected cis-regulatory elements of mRNA translation. In SLC7A6, a gene encoding an amino acid transporter, luciferase reporter assays suggested that both a human-specific exon loss event and an independent human-specific single nucleotide substitution in the 5′-UTR increased mRNA translational efficiency. Our study provides novel insights into the molecular mechanisms and evolutionary consequences of exon loss during human evolution. PMID:25398629

  6. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques.

    PubMed

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A; Veazey, Ronald S

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross-react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define "memory" T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in approximately 44% of rhesus macaques (Macaca mulatta) of Indian but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques.

  7. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques

    PubMed Central

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A.; Veazey, Ronald S.

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define “memory” T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in ~44% of rhesus macaques (Macaca mulatta) of Indian, but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques. PMID:18304631

  8. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  9. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

    PubMed

    Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael

    2018-03-21

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.

  10. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

    PubMed Central

    Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline

    2018-01-01

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261

  11. A Modular Mind? A Test Using Individual Data from Seven Primate Species

    PubMed Central

    Amici, Federica; Barney, Bradley; Johnson, Valen E.; Call, Josep; Aureli, Filippo

    2012-01-01

    It has long been debated whether the mind consists of specialized and independently evolving modules, or whether and to what extent a general factor accounts for the variance in performance across different cognitive domains. In this study, we used a hierarchical Bayesian model to re-analyse individual level data collected on seven primate species (chimpanzees, bonobos, orangutans, gorillas, spider monkeys, brown capuchin monkeys and long-tailed macaques) across 17 tasks within four domains (inhibition, memory, transposition and support). Our modelling approach evidenced the existence of both a domain-specific factor and a species factor, each accounting for the same amount (17%) of the observed variance. In contrast, inter-individual differences played a minimal role. These results support the hypothesis that the mind of primates is (at least partially) modular, with domain-specific cognitive skills undergoing different evolutionary pressures in different species in response to specific ecological and social demands. PMID:23284816

  12. Characterization of the differentially methylated region of the Impact gene that exhibits Glires-specific imprinting.

    PubMed

    Okamura, Kohji; Wintle, Richard F; Scherer, Stephen W

    2008-01-01

    Imprinted genes are exclusively expressed from one of the two parental alleles in a parent-of-origin-specific manner. In mammals, nearly 100 genes are documented to be imprinted. To understand the mechanism behind this gene regulation and to identify novel imprinted genes, common features of DNA sequences have been analyzed; however, the general features required for genomic imprinting have not yet been identified, possibly due to variability in underlying molecular mechanisms from locus to locus. We performed a thorough comparative genomic analysis of a single locus, Impact, which is imprinted only in Glires (rodents and lagomorphs). The fact that Glires and primates diverged from each other as recent as 70 million years ago makes comparisons between imprinted and non-imprinted orthologues relatively reliable. In species from the Glires clade, Impact bears a differentially methylated region, whereby the maternal allele is hypermethylated. Analysis of this region demonstrated that imprinting was not associated with the presence of direct tandem repeats nor with CpG dinucleotide density. In contrast, a CpG periodicity of 8 bp was observed in this region in species of the Glires clade compared to those of carnivores, artiodactyls, and primates. We show that tandem repeats are dispensable, establishment of the differentially methylated region does not rely on G+C content and CpG density, and the CpG periodicity of 8 bp is meaningful to the imprinting. This interval has recently been reported to be optimal for de novo methylation by the Dnmt3a-Dnmt3L complex, suggesting its importance in the establishment of imprinting in Impact and other genes.

  13. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, P.E.; Gosden, J.; Lawson, D.

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize andmore » spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.« less

  14. Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors.

    PubMed

    Guevara, Elaine E; Veilleux, Carrie C; Saltonstall, Kristin; Caccone, Adalgisa; Mundy, Nicholas I; Bradley, Brenda J

    2016-09-01

    We explored whether variation in the sweet taste receptor protein T1R3 in primates could contribute to differences in sweet taste repertoire among species, potentially reflecting coevolution with local plants. Specifically, we examined which primates are likely to be sweet "tasters" of brazzein, a protein found in the fruit of the African plant Pentadiplandra brazzeana that tastes intensely sweet to humans, but provides little energy. Sweet proteins like brazzein are thought to mimic the taste of sugars to entice seed dispersers. We examined the evolution of T1R3 and assessed whether primates are likely "deceived" by such biochemical mimicry. Using published and new sequence data for TAS1R3, we characterized 57 primates and other mammals at the two amino acid sites necessary to taste brazzein to determine which species are tasters. We further used dN/dS-based methods to look for statistical evidence of accelerated evolution in this protein across primate lineages. The taster genotype is shared across most catarrhines, suggesting that most African primates can be "tricked" into eating and dispersing P. brazzeana's seeds for little caloric gain. Western gorillas (Gorilla gorilla), however, exhibit derived mutations at the two brazzein-critical positions, and although fruit is a substantial portion of the western gorilla diet, they have not been observed to eat P. brazzeana. Our analyses of protein evolution found no signature of positive selection on TAS1R3 along the gorilla lineage. We propose that the gorilla-specific mutations at the TAS1R3 locus encoding T1R3 could be a counter-adaptation to the false sweet signal of brazzein. © 2016 Wiley Periodicals, Inc.

  15. Primate social attention: Species differences and effects of individual experience in humans, great apes, and macaques

    PubMed Central

    Shepherd, Stephen V.; Hirata, Satoshi; Call, Josep

    2018-01-01

    When viewing social scenes, humans and nonhuman primates focus on particular features, such as the models’ eyes, mouth, and action targets. Previous studies reported that such viewing patterns vary significantly across individuals in humans, and also across closely-related primate species. However, the nature of these individual and species differences remains unclear, particularly among nonhuman primates. In large samples of human and nonhuman primates, we examined species differences and the effects of experience on patterns of gaze toward social movies. Experiment 1 examined the species differences across rhesus macaques, nonhuman apes (bonobos, chimpanzees, and orangutans), and humans while they viewed movies of various animals’ species-typical behaviors. We found that each species had distinct viewing patterns of the models’ faces, eyes, mouths, and action targets. Experiment 2 tested the effect of individuals’ experience on chimpanzee and human viewing patterns. We presented movies depicting natural behaviors of chimpanzees to three groups of chimpanzees (individuals from a zoo, a sanctuary, and a research institute) differing in their early social and physical experiences. We also presented the same movies to human adults and children differing in their expertise with chimpanzees (experts vs. novices) or movie-viewing generally (adults vs. preschoolers). Individuals varied within each species in their patterns of gaze toward models’ faces, eyes, mouths, and action targets depending on their unique individual experiences. We thus found that the viewing patterns for social stimuli are both individual- and species-specific in these closely-related primates. Such individual/species-specificities are likely related to both individual experience and species-typical temperament, suggesting that primate individuals acquire their unique attentional biases through both ontogeny and evolution. Such unique attentional biases may help them learn efficiently about their particular social environments. PMID:29474416

  16. Social learning of vocal structure in a nonhuman primate?

    PubMed Central

    2011-01-01

    Background Non-human primate communication is thought to be fundamentally different from human speech, mainly due to vast differences in vocal control. The lack of these abilities in non-human primates is especially striking if compared to some marine mammals and bird species, which has generated somewhat of an evolutionary conundrum. What are the biological roots and underlying evolutionary pressures of the human ability to voluntarily control sound production and learn the vocal utterances of others? One hypothesis is that this capacity has evolved gradually in humans from an ancestral stage that resembled the vocal behavior of modern primates. Support for this has come from studies that have documented limited vocal flexibility and convergence in different primate species, typically in calls used during social interactions. The mechanisms underlying these patterns, however, are currently unknown. Specifically, it has been difficult to rule out explanations based on genetic relatedness, suggesting that such vocal flexibility may not be the result of social learning. Results To address this point, we compared the degree of acoustic similarity of contact calls in free-ranging Campbell's monkeys as a function of their social bonds and genetic relatedness. We calculated three different indices to compare the similarities between the calls' frequency contours, the duration of grooming interactions and the microsatellite-based genetic relatedness between partners. We found a significantly positive relation between bond strength and acoustic similarity that was independent of genetic relatedness. Conclusion Genetic factors determine the general species-specific call repertoire of a primate species, while social factors can influence the fine structure of some the call types. The finding is in line with the more general hypothesis that human speech has evolved gradually from earlier primate-like vocal communication. PMID:22177339

  17. Primate social attention: Species differences and effects of individual experience in humans, great apes, and macaques.

    PubMed

    Kano, Fumihiro; Shepherd, Stephen V; Hirata, Satoshi; Call, Josep

    2018-01-01

    When viewing social scenes, humans and nonhuman primates focus on particular features, such as the models' eyes, mouth, and action targets. Previous studies reported that such viewing patterns vary significantly across individuals in humans, and also across closely-related primate species. However, the nature of these individual and species differences remains unclear, particularly among nonhuman primates. In large samples of human and nonhuman primates, we examined species differences and the effects of experience on patterns of gaze toward social movies. Experiment 1 examined the species differences across rhesus macaques, nonhuman apes (bonobos, chimpanzees, and orangutans), and humans while they viewed movies of various animals' species-typical behaviors. We found that each species had distinct viewing patterns of the models' faces, eyes, mouths, and action targets. Experiment 2 tested the effect of individuals' experience on chimpanzee and human viewing patterns. We presented movies depicting natural behaviors of chimpanzees to three groups of chimpanzees (individuals from a zoo, a sanctuary, and a research institute) differing in their early social and physical experiences. We also presented the same movies to human adults and children differing in their expertise with chimpanzees (experts vs. novices) or movie-viewing generally (adults vs. preschoolers). Individuals varied within each species in their patterns of gaze toward models' faces, eyes, mouths, and action targets depending on their unique individual experiences. We thus found that the viewing patterns for social stimuli are both individual- and species-specific in these closely-related primates. Such individual/species-specificities are likely related to both individual experience and species-typical temperament, suggesting that primate individuals acquire their unique attentional biases through both ontogeny and evolution. Such unique attentional biases may help them learn efficiently about their particular social environments.

  18. Primates and the evolution of long, slow life histories.

    PubMed

    Jones, James Holland

    2011-09-27

    Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life-history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life-history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explains their low reproductive-effort tactics. I discuss recent applications of life-history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Primates and the Evolution of Long-Slow Life Histories

    PubMed Central

    Jones, James Holland

    2011-01-01

    Summary Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explain their low reproductive-effort tactics. I discuss recent applications of life history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally. PMID:21959161

  20. 50 CFR 14.122 - Food and water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Food and water. 14.122 Section 14.122... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.122 Food and... shall provide suitable food to any nonhuman primate at least once every 12 hours. ...

  1. 50 CFR 14.122 - Food and water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Food and water. 14.122 Section 14.122... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.122 Food and... shall provide suitable food to any nonhuman primate at least once every 12 hours. ...

  2. 50 CFR 14.122 - Food and water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Food and water. 14.122 Section 14.122... Wild Mammals and Birds to the United States Specifications for Nonhuman Primates § 14.122 Food and... shall provide suitable food to any nonhuman primate at least once every 12 hours. ...

  3. Tissue-specific expression of squirrel monkey chorionic gonadotropin.

    PubMed

    Vasauskas, Audrey A; Hubler, Tina R; Boston, Lori; Scammell, Jonathan G

    2011-02-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human and rhesus macaque CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (-1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Non-human Primate and Rat Cardiac Fibroblasts show similar Extracellular Matrix-related and Cellular Adhesion Gene Responses to Substance P

    PubMed Central

    Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.

    2015-01-01

    Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118

  5. Changes in gene expression associated with reproductive maturation in wild female baboons.

    PubMed

    Babbitt, Courtney C; Tung, Jenny; Wray, Gregory A; Alberts, Susan C

    2012-01-01

    Changes in gene expression during development play an important role in shaping morphological and behavioral differences, including between humans and nonhuman primates. Although many of the most striking developmental changes occur during early development, reproductive maturation represents another critical window in primate life history. However, this process is difficult to study at the molecular level in natural primate populations. Here, we took advantage of ovarian samples made available through an unusual episode of human-wildlife conflict to identify genes that are important in this process. Specifically, we used RNA sequencing (RNA-Seq) to compare genome-wide gene expression patterns in the ovarian tissue of juvenile and adult female baboons from Amboseli National Park, Kenya. We combined this information with prior evidence of selection occurring on two primate lineages (human and chimpanzee). We found that in cases in which genes were both differentially expressed over the course of ovarian maturation and also linked to lineage-specific selection this selective signature was much more likely to occur in regulatory regions than in coding regions. These results suggest that adaptive change in the development of the primate ovary may be largely driven at the mechanistic level by selection on gene regulation, potentially in relationship to the physiology or timing of female reproductive maturation.

  6. Changes in Gene Expression Associated with Reproductive Maturation in Wild Female Baboons

    PubMed Central

    Babbitt, Courtney C.; Tung, Jenny; Wray, Gregory A.; Alberts, Susan C.

    2012-01-01

    Changes in gene expression during development play an important role in shaping morphological and behavioral differences, including between humans and nonhuman primates. Although many of the most striking developmental changes occur during early development, reproductive maturation represents another critical window in primate life history. However, this process is difficult to study at the molecular level in natural primate populations. Here, we took advantage of ovarian samples made available through an unusual episode of human–wildlife conflict to identify genes that are important in this process. Specifically, we used RNA sequencing (RNA-Seq) to compare genome-wide gene expression patterns in the ovarian tissue of juvenile and adult female baboons from Amboseli National Park, Kenya. We combined this information with prior evidence of selection occurring on two primate lineages (human and chimpanzee). We found that in cases in which genes were both differentially expressed over the course of ovarian maturation and also linked to lineage-specific selection this selective signature was much more likely to occur in regulatory regions than in coding regions. These results suggest that adaptive change in the development of the primate ovary may be largely driven at the mechanistic level by selection on gene regulation, potentially in relationship to the physiology or timing of female reproductive maturation. PMID:22155733

  7. Functional associations between support use and forelimb shape in strepsirrhines and their relevance to inferring locomotor behavior in early primates.

    PubMed

    Fabre, Anne-Claire; Marigó, Judit; Granatosky, Michael C; Schmitt, Daniel

    2017-07-01

    The evolution of primates is intimately linked to their initial invasion of an arboreal environment. However, moving and foraging in this milieu creates significant mechanical challenges related to the presence of substrates differing in their size and orientation. It is widely assumed that primates are behaviorally and anatomically adapted to movement on specific substrates, but few explicit tests of this relationship in an evolutionary context have been conducted. Without direct tests of form-function relationships in living primates it is impossible to reliably infer behavior in fossil taxa. In this study, we test a hypothesis of co-variation between forelimb morphology and the type of substrates used by strepsirrhines. If associations between anatomy and substrate use exist, these can then be applied to better understand limb anatomy of extinct primates. The co-variation between each forelimb long bone and the type of substrate used was studied in a phylogenetic context. Our results show that despite the presence of significant phylogenetic signal for each long bone of the forelimb, clear support use associations are present. A strong co-variation was found between the type of substrate used and the shape of the radius, with and without taking phylogeny into account, whereas co-variation was significant for the ulna only when taking phylogeny into account. Species that use a thin branch milieu show radii that are gracile and straight and have a distal articular shape that allows for a wide range of movements. In contrast, extant species that commonly use large supports show a relatively robust and curved radius with an increased surface area available for forearm and hand muscles in pronated posture. These results, especially for the radius, support the idea that strepsirrhine primates exhibit specific skeletal adaptations associated with the supports that they habitually move on. With these robust associations in hand it will be possible to explore the same variables in extinct early primates and primate relatives and thus improve the reliability of inferences concerning substrate use in early primates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Role of Competition in Structuring Primate Communities under Different Productivity Regimes in the Amazon

    PubMed Central

    Rocha, Juliana Monteiro de Almeida; Pinto, Míriam Plaza; Boubli, Jean Philippe; Grelle, Carlos Eduardo Viveiros

    2015-01-01

    The factors responsible for the formation of Amazonian primate communities are not well understood. Here we investigated the influence of interspecific competition in the assembly of these communities, specifically whether they follow an assembly rule known as "favored states". According to this rule, interspecific competition influences final species composition, resulting in functional groups that are equally represented in the community. We compiled presence-absence data for primate species at 39 Amazonian sites in Brazil, contrasting two regions with distinct productivity regimes: the eutrophic Juruá River basin and the oligotrophic Negro River basin. We tested two hypotheses: that interspecific competition is a mechanism that influences the structure of Amazonian primate communities, and that competition has had a greater influence on the structure of primate communities in regions with low productivity, where resources are more limited. We used null models to test the statistical significance of the results, and found a non-random pattern compatible with the favored states rule in the two regions. Our findings suggest that interspecific competition is an important force driving primate community assembly regardless of productivity regimes. PMID:26696089

  9. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  10. Communication and the primate brain: insights from neuroimaging studies in humans, chimpanzees and macaques.

    PubMed

    Wilson, Benjamin; Petkov, Christopher I

    2011-04-01

    Considerable knowledge is available on the neural substrates for speech and language from brain-imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and nonlinguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and is used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language.

  11. Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses

    PubMed Central

    Rojas-Anaya, Edith; Kolokotronis, Sergios-Orestis; Taboada, Blanca; Loza-Rubio, Elizabeth; Méndez-Ojeda, Maria L.; Osterrieder, Nikolaus

    2016-01-01

    ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. PMID:27834200

  12. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  13. Facing the facts: The Runx2 gene is associated with variation in facial morphology in primates.

    PubMed

    Ritzman, Terrence B; Banovich, Nicholas; Buss, Kaitlin P; Guida, Jennifer; Rubel, Meagan A; Pinney, Jennifer; Khang, Bao; Ravosa, Matthew J; Stone, Anne C

    2017-10-01

    The phylogenetic and adaptive factors that cause variation in primate facial form-including differences among the major primate clades and variation related to feeding and/or social behavior-are relatively well understood. However, comparatively little is known about the genetic mechanisms that underlie diversity in facial form in primates. Because it is essential for osteoblastic differentiation and skeletal development, the runt-related transcription factor 2 (Runx2) is one gene that may play a role in these genetic mechanisms. Specifically, polymorphisms in the QA ratio (determined by the ratio of the number of polyglutamines to polyalanines in one functional domain of Runx2) have been shown to be correlated with variation in facial length and orientation in other mammal groups. However, to date, the relationship between variation in this gene and variation in facial form in primates has not been explicitly tested. To test the hypothesis that the QA ratio is correlated with facial form in primates, the current study quantified the QA ratio, facial length, and facial angle in a sample of 33 primate species and tested for correlation using phylogenetic generalized least squares. The results indicate that the QA ratio of the Runx2 gene is positively correlated with variation in relative facial length in anthropoid primates. However, no correlation was found in strepsirrhines, and there was no correlation between facial angle and the QA ratio in any groups. These results suggest that, in primates, the QA ratio of the Runx2 gene may play a role in modulating facial size, but not facial orientation. This study therefore provides important clues about the genetic and developmental mechanisms that may underlie variation in facial form in primates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Activation of TrkB with TAM-163 Results in Opposite Effects on Body Weight in Rodents and Non-Human Primates

    PubMed Central

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J.; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M.; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E.

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  15. Mycobacterium leprae genomes from naturally infected nonhuman primates

    PubMed Central

    Pfister, Luz-Andrea; Housman, Genevieve; Mills, Sarah; Tarara, Ross P.; Suzuki, Koichi; Cuozzo, Frank P.; Sauther, Michelle L.; Rosenberg, Michael S.; Stone, Anne C.

    2018-01-01

    Leprosy is caused by the bacterial pathogens Mycobacterium leprae and Mycobacterium lepromatosis. Apart from humans, animals such as nine-banded armadillos in the Americas and red squirrels in the British Isles are naturally infected with M. leprae. Natural leprosy has also been reported in certain nonhuman primates, but it is not known whether these occurrences are due to incidental infections by human M. leprae strains or by M. leprae strains specific to nonhuman primates. In this study, complete M. leprae genomes from three naturally infected nonhuman primates (a chimpanzee from Sierra Leone, a sooty mangabey from West Africa, and a cynomolgus macaque from The Philippines) were sequenced. Phylogenetic analyses showed that the cynomolgus macaque M. leprae strain is most closely related to a human M. leprae strain from New Caledonia, whereas the chimpanzee and sooty mangabey M. leprae strains belong to a human M. leprae lineage commonly found in West Africa. Additionally, samples from ring-tailed lemurs from the Bezà Mahafaly Special Reserve, Madagascar, and chimpanzees from Ngogo, Kibale National Park, Uganda, were screened using quantitative PCR assays, to assess the prevalence of M. leprae in wild nonhuman primates. However, these samples did not show evidence of M. leprae infection. Overall, this study adds genomic data for nonhuman primate M. leprae strains to the existing M. leprae literature and finds that this pathogen can be transmitted from humans to nonhuman primates as well as between nonhuman primate species. While the prevalence of natural leprosy in nonhuman primates is likely low, nevertheless, future studies should continue to explore the prevalence of leprosy-causing pathogens in the wild. PMID:29381722

  16. Mycobacterium leprae genomes from naturally infected nonhuman primates.

    PubMed

    Honap, Tanvi P; Pfister, Luz-Andrea; Housman, Genevieve; Mills, Sarah; Tarara, Ross P; Suzuki, Koichi; Cuozzo, Frank P; Sauther, Michelle L; Rosenberg, Michael S; Stone, Anne C

    2018-01-01

    Leprosy is caused by the bacterial pathogens Mycobacterium leprae and Mycobacterium lepromatosis. Apart from humans, animals such as nine-banded armadillos in the Americas and red squirrels in the British Isles are naturally infected with M. leprae. Natural leprosy has also been reported in certain nonhuman primates, but it is not known whether these occurrences are due to incidental infections by human M. leprae strains or by M. leprae strains specific to nonhuman primates. In this study, complete M. leprae genomes from three naturally infected nonhuman primates (a chimpanzee from Sierra Leone, a sooty mangabey from West Africa, and a cynomolgus macaque from The Philippines) were sequenced. Phylogenetic analyses showed that the cynomolgus macaque M. leprae strain is most closely related to a human M. leprae strain from New Caledonia, whereas the chimpanzee and sooty mangabey M. leprae strains belong to a human M. leprae lineage commonly found in West Africa. Additionally, samples from ring-tailed lemurs from the Bezà Mahafaly Special Reserve, Madagascar, and chimpanzees from Ngogo, Kibale National Park, Uganda, were screened using quantitative PCR assays, to assess the prevalence of M. leprae in wild nonhuman primates. However, these samples did not show evidence of M. leprae infection. Overall, this study adds genomic data for nonhuman primate M. leprae strains to the existing M. leprae literature and finds that this pathogen can be transmitted from humans to nonhuman primates as well as between nonhuman primate species. While the prevalence of natural leprosy in nonhuman primates is likely low, nevertheless, future studies should continue to explore the prevalence of leprosy-causing pathogens in the wild.

  17. The inability to disrupt the immunological synapse between infected human T cells and APCs distinguishes HIV-1 from most other primate lentiviruses

    PubMed Central

    Arhel, Nathalie; Lehmann, Martin; Clauß, Karen; Nienhaus, G. Ulrich; Piguet, Vincent; Kirchhoff, Frank

    2009-01-01

    Viruses that infect T cells, including those of the lentivirus genus, such as HIV-1, modulate the responsiveness of infected T cells to stimulation by interacting APCs in a manner that renders the T cells more permissive for viral replication. HIV-1 and other primate lentiviruses use their Nef proteins to manipulate the T cell/APC contact zone, the immunological synapse (IS). It is known that primate lentiviral Nef proteins differ substantially in their ability to modulate cell surface expression of the TCR-CD3 and CD28 receptors critical for the formation and function of the IS. However, the impact of these differences in Nef function on the interaction and communication between virally infected T cells and primary APCs has not been investigated. Here we have used primary human cells to show that Nef proteins encoded by HIV-2 and most SIVs, which downmodulate cell surface expression of TCR-CD3, disrupt formation of the IS between infected T cells and Ag-presenting macrophages or DCs. In contrast, nef alleles from HIV-1 and its simian precursor SIVcpz failed to suppress synapse formation and events downstream of TCR signaling. Our data suggest that most primate lentiviruses disrupt communication between virally infected CD4+ Th cells and APCs, whereas HIV-1 and its SIV precursor have largely lost this capability. The resulting differences in the levels of T cell activation and apoptosis may play a role in the pathogenesis of AIDS. PMID:19759518

  18. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA.

    PubMed

    Stiles, David K; Zhang, Zhiming; Ge, Pei; Nelson, Brian; Grondin, Richard; Ai, Yi; Hardy, Peter; Nelson, Peter T; Guzaev, Andrei P; Butt, Mark T; Charisse, Klaus; Kosovrasti, Verbena; Tchangov, Lubomir; Meys, Michael; Maier, Martin; Nechev, Lubomir; Manoharan, Muthiah; Kaemmerer, William F; Gwost, Douglas; Stewart, Gregory R; Gash, Don M; Sah, Dinah W Y

    2012-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease caused by a toxic gain of function mutation in the huntingtin gene (Htt). Silencing of Htt with RNA interference using direct CNS delivery in rodent models of Huntington's disease has been shown to reduce pathology and promote neuronal recovery. A key translational step for this approach is extension to the larger non-human primate brain, achieving sufficient distribution of small interfering RNA targeting Htt (siHtt) and levels of Htt suppression that may have therapeutic benefit. We evaluated the potential for convection enhanced delivery (CED) of siHtt to provide widespread and robust suppression of Htt in nonhuman primates. siHtt was infused continuously for 7 or 28 days into the nonhuman primate putamen to analyze effects of infusion rate and drug concentration on the volume of effective suppression. Distribution of radiolabeled siHtt and Htt suppression were quantified by autoradiography and PCR, respectively, in tissue punches. Histopathology was evaluated and Htt suppression was also visualized in animals treated for 28 days. Seven days of CED led to widespread distribution of siHtt and significant Htt silencing throughout the nonhuman primate striatum in an infusion rate and dose dependent manner. Htt suppression at therapeutic dose levels was well tolerated by the brain. A model developed from these results predicts that continuous CED of siHtt can achieve significant coverage of the striatum of Huntington's disease patients. These findings suggest that this approach may provide an important therapeutic strategy for treating Huntington's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A Comparative View of Face Perception

    PubMed Central

    Leopold, David A.; Rhodes, Gillian

    2010-01-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and non-primates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Since the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. PMID:20695655

  20. Birds have primate-like numbers of neurons in the forebrain

    PubMed Central

    Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel

    2016-01-01

    Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365

  1. From cheetahs to chimpanzees: a comparative review of the drivers of human-carnivore conflict and human-primate conflict.

    PubMed

    Dickman, Amy J

    2012-01-01

    Human-wildlife conflict is a growing conservation threat, and is increasingly of importance to primate conservationists. Despite this, relatively little work has been done to date on the drivers of human-primate conflict, especially compared to other conflict-causing taxa such as large carnivores. However, the drivers of conflict are often very similar across species, so conflict researchers can learn important lessons from work conducted on other taxa. This paper discusses 8 key factors which are likely to affect how hostile people are towards wildlife and any damage they cause--6 of these are common to both carnivores and primates, while one is much more applicable to carnivores and the other is specific to primates. These conflict drivers involve numerous social and cultural factors, and highlight the importance of truly understanding the local drivers of conflict in order to develop effective mitigation strategies. Copyright © 2013 S. Karger AG, Basel.

  2. Learning about primates' learning, language, and cognition

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.

    1992-01-01

    Results are presented of many years of research on the methods of teaching primates the language and cognitive skills which were long considered to be unteachable to particular species of primates. It was found that chimpanzee subjects could not only learn a number of 'stock sentences' but to use them in variations and several combinations for the purpose of solving various problems. Apes placed in different rooms could be taught to communicate via computer, and collaborate with each other on doing specific tasks. Contrary to expectations, young rhesus monkeys proved to be able to learn as much as the chimpanzee species.

  3. Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest.

    PubMed

    Mourthé, I

    2014-08-01

    Few attempts have been made to understand how spatiotemporal changes in fruit supply influence frugivores in tropical forests. The marked spatiotemporal variation in fruit supply can affect frugivore abundance and distribution, but studies addressing the effects of this variation on primates are scarce. The present study aimed to investigate how the spatiotemporal distribution of fruits influences the local distribution of three frugivorous primates in the eastern part of the Maracá Ecological Station, a highly seasonal Amazonian rainforest. Specifically, it was hypothesised that primate distribution will track changes in fruit supply, resulting that sites with high fruit availability should be heavily used by primates. During a 1-year study, fruit supply (ground fruit surveys) and primate density (line-transects) were monitored in twelve 2 km-long transects at monthly intervals. Fruit supply varied seasonally, being low during the dry season. The density of Ateles belzebuth was positively related to fruit supply during fruit shortage, but Cebus olivaceus and Alouatta macconnelli did not follow the same pattern. The supply of Sapotaceae fruit was an important component determining local distribution of A. belzebuth during the overall fruit shortage. Highly frugivorous primates such as A. belzebuth respond to seasonal decline in fruit supply by congregating at places with high fruit supply in this forest, particularly, those with many individuals of species of Sapotaceae. This study underscores the importance of small-scale spatiotemporal changes of fruit supply as a key component of frugivorous primate ecology in highly seasonal environments.

  4. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates

    PubMed Central

    Street, Sally E.; Navarrete, Ana F.; Laland, Kevin N.

    2017-01-01

    Explanations for primate brain expansion and the evolution of human cognition and culture remain contentious despite extensive research. While multiple comparative analyses have investigated variation in brain size across primate species, very few have addressed why primates vary in how much they use social learning. Here, we evaluate the hypothesis that the enhanced reliance on socially transmitted behavior observed in some primates has coevolved with enlarged brains, complex sociality, and extended lifespans. Using recently developed phylogenetic comparative methods we show that, across primate species, a measure of social learning proclivity increases with absolute and relative brain volume, longevity (specifically reproductive lifespan), and social group size, correcting for research effort. We also confirm relationships of absolute and relative brain volume with longevity (both juvenile period and reproductive lifespan) and social group size, although longevity is generally the stronger predictor. Relationships between social learning, brain volume, and longevity remain when controlling for maternal investment and are therefore not simply explained as a by-product of the generally slower life history expected for larger brained species. Our findings suggest that both brain expansion and high reliance on culturally transmitted behavior coevolved with sociality and extended lifespan in primates. This coevolution is consistent with the hypothesis that the evolution of large brains, sociality, and long lifespans has promoted reliance on culture, with reliance on culture in turn driving further increases in brain volume, cognitive abilities, and lifespans in some primate lineages. PMID:28739950

  5. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provide insights into risks for potential new cross-species transmissions

    PubMed Central

    Aghokeng, Avelin F.; Ayouba, Ahidjo; Mpoudi-Ngole, Eitel; Loul, Severin; Liegeois, Florian; Delaporte, Eric; Peeters, Martine

    2009-01-01

    To evaluate the risk of cross-species transmissions of SIVs from non-human primates to humans at the primate/hunter interface, a total of 2586 samples, derived from primate bushmeat representing 11 different primate species, were collected at 6 distinct remote forest sites in southeastern Cameroon and in Yaoundé, the capital city. SIV prevalences were estimated with an updated SIV lineage specific gp41 peptide Elisa covering the major part of the SIV diversity. SIV positive samples were confirmed by PCR and sequence analysis of partial pol fragments. The updated SIV Elisa showed good performance with overall sensitivity and specificity of 96% and 97.5% respectively. The overall SIV seroprevalence was low, 2.93% (76/2586) and ranged between 0.0% and 5.7% at forest sites, and reached up to 10.3% in Yaoundé. SIV infection was documented in 8 of the 11 species with significantly different prevalence rates per species: 9/859 (1.0%) in Cercopithecus nictitans, 9/864 (1.0%) Cercopithecus cephus, 10/60 (16.7%) Miopithecus ogouensis, 14/78 (17.9%) Colobus guereza, 15/37 (40.5%) Cercopithecus neglectus, 10/27 (33.3%) Mandrillus sphinx, 6/12 (50%) Cercocebus torquatus, and 3/6 (50%) Chlorocebus tantalus. No SIV infection was identified in Cercopithecus pogonias (n=293), Lophocebus albigena (n=168) and Cercocebus agilis (n=182). The SIV prevalences seem to vary also within species according to the sampling site, but most importantly, the highest SIV prevalences are observed in the primate species which represent only 8.5% of the overall primate bushmeat. The phylogenetic tree of partial pol sequences illustrates the high genetic diversity of SIVs between and within different primate species. The tree showed also some interesting features within the SIVdeb lineage suggesting phylogeographic clusters. Overall, the risk for additional cross-species transmissions is not equal throughout southern Cameroon and depends on the hunted species and SIV prevalences in each species. However, humans are still exposed to a high diversity of SIVs as illustrated by the high inter and intra SIV lineage genetic diversity. PMID:19393772

  6. Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications

    PubMed Central

    Freeman, Sara M.; Young, Larry J.

    2016-01-01

    In the last several decades, sophisticated experimental techniques have been used to determine the neurobiology of the oxytocin and vasopressin systems in rodents. Using a suite of methodologies, including electrophysiology, site-specific selective pharmacology, receptor autoradiography, in vivo microdialysis, and genetic and optogenetic manipulations, we have gained unprecedented knowledge about how these neuropeptides engage neural circuits to regulate behaviour, particularly social behaviour. Based on this foundation of information from rodent studies, we have started generating new hypotheses and frameworks about how the oxytocin and vasopressin systems could be acting in humans to influence social cognition. However, despite the recent inundation of publications using intranasal oxytocin in humans, we still know very little about the neurophysiology of the oxytocin system in primates more broadly. Furthermore, the design and analysis of these human studies have remained largely uninformed of the potential neurobiological mechanisms underlying their findings. Although the methods available for studying the oxytocin and vasopressin systems in humans are incredibly limited as a result of practical and ethical considerations, there is great potential to fill the gaps in our knowledge by developing better nonhuman primate models of social functioning. Behavioural pharmacology and receptor autoradiography have been used to study the oxytocin and vasopressin systems in nonhuman primates, and there is now great potential to broaden our understanding of the neurobiology of these systems. In this review, we discuss comparative findings in receptor distributions in rodents and primates, with perspectives on the functionality of conserved regions of expression in these distinct mammalian clades. We also identify specific ways that established technologies can be used to answer basic research questions in primates. Finally, we highlight areas of future research in nonhuman primates that are experimentally poised to yield critical insights into the anatomy, physiology and behavioural effects of the oxytocin system, given its remarkable translational potential. PMID:26940141

  7. The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates.

    PubMed

    Murrell, Ben; Vollbrecht, Thomas; Guatelli, John; Wertheim, Joel O

    2016-09-15

    Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates. Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Isoform Evolution in Primates through Independent Combination of Alternative RNA Processing Events

    PubMed Central

    Zhang, Shi-Jian; Wang, Chenqu; Yan, Shouyu; Fu, Aisi; Luan, Xuke; Li, Yumei; Sunny Shen, Qing; Zhong, Xiaoming; Chen, Jia-Yu; Wang, Xiangfeng; Chin-Ming Tan, Bertrand; He, Aibin; Li, Chuan-Yun

    2017-01-01

    Abstract Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates. PMID:28957512

  9. Darwin's legacy and the study of primate visual communication.

    PubMed

    de Waal, Frans B M

    2003-12-01

    After Charles Darwin's The Expression of the Emotions in Man and Animals, published in 1872, we had to wait 60 years before the theme of animal expressions was picked up by another astute observer. In 1935, Nadezhda Ladygina-Kohts published a detailed comparison of the expressive behavior of a juvenile chimpanzee and of her own child. After Kohts, we had to wait until the 1960s for modern ethological analyses of primate facial and gestural communication. Again, the focus was on the chimpanzee, but ethograms on other primates appeared as well. Our understanding of the range of expressions in other primates is at present far more advanced than that in Darwin's time. A strong social component has been added: instead of focusing on the expressions per se, they are now often classified according to the social situations in which they typically occur. Initially, quantitative analyses were sequential (i.e., concerned with temporal associations between behavior patterns), and they avoided the language of emotions. I will discuss some of this early work, including my own on the communicative repertoire of the bonobo, a close relative of the chimpanzee (and ourselves). I will provide concrete examples to make the point that there is a much richer matrix of contexts possible than the common behavioral categories of aggression, sex, fear, play, and so on. Primate signaling is a form of negotiation, and previous classifications have ignored the specifics of what animals try to achieve with their exchanges. There is also increasing evidence for signal conventionalization in primates, especially the apes, in both captivity and the field. This process results in group-specific or "cultural" communication patterns.

  10. Primate Torpor: Regulation of Stress-activated Protein Kinases During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs), c-jun NH2-terminal kinases (JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor. Copyright © 2015. Production and hosting by Elsevier Ltd.

  11. Cognitive competencies - Products of genes, experience, and technology. [for training of primates

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Savage-Rumbaugh, E. S.

    1992-01-01

    The paper examines methods used in studying cognitive competency in primates. Citing experiments on teaching language skills to chimpanzees, it is shown that some methods used for inquiry might lead to the cultivation and generation of new competencies, and specifically to the development of observational and relational learning skills. It is noted that methods can also limit the generality of conclusions; erroneous conclusions may be made based on certain generally accepted methods, whereby the research might be treatments that profoundly determine the assessment of dependent variables. Particular attention is given to the role of age in learning, showing that young primates can be taught the meaning of lexigrams and many specific tasks in much shorter time than adults; on the basis of these experiments, it was concluded that cultural gains did evolve primarily as a consequence of context within which infants were growing.

  12. Technical advance: liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease.

    PubMed

    Burwitz, Benjamin J; Reed, Jason S; Hammond, Katherine B; Ohme, Merete A; Planer, Shannon L; Legasse, Alfred W; Ericsen, Adam J; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B

    2014-09-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. © 2014 Society for Leukocyte Biology.

  13. Technical Advance: Liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease

    PubMed Central

    Burwitz, Benjamin J.; Reed, Jason S.; Hammond, Katherine B.; Ohme, Merete A.; Planer, Shannon L.; Legasse, Alfred W.; Ericsen, Adam J.; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B.

    2014-01-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811

  14. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    PubMed

    Charbel Issa, Peter; De Silva, Samantha R; Lipinski, Daniel M; Singh, Mandeep S; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R; Hankins, Mark W; During, Matthew J; Maclaren, Robert E

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/-) mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1) mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/-) mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  15. Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates.

    PubMed

    Smith, Timothy D; Muchlinski, Magdalena N; Jankord, Kathryn D; Progar, Abbigal J; Bonar, Christopher J; Evans, Sian; Williams, Lawrence; Vinyard, Christopher J; Deleon, Valerie B

    2015-12-01

    In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate. © 2015 Wiley Periodicals, Inc.

  16. Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates

    PubMed Central

    Smith, Timothy D.; Muchlinksi, Magdalena N.; Jankord, Kathryn D.; Progar, Abbigal J.; Bonar, Christopher J.; Evans, Sian; Williams, Lawrence; Vinyard, Christopher J.; DeLeon, Valerie B.

    2015-01-01

    In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate. PMID:26425925

  17. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease.

    PubMed

    Santana, Maxwell B; Halje, Pär; Simplício, Hougelle; Richter, Ulrike; Freire, Marco Aurelio M; Petersson, Per; Fuentes, Romulo; Nicolelis, Miguel A L

    2014-11-19

    Although deep brain electrical stimulation can alleviate the motor symptoms of Parkinson disease (PD), just a small fraction of patients with PD can take advantage of this procedure due to its invasive nature. A significantly less invasive method--epidural spinal cord stimulation (SCS)--has been suggested as an alternative approach for symptomatic treatment of PD. However, the mechanisms underlying motor improvements through SCS are unknown. Here, we show that SCS reproducibly alleviates motor deficits in a primate model of PD. Simultaneous neuronal recordings from multiple structures of the cortico-basal ganglia-thalamic loop in parkinsonian monkeys revealed abnormal highly synchronized neuronal activity within each of these structures and excessive functional coupling among them. SCS disrupted this pathological circuit behavior in a manner that mimics the effects caused by pharmacological dopamine replacement therapy or deep brain stimulation. These results suggest that SCS should be considered as an additional treatment option for patients with PD. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Sources of variation in hair cortisol in wild and captive non-human primates.

    PubMed

    Fourie, Nicolaas H; Brown, Janine L; Jolly, Clifford J; Phillips-Conroy, Jane E; Rogers, Jeffrey; Bernstein, Robin M

    2016-04-01

    Hair cortisol analysis is a potentially powerful tool for evaluating adrenal function and chronic stress. However, the technique has only recently been applied widely to studies of wildlife, including primates, and there are numerous practical and technical factors that should be considered to ensure good quality data and the validity of results and conclusions. Here we report on various intrinsic and extrinsic sources of variation in hair cortisol measurements in wild and captive primates. Hair samples from both wild and captive primates revealed that age and sex can affect hair cortisol concentrations; these effects need to be controlled for when making comparisons between individual animals or populations. Hair growth rates also showed considerable inter-specific variation among a number of primate species. We describe technical limitations of hair analyses and variation in cortisol concentrations as a function of asynchronous hair growth, anatomical site of collection, and the amount and numbers of hair/s used for cortisol extraction. We discuss these sources of variation and their implications for proper study design and interpretation of results. Published by Elsevier GmbH.

  20. Absence of Frequent Herpesvirus Transmission in a Nonhuman Primate Predator-Prey System in the Wild

    PubMed Central

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A.; Leendertz, Fabian H.

    2013-01-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild. PMID:23885068

  1. Absence of frequent herpesvirus transmission in a nonhuman primate predator-prey system in the wild.

    PubMed

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A; Leendertz, Fabian H; Ehlers, Bernhard

    2013-10-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild.

  2. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Zhang, Jing; Tessier, Shannon N; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused) and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P<0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu-Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P<0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P<0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies. Copyright © 2015. Production and hosting by Elsevier Ltd.

  3. A discrepancy within primate spatial vision and its bearing on the definition of edge detection processes in machine vision

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1990-01-01

    The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.

  4. Nonhuman Primate Optogenetics: Recent Advances and Future Directions

    PubMed Central

    Acker, Leah

    2017-01-01

    Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function. PMID:29118219

  5. Evaluation of [11C]metergoline as a PET radiotracer for 5HTR in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2010-04-20

    Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [{sup 11}C]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [{sup 11}C]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology.

  6. Beyond specific pathogen-free: biology and effect of common viruses in macaques.

    PubMed

    Lerche, Nicholas W; Simmons, Joe H

    2008-02-01

    Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae, Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and other adventitious infectious agents.

  7. Beyond Specific Pathogen-Free: Biology and Effect of Common Viruses in Macaques

    PubMed Central

    Lerche, Nicholas W; Simmons, Joe H

    2008-01-01

    Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae, Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and other adventitious infectious agents. PMID:19793451

  8. A new primate assemblage from La Verrerie de Roches (Middle Eocene, Switzerland).

    PubMed

    Minwer-Barakat, Raef; Marigó, Judit; Becker, Damien; Costeur, Loïc

    2017-12-01

    Primates reached a great abundance and diversity during the Eocene, favored by warm temperatures and by the development of dense forests throughout the Northern Hemisphere. Here we describe new primate material from La Verrerie de Roches, a Middle Eocene karstic infill situated in the Jura Region (Switzerland), consisting of more than 80 dental remains. The primate assemblage from La Verrerie de Roches includes five different taxa. The best represented primate is Necrolemur aff. anadoni, similar in size and overall morphology to Necrolemur anadoni but resembling in some features the younger species Necrolemur antiquus. Microchoerines are also represented by two species of Pseudoloris, P. pyrenaicus and Pseudoloris parvulus, constituting the unique joint record of these two species known up to now. Remains of Adapiformes are limited to one isolated tooth of a large anchomomyin and another tooth belonging to the small adapine Microadapis cf. sciureus. The studied primate association allows assigning La Verrerie de Roches to the Robiacian Land Mammal Age. More specifically, this site can be confidently situated between the MP15 and MP16 reference levels, although the primate assemblage probably indicates some degree of temporal mixing. This is the first record of P. pyrenaicus and a form closely related to N. anadoni out of the Iberian Peninsula. The identification of these microchoerines in Switzerland gives further support to the connection of NE Spain and Central Europe during the Middle Eocene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Language and reality: the origin of man].

    PubMed

    Maturana, H

    1989-07-01

    The author proposes: 1. That a lineage of living systems is constituted by the reproductive conservation of a manner of living under the form of an ontogenic phenotype. 2. That language is a manner of living in recurrent consensual coordinations of consensual coordinations of actions. 3. That the human manner of living entails among other things, a braiding of languaging and emotioning that we call conversation. 4. That human beings arise in the history of bipedal primates with the origin of language, and the constitution of a lineage defined by the conservation of an ontogenic phenotype that includes conversations as part of it. 5. That the magnitude of the involvement of the brain and anatomy of the larynx and face in speech as our main manner of languaging indicate that language cannot have arisen later than two to three millions year ago. 6. That rationally pertains to the operational coherences of languaging and that different rational domains are constituted by different basic notions that are accepted a priori. That is, on preference. 7. That responsibility and freedom are a function of our awareness of the participation of our emotions (preferences) in the constitution of the rational domains in which we operate.

  10. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    PubMed

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the origins of human handedness and language: a comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates.

    PubMed

    Meguerditchian, Adrien; Vauclair, Jacques; Hopkins, William D

    2013-09-01

    Within the evolutionary framework about the origin of human handedness and hemispheric specialization for language, the question of expression of population-level manual biases in nonhuman primates and their potential continuities with humans remains controversial. Nevertheless, there is a growing body of evidence showing consistent population-level handedness particularly for complex manual behaviors in both monkeys and apes. In the present article, within a large comparative approach among primates, we will review our contribution to the field and the handedness literature related to two particular sophisticated manual behaviors regarding their potential and specific implications for the origins of hemispheric specialization in humans: bimanual coordinated actions and gestural communication. Whereas bimanual coordinated actions seem to elicit predominance of left-handedness in arboreal primates and of right-handedness in terrestrial primates, all handedness studies that have investigated gestural communication in several primate species have reported stronger degree of population-level right-handedness compared to noncommunicative actions. Communicative gestures and bimanual actions seem to affect differently manual asymmetries in both human and nonhuman primates and to be related to different lateralized brain substrates. We will discuss (1) how the data of hand preferences for bimanual coordinated actions highlight the role of ecological factors in the evolution of handedness and provide additional support the postural origin theory of handedness proposed by MacNeilage [MacNeilage [2007]. Present status of the postural origins theory. In W. D. Hopkins (Ed.), The evolution of hemispheric specialization in primates (pp. 59-91). London: Elsevier/Academic Press] and (2) the hypothesis that the emergence of gestural communication might have affected lateralization in our ancestor and may constitute the precursors of the hemispheric specialization for language. © 2013 Wiley Periodicals, Inc.

  12. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  13. Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp

    PubMed Central

    Gomez, Andres; Rothman, Jessica M; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Umaña, Juan D; Carr, Monica; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Stumpf, Rebecca M; Wilson, Brenda A; Blekhman, Ran; White, Bryan A; Leigh, Steven R

    2016-01-01

    Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today. PMID:26315972

  14. The genetic architecture of gene expression levels in wild baboons.

    PubMed

    Tung, Jenny; Zhou, Xiang; Alberts, Susan C; Stephens, Matthew; Gilad, Yoav

    2015-02-25

    Primate evolution has been argued to result, in part, from changes in how genes are regulated. However, we still know little about gene regulation in natural primate populations. We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied wild population. We performed complementary expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses, discovering substantial evidence for, and surprising power to detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly overlapped between baboons and a comparable human eQTL data set. Our results suggest that genes vary in their tolerance of genetic perturbation, and that this property may be conserved across species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and represent an important step towards understanding the genetic architecture of gene expression in primates.

  15. The genetic architecture of gene expression levels in wild baboons

    PubMed Central

    Tung, Jenny; Zhou, Xiang; Alberts, Susan C; Stephens, Matthew; Gilad, Yoav

    2015-01-01

    Primate evolution has been argued to result, in part, from changes in how genes are regulated. However, we still know little about gene regulation in natural primate populations. We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied wild population. We performed complementary expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses, discovering substantial evidence for, and surprising power to detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly overlapped between baboons and a comparable human eQTL data set. Our results suggest that genes vary in their tolerance of genetic perturbation, and that this property may be conserved across species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and represent an important step towards understanding the genetic architecture of gene expression in primates. DOI: http://dx.doi.org/10.7554/eLife.04729.001 PMID:25714927

  16. Specific pathogen-free macaques: definition, history, and current production.

    PubMed

    Morton, William R; Agy, Michael B; Capuano, Saverio V; Grant, Richard F

    2008-01-01

    Specific pathogen-free (SPF) macaque colonies are now requested frequently as a resource for research. Such colonies were originally conceived as a means to cull diseased animals from research-dedicated colonies, with the goal of eliminating debilitating or fatal infectious agents from the colony to improve the reproductive capacity of captive research animals. The initial pathogen of concern was Mycobacterium tuberculosis (M.tb.), recognized for many years as a pathogen of nonhuman primates as well as a human health target. More recently attention has focused on four viral pathogens as the basis for an SPF colony: simian type D retrovirus (SRV), simian immunodeficiency virus (SIV), simian T cell lymphotropic/leukemia virus (STLV), and Cercopithecine herpesvirus 1 (CHV-1). New technologies, breeding, and maintenance schemes have emerged to develop and provide SPF primates for research. In this review we focus on the nonhuman primates (NHPs) most common to North American NHP research facilities, Asian macaques, and the most common current research application of these animals, modeling of human AIDS.

  17. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  18. Effects of local myopic defocus on refractive development in monkeys.

    PubMed

    Smith, Earl L; Hung, Li-Fang; Huang, Juan; Arumugam, Baskar

    2013-11-01

    Visual signals that produce myopia are mediated by local, regionally selective mechanisms. However, little is known about spatial integration for signals that slow eye growth. The purpose of this study was to determine whether the effects of myopic defocus are integrated in a local manner in primates. Beginning at 24 ± 2 days of age, seven rhesus monkeys were reared with monocular spectacles that produced 3 diopters (D) of relative myopic defocus in the nasal visual field of the treated eye but allowed unrestricted vision in the temporal field (NF monkeys). Seven monkeys were reared with monocular +3 D lenses that produced relative myopic defocus across the entire field of view (FF monkeys). Comparison data from previous studies were available for 11 control monkeys, 8 monkeys that experienced 3 D of hyperopic defocus in the nasal field, and 6 monkeys exposed to 3 D of hyperopic defocus across the entire field. Refractive development, corneal power, and axial dimensions were assessed at 2- to 4-week intervals using retinoscopy, keratometry, and ultrasonography, respectively. Eye shape was assessed using magnetic resonance imaging. In response to full-field myopic defocus, the FF monkeys developed compensating hyperopic anisometropia, the degree of which was relatively constant across the horizontal meridian. In contrast, the NF monkeys exhibited compensating hyperopic changes in refractive error that were greatest in the nasal visual field. The changes in the pattern of peripheral refractions in the NF monkeys reflected interocular differences in vitreous chamber shape. As with form deprivation and hyperopic defocus, the effects of myopic defocus are mediated by mechanisms that integrate visual signals in a local, regionally selective manner in primates. These results are in agreement with the hypothesis that peripheral vision can influence eye shape and potentially central refractive error in a manner that is independent of central visual experience.

  19. Primate Anatomy, Kinematics, and Principles for Humanoid Design

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Ambrose, Catherine G.

    2004-01-01

    The primate order of animals is investigated for clues in the design of Humanoid Robots. The pursuit is directed with a theory that kinematics, musculature, perception, and cognition can be optimized for specific tasks by varying the proportions of limbs, and in particular, the points of branching in kinematic trees such as the primate skeleton. Called the Bifurcated Chain Hypothesis, the theory is that the branching proportions found in humans may be superior to other animals and primates for the tasks of dexterous manipulation and other human specialties. The primate taxa are defined, contemporary primate evolution hypotheses are critiqued, and variations within the order are noted. The kinematic branching points of the torso, limbs and fingers are studied for differences in proportions across the order, and associated with family and genus capabilities and behaviors. The human configuration of a long waist, long neck, and short arms is graded using a kinematic workspace analysis and a set of design axioms for mobile manipulation robots. It scores well. The re emergence of the human waist, seen in early Prosimians and Monkeys for arboreal balance, but lost in the terrestrial Pongidae, is postulated as benefiting human dexterity. The human combination of an articulated waist and neck will be shown to enable the use of smaller arms, achieving greater regions of workspace dexterity than the larger limbs of Gorillas and other Hominoidea.

  20. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  1. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    PubMed Central

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  2. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  3. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes.

    PubMed

    Sherwood, Chet C; Raghanti, Mary Ann; Stimpson, Cheryl D; Spocter, Muhammad A; Uddin, Monica; Boddy, Amy M; Wildman, Derek E; Bonar, Christopher J; Lewandowski, Albert H; Phillips, Kimberley A; Erwin, Joseph M; Hof, Patrick R

    2010-04-07

    Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.

  4. Interspecies chimera between primate embryonic stem cells and mouse embryos: Monkey ESCs engraft into mouse embryos, but not post-implantation fetuses

    PubMed Central

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2016-01-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. PMID:21543277

  5. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    DTIC Science & Technology

    2016-08-01

    is safe and well tolerated, but does not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human...injection for enhancing TVDV in non -human primates. Specific Aim 2: Develop an improved dengue vaccine using a heterologous prime boost approach...not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human primates to enhance the immunogenicity of

  6. Many human accelerated regions are developmental enhancers

    PubMed Central

    Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.

    2013-01-01

    The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637

  7. Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes

    PubMed Central

    Premzl, Marko

    2015-01-01

    Using eutherian comparative genomic analysis protocol and public genomic sequence data sets, the present work attempted to update and revise two gene data sets. The most comprehensive third party annotation gene data sets of eutherian adenohypophysis cystine-knot genes (128 complete coding sequences), and d-dopachrome tautomerases and macrophage migration inhibitory factor genes (30 complete coding sequences) were annotated. For example, the present study first described primate-specific cystine-knot Prometheus genes, as well as differential gene expansions of D-dopachrome tautomerase genes. Furthermore, new frameworks of future experiments of two eutherian gene data sets were proposed. PMID:25941635

  8. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner.

    PubMed

    Tran, L; Greenwood-Van Meerveld, B

    2014-03-01

    Incidences of gastrointestinal (GI) motility disorders increase with age. However, there is a paucity of knowledge about the aging mechanisms leading to GI dysmotility. Motility in the GI tract is a function of smooth muscle contractility, which is modulated in part by the enteric nervous system (ENS). Evidence suggests that aging impairs the ENS, thus we tested the hypothesis that senescence in the GI tract precipitates abnormalities in smooth muscle and neurally mediated contractility in a region-specific manner. Jejunal and colonic circular muscle strips were isolated from young (4-10 years) and old (18+ years) baboons. Myogenic responses were investigated using potassium chloride (KCl) and carbachol (CCh). Neurally mediated contractile responses were evoked by electrical field stimulation (EFS) and were recorded in the absence and presence of atropine (1 μM) or NG-Nitro-l-arginine methyl ester (l-NAME; 100 μM). The myogenic responses to KCl in the jejunum and colon were unaffected by age. In the colon, but not the jejunum, CCh-induced contractile responses were reduced in aged animals. Compared to young baboons, there was enhanced EFS-induced contractility of old baboon jejunal smooth muscle in contrast to the reduced contractility in the colon. The effect of atropine on the EFS response was lower in aged colonic tissue, suggesting reduced participation of acetylcholine. In aged jejunal tissue, higher contractile responses to EFS were found to be due to reduced nitregic inhibition. These findings provide key evidence for the importance of intestinal smooth muscle and ENS senescence in age-associated GI motility disorders. © 2014 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

  9. PET Studies in Nonhuman Primate Models of Cocaine Abuse: Translational Research Related to Vulnerability and Neuroadaptations

    PubMed Central

    Gould, Robert W.; Duke, Angela N.; Nader, Michael A.

    2013-01-01

    The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. PMID:23458573

  10. Evolution of Osteocrin as an activity-regulated factor in the primate brain

    PubMed Central

    Ataman, Bulent; Boulting, Gabriella L.; Harmin, David A.; Yang, Marty G.; Baker-Salisbury, Mollie; Yap, Ee-Lynn; Malik, Athar N.; Mei, Kevin; Rubin, Alex A.; Spiegel, Ivo; Durresi, Ershela; Sharma, Nikhil; Hu, Linda S.; Pletikos, Mihovil; Griffith, Eric C.; Partlow, Jennifer N.; Stevens, Christine R.; Adli, Mazhar; Chahrour, Maria; Sestan, Nenad; Walsh, Christopher A.; Berezovskii, Vladimir K.; Livingstone, Margaret S.; Greenberg, Michael E.

    2017-01-01

    Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates. PMID:27830782

  11. Research progress of the bitter taste receptor genes in primates.

    PubMed

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  12. The complexity of selection at the major primate beta-defensin locus.

    PubMed

    Semple, Colin A M; Maxwell, Alison; Gautier, Philippe; Kilanowski, Fiona M; Eastwood, Hayden; Barran, Perdita E; Dorin, Julia R

    2005-05-18

    We have examined the evolution of the genes at the major human beta-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. Consequently variable selective pressures have acted on beta-defensin genes in different evolutionary lineages, with episodes both of negative, and more rarely positive selection, during the divergence of primates. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel, rodent-specific beta-defensin genes. These observations allow a fuller understanding of the evolution of mammalian innate immunity. In both the rodent and primate lineages, sites in the second exon have been subject to positive selection and by implication are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions predicted to be important for the specificity of the antimicrobial or chemoattractant properties of beta-defensins. Surprisingly, sites within the prepropeptide region were also implicated as being subject to significant positive selection, suggesting previously unappreciated functional significance for this region. Identification of these putatively functional sites has important implications for our understanding of beta-defensin function and for novel antibiotic design.

  13. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques

    PubMed Central

    Bimber, Benjamin N.; Reed, Jason S.; Uebelhoer, Luke S.; Bhusari, Amruta; Hammond, Katherine B.; Klug, Alex; Legasse, Alfred W.; Axthelm, Michael K.; Nelson, Jay A.; Streblow, Daniel N.; Picker, Louis J.; Früh, Klaus; Sacha, Jonah B.

    2016-01-01

    Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68–1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68–1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68–1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68–1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68–1 and 68–1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics. PMID:27829026

  14. Mirror mechanism and dedicated circuits are the scaffold for mirroring processes.

    PubMed

    Fogassi, Leonardo

    2014-04-01

    In the past decade many studies have demonstrated the existence of a mirror mechanism that matches the sensory representation of a biological stimulus with its somatomotor and visceromotor representation. This mechanism, likely phylogenetically very old, explains several types of mirroring behaviours, at different levels of complexity. The presence in primates of dedicated neuroanatomical pathways for specific sensorimotor integrations processes implies, at least in the primate lineage, a hard-wired mirror mechanism for social cognitive functions.

  15. The evolution and expression of the snaR family of small non-coding RNAs

    PubMed Central

    Parrott, Andrew M.; Tsai, Michael; Batchu, Priyanka; Ryan, Karen; Ozer, Harvey L.; Tian, Bin; Mathews, Michael B.

    2011-01-01

    We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation. PMID:20935053

  16. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  17. Mental rotation of primate hands: human-likeness and thumb saliency.

    PubMed

    Bläsing, Bettina; de Castro Campos, Marcella; Schack, Thomas; Brugger, Peter

    2012-08-01

    Mental rotation of human hands has been found to differ essentially from mental rotation of objects in such a way that reaction times and error rates of handedness judgements are influenced by the comfort and familiarity of the presented hand postures. To investigate the role of the similarity of the presented hands to the participant's own hand, we used different primates' hands as stimuli in a mental rotation task. Five out of 24 primate hands were chosen for their ratings in human-likeness and saliency of the thumb according to a questionnaire study and presented in two mental rotation experiments; in the second experiment, they were modified in such a way that all hands appeared thumbless. Results of both experiments revealed effects of species and orientation on reaction times, and an interaction between species and hand side occurred in the second experiment. In the first experiment, the thumbless Colobus hand differed from all other hands, showing the highest reaction times and error rates and failing to show the expected medial-over-lateral advantage. In the second experiment, the eccentricity of the Colobus hand was decreased and the facilitating effect of human-likeness was slightly increased. We conclude that motor strategies were applied that relied less on the asymmetry of the stimuli but rather on their similarity to the human hand. We argue that motor simulation might facilitate the processing of incomplete stimuli by mentally completing them, especially if all stimuli can be processed in a consistent manner.

  18. Computer retina that models the primate retina

    NASA Astrophysics Data System (ADS)

    Shah, Samir; Levine, Martin D.

    1994-06-01

    At the retinal level, the strategies utilized by biological visual systems allow them to outperform machine vision systems, serving to motivate the design of electronic or `smart' sensors based on similar principles. Design of such sensors in silicon first requires a model of retinal information processing which captures the essential features exhibited by biological retinas. In this paper, a simple retinal model is presented, which qualitatively accounts for the achromatic information processing in the primate cone system. The model exhibits many of the properties found in biological retina such as data reduction through nonuniform sampling, adaptation to a large dynamic range of illumination levels, variation of visual acuity with illumination level, and enhancement of spatio temporal contrast information. The model is validated by replicating experiments commonly performed by electrophysiologists on biological retinas and comparing the response of the computer retina to data from experiments in monkeys. In addition, the response of the model to synthetic images is shown. The experiments demonstrate that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an `artificial retina.'

  19. New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: evidence from three primate petrosals from the Eocene of Chambi, Tunisia.

    PubMed

    Benoit, Julien; Essid, El Mabrouk; Marzougui, Wissem; Khayati Ammar, Hayet; Lebrun, Renaud; Tabuce, Rodolphe; Marivaux, Laurent

    2013-11-01

    We report the discovery of three isolated primate petrosal fragments from the fossiliferous locality of Chambi (Tunisia), a primate-bearing locality dating from the late early to the early middle Eocene. These fossils display a suite of anatomical characteristics otherwise found only in strepsirhines, and as such might be attributed either to Djebelemur or/and cf. Algeripithecus, the two diminutive stem strepsirhine primates recorded from this locality. Although damaged, the petrosals provide substantial information regarding the ear anatomy of these advanced stem strepsirhines (or pre-tooth-combed primates), notably the patterns of the pathway of the arterial blood supply. Using μCT-scanning techniques and digital segmentation of the structures, we show that the transpromontorial and stapedial branches of the internal carotid artery (ICA) were present (presence of bony tubes), but seemingly too small to supply enough blood to the cranium alone. This suggests that the ICA was not the main cranial blood supply in stem strepsirhines, but that the pharyngeal or vertebral artery primitively ensured a great part of this role instead, an arterial pattern that is reminiscent of modern cheirogaleid, lepilemurid lemuriforms and lorisiforms. This could explain parallel loss of the ICA functionality among these families. Specific measurements made on the cochlea indicate that the small strepsirhine primate(s) from Chambi was (were) highly sensitive to high frequencies and poorly sensitive to low frequencies. Finally, variance from orthogonality of the plane of the semicircular canals (SCs) calculated on one petrosal (CBI-1-569) suggests that Djebelemur or cf. Algeripithecus likely moved (at least its head) in a way similar to that of modern mouse lemurs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Are we making the grade? Practices and reported efficacy measures of primate conservation education programs.

    PubMed

    Kling, Katherine J; Hopkins, Mariah E

    2015-04-01

    Conservation education is often employed alongside primate conservation efforts with the aim of changing knowledge, attitudes, and behaviors toward non-human primates. Recommended best-use practices include longevity, use of program incentives, collaboration among educators, and adaptive program assessment, among others. This study surveys primate conservation education programs (PCEPs) to assess the frequency of suggested best-use practices, and to investigate impacts on program efficacy. Online surveys were collected from PCEPs in 2013-2014 (N = 43). The majority of programs reported lengths of 5-10 years, with participant involvement ranging widely from a day to several years. Non-economic and economic incentives were distributed by approximately half of all programs, with programs that provided economic incentives reporting positive participant attitude changes more frequently than those that did not (P = 0.03). While >70% of PCEPs consulted with community leaders, local teachers, and research scientists, only 45.9% collaborated with other conservation educators and only 27% collaborated with cultural experts such as cultural anthropologists. Programs that collaborated with other conservation educators were more likely to report reductions in threats to primates, specifically to bushmeat hunting and capture of primates for the pet trade (P = 0.07). Formal program evaluations were employed by 72.1% of all programs, with the majority of programs using surveys to assess changes to participant attitudes and knowledge. Formal evaluations of participant behavior, community attitudes and behaviors, and threats to primate populations were less common. While results indicate that PCEPs follow many suggested best-use practices, program impacts may be enhanced by greater discussion of economic incentivization, increased collaboration between conservation educators, and improved commitment to adaptive evaluation of changes to behaviors in addition to attitudes and knowledge. © 2014 Wiley Periodicals, Inc.

  1. Recent advances in primate nutritional ecology.

    PubMed

    Righini, Nicoletta

    2017-04-01

    Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a nutritionally balanced diet. © 2017 Wiley Periodicals, Inc.

  2. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  3. Diagonal gaits in the feathertail glider Acrobates pygmaeus (Acrobatidae, Diprotodontia): Insights for the evolution of primate quadrupedalism.

    PubMed

    Karantanis, Nikolaos-Evangelos; Youlatos, Dionisios; Rychlik, Leszek

    2015-09-01

    Research on primate origins has revolved around arboreality and, more specifically, the adaptations that are linked to safe navigation in the fine-branch niche. To this end, extant non-primate mammals have been used as models to assess the significance of these adaptations. However, the size of these models is larger than that estimated for early primates. In contrast, the feathertail marsupial glider Acrobates pygmaeus, with a body mass of 12 g, a clawless opposable hallux, and terminal branch feeding habits appears more suited to modeling behavioral adaptations to the small branch milieu. Analysis of video recordings of 18 feathertail gliders walking on poles of variable diameter and inclination revealed that they preferentially used diagonal sequence gaits, fast velocities and low duty factors. Diagonal gaits did not correlate to duty factor, but increased as substrate size decreased, and from descending to ascending locomotion. Furthermore, the duty factor index increased in more diagonal gaits and ascending locomotion. Finally, velocities were lower on smaller substrates, and were mainly regulated by stride frequency and, to a lesser degree, stride length. Feathertail glider gaits displayed noteworthy behavioral convergences with primate quadrupedalism, but some of these results need additional investigation. Despite any discrepancies, these features appear to be favorable for quadrupedal progression on small branches, providing a selective advantage for navigating within a fine branch niche and highlighting the importance of small body size in early primate evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil.

    PubMed

    Figueiredo, Mayra Araguaia Pereira; Di Santi, Silvia Maria; Manrique, Wilson Gómez; André, Marcos Rogério; Machado, Rosangela Zacarias

    2017-01-01

    In the Brazilian Amazon region, malaria caused by Plasmodium malariae is considered to be a zoonosis because of cross-transfer of the parasite between humans and Neotropical primates. To contribute information on this issue, we investigated occurrences of natural infection with Plasmodium sp. among Neotropical primates in the Maranhense Amazon (Amazon region of the state of Maranhão), in the northeastern region of Brazil. Blood samples were collected from 161 Neotropical primates of six species that were caught in an environmental reserve (Sítio Aguahy) and from captive primates (CETAS-Wildlife Screening Center, municipality of São Luís), in Maranhão. Plasmodium sp. was diagnosed based on light microscopy, PCR, qPCR and LAMP for amplification of the 18S rRNA gene. Serum samples were also assayed by means of indirect immunofluorescence for IgG antibodies against P. malariae/P. brasilianum, P. falciparum and P. berghei. Parasites were detected through light microscopy on five slides from captive primates (four Sapajus spp. and one Callithrix jacchus). In the molecular tests, 34.16% (55/161) and 29.81% (48/161) of the animals sampled were positive in the qPCR and PCR assays, respectively. In the PCR, 47/48 animals were positive for P. malariae/P. brasilianum; of these, eight were free-living primates and 39 from CETAS, São Luís. One sample showed a band in the genus-specific reaction, but not in the second PCR reaction. Anti-P. malariae/P. brasilianum IgG antibodies were detected in four serum samples from Sapajus spp. in captivity. In this study, circulation of P. malariae/P. brasilianum in Neotropical primates was confirmed, with low levels of parasitemia and low levels of antibodies. The importance of these animals as reservoirs of human malaria in the region studied is still unknown. This scenario has an impact on control and elimination of malaria in this region.

  5. Are Synonymous Sites in Primates and Rodents Functionally Constrained?

    PubMed

    Price, Nicholas; Graur, Dan

    2016-01-01

    It has been claimed that synonymous sites in mammals are under selective constraint. Furthermore, in many studies the selective constraint at such sites in primates was claimed to be more stringent than that in rodents. Given the larger effective population sizes in rodents than in primates, the theoretical expectation is that selection in rodents would be more effective than that in primates. To resolve this contradiction between expectations and observations, we used processed pseudogenes as a model for strict neutral evolution, and estimated selective constraint on synonymous sites using the rate of substitution at pseudosynonymous and pseudononsynonymous sites in pseudogenes as the neutral expectation. After controlling for the effects of GC content, our results were similar to those from previous studies, i.e., synonymous sites in primates exhibited evidence for higher selective constraint that those in rodents. Specifically, our results indicated that in primates up to 24% of synonymous sites could be under purifying selection, while in rodents synonymous sites evolved neutrally. To further control for shifts in GC content, we estimated selective constraint at fourfold degenerate sites using a maximum parsimony approach. This allowed us to estimate selective constraint using mutational patterns that cause a shift in GC content (GT ↔ TG, CT ↔ TC, GA ↔ AG, and CA ↔ AC) and ones that do not (AT ↔ TA and CG ↔ GC). Using this approach, we found that synonymous sites evolve neutrally in both primates and rodents. Apparent deviations from neutrality were caused by a higher rate of C → A and C → T mutations in pseudogenes. Such differences are most likely caused by the shift in GC content experienced by pseudogenes. We conclude that previous estimates according to which 20-40% of synonymous sites in primates were under selective constraint were most likely artifacts of the biased pattern of mutation.

  6. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  7. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  8. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes.

    PubMed

    Sharma, Narayan; Huffman, Michael A; Gupta, Shreejata; Nautiyal, Himani; Mendonça, Renata; Morino, Luca; Sinha, Anindya

    2016-08-01

    Water is one of the most important components of an animal's diet, as it is essential for life. Primates, as do most animals, procure water directly from standing or free-flowing sources such as pools, ponds and rivers, or indirectly by the ingestion of certain plant parts. The latter is frequently described as the main source of water for predominantly arboreal species. However, in addition to these, many species are known to drink water accumulated in tree-holes. This has been commonly observed in several arboreal New World primate species, but rarely reported systematically from Old World primates. Here, we report observations of this behaviour from eight great ape and Old World monkey species, namely chimpanzee, orangutan, siamang, western hoolock gibbon, northern pig-tailed macaque, bonnet macaque, rhesus macaque and the central Himalayan langur. We hypothesise three possible reasons why these primates drink water from tree-holes: (1) coping with seasonal or habitat-specific water shortages, (2) predator/human conflict avoidance, and (3) potential medicinal benefits. We also suggest some alternative hypotheses that should be tested in future studies. This behaviour is likely to be more prevalent than currently thought, and may have significant, previously unknown, influences on primate survival and health, warranting further detailed studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses.

    PubMed

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2011-07-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Directional and balancing selection in human beta-defensins.

    PubMed

    Hollox, Edward J; Armour, John A L

    2008-04-16

    In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations. We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations. Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.

  11. A word in the hand: action, gesture and mental representation in humans and non-human primates

    PubMed Central

    Cartmill, Erica A.; Beilock, Sian; Goldin-Meadow, Susan

    2012-01-01

    The movements we make with our hands both reflect our mental processes and help to shape them. Our actions and gestures can affect our mental representations of actions and objects. In this paper, we explore the relationship between action, gesture and thought in both humans and non-human primates and discuss its role in the evolution of language. Human gesture (specifically representational gesture) may provide a unique link between action and mental representation. It is kinaesthetically close to action and is, at the same time, symbolic. Non-human primates use gesture frequently to communicate, and do so flexibly. However, their gestures mainly resemble incomplete actions and lack the representational elements that characterize much of human gesture. Differences in the mirror neuron system provide a potential explanation for non-human primates' lack of representational gestures; the monkey mirror system does not respond to representational gestures, while the human system does. In humans, gesture grounds mental representation in action, but there is no evidence for this link in other primates. We argue that gesture played an important role in the transition to symbolic thought and language in human evolution, following a cognitive leap that allowed gesture to incorporate representational elements. PMID:22106432

  12. Detection of HEV-specific antibodies in four non-human primate species, including great apes, from different zoos in Germany.

    PubMed

    Spahr, C; Knauf-Witzens, T; Dähnert, L; Enders, M; Müller, M; Johne, R; Ulrich, R G

    2018-01-01

    The hepatitis E virus (HEV) has been described in humans and various animal species in different regions of the world. However, the knowledge on natural HEV infection in non-human primates and the corresponding risk of zoonotic transmission is scarce. To determine whether primates in captivity are affected by HEV infection, we investigated 259 individual sera of clinically healthy non-human primates of 14 species from nine German zoos. Using a commercial double-antigen-sandwich ELISA and a commercial IgG ELISA, 10 animals (3·9%) reacted positive in at least one assay. Three ape species and one Old World monkey species were among the seropositive animals: bonobo (Pan paniscus), gorilla (Gorilla gorilla gorilla), lar gibbon (Hylobates lar) and drill (Mandrillus leucophaeus). Testing for anti-HEV-IgM antibodies by commercial ELISA and for viral RNA by reverse-transcription real-time polymerase chain reaction resulted in negative results for all animals indicating the absence of acute HEV infections. In the past, no clinical signs of hepatitis were recorded for the seropositive animals. The results suggest that non-human primates in zoos can get naturally and subclinically infected with HEV or related hepeviruses. Future studies should evaluate potential sources and transmission routes of these infections and their impact on human health.

  13. Noncoding origins of anthropoid traits and a new null model of transposon functionalization

    PubMed Central

    del Rosario, Ricardo C.H.; Rayan, Nirmala Arul

    2014-01-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the “gene-battery” model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. PMID:25043600

  14. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition

    PubMed Central

    Aoki, Chiye; Hawken, Michael J.

    2012-01-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  15. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.

    PubMed

    Disney, Anita A; Aoki, Chiye; Hawken, Michael J

    2012-10-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width.

  16. Identification, using sera from exposed animals, of putative viral antigens in livers of primates with callitrichid hepatitis.

    PubMed Central

    Stephensen, C B; Montali, R J; Ramsay, E C; Holmes, K V

    1990-01-01

    Callitrichid hepatitis (CH) is an acute, frequently fatal viral hepatitis which affects members of the primate family Callitrichidae (R. J. Montali, E. C. Ramsay, C. B. Stephensen, M. Worley, J. A. Davis, and K. V. Holmes, J. Infect. Dis. 160:759-765, 1989; E. C. Ramsay, R. J. Montali, M. Worley, C. B. Stephensen, and K. V. Holmes, J. Zoo Wildlife Med. 20:178-183, 1989). Outbreaks of the disease occur in zoos and animal parks. In this study, CH-specific antigens were identified in the livers of infected animals by using immune sera from primates with CH and CH-exposed asymptomatic animals. Three CH-specific antigens with apparent molecular masses of 34, 54, and 65 kDa were identified. A polyclonal antiserum was raised against the 54-kDa antigen. These antigens were not found in the livers of uninfected animals and may be viral proteins. Our results suggest that at least five of the six outbreaks of CH considered here were caused by the same virus or by an antigenically related virus. Images PMID:2123012

  17. Effects of systemic cholinergic antagonism on reinforcer devaluation in macaques.

    PubMed

    Waguespack, Hannah F; Málková, Ludise; Forcelli, Patrick A; Turchi, Janita

    2018-06-21

    The capacity to adjust actions based on new information is a vital cognitive function. An animal's ability to adapt behavioral responses according to changes in reward value can be measured using a reinforcer devaluation task, wherein the desirability of a given object is reduced by decreasing the value of the associated food reinforcement. Elements of the neural circuits serving this ability have been studied in both rodents and nonhuman primates. Specifically, the basolateral amygdala, orbitofrontal cortex, nucleus accumbens, and mediodorsal thalamus have each been shown to play a critical role in the process of value updating, required for adaptive goal selection. As these regions receive dense cholinergic input, we investigated whether systemic injections of non-selective nicotinic or muscarinic acetylcholine receptor antagonists, mecamylamine and scopolamine, respectively, would impair performance on a reinforcer devaluation task. Here we demonstrate that in the presence of either a nicotinic or muscarinic antagonist, animals are able to shift their behavioral responses in an appropriate manner, suggesting that disruption of cholinergic neuromodulation is not sufficient to disrupt value updating, and subsequent goal selection, in rhesus macaques. Published by Elsevier B.V.

  18. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination.

    PubMed

    Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H

    2017-12-18

    Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells

    PubMed Central

    Portilho, Débora M.; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K.; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J.

    2015-01-01

    Summary During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  20. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates

    PubMed Central

    Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.

    2017-01-01

    The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320

  1. Gaze Duration Biases for Colours in Combination with Dissonant and Consonant Sounds: A Comparative Eye-Tracking Study with Orangutans.

    PubMed

    Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas

    2015-01-01

    Research on colour preferences in humans and non-human primates suggests similar patterns of biases for and avoidance of specific colours, indicating that these colours are connected to a psychological reaction. Similarly, in the acoustic domain, approach reactions to consonant sounds (considered as positive) and avoidance reactions to dissonant sounds (considered as negative) have been found in human adults and children, and it has been demonstrated that non-human primates are able to discriminate between consonant and dissonant sounds. Yet it remains unclear whether the visual and acoustic approach-avoidance patterns remain consistent when both types of stimuli are combined, how they relate to and influence each other, and whether these are similar for humans and other primates. Therefore, to investigate whether gaze duration biases for colours are similar across primates and whether reactions to consonant and dissonant sounds cumulate with reactions to specific colours, we conducted an eye-tracking study in which we compared humans with one species of great apes, the orangutans. We presented four different colours either in isolation or in combination with consonant and dissonant sounds. We hypothesised that the viewing time for specific colours should be influenced by dissonant sounds and that previously existing avoidance behaviours with regard to colours should be intensified, reflecting their association with negative acoustic information. The results showed that the humans had constant gaze durations which were independent of the auditory stimulus, with a clear avoidance of yellow. In contrast, the orangutans did not show any clear gaze duration bias or avoidance of colours, and they were also not influenced by the auditory stimuli. In conclusion, our findings only partially support the previously identified pattern of biases for and avoidance of specific colours in humans and do not confirm such a pattern for orangutans.

  2. Gaze Duration Biases for Colours in Combination with Dissonant and Consonant Sounds: A Comparative Eye-Tracking Study with Orangutans

    PubMed Central

    Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas

    2015-01-01

    Research on colour preferences in humans and non-human primates suggests similar patterns of biases for and avoidance of specific colours, indicating that these colours are connected to a psychological reaction. Similarly, in the acoustic domain, approach reactions to consonant sounds (considered as positive) and avoidance reactions to dissonant sounds (considered as negative) have been found in human adults and children, and it has been demonstrated that non-human primates are able to discriminate between consonant and dissonant sounds. Yet it remains unclear whether the visual and acoustic approach–avoidance patterns remain consistent when both types of stimuli are combined, how they relate to and influence each other, and whether these are similar for humans and other primates. Therefore, to investigate whether gaze duration biases for colours are similar across primates and whether reactions to consonant and dissonant sounds cumulate with reactions to specific colours, we conducted an eye-tracking study in which we compared humans with one species of great apes, the orangutans. We presented four different colours either in isolation or in combination with consonant and dissonant sounds. We hypothesised that the viewing time for specific colours should be influenced by dissonant sounds and that previously existing avoidance behaviours with regard to colours should be intensified, reflecting their association with negative acoustic information. The results showed that the humans had constant gaze durations which were independent of the auditory stimulus, with a clear avoidance of yellow. In contrast, the orangutans did not show any clear gaze duration bias or avoidance of colours, and they were also not influenced by the auditory stimuli. In conclusion, our findings only partially support the previously identified pattern of biases for and avoidance of specific colours in humans and do not confirm such a pattern for orangutans. PMID:26466351

  3. Campbell's monkeys use affixation to alter call meaning.

    PubMed

    Ouattara, Karim; Lemasson, Alban; Zuberbühler, Klaus

    2009-11-12

    Human language has evolved on a biological substrate with phylogenetic roots deep in the primate lineage. Here, we describe a functional analogy to a common morphological process in human speech, affixation, in the alarm calls of free-ranging adult Campbell's monkeys (Cercopithecus campbelli campbelli). We found that male alarm calls are composed of an acoustically variable stem, which can be followed by an acoustically invariable suffix. Using long-term observations and predator simulation experiments, we show that suffixation in this species functions to broaden the calls' meaning by transforming a highly specific eagle alarm to a general arboreal disturbance call or by transforming a highly specific leopard alarm call to a general alert call. We concluded that, when referring to specific external events, non-human primates can generate meaningful acoustic variation during call production that is functionally equivalent to suffixation in human language.

  4. Nonhuman primates prefer slow tempos but dislike music overall.

    PubMed

    McDermott, Josh; Hauser, Marc D

    2007-09-01

    Human adults generally find fast tempos more arousing than slow tempos, with tempo frequently manipulated in music to alter tension and emotion. We used a previously published method [McDermott, J., & Hauser, M. (2004). Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition, 94(2), B11-B21] to test cotton-top tamarins and common marmosets, two new-World primates, for their spontaneous responses to stimuli that varied systematically with respect to tempo. Across several experiments, we found that both tamarins and marmosets preferred slow tempos to fast. It is possible that the observed preferences were due to arousal, and that this effect is homologous to the human response to tempo. In other respects, however, these two monkey species showed striking differences compared to humans. Specifically, when presented with a choice between slow tempo musical stimuli, including lullabies, and silence, tamarins and marmosets preferred silence whereas humans, when similarly tested, preferred music. Thus despite the possibility of homologous mechanisms for tempo perception in human and nonhuman primates, there appear to be motivational ties to music that are uniquely human.

  5. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  6. Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

    PubMed Central

    Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J. Carl; Woods, C. Geoffrey; Walsh, Christopher A

    2004-01-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size. PMID:15045028

  7. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.

    PubMed

    Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.

  8. Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    PubMed Central

    Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846

  9. Reductions in primate abundance and diversity in a multiuse protected area: synergistic impacts of hunting and logging in a congo basin forest.

    PubMed

    Remis, Melissa J; Jost Robinson, Carolyn A

    2012-07-01

    This article explores spatial and temporal changes in diurnal primate abundance and behavior in response to hunting, logging, and conservation at the Dzanga Sangha Dense Forest Reserve (RDS), Central African Republic over time. We use a combination of line-transect surveys in 2002 and 2009 (N = 540 km) and ethnographic interviews (N = 210) to investigate changes in the status of cercopithecines and colobines at RDS, with additional comparisons to earlier work. This protected area was lightly logged in the 1970s and the park was gazetted in 1990, with multiple-use reserve sectors allocated. Since the park's inception, hunting and the trade of primates have increased, along with human migration, greater accessibility of arms, and reduction of preferred ungulate prey. Primates have declined in both the park and reserve sectors. Our data further suggest that at RDS hunting has had a greater impact on primate diversity and abundance than logging. We have identified changes in species-specific vulnerability to hunting over time, with Cercopithecus nictitans and Lophocebus albigena initially having appeared to be relatively resistant to hunting pressure in 2002. However, subsequently as gun hunting has increased at RDS, these species have become vulnerable. Although monkeys at RDS have been responding behaviorally to increased gun hunting, they are not able to keep pace with changing hunting practices. This study allows us to begin to understand synergistic impacts of hunting and logging, necessary if we are to recommend strategies to better secure the future of primates in multiuse protected areas. © 2012 Wiley Periodicals, Inc.

  10. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    PubMed

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  11. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex.

    PubMed

    Murray, Elisabeth A; Rudebeck, Peter H

    2018-05-23

    The estimated values of choices, and therefore decision-making based on those values, are influenced by both the chance that the chosen items or goods can be obtained (availability) and their current worth (desirability) as well as by the ability to link the estimated values to choices (a process sometimes called credit assignment). In primates, the prefrontal cortex (PFC) has been thought to contribute to each of these processes; however, causal relationships between particular subdivisions of the PFC and specific functions have been difficult to establish. Recent lesion-based research studies have defined the roles of two different parts of the primate PFC - the orbitofrontal cortex (OFC) and the ventral lateral frontal cortex (VLFC) - and their subdivisions in evaluating each of these factors and in mediating credit assignment during reward-based decision-making.

  12. DLGP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes.

    PubMed

    Wang, Dapeng

    2016-01-15

    The conservation of gene organization in the genome with lineage-specificity is an invaluable resource to decipher their potential functionality with diverse selective constraints, especially in higher animals and plants. Gene pairs appear to be the minimal structure for such kind of gene clusters that tend to reside in their preferred locations, representing the distinctive genomic characteristics in single species or a given lineage. Despite gene families having been investigated in a widespread manner, the definition of gene pair families in various taxa still lacks adequate attention. To address this issue, we report DLGP (http://lcgbase.big.ac.cn/DLGP/) that stores the pre-calculated lineage-based gene pairs in currently available 134 animal and plant genomes and inspect them under the same analytical framework, bringing out a set of innovational features. First, the taxonomy or lineage has been classified into four levels such as Kingdom, Phylum, Class and Order. It adopts all-to-all comparison strategy to identify the possible conserved gene pairs in all species for each gene pair in certain species and reckon those that are conserved in over a significant proportion of species in a given lineage (e.g. Primates, Diptera or Poales) as the lineage-conserved gene pairs. Furthermore, it predicts the lineage-specific gene pairs by retaining the above-mentioned lineage-conserved gene pairs that are not conserved in any other lineages. Second, it carries out pairwise comparison for the gene pairs between two compared species and creates the table including all the conserved gene pairs and the image elucidating the conservation degree of gene pairs in chromosomal level. Third, it supplies gene order browser to extend gene pairs to gene clusters, allowing users to view the evolution dynamics in the gene context in an intuitive manner. This database will be able to facilitate the particular comparison between animals and plants, between vertebrates and arthropods, and between monocots and eudicots, accounting for the significant contribution of gene pairs to speciation and diversification in specific lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ancient origin of placental expression in the growth hormone genes of anthropoid primates

    PubMed Central

    Papper, Zack; Jameson, Natalie M.; Romero, Roberto; Weckle, Amy L.; Mittal, Pooja; Benirschke, Kurt; Santolaya-Forgas, Joaquin; Uddin, Monica; Haig, David; Goodman, Morris; Wildman, Derek E.

    2009-01-01

    In anthropoid primates, growth hormone (GH) genes have undergone at least 2 independent locus expansions, one in platyrrhines (New World monkeys) and another in catarrhines (Old World monkeys and apes). In catarrhines, the GH cluster has a pituitary-expressed gene called GH1; the remaining GH genes include placental GHs and placental lactogens. Here, we provide cDNA sequence evidence that the platyrrhine GH cluster also includes at least 3 placenta expressed genes and phylogenetic evidence that placenta expressed anthropoid GH genes have undergone strong adaptive evolution, whereas pituitary-expressed GH genes have faced strict functional constraint. Our phylogenetic evidence also points to lineage-specific gene gain and loss in early placental mammalian evolution, with at least three copies of the GH gene present at the time of the last common ancestor (LCA) of primates, rodents, and laurasiatherians. Anthropoid primates and laurasiatherians share gene descendants of one of these three copies, whereas rodents and strepsirrhine primates each maintain a separate copy. Eight of the amino-acid replacements that occurred on the lineage leading to the LCA of extant anthropoids have been implicated in GH signaling at the maternal-fetal interface. Thus, placental expression of GH may have preceded the separate series of GH gene duplications that occurred in catarrhines and platyrrhines (i.e., the roles played by placenta-expressed GHs in human pregnancy may have a longer evolutionary history than previously appreciated). PMID:19805162

  14. Ancient origin of placental expression in the growth hormone genes of anthropoid primates.

    PubMed

    Papper, Zack; Jameson, Natalie M; Romero, Roberto; Weckle, Amy L; Mittal, Pooja; Benirschke, Kurt; Santolaya-Forgas, Joaquin; Uddin, Monica; Haig, David; Goodman, Morris; Wildman, Derek E

    2009-10-06

    In anthropoid primates, growth hormone (GH) genes have undergone at least 2 independent locus expansions, one in platyrrhines (New World monkeys) and another in catarrhines (Old World monkeys and apes). In catarrhines, the GH cluster has a pituitary-expressed gene called GH1; the remaining GH genes include placental GHs and placental lactogens. Here, we provide cDNA sequence evidence that the platyrrhine GH cluster also includes at least 3 placenta expressed genes and phylogenetic evidence that placenta expressed anthropoid GH genes have undergone strong adaptive evolution, whereas pituitary-expressed GH genes have faced strict functional constraint. Our phylogenetic evidence also points to lineage-specific gene gain and loss in early placental mammalian evolution, with at least three copies of the GH gene present at the time of the last common ancestor (LCA) of primates, rodents, and laurasiatherians. Anthropoid primates and laurasiatherians share gene descendants of one of these three copies, whereas rodents and strepsirrhine primates each maintain a separate copy. Eight of the amino-acid replacements that occurred on the lineage leading to the LCA of extant anthropoids have been implicated in GH signaling at the maternal-fetal interface. Thus, placental expression of GH may have preceded the separate series of GH gene duplications that occurred in catarrhines and platyrrhines (i.e., the roles played by placenta-expressed GHs in human pregnancy may have a longer evolutionary history than previously appreciated).

  15. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    PubMed

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Carbon nanotubes exhibit fibrillar pharmacology in primates

    DOE PAGES

    Alidori, Simone; Thorek, Daniel L. J.; Beattie, Bradley J.; ...

    2017-08-28

    Nanomedicine rests at the nexus of medicine, bioengineering, and biology with great potential for improving health through innovation and development of new drugs and devices. Carbon nanotubes are an example of a fibrillar nanomaterial poised to translate into medical practice. The leading candidate material in this class is ammonium-functionalized carbon nanotubes (fCNT) that exhibits unexpected pharmacological behavior in vivo with important biotechnology applications. Here, we provide a multi-organ evaluation of the distribution, uptake and processing of fCNT in nonhuman primates using quantitative whole body positron emission tomography (PET), compartmental modeling of pharmacokinetic data, serum biomarkers and ex vivo pathology investigation.more » Kidney and liver are the two major organ systems that accumulate and excrete [ 86Y]fCNT in nonhuman primates and accumulation is cell specific as described by compartmental modeling analyses of the quantitative PET data. A serial two-compartment model explains renal processing of tracer-labeled fCNT; hepatic data fits a parallel two-compartment model. These modeling data also reveal significant elimination of the injected activity (>99.8%) from the primate within 3 days (t 1/2 = 11.9 hours). Thus, these favorable results in nonhuman primates provide important insight to the fate of fCNT in vivo and pave the way to further engineering design considerations for sophisticated nanomedicines to aid late stage development and clinical use in man.« less

  17. Carbon nanotubes exhibit fibrillar pharmacology in primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidori, Simone; Thorek, Daniel L. J.; Beattie, Bradley J.

    Nanomedicine rests at the nexus of medicine, bioengineering, and biology with great potential for improving health through innovation and development of new drugs and devices. Carbon nanotubes are an example of a fibrillar nanomaterial poised to translate into medical practice. The leading candidate material in this class is ammonium-functionalized carbon nanotubes (fCNT) that exhibits unexpected pharmacological behavior in vivo with important biotechnology applications. Here, we provide a multi-organ evaluation of the distribution, uptake and processing of fCNT in nonhuman primates using quantitative whole body positron emission tomography (PET), compartmental modeling of pharmacokinetic data, serum biomarkers and ex vivo pathology investigation.more » Kidney and liver are the two major organ systems that accumulate and excrete [ 86Y]fCNT in nonhuman primates and accumulation is cell specific as described by compartmental modeling analyses of the quantitative PET data. A serial two-compartment model explains renal processing of tracer-labeled fCNT; hepatic data fits a parallel two-compartment model. These modeling data also reveal significant elimination of the injected activity (>99.8%) from the primate within 3 days (t 1/2 = 11.9 hours). Thus, these favorable results in nonhuman primates provide important insight to the fate of fCNT in vivo and pave the way to further engineering design considerations for sophisticated nanomedicines to aid late stage development and clinical use in man.« less

  18. Four Decades of Ground-Breaking Research in the Reproductive and Developmental Sciences: The Infant Primate Research Laboratory at the University of Washington National Primate Research Center

    PubMed Central

    Burbacher, Thomas M.; Grant, Kimberly S.; Worlein, Julie; Ha, James; Curnow, Eliza; Juul, Sandra; Sackett, Gene P.

    2017-01-01

    The Infant Primate Research Laboratory (IPRL) was established in the 1970s at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Health and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into mechanisms underlying childhood neurodevelopmental disorders. Over the past forty years, a broad range of research projects have been conducted at the IPRL. Some have described the normal expression of species-typical behaviors in nursery-reared macaques while others have focused on specific issues in perinatal medicine and research. This article will review the unique history of the IPRL and the scientific contributions produced by research conducted in the laboratory. Past and present investigations at the IPRL have explored the consequences of adverse early rearing, low-birth-weight, prematurity, epilepsy, chemical/drug exposure, viral infection, diarrheal disease, vaccine safety, assisted reproductive technologies and perinatal hypoxia on growth and development. New directions of investigation include the production of a transgenic primate model using our embryonic stem cell-based technology to better understand and treat heritable forms of human mental retardation such as fragile X. PMID:23873400

  19. Caloric restriction in primates and relevance to humans.

    PubMed

    Roth, G S; Ingram, D K; Lane, M A

    2001-04-01

    Dietary caloric restriction (CR) is the only intervention conclusively and reproducibly shown to slow aging and maintain health and vitality in mammals. Although this paradigm has been known for over 60 years, its precise biological mechanisms and applicability to humans remain unknown. We began addressing the latter question in 1987 with the first controlled study of CR in primates (rhesus and squirrel monkeys, which are evolutionarily much closer to humans than the rodents most frequently employed in CR studies). To date, our results strongly suggest that the same beneficial "antiaging" and/or "antidisease" effects observed in CR rodents also occur in primates. These include lower plasma insulin levels and greater sensitivity; lower body temperatures; reduced cholesterol, triglycerides, blood pressure, and arterial stiffness; elevated HDL; and slower age-related decline in circulating levels of DHEAS. Collectively, these biomarkers suggest that CR primates will be less likely to incur diabetes, cardiovascular problems, and other age-related diseases and may in fact be aging more slowly than fully fed counterparts. Despite these very encouraging results, it is unlikely that most humans would be willing to maintain a 30% reduced diet for the bulk of their adult life span, even if it meant more healthy years. For this reason, we have begun to explore CR mimetics, agents that might elicit the same beneficial effects as CR, without the necessity of dieting. Our initial studies have focused on 2-deoxyglucose (2DG), a sugar analogue with a limited metabolism that actually reduces glucose/energy flux without decreasing food intake in rats. In a six-month pilot study, 2DG lowered plasma insulin and body temperature in a manner analagous to that of CR. Thus, metabolic effects that mediate the CR mechanism can be attained pharmacologically. Doses were titrated to eliminate toxicity; a long-term longevity study is now under way. In addition, data from other laboratories suggest that at least some of the same physiological/metabolic end points that are associated with the beneficial effects of underfeeding may be obtained from other potential CR mimetic agents, some naturally occurring in food products. Much work remains to be done, but taken together, our successful results with CR in primates and 2DG administration to rats suggest that it may indeed be possible to obtain the health- and longevity-promoting effects of the former intervention without actually decreasing food intake.

  20. Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): Implications for plant and primate.

    PubMed

    Hogan, Jeremy D; Melin, Amanda D; Mosdossy, Krisztina N; Fedigan, Linda M

    2016-12-01

    Our goal is to investigate flower foraging by capuchin monkeys, a behavior rarely studied in wild primates. We ask what drives seasonal variation in florivory rates: flower quality and abundance or fluctuations in fruit and invertebrate abundances. We explore how capuchins affect the reproductive success of flower food species by quantifying the potential pollination rate. We followed capuchin groups from dawn to dusk and recorded all flower foraging bouts. Flower food nutritional composition was compared to fruit and invertebrate foods. We recorded overall flower, fruit, and invertebrate abundances and compared the rate of flower foraging to these. We estimated the likelihood of pollination from the proportion of flower patch visits to each plant species that satisfied minimum behavioral requirements. Flower eating was highly seasonal, and was significantly negatively related to overall fruit and invertebrate abundance but not flower abundance. Although smaller than most fruits, flowers were nutritionally comparable to fruit foods by dry mass and contained higher average concentrations of protein. Capuchins are likely pollinators for Luehea speciosa; most foraging visits to this species occurred in a manner that makes outcrossing or geitonogamous pollination likely. Flowers are an important seasonal resource for capuchins. Flowers likely act as fallback foods during periods of reduced fruit and invertebrate abundance, and may exert evolutionary pressure disproportionate to their consumption. Capuchin florivory likely affects the reproductive success of some plants, potentially shaping forest structure. Our study illustrates the value of assessing the importance of rare foods in the primate diet. © 2016 Wiley Periodicals, Inc.

  1. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    PubMed

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200 μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain

    PubMed Central

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-01-01

    Background Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. New Method We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. Results We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Conclusions Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. PMID:26226654

  3. An Alu-Based Phylogeny of Lemurs (Infraorder: Lemuriformes)

    PubMed Central

    McLain, Adam T.; Meyer, Thomas J.; Faulk, Christopher; Herke, Scott W.; Oldenburg, J. Michael; Bourgeois, Matthew G.; Abshire, Camille F.

    2012-01-01

    Lemurs (infraorder: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55–60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera. PMID:22937148

  4. Alu Sb2 subfamily is present in all higher primates but was most succesfully amplified in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, C.; Zietkiewicz, E.; Labuda, D.

    Alu repeats can be classified into subfamilies which amplified in primate genomes at different evolutionary time periods. A young Alu subfamily, Sb2, with a characteristic 7-nucleotide duplication at position 256, has been described in seven human loci. An Sb2 insertion found near the HD gene was unique to two HD families, indicating that Sb2 was still retropositionally active. Here, we have shown that the Sb2 insertion in the CHOL locus was similarly rare, being absent in 120 individuals of Caucasian, Oriental and Black origin. In contrast, Sb2 inserts in five other loci were found fixed (non-polymorphic), based on measurements inmore » the same population sample, but absent from orthologous positions in higher apes. This suggest that Sb2 repeats spread relatively early in the human lineage following divergence from other primates and that these elements may be human-specific. By quantitative PCR, we investigated the presence of Sb2 sequences in different primate DNA, using one PCR primer anchored at the 5{prime} Alu-end and the other complementary to the duplicated Sb2-specific segment. With an Sb2-containing plasmid as a standard, we estimated the number of Sb2 repeats at 1500-1800 copies per human haploid equivalent; corresponding numbers in chimpanzee and gorilla were almost two orders of magnitude lower, while the signal observed in orangutan and gibbon DNAs was consistent with the presence of a single copy. The analysis of 22 human, 11 chimpanzee and 10 gorilla sequences indicates that the Alu Sb2 dispersed independently in these three primate lineages; gorilla consensus differs from the human Sb2 sequence by one position, while all chimpanzee repeats have their linker expanded by up to eight A-residues. Should they be thus considered as separate subfamilies? It is possible that sequence modifications with respect to the human consensus are responsible for poor retroposition of Sb2 in apes.« less

  5. ASPM and the Evolution of Cerebral Cortical Size in a Community of New World Monkeys

    PubMed Central

    Villanea, Fernando A.; Perry, George H.; Gutiérrez-Espeleta, Gustavo A.; Dominy, Nathaniel J.

    2012-01-01

    The ASPM (abnormal spindle-like microcephaly associated) gene has been proposed as a major determinant of cerebral cortical size among primates, including humans. Yet the specific functions of ASPM and its connection to human intelligence remain controversial. This debate is limited in part by a taxonomic focus on Old World monkeys and apes. Here we expand the comparative context of ASPM sequence analyses with a study of New World monkeys, a radiation of primates in which enlarged brain size has evolved in parallel in spider monkeys (genus Ateles) and capuchins (genus Cebus). The primate community of Costa Rica is perhaps a model system because it allows for independent pairwise comparisons of smaller- and larger-brained species within two taxonomic families. Accordingly, we analyzed the complete sequence of exon 18 of ASPM in Ateles geoffroyi, Alouatta palliata, Cebus capucinus, and Saimiri oerstedii. As the analysis of multiple species in a genus improves phylogenetic reconstruction, we also analyzed eleven published sequences from other New World monkeys. Our exon-wide, lineage-specific analysis of eleven genera and the ratio of rates of nonsynonymous to synonymous substitutions (dN/dS) on ASPM revealed no detectable evidence for positive selection in the lineages leading to Ateles or Cebus, as indicated by dN/dS ratios of <1.0 (0.6502 and 0.4268, respectively). Our results suggest that a multitude of interacting genes have driven the evolution of larger brains among primates, with different genes involved in this process in different encephalized lineages, or at least with evidence for positive selection not readily apparent for the same genes in all lineages. The primate community of Costa Rica may serve as a model system for future studies that aim to elucidate the molecular mechanisms underlying cognitive capacity and cortical size. PMID:23028686

  6. The complexity of selection at the major primate β-defensin locus

    PubMed Central

    Semple, Colin AM; Maxwell, Alison; Gautier, Philippe; Kilanowski, Fiona M; Eastwood, Hayden; Barran, Perdita E; Dorin, Julia R

    2005-01-01

    Background We have examined the evolution of the genes at the major human β-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. Results We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. Consequently variable selective pressures have acted on β-defensin genes in different evolutionary lineages, with episodes both of negative, and more rarely positive selection, during the divergence of primates. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel, rodent-specific β-defensin genes. These observations allow a fuller understanding of the evolution of mammalian innate immunity. In both the rodent and primate lineages, sites in the second exon have been subject to positive selection and by implication are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions predicted to be important for the specificity of the antimicrobial or chemoattractant properties of β-defensins. Surprisingly, sites within the prepropeptide region were also implicated as being subject to significant positive selection, suggesting previously unappreciated functional significance for this region. Conclusions Identification of these putatively functional sites has important implications for our understanding of β-defensin function and for novel antibiotic design. PMID:15904491

  7. Noncoding origins of anthropoid traits and a new null model of transposon functionalization.

    PubMed

    del Rosario, Ricardo C H; Rayan, Nirmala Arul; Prabhakar, Shyam

    2014-09-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. © 2014 del Rosario et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Semicircular Canal Size and Locomotion in Colobine Monkeys: A Cautionary Tale.

    PubMed

    Rae, Todd C; Johnson, Paul Martin; Yano, Wataru; Hirasaki, Eishi

    2016-01-01

    The semicircular canals of the inner ear constitute the organ of balance, tracking head rotation during movement and facilitating stabilisation of vision. Morphological characteristics of the canals are correlated with agility scores related to locomotion. To date, however, the relationship between canal morphology and specific locomotor behaviours, such as leaping, is unclear. Knowledge of such a relationship could strengthen the inferences of locomotion of extinct taxa. To test this, crania of two sets of closely related primate species (Presbytis melalophos and P. potenziani; Colobus guereza and C. polykomos) that differ in the percentage of leaping in their locomotor repertoire were examined using microscopic computed tomography. Three-dimensional virtual models of the bony labyrinth were derived, and the radius of curvature of each of the three canals was evaluated relative to cranial size. The findings are contradictory; one leaping form (P. melalophos) differs from its congener in possessing significantly larger lateral canals, a pattern seen in previous studies of primates, while the other leaper (C. guereza) has significantly smaller posterior canals than its close relative. These results undermine efforts to determine specific locomotor behaviours from the bony labyrinth of extinct primates. © 2016 S. Karger AG, Basel.

  9. Alternative methods for the use of non-human primates in biomedical research.

    PubMed

    Burm, Saskia M; Prins, Jan-Bas; Langermans, Jan; Bajramovic, Jeffrey J

    2014-01-01

    The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.

  10. Phylogenetic analysis of HERV-K LTR-like elements in primates: presence in some new world monkeys and evidence of recent parallel evolution in these species and in homo sapiens.

    PubMed

    Kim, H S; Wadekar, R V; Takenaka, O; Hyun, B H; Crow, T J

    1999-01-01

    Solitary long terminal repeats (LTRs) of the human endogenous retroviruses K family (HERV-K) have been found to be coexpressed with sequences of closely located genes. We identified forty-three HERV-K LTR-like elements in primates (African great apes, two Old World monkeys, and two New World monkeys) and analyzed them along with human-specific HERV-K LTRs. We report detection of HERV-K LTR-like elements from New World monkeys, as represented by the squirrel monkey and the night monkey, for the first time. Analysis revealed a high degree of sequence homology with human-specific HERV-K LTRs. A phylogenetic tree obtained by the neighbor-joining method revealed that five sequence (SMS-1, 2, 5, 6, 7) from the squirrel monkey and three sequences (NM6-4, 5, 9) from the night monkey are more closely related to human-specific HERV-K LTRs than they are to those of apes (the chimpanzee and gorilla) and Old World monkeys (the African green monkey and rhesus monkey). The findings are consistent with the concept the HERV-K LTR-like elements have proliferated independently and recently in the genome of primates, and that such proliferation has been more recent in Homo sapiens and in these representatives of New World monkeys than in some Old World monkeys.

  11. Species-Specific Transmission of Novel Picornaviruses in Lemurs

    PubMed Central

    Lim, Efrem S.; Deem, Sharon L.; Porton, Ingrid J.; Cao, Song

    2015-01-01

    ABSTRACT The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses. IMPORTANCE Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur species exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks worldwide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward understanding infectious disease transmission. PMID:25631076

  12. SEROLOGICAL DETECTION OF HEPATITIS A VIRUS IN FREE-RANGING NEOTROPICAL PRIMATES (Sapajus spp., Alouatta caraya) FROM THE PARANÁ RIVER BASIN, BRAZIL

    PubMed Central

    SVOBODA, Walfrido Kühl; SOARES, Manoel do Carmo Pereira; ALVES, Max Moreira; ROCHA, Tatiana Carneiro; GOMES, Eliane Carneiro; MENONCIN, Fabiana; BATISTA, Paulo Mira; da SILVA, Lineu Roberto; HEADLEY, Selwyn Arlington; HILST, Carmen Lúcia Scortecci; AGUIAR, Lucas M.; LUDWIG, Gabriela; PASSOS, Fernando de Camargo; de SOUZA, Júlio Cesar; NAVARRO, Italmar Teodorico

    2016-01-01

    Nonhuman primates are considered as the natural hosts of Hepatitis A virus (HAV), as well as other pathogens, and can serve as natural sentinels to investigate epizootics and endemic diseases that are of public health importance. During this study, blood samples were collected from 112 Neotropical primates (NTPs) (Sapajus nigritus and S. cay, n = 75; Alouatta caraya, n = 37) trap-captured at the Paraná River basin, Brazil, located between the States of Paraná and Mato Grosso do Sul. Anti-HAV IgG antibodies were detected in 4.5% (5/112) of NTPs, specifically in 6.7% (5/75) of Sapajus spp. and 0% (0/37) of A. caraya. In addition, all samples were negative for the presence of IgM anti-HAV antibodies. These results suggest that free-ranging NTPs were exposed to HAV within the geographical regions evaluated. PMID:26910453

  13. SEROLOGICAL DETECTION OF HEPATITIS A VIRUS IN FREE-RANGING NEOTROPICAL PRIMATES (Sapajus spp., Alouatta caraya) FROM THE PARANÁ RIVER BASIN, BRAZIL.

    PubMed

    Svoboda, Walfrido Kühl; Soares, Manoel do Carmo Pereira; Alves, Max Moreira; Rocha, Tatiana Carneiro; Gomes, Eliane Carneiro; Menoncin, Fabiana; Batista, Paulo Mira; Silva, Lineu Roberto da; Headley, Selwyn Arlington; Hilst, Carmen Lúcia Scortecci; Aguiar, Lucas M; Ludwig, Gabriela; Passos, Fernando de Camargo; Souza, Júlio Cesar de; Navarro, Italmar Teodorico

    2016-01-01

    Nonhuman primates are considered as the natural hosts of Hepatitis A virus (HAV), as well as other pathogens, and can serve as natural sentinels to investigate epizootics and endemic diseases that are of public health importance. During this study, blood samples were collected from 112 Neotropical primates (NTPs) (Sapajus nigritus and S. cay, n = 75; Alouatta caraya, n = 37) trap-captured at the Paraná River basin, Brazil, located between the States of Paraná and Mato Grosso do Sul. Anti-HAV IgG antibodies were detected in 4.5% (5/112) of NTPs, specifically in 6.7% (5/75) of Sapajus spp. and 0% (0/37) of A. caraya. In addition, all samples were negative for the presence of IgM anti-HAV antibodies. These results suggest that free-ranging NTPs were exposed to HAV within the geographical regions evaluated.

  14. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system

    PubMed Central

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-01-01

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates. PMID:26387804

  15. Visual Search Efficiency is Greater for Human Faces Compared to Animal Faces

    PubMed Central

    Simpson, Elizabeth A.; Mertins, Haley L.; Yee, Krysten; Fullerton, Alison; Jakobsen, Krisztina V.

    2015-01-01

    The Animate Monitoring Hypothesis proposes that humans and animals were the most important categories of visual stimuli for ancestral humans to monitor, as they presented important challenges and opportunities for survival and reproduction; however, it remains unknown whether animal faces are located as efficiently as human faces. We tested this hypothesis by examining whether human, primate, and mammal faces elicit similarly efficient searches, or whether human faces are privileged. In the first three experiments, participants located a target (human, primate, or mammal face) among distractors (non-face objects). We found fixations on human faces were faster and more accurate than primate faces, even when controlling for search category specificity. A final experiment revealed that, even when task-irrelevant, human faces slowed searches for non-faces, suggesting some bottom-up processing may be responsible for the human face search efficiency advantage. PMID:24962122

  16. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system.

    PubMed

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-09-21

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates.

  17. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure.

    PubMed

    Fox, Susan H; Lang, Anthony E; Brotchie, Jonathan M

    2006-10-01

    Studies in MPTP-lesioned nonhuman primates have demonstrated the potential of nondopaminergic drugs in reducing the problems of levodopa-induced dyskinesia (LID). Here we review the process of translating findings from the monkey to man. Agents targeting glutamate, adensosine, noradrenaline, 5-hydroxytryptamine, cannabinoid, and opioid transmitter systems have been assessed for antidyskinetic potential in human studies. Eleven nondopaminergic drugs with antidyskinetic efficacy in the MPTP primate have been advanced to proof-of-concept phase IIa trials in PD patients (amantadine, istradefylline, idazoxan, fipamezole, sarizotan, quetiapine, clozapine, nabilone, rimonabant, naloxone, and naltrexone). For all six nondopaminergic transmitter systems reviewed, the MPTP-lesioned primate correctly predicted phase II efficacy of at least one drug. Of the 11 specific molecules tested in both monkeys and humans, 8 showed clear antidyskinetic properties in both human and monkey. In the instances where the primate studies did not, or did not consistently, predict the outcome of the human studies, the discrepancy may reflect limitations in the validity of the model or limitations in the design of either the clinical or the preclinical studies. We find that the major determinant of success in predicting efficacy is to ensure that primate studies are conducted in a statistically rigorous way and incorporate designs and outcome measures with clinical applicability. On the other hand, phase IIa trials should strive to replicate the preclinical study, especially in terms of protocol, drug dose equivalence, and outcome measure, so as to test the same hypothesis. Failure to meet these criteria carries the risk of false negative conclusions in phase IIa trials.

  18. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate.

    PubMed

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [ 18 F]FluorTriopride ([ 18 F]FTP) is a dopamine D 3 -receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [ 18 F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [ 18 F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [ 18 F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [ 18 F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

  19. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.

    PubMed

    Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z

    2017-01-01

    Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.

  20. Hunger enhances consistent economic choices in non-human primates.

    PubMed

    Yamada, Hiroshi

    2017-05-24

    Hunger and thirst are fundamental biological processes that drive consumption behavior in humans and non-human animals. While the existing literature in neuroscience suggests that these satiety states change how consumable rewards are represented in the brain, it remains unclear as to how they change animal choice behavior and the underlying economic preferences. Here, I used combined techniques from experimental economics, psychology, and neuroscience to measure food preferences of marmoset monkeys (Callithrix jacchus), a recently developed primate model for neuroscience. Hunger states of animals were manipulated by scheduling feeding intervals, resulting in three different conditions: sated, non-sated, and hungry. During these hunger states, animals performed pairwise choices of food items, which included all possible pairwise combinations of five different food items except for same-food pairs. Results showed that hunger enhanced economic rationality, evident as a decrease of transitivity violations (item A was preferred to item B, and B to C, but C was preferred to A). Further analysis demonstrated that hungry monkeys chose more-preferred items over less-preferred items in a more deterministic manner, while the individual food preferences appeared to remain stable across hunger states. These results suggest that hunger enhances consistent choice behavior and shifts animals towards efficient outcome maximization.

  1. Functional and cellular adaptation to weightlessness in primates

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue C.; Pierotti, David J.; Talmadge, Robert J.

    1995-01-01

    Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rate in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to the following: (1) a species difference; (2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or 'free-floating'); and/or (3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise.

  2. Antithrombotic Effect of Antisense Factor XI Oligonucleotide Treatment in Primates

    PubMed Central

    Crosby, Jeffrey R.; Marzec, Ulla; Revenko, Alexey S.; Zhao, Chenguang; Gao, Dacao; Matafonov, Anton; Gailani, David; MacLeod, A. Robert; Tucker, Erik I.; Gruber, Andras; Hanson, Stephen R.; Monia, Brett P.

    2013-01-01

    Objective During coagulation, factor IX (FIX) is activated by two distinct mechanisms mediated by the active proteases of either factors VII (FVIIa) or XI (FXIa). Both coagulation factors may contribute to thrombosis; factor XI, however, plays only a limited role in the arrest of bleeding. Therefore, therapeutic targeting of FXI may produce an antithrombotic effect with relatively low hemostatic risk. Approach and Results We have reported that reducing FXI levels with FXI antisense oligonucleotides (ASOs) produces antithrombotic activity in mice, and that administration of FXI ASOs to primates decreases circulating FXI levels and activity in a dose- and time-dependent manner. Here we evaluated the relationship between FXI plasma levels and thrombogenicity in an established baboon model of thrombosis and hemostasis. In previous studies with this model, antibody-induced inhibition of FXI produced potent antithrombotic effects. In the present report, ASO-mediated reduction of FXI plasma levels by ≥50% resulted in a demonstrable and sustained antithrombotic effect without an increased risk of bleeding. Conclusion These results indicate that reducing FXI levels using ASOs is a promising alternative to direct FXI inhibition, and that targeting FXI may be potentially safer than conventional antithrombotic therapies that can markedly impair primary hemostasis. PMID:23559626

  3. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    PubMed

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  4. Zolpidem displays heterogeneity in its binding to the nonhuman primate benzodiazepine receptor in vivo.

    PubMed

    Schmid, L; Bottlaender, M; Fuseau, C; Fournier, D; Brouillet, E; Mazière, M

    1995-10-01

    The distinctive pharmacological activity of zolpidem in rats compared with classical benzodiazepines has been related to its differential affinity for benzodiazepine receptor (BZR) subtypes. By contrast, in nonhuman primates the pharmacological activity of zolpidem was found to be quite similar to that of classical BZR agonists. In an attempt to explain this discrepancy, we examined the ability of zolpidem to differentiate BZR subtypes in vivo in primate brain using positron emission tomography. The BZRs were specifically labeled with [11C]flumazenil. Radiotracer displacement by zolpidem was monophasic in cerebellum and neocortex, with in vivo Hill coefficients close to 1. Conversely, displacement of [11C]flumazenil was biphasic in hippocampus, amygdala, septum, insula, striatum, and pons, with Hill coefficients significantly smaller than 1, suggesting two different binding sites for zolpidem. In these cerebral regions, the half-maximal inhibitory doses for the high-affinity binding site were similar to those found in cerebellum and neocortex and approximately 100-fold higher for the low-affinity binding site. The low-affinity binding site accounted for < 32% of the specific [11C]-flumazenil binding. Such zolpidem binding characteristics contrast with those reported for rodents, where three different binding sites were found. Species differences in binding characteristics may explain why zolpidem has a distinctive pharmacological activity in rodents, whereas its pharmacological activity in primates is quite similar to that of classical BZR agonists, except for the absence of severe effects on memory functions, which may be due to the lack of substantial zolpidem affinity for a distinct BZR subtype in cerebral structures belonging to the limbic system.

  5. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    PubMed Central

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  6. Comparative Biology of Decellularized Lung Matrix: Implications of Species Mismatch in Regenerative Medicine

    PubMed Central

    Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.

    2016-01-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365

  7. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    PubMed Central

    Mazzoleni, Sofia; Rovatsos, Michail; Schillaci, Odessa; Dumas, Francesca

    2018-01-01

    Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates. PMID:29416829

  8. Structural and functional maturation of the developing primate brain.

    PubMed

    Levitt, Pat

    2003-10-01

    Descriptive studies have established that the developmental events responsible for the assembly of neural systems and circuitry are conserved across mammalian species. However, primates are unique regarding the time during which histogenesis occurs and the extended postnatal period during which myelination of pathways and circuitry formation occur and are then subsequently modified, particularly in the cerebral cortex. As in lower mammals, the framework for subcortical-cortical connectivity in primates is established before midgestation and already begins to remodel before birth. Association systems, responsible for modulating intracortical circuits that integrate information across functional domains, also form before birth, but their growth and reorganization extend into puberty. There are substantial differences across species in the patterns of development of specific neurochemical systems. The complexity is even greater when considering that the development of any particular cellular component may differ among cortical areas in the same primate species. Developmental and behavioral neurobiologists, psychologists, and pediatricians are challenged with understanding how functional maturation relates to the evolving anatomical organization of the human brain during childhood, and moreover, how genetic and environmental perturbations affect the adaptive changes exhibited by neural circuits in response to developmental disruption.

  9. Islet xenotransplantation from genetically engineered pigs.

    PubMed

    Nagaraju, Santosh; Bottino, Rita; Wijkstrom, Martin; Hara, Hidetaka; Trucco, Massimo; Cooper, David K C

    2013-12-01

    Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.

  10. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    PubMed

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  11. Social Monogamy in Nonhuman Primates: Phylogeny, Phenotype, and Physiology.

    PubMed

    French, Jeffrey A; Cavanaugh, Jon; Mustoe, Aaryn C; Carp, Sarah B; Womack, Stephanie L

    Monogamy as a social system has been both a scientific puzzle and a sociocultural issue for decades. In this review, we examine social monogamy from a comparative perspective with a focus on primates, our closest genetic relatives. We break down monogamy into component elements, including pair-bonding and partner preference, mate guarding or jealousy, social attachment, and biparental care. Our survey of primates shows that not all features are present in species classified as socially monogamous, in the same way that human monogamous relationships may not include all elements-a perspective we refer to as "monogamy à la carte." Our review includes a survey of the neurobiological correlates of social monogamy in primates, exploring unique or common pathways for the elemental components of monogamy. This compilation reveals that the components of monogamy are modulated by a suite of androgenic steroids, glucocorticoid hormones, the nonapeptide hormones oxytocin and vasopressin, and other neurotransmitter systems (e.g., dopamine and opioids). We propose that efforts to understand the biological underpinnings of complex human and animal sociosexual relationships will be well served by exploring individual phenotypic traits, as opposed to pursuing these questions with the assumption that monogamy is a unitary trait or a species-specific characteristic.

  12. Cell-Type-Specific Optogenetics in Monkeys.

    PubMed

    Namboodiri, Vijay Mohan K; Stuber, Garret D

    2016-09-08

    The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates.

    PubMed

    Kim, Jaeyoung; Kim, Dong Hyun; Choi, Hyuk Jin; Lee, Hyun Ju; Kang, Hee Jung; Park, Chung-Gyu; Hwang, Eung-Soo; Kim, Mee Kum; Wee, Won Ryang

    2017-05-01

    Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P>.05, Mann-Whitney U test). The levels of anti-αGal, non-αGal, and donor-specific antibodies at 6 months were not significantly increased compared with baseline levels (P>.05, Wilcoxon signed rank test). An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep-lamellar xenotransplantation in primates. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Evaluation of Pneumonia Virus of Mice as a Possible Human Pathogen

    PubMed Central

    Brock, Linda G.; Karron, Ruth A.; Krempl, Christine D.; Collins, Peter L.

    2012-01-01

    Pneumonia virus of mice (PVM), a relative of human respiratory syncytial virus (RSV), causes respiratory disease in mice. There is serologic evidence suggesting widespread exposure of humans to PVM. To investigate replication in primates, African green monkeys (AGM) and rhesus macaques (n = 4) were inoculated with PVM by the respiratory route. Virus was shed intermittently at low levels by a subset of animals, suggesting poor permissiveness. PVM efficiently replicated in cultured human cells and inhibited the type I interferon (IFN) response in these cells. This suggests that poor replication in nonhuman primates was not due to a general nonpermissiveness of primate cells or poor control of the IFN response. Seroprevalence in humans was examined by screening sera from 30 adults and 17 young children for PVM-neutralizing activity. Sera from a single child (6%) and 40% of adults had low neutralizing activity against PVM, which could be consistent with increasing incidence of exposure following early childhood. There was no cross-reaction of human or AGM sera between RSV and PVM and no cross-protection in the mouse model. In native Western blots, human sera reacted with RSV but not PVM proteins under conditions in which AGM immune sera reacted strongly. Serum reactivity was further evaluated by flow cytometry using unfixed Vero cells infected with PVM or RSV expressing green fluorescent protein (GFP) as a measure of viral gene expression. The reactivity of human sera against RSV-infected cells correlated with GFP expression, whereas reactivity against PVM-infected cells was low and uncorrelated with GFP expression. Thus, PVM specificity was not evident. Our results indicate that the PVM-neutralizing activity of human sera is not due to RSV- or PVM-specific antibodies but may be due to low-affinity, polyreactive natural antibodies of the IgG subclass. The absence of PVM-specific antibodies and restriction in nonhuman primates makes PVM unlikely to be a human pathogen. PMID:22438539

  15. [Experimental whooping cough of nonhuman primate].

    PubMed

    Kubrava, D T; Medkova, A Iu; Siniashina, L N; Shevtsova, Z V; Matua, A Z; Kondzharia, I G; Barkaia, V S; Elistratova, Zh V; Karataev, G I; Mikvabia, Z Ia; Gintsburg, A L

    2013-01-01

    Despite considerable success in study of Bordetella pertussis virulence factors, pathogenesis of whooping cough, duration of B. pertussis bacteria persistence, types and mechanisms of immune response are still keep underinvestigated. It can be explained by the absence ofadequate experimental animal model for pertussis study. Our study estimates clinical and laboratory parameters of whooping cough in non-human primates of the Old World in the process of intranasan infection by virulent B. pertussis bacteria. Also the duration of B. pertussis bacteria persistence in animals was investigated. 14 animal units of 4 species of non-human primates of the Old World were used for intranasal infection. The examination of infect animals included: visual exploration of nasopharynx, thermometry, clinical and biochemical blood analyses, identification ofB. pertussis, using microbiologic and molecular genetic analyses, estimation of innate and adoptive immune factors. The development of infectious process was accompanied by generation of B. pertussis bacteria, catarrhal inflammation of nasopharyngeal mucosa, leucocytosis, hypoglycemia specific for pertussis, and activation of innate and adaptive immunity for all primates regardless of specie were seen. While repeated experimental infection in primates single bacterial colonies were registered during only first week after challenge. It occurs like the absence of inflammation of nasopharyngeal mucosa and the lack of laboratory marks of whooping cough, recorded after first challenge. The evident booster effect of humoral immunity was observed. As a model for investigation of B. pertussis bacteria persistence and immune response against whooping cough we suggest the usage of rhesus macaque as more available to experiments.

  16. Functional morphology of the primate head and neck.

    PubMed

    Nalley, Thierra K; Grider-Potter, Neysa

    2015-04-01

    The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. © 2015 Wiley Periodicals, Inc.

  17. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.

    PubMed

    Perry, George H; Martin, Robert D; Verrelli, Brian C

    2007-09-01

    While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.

  18. What is dental ecology?

    PubMed

    Cuozzo, Frank P; Sauther, Michelle L

    2012-06-01

    Teeth have long been used as indicators of primate ecology. Early work focused on the links between dental morphology, diet, and behavior, with more recent years emphasizing dental wear, microstructure, development, and biogeochemistry, to understand primate ecology. Our study of Lemur catta at the Beza Mahafaly Special Reserve, Madagascar, has revealed an unusual pattern of severe tooth wear and frequent tooth loss, primarily the result of consuming a fallback food for which these primates are not dentally adapted. Interpreting these data was only possible by combining our areas of expertise (dental anatomy [FC] and primate ecology [MS]). By integrating theoretical, methodological, and applied aspects of both areas of research, we adopted the term "dental ecology"-defined as the broad study of how teeth respond to the environment. Specifically, we view dental ecology as an interpretive framework using teeth as a vehicle for understanding an organism's ecology, which builds upon earlier work, but creates a new synthesis of anatomy and ecology that is only possible with detailed knowledge of living primates. This framework includes (1) identifying patterns of dental pathology and tooth use-wear, within the context of feeding ecology, behavior, habitat variation, and anthropogenic change, (2) assessing ways in which dental development and biogeochemical signals can reflect habitat, environmental change and/or stress, and (3) how dental microstructure and macro-morphology are adapted to, and reflect feeding ecology. Here we define dental ecology, provide a short summary of the development of this perspective, and place our new work into this context. Copyright © 2012 Wiley Periodicals, Inc.

  19. Subcortical barrelette-like and barreloid-like structures in the prosimian galago (Otolemur garnetti)

    PubMed Central

    Sawyer, Eva Kille; Liao, Chia-Chi; Qi, Hui-Xin; Balaram, Pooja; Matrov, Denis; Kaas, Jon H.

    2015-01-01

    Galagos are prosimian primates that resemble ancestral primates more than most other extant primates. As in many other mammals, the facial vibrissae of galagos are distributed across the upper and lower jaws and above the eye. In rats and mice, the mystacial macrovibrissae are represented throughout the ascending trigeminal pathways as arrays of cytoarchitecturally distinct modules, with each module having a nearly one-to-one relationship with a specific facial whisker. The macrovibrissal representations are termed barrelettes in the trigeminal somatosensory brainstem, barreloids in the ventroposterior medial subnucleus of the thalamus, and barrels in primary somatosensory cortex. Despite the presence of facial whiskers in all nonhuman primates, barrel-like structures have not been reported in primates. By staining for cytochrome oxidase, Nissl, and vesicular glutamate transporter proteins, we show a distinct array of barrelette-like and barreloid-like modules in the principal sensory nucleus, the spinal trigeminal nucleus, and the ventroposterior medial subnucleus of the galago, Otolemur garnetti. Labeled terminals of primary sensory neurons in the brainstem and cell bodies of thalamocortically projecting neurons demonstrate that barrelette-like and barreloid-like modules are located in areas of these somatosensory nuclei that are topographically consistent with their role in facial touch. Serendipitously, the plane of section that best displays the barreloid-like modules reveals a remarkably distinct homunculus-like patterning which, we believe, is one of the clearest somatotopic maps of an entire body surface yet found. PMID:26038561

  20. Convergence and Divergence in the Evolution of the APOBEC3G-Vif Interaction Reveal Ancient Origins of Simian Immunodeficiency Viruses

    PubMed Central

    Compton, Alex A.; Emerman, Michael

    2013-01-01

    Naturally circulating lentiviruses are abundant in African primate species today, yet their origins and history of transmitting between hosts remain obscure. As a means to better understand the age of primate lentiviruses, we analyzed primate genomes for signatures of lentivirus-driven evolution. Specifically, we studied the adaptive evolution of host restriction factor APOBEC3G (A3G) in Old World Monkey (OWM) species. We find recurrent mutation of A3G in multiple primate lineages at sites that determine susceptibility to antagonism by the lentiviral accessory protein Vif. Using a broad panel of SIV Vif isolates, we demonstrate that natural variation in OWM A3G confers resistance to Vif-mediated degradation, suggesting that adaptive variants of the host factor were selected upon exposure to pathogenic lentiviruses at least 5–6 million years ago (MYA). Furthermore, in members of the divergent Colobinae subfamily of OWM, a multi-residue insertion event in A3G that arose at least 12 MYA blocks the activity of Vif, suggesting an even more ancient origin of SIV. Moreover, analysis of the lentiviruses associated with Colobinae monkeys reveal that the interface of the A3G-Vif interaction has shifted and given rise to a second genetic conflict. Our analysis of virus-driven evolution describes an ancient yet ongoing genetic conflict between simian primates and lentiviruses on a million-year time scale. PMID:23359341

  1. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature?

    PubMed Central

    Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.

    2010-01-01

    General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758

  2. Despite irreversible binding, PET tracer [11C]-SA5845 is suitable for imaging of drug competition at sigma receptors-the cases of ketamine and haloperidol.

    PubMed

    Kortekaas, Rudie; Maguire, R Paul; van Waarde, Aren; Leenders, Klaus L; Elsinga, Philip H

    2008-07-01

    Many psychotropic compounds bind to sigma receptors and several new sigma ligands are in development for psychiatric indications such as anxiety, attention deficit hyperactivity disorder, depression and psychosis. Of special interest for drug development are tomographic methods that can quantify the binding of promising sigma ligands in a regional manner. Here we present the development of such a method and the first evaluation of sigma ligand [11C]-SA5845 in a primate. Extensive pharmacokinetic modeling was done on tissue curves and a heart lumen curve. The effects of pretreatment and challenge with haloperidol were studied as well as those of pretreatment with +/- -ketamine. The tracer had a plasma half-life of 77+/-1.7min and was rapidly taken up by all brain areas. The binding pattern was consistent with binding to sigma receptors and compartment modeling showed there was considerable specific binding that was irreversible. We therefore calculated the net influx rate, Ki, with the Gjedde-Patlak linearization, as a measure of free receptors. As expected, Ki was very sensitive to the presence of competing ligands - -ketamine and/or haloperidol. Summarizing, the tracer is well suited for visualizing sigma receptors in the brain and moreover, the presented method is able to quantify, on a regional basis, specific binding of unlabeled ligands to sigma receptors.

  3. Biomarkers for non-human primate type-I hypersensitivity: antigen-specific immunoglobulin E assays.

    PubMed

    Clark, Darcey; Shiota, Faith; Forte, Carla; Narayanan, Padma; Mytych, Daniel T; Hock, M Benjamin

    2013-06-28

    Immunoglobulin E (IgE) is the least abundant immunoglobulin in serum. However, development of an IgE immune response can induce IgE receptor-expressing cells to carry out potent effector functions. A reliable antigen-specific IgE biomarker method for use in non-human primate studies would facilitate (i) confirmation of Type-I hypersensitivity reactions during safety toxicology testing, and (ii) a better understanding of non-human primate models of allergic disease. We cloned and expressed a recombinant cynomolgus monkey IgE molecule in order to screen a panel of commercially available detection reagents raised against human IgE for cross-reactivity. The reagent most reactive to cynomolgus IgE was confirmed to be specific for IgE and did not bind recombinant cynomolgus monkey IgG1-4. A drug-specific IgE assay was developed on the MSD electrochemiluminescent (ECL) platform. The assay is capable of detecting 10 ng/mL drug-specific IgE. Importantly, the assay is able to detect IgE in the presence of excess IgG, the scenario likely to be present in a safety toxicology study. Using our ECL assay, we were able to confirm that serum from cynomolgus monkeys that had experienced clinical symptoms consistent with hypersensitivity responses contained IgE specific for a candidate therapeutic antibody. In addition, a bioassay for mast cell activation was developed using CD34(+)-derived cynomolgus monkey mast cells. This assay confirmed that plasma from animals identified as positive in the drug-specific IgE immunoassay contained biologically active IgE (i.e. could sensitize cultured mast cells), resulting in histamine release after exposure to the therapeutic antibody. These sensitive assays for Type-I hypersensitivity in the NHP can confirm that secondary events are downstream of immunogenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evolutionary expansion and divergence in a large family of primate-specific zinc finger transcription factor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, A T; Huntley, S; Tran-Gyamfi, M

    Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysismore » indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.« less

  5. Primate cathelicidin orthologues display different structures and membrane interactions.

    PubMed

    Morgera, Francesca; Vaccari, Lisa; Antcheva, Nikolinka; Scaini, Denis; Pacor, Sabrina; Tossi, Alessandro

    2009-02-01

    The human cathelicidin LL-37 displays both direct antibacterial activities and the capacity to modulate host-cell activities. These depend on structural characteristics that are subject to positive selection for variation, as observed in a previous analysis of the CAMP gene (encoding LL-37) in primates. The altered balance between cationic and anionic residues in different primate orthologues affects intramolecular salt-bridging and influences the stability of the helical conformation and tendency to aggregate in solution of the peptide. In the present study, we have analysed the effects of these structural variations on membrane interactions for human LL-37, rhesus RL-37 and orang-utan LL-37, using several complementary biophysical and biochemical methods. CD and ATR (attenuated total reflection)-FTIR (Fourier-transform IR) spectroscopy on model membranes indicate that RL-37, which is monomeric and unstructured in bulk solution [F-form (free form)], and human LL-37, which is partly structured and probably aggregated [A-form (aggregated form)], bind biological membranes in different manners. RL-37 may insert more deeply into the lipid bilayer than LL-37, which remains aggregated. AFM (atomic force microscopy) performed on the same supported bilayer as used for ATR-FTIR measurements suggests a carpet-like mode of permeabilization for RL37 and formation of more defined worm-holes for LL-37. Comparison of data from the biological activity on bacterial cells with permeabilization of model membranes indicates that the structure/aggregation state also affects the trajectory of the peptides from bulk solution through the outer cell-wall layers to the membrane. The results of the present study suggest that F-form cathelicidin orthologues may have evolved to have primarily a direct antimicrobial defensive capacity, whereas the A-forms have somewhat sacrificed this to gain host-cell modulating functions.

  6. A Behavioural Case Study of Early Social Isolation of a Subadult White-Handed Gibbon (Hylobates lar).

    PubMed

    Giorgi, Andrea; Montebovi, Giulia; Vitale, Augusto; Alleva, Enrico

    2018-06-06

    Our aim in this study was to analyse the effects of early social isolation on the behaviour of a white-handed gibbon (Hylobates lar) and at the same time to improve his level of welfare. The subject was a 6-year-old male, isolated from conspecific as well as other non-human primates since he was 3 months old. We presented the gibbon with a series of species-specific vocalisations, and we then introduced a 23-year-old conspecific female into his cage. Our subject did not respond to playbacks, whereas he immediately interacted positively with the conspecific female. After 2 days of presentation, the pair started to spend time in proximity to each other and initiated grooming through the wire-mesh dividing the cages. Four days later we recorded vocal duets. No obvious ste-reotypic behaviours were observed, and the prolonged isolation did not seem to compromise the ability of the young gibbon to socialise with the female conspecific. It appears that prolonged isolation does not always compromise the possibility of recovering socially in a satisfactory manner. © 2018 S. Karger AG, Basel.

  7. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  8. Lentiviral Nef suppresses iron uptake in a strain specific manner through inhibition of Transferrin endocytosis

    PubMed Central

    2014-01-01

    Background Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains. Results Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages. Conclusion Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys. PMID:24383984

  9. Immunization of rhesus macaques with Echinococcus multilocularis recombinant 14-3-3 antigen leads to specific antibody response.

    PubMed

    Lampe, Karen; Gottstein, B; Becker, T; Stahl-Hennig, C; Kaup, F-J; Mätz-Rensing, K

    2017-01-01

    E. multilocularis (Em) is the etiologic agent of alveolar echinococcosis (AE), a severe and potentially fatal disease, primarily affecting the liver of and occurring in aberrant intermediate hosts, e.g., humans and non-human primates. Due to increasing numbers of spontaneous cases of AE in the Old World monkey colonies of the German Primate Center, the question arose as to whether vaccination of non-human primates may represent a useful prophylactic approach. In this pilot study, the recombinant antigen Em14-3-3, which has provided a 97 % protection against E. multilocularis challenge infection in rodent models, was used for the first time to immunize rhesus macaques. In order to increase immunogenicity, the antigen was formulated with different adjuvants including Quil A®, aluminum hydroxide (alum), and muramyl dipeptide (MDP). Also, different vaccination regimens were tested. All vaccinated animals developed antigen-specific antibodies. While Quil A® induced a local adverse reaction, alum proved to be the most potent adjuvant in terms of induced antibody levels, longevity as well as tolerability. In conclusion, our pilot study demonstrated that recombinant Em14-3-3 is safe and immunogenic in rhesus monkeys. As a next step, efficacy of the vaccination remains to be explored.

  10. Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture

    PubMed Central

    Eildermann, K.; Gromoll, J.; Behr, R.

    2012-01-01

    BACKGROUND Several studies have reported the generation of spermatogonia-derived pluripotent stem cells from human testes. The initial aim of the present study was the derivation of equivalent stem cells from an established and experimentally accessible non-human primate model, the common marmoset monkey (Callithrix jacchus). However, an essential prerequisite in the absence of transgenic reporters in primates and man is the availability of validated endogenous markers for the identification of specific cell types in vitro. METHODS AND RESULTS We cultured marmoset testicular cells in a similar way to that described for human testis-derived pluripotent cells and set out to characterize these cultures under different conditions and in differentiation assays applying established marker panels. Importantly, the cells emerged as testicular multipotent stromal cells (TMSCs) instead of (pluripotent) germ cell-derived cells. TMSCs expressed many markers such as GFR-α, GPR125, THY-1 (CD90), ITGA6, SSEA4 and TRA-1-81, which were considered as spermatogonia specific and were previously used for the enrichment or characterization of spermatogonia. Proliferation of TMSCs was highly dependent on basic fibroblast growth factor, a growth factor routinely present in germ cell culture media. As reliable markers for the distinction between spermatogonia and TMSCs, we established VASA, in combination with the spermatogonia-expressed factors, MAGEA4, PLZF and SALL4. CONCLUSIONS Marmoset monkey TMSCs and spermatogonia exhibit an overlap of markers, which may cause erroneous interpretations of experiments with testis-derived stem cells in vitro. We provide a marker panel for the unequivocal identification of spermatogonia providing a better basis for future studies on primate, including human, testis-derived stem cells. PMID:22442249

  11. Loss of memory CD4+ T-cells in semi-wild mandrills (Mandrillus sphinx) naturally infected with species-specific simian immunodeficiency virus SIVmnd-1.

    PubMed

    Greenwood, Edward J D; Schmidt, Fabian; Liégeois, Florian; Kondova, Ivanela; Herbert, Anaïs; Ngoubangoye, Barthelemy; Rouet, François; Heeney, Jonathan L

    2014-01-01

    Simian immunodeficiency virus (SIV) infection is found in a number of African primate species and is thought to be generally non-pathogenic. However, studies of wild primates are limited to two species, with SIV infection appearing to have a considerably different outcome in each. Further examination of SIV-infected primates exposed to their natural environment is therefore warranted. We performed a large cross-sectional study of a cohort of semi-wild mandrills with naturally occurring SIV infection, including 39 SIV-negative and 33 species-specific SIVmnd-1-infected animals. This study was distinguished from previous reports by considerably greater sample size, examination of exclusively naturally infected animals in semi-wild conditions and consideration of simian T-lymphotropic virus (STLV) status in addition to SIVmnd-1 infection. We found that SIVmnd-1 infection was associated with a significant and progressive loss of memory CD4(+) T-cells. Limited but significant increases in markers of immune activation in the T-cell populations, significant increases in plasma neopterin and changes to B-cell subsets were also observed in SIV-infected animals. However, no increase in plasma soluble CD14 was observed. Histological examination of peripheral lymph nodes suggested that SIVmnd-1 infection was not associated with a significant disruption of the lymph node architecture. Whilst this species has evolved numerous strategies to resist the development of AIDS, significant effects of SIV infection could be observed when examined in a natural environment. STLVmnd-1 infection also had significant effects on some markers relevant to understanding SIV infection and thus should be considered in studies of SIV infection of African primates where present.

  12. Meta-analysis of attitudes toward damage-causing mammalian wildlife.

    PubMed

    Kansky, Ruth; Kidd, Martin; Knight, Andrew T

    2014-08-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  13. Detection of viruses using discarded plants from wild mountain gorillas and golden monkeys.

    PubMed

    Smiley Evans, Tierra; Gilardi, Kirsten V K; Barry, Peter A; Ssebide, Benard Jasper; Kinani, Jean Felix; Nizeyimana, Fred; Noheri, Jean Bosco; Byarugaba, Denis K; Mudakikwa, Antoine; Cranfield, Michael R; Mazet, Jonna A K; Johnson, Christine K

    2016-11-01

    Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. 78:1222-1234, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. ISOLATION OF THE REGULATORY REGIONS AND GENOMIC ORGANIZATION OF THE PORCINE α1,3-GALACTOSYLTRANSFERASE GENE1

    PubMed Central

    Koike, Chihiro; Friday, Robert P.; Nakashima, Izumi; Luppi, Patrizia; Fung, John J.; Rao, Abdul S.; Starzl, Thomas E.; Trucco, Massimo

    2010-01-01

    Background α1,3-galactosyltransferase (α1,3GT) is an enzyme that produces carbohydrate chains termed αGal epitopes found in most mammals, although some species of higher primates, including human, are notable exceptions. The evolutionary origin of the lost α1,3GT enzyme activity is not yet known, although it has been suggested that the promoter activity of this gene in the ancestors of higher primates was inactivated. Methods We used 5′-or 3′-RACE, GenomeWalking, reverse transcriptase polymerase chain reaction (RT-PCR) and dual Luciferase reporter assay for identification of the full-length cDNA, which includes the transcription initiation site and the promoter region of porcine α1,3GT gene. Results The region around exon 1 is guanine and cytosine (GC)-rich (about 70%), comprising a CpG island spanning more than 1.5 kbp. The 5′-flanking region of exon 1 contains multiple transcription factor consensus motifs, including GC-box, SP1, AP2, and GATA-box sites, in the absence of TATA or CAAT-box sequences. The entire gene consists of three 5′ noncoding and six coding region exons spanning more than 52 kbp. Detailed analysis of α1,3GT transcripts revealed two major alternative splicing patterns in the 5′-untranslated region (5′-UTR) and evidence for minor splicing activity that occurs in a tissue-specific manner. Interspecies comparison of 5′-UTR shows minimal homology between porcine and murine sequences except for exon 2, which suggests that the regulatory regions differ among species. Conclusions These observations have important implications for experiments involving genetic manipulation of the α1,3GT gene in transgenic animals in terms of promoter utilization, and particularly in genetically engineering cells for the animal cloning technology by nuclear transfer. PMID:11087141

  15. Effects of Serotonin 2C Receptor Agonists on the Behavioral and Neurochemical Effects of Cocaine in Squirrel Monkeys

    PubMed Central

    Manvich, Daniel F.; Kimmel, Heather L.

    2012-01-01

    Accumulating evidence indicates that the serotonin system modulates the behavioral and neurochemical effects of cocaine, but the receptor subtypes mediating these effects remain unknown. Recent studies have demonstrated that pharmacological activation of the serotonin 2C receptor (5-HT2CR) attenuates the behavioral and neurochemical effects of cocaine in rodents, but such compounds have not been systematically evaluated in nonhuman primates. The present experiments sought to determine the impact of pretreatment with the preferential 5-HT2CR agonist m-chlorophenylpiperazine (mCPP) and the selective 5-HT2CR agonist Ro 60-0175 [(α-S)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine fumarate] on the behavioral and neurochemical effects of cocaine in squirrel monkeys. In subjects trained to lever-press according to a 300-s fixed-interval schedule of stimulus termination, pretreatment with either 5-HT2CR agonist dose-dependently and insurmountably attenuated the behavioral stimulant effects of cocaine. In subjects trained to self-administer cocaine, both compounds dose-dependently and insurmountably attenuated cocaine-induced reinstatement of previously extinguished responding in an antagonist-reversible manner, and the selective agonist Ro 60-0175 also attenuated the reinforcing effects of cocaine during ongoing cocaine self-administration. It is noteworthy that the selective agonist Ro 60-0175 exhibited behavioral specificity because it did not significantly alter nondrug-maintained responding. Finally, in vivo microdialysis studies revealed that pretreatment with Ro 60-0175 caused a reduction of cocaine-induced dopamine increases within the nucleus accumbens, but not the caudate nucleus. These results suggest that 5-HT2CR agonists functionally antagonize the behavioral effects of cocaine in nonhuman primates, possibly via a selective modulation of cocaine-induced dopamine increases within the mesolimbic dopamine system and may therefore represent a novel class of pharmacotherapeutics for the treatment of cocaine abuse. PMID:22328576

  16. Vestibular-Related Frontal Cortical Areas and Their Roles in Smooth-Pursuit Eye Movements: Representation of Neck Velocity, Neck-Vestibular Interactions, and Memory-Based Smooth-Pursuit

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo

    2011-01-01

    Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit–vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion–direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit. PMID:22174706

  17. Is the Face-Perception System Human-Specific at Birth?

    ERIC Educational Resources Information Center

    Di Giorgio, Elisa; Leo, Irene; Pascalis, Olivier; Simion, Francesca

    2012-01-01

    The present study investigates the human-specificity of the orienting system that allows neonates to look preferentially at faces. Three experiments were carried out to determine whether the face-perception system that is present at birth is broad enough to include both human and nonhuman primate faces. The results demonstrate that the newborns…

  18. Perceptions of nonhuman primates in human-wildlife conflict scenarios.

    PubMed

    Hill, Catherine M; Webber, Amanda D

    2010-09-01

    Nonhuman primates (referred to as primates in this study) are sometimes revered as gods, abhorred as evil spirits, killed for food because they damage crops, or butchered for sport. Primates' perceived similarity to humans places them in an anomalous position. While some human groups accept the idea that primates "straddle" the human-nonhuman boundary, for others this resemblance is a violation of the human-animal divide. In this study we use two case studies to explore how people's perceptions of primates are often influenced by these animals' apparent similarity to humans, creating expectations, founded within a "human morality" about how primates should interact with people. When animals transgress these social rules, they are measured against the same moral framework as humans. This has implications for how people view and respond to certain kinds of primate behaviors, their willingness to tolerate co-existence with primates and their likely support for primate conservation initiatives. 2010 Wiley-Liss, Inc.

  19. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice

    PubMed Central

    Reed, David L; Light, Jessica E; Allen, Julie M; Kirchman, Jeremy J

    2007-01-01

    Background The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts. Results Phylogenetic and cophylogenetic analyses suggest that the louse genera Pediculus and Pthirus are each monophyletic, and are sister taxa to one another. The age of the most recent common ancestor of the two Pediculus species studied matches the age predicted by host divergence (ca. 6 million years), whereas the age of the ancestor of Pthirus does not. The two species of Pthirus (Pthirus gorillae and Pthirus pubis) last shared a common ancestor ca. 3–4 million years ago, which is considerably younger than the divergence between their hosts (gorillas and humans, respectively), of approximately 7 million years ago. Conclusion Reconciliation analysis determines that there are two alternative explanations that account for the current distribution of anthropoid primate lice. The more parsimonious of the two solutions suggests that a Pthirus species switched from gorillas to humans. This analysis assumes that the divergence between Pediculus and Pthirus was contemporaneous with the split (i.e., a node of cospeciation) between gorillas and the lineage leading to chimpanzees and humans. Divergence date estimates, however, show that the nodes in the host and parasite trees are not contemporaneous. Rather, the shared coevolutionary history of the anthropoid primates and their lice contains a mixture of evolutionary events including cospeciation, parasite duplication, parasite extinction, and host switching. Based on these data, the coevolutionary history of primates and their lice has been anything but parsimonious. PMID:17343749

  20. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.

    PubMed

    Reillo, Isabel; Borrell, Víctor

    2012-09-01

    Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.

  1. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    PubMed

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  2. Cytomegaloviruses in a Community of Wild Nonhuman Primates in Taï National Park, Côte D’Ivoire

    PubMed Central

    Anoh, Augustin Etile; Murthy, Sripriya; Akoua-Koffi, Chantal; Couacy-Hymann, Emmanuel; Leendertz, Fabian Hubertus; Calvignac-Spencer, Sébastien; Ehlers, Bernhard

    2017-01-01

    Cytomegaloviruses (CMVs) are known to infect many mammals, including a number of nonhuman primates (NHPs). However, most data available arose from studies led on captive individuals and little is known about CMV diversity in wild NHPs. Here, we analyzed a community of wild nonhuman primates (seven species) in Taï National Park (TNP), Côte d’Ivoire, with two PCR systems targeting betaherpesviruses. CMV DNA was detected in 17/87 primates (4/7 species). Six novel CMVs were identified in sooty mangabeys, Campbell’s monkeys and Diana monkeys, respectively. In 3/17 positive individuals (from three NHP species), different CMVs were co-detected. A major part of the glycoprotein B coding sequences of the novel viruses was amplified and sequenced, and phylogenetic analyses were performed that included three previously discovered CMVs of western red colobus from TNP and published CMVs from other NHP species and geographic locations. We find that, despite this locally intensified sampling, NHP CMVs from TNP are completely host-specific, pinpointing the absence or rarity of cross-species transmission. We also show that on longer timescales the evolution of CMVs is characterized by frequent co-divergence with their hosts, although other processes, including lineage duplication and host switching, also have to be invoked to fully explain their evolutionary relationships. PMID:29286318

  3. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans

    PubMed Central

    Moretti, S.; Davydov, I.I.; Excoffier, L.

    2017-01-01

    Abstract Gene set enrichment approaches have been increasingly successful in finding signals of recent polygenic selection in the human genome. In this study, we aim at detecting biological pathways affected by positive selection in more ancient human evolutionary history. Focusing on four branches of the primate tree that lead to modern humans, we tested all available protein coding gene trees of the Primates clade for signals of adaptation in these branches, using the likelihood-based branch site test of positive selection. The results of these locus-specific tests were then used as input for a gene set enrichment test, where whole pathways are globally scored for a signal of positive selection, instead of focusing only on outlier “significant” genes. We identified signals of positive selection in several pathways that are mainly involved in immune response, sensory perception, metabolism, and energy production. These pathway-level results are highly significant, even though there is no functional enrichment when only focusing on top scoring genes. Interestingly, several gene sets are found significant at multiple levels in the phylogeny, but different genes are responsible for the selection signal in the different branches. This suggests that the same function has been optimized in different ways at different times in primate evolution. PMID:28333345

  4. Adult Cleaner Wrasse Outperform Capuchin Monkeys, Chimpanzees and Orang-utans in a Complex Foraging Task Derived from Cleaner – Client Reef Fish Cooperation

    PubMed Central

    Proctor, Darby; Essler, Jennifer; Pinto, Ana I.; Wismer, Sharon; Stoinski, Tara; Brosnan, Sarah F.; Bshary, Redouan

    2012-01-01

    The insight that animals' cognitive abilities are linked to their evolutionary history, and hence their ecology, provides the framework for the comparative approach. Despite primates renowned dietary complexity and social cognition, including cooperative abilities, we here demonstrate that cleaner wrasse outperform three primate species, capuchin monkeys, chimpanzees and orang-utans, in a foraging task involving a choice between two actions, both of which yield identical immediate rewards, but only one of which yields an additional delayed reward. The foraging task decisions involve partner choice in cleaners: they must service visiting client reef fish before resident clients to access both; otherwise the former switch to a different cleaner. Wild caught adult, but not juvenile, cleaners learned to solve the task quickly and relearned the task when it was reversed. The majority of primates failed to perform above chance after 100 trials, which is in sharp contrast to previous studies showing that primates easily learn to choose an action that yields immediate double rewards compared to an alternative action. In conclusion, the adult cleaners' ability to choose a superior action with initially neutral consequences is likely due to repeated exposure in nature, which leads to specific learned optimal foraging decision rules. PMID:23185293

  5. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The monkey puzzle: a systematic review of studies of stress, social hierarchies, and heart disease in monkeys.

    PubMed

    Petticrew, Mark; Davey Smith, George

    2012-01-01

    It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted.

  7. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community★

    PubMed Central

    Thurber, Mary I.; Ghai, Ria R.; Hyeroba, Hyeroba; Weny, Geoffrey; Tumukunde, Alex; Chapman, Colin A.; Wiseman, Roger W.; Dinis, Jorge; Steeil, James; Greiner, Ellis C.; Friedrich, Thomas C.; O’Connor, David H.; Goldberg, Tony L.

    2013-01-01

    Hemoparasites of the apicomplexan family Plasmodiidae include the etiological agents of malaria, as well as a suite of non-human primate parasites from which the human malaria agents evolved. Despite the significance of these parasites for global health, little information is available about their ecology in multi-host communities. Primates were investigated in Kibale National Park, Uganda, where ecological relationships among host species are well characterized. Blood samples were examined for parasites of the genera Plasmodium and Hepatocystis using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene, followed by Sanger sequencing. To assess co-infection, “deep sequencing” of a variable region within cytochrome b was performed. Out of nine black-and-white colobus (Colobus guereza), one blue guenon (Cercopithecus mitis), five grey-cheeked mangabeys (Lophocebus albigena), 23 olive baboons (Papio anubis), 52 red colobus (Procolobus rufomitratus) and 12 red-tailed guenons (Cercopithecus ascanius), 79 infections (77.5%) were found, all of which were Hepatocystis spp. Sanger sequencing revealed 25 different parasite haplotypes that sorted phylogenetically into six species-specific but morphologically similar lineages. “Deep sequencing” revealed mixed-lineage co-infections in baboons and red colobus (41.7% and 64.7% of individuals, respectively) but not in other host species. One lineage infecting red colobus also infected baboons, but always as the minor variant, suggesting directional cross-species transmission. Hepatocystis parasites in this primate community are a diverse assemblage of cryptic lineages, some of which co-infect hosts and at least one of which can cross primate species barriers. PMID:23603520

  8. The Monkey Puzzle: A Systematic Review of Studies of Stress, Social Hierarchies, and Heart Disease in Monkeys

    PubMed Central

    Petticrew, Mark; Davey Smith, George

    2012-01-01

    Background It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. Methodology/Principal Findings A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Conclusions/Significance Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted. PMID:22470414

  9. Neuronal prediction of opponent's behavior during cooperative social interchange in primates.

    PubMed

    Haroush, Keren; Williams, Ziv M

    2015-03-12

    A cornerstone of successful social interchange is the ability to anticipate each other's intentions or actions. While generating these internal predictions is essential for constructive social behavior, their single neuronal basis and causal underpinnings are unknown. Here, we discover specific neurons in the primate dorsal anterior cingulate that selectively predict an opponent's yet unknown decision to invest in their common good or defect and distinct neurons that encode the monkey's own current decision based on prior outcomes. Mixed population predictions of the other was remarkably near optimal compared to behavioral decoders. Moreover, disrupting cingulate activity selectively biased mutually beneficial interactions between the monkeys but, surprisingly, had no influence on their decisions when no net-positive outcome was possible. These findings identify a group of other-predictive neurons in the primate anterior cingulate essential for enacting cooperative interactions and may pave a way toward the targeted treatment of social behavioral disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    PubMed Central

    Latzman, Robert D.; Hopkins, William D.; Keebaugh, Alaine C.; Young, Larry J.

    2014-01-01

    One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level. PMID:24752497

  11. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates

    PubMed Central

    Mason, Victor C.; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D.; Dominy, Nathaniel J.; Lim, Norman T-L.; Springer, Mark S.; Wilson, Richard K.; Warren, Wesley C.; Helgen, Kristofer M.; Murphy, William J.

    2016-01-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  12. Individual differences in temperament and behavioral management practices for nonhuman primates

    PubMed Central

    Coleman, Kristine

    2011-01-01

    Effective behavioral management plans are tailored to unique behavioral patterns of each individual species. However, even within a species behavioral needs of individuals can vary. Factors such as age, sex, and temperament can affect behavioral needs of individuals. While some of these factors, such as age and sex, are taken into account, other factors, such as an individual’s temperament, are rarely specifically provided for in behavioral management plans. However, temperament may affect how animals respond to socialization, positive reinforcement training and other forms of enrichment. This review will examine how individual differences in temperament might affect, or be affected by, behavioral management practices for captive primates. Measuring temperament may help us predict outcome of social introductions. It can also predict which animals may be difficult to train using traditional methods. Further, knowledge of temperament may be able to help identify individuals at risk for development of behavioral problems. Taken together, understanding individual differences in temperament of captive primates can help guide behavioral management decisions. PMID:22518067

  13. Behavior of Americium in Simulated Wounds in Nonhuman Primates

    DOE PAGES

    Poudel, Deepesh; Guilmette, Raymond A.; Bertelli, Luiz; ...

    2017-06-01

    An americium solution injected intramuscularly into several nonhuman primates (NHPs) was found to behave differently than predicted by the wound models described in the NCRP Report 156. This was because the injection was made along with a citrate solution, which is known to be more soluble than chlorides, oxides, or nitrates on which the NCRP Report was based. We developed a multi-exponential wound model specific to the injected americium solution based on the retention in the intramuscular sites. The model was coupled with the americium systemic model to interpret the urinary excretion data and assess the intake, and it wasmore » determined that the models were adequate to predict early urinary excretion in most cases but unable to predict late urinary excretion. This was attributed to the differences in the systemic handling of americium between humans and nonhuman primates. Furthermore, information on the type of wounds, solubility, particle size, mass, chemical form, etc., should always be considered when performing wound dosimetry.« less

  14. The EMO-Model: An Agent-Based Model of Primate Social Behavior Regulated by Two Emotional Dimensions, Anxiety-FEAR and Satisfaction-LIKE

    PubMed Central

    Evers, Ellen; de Vries, Han; Spruijt, Berry M.; Sterck, Elisabeth H. M.

    2014-01-01

    Agent-based models provide a promising tool to investigate the relationship between individuals’ behavior and emerging group-level patterns. An individual’s behavior may be regulated by its emotional state and its interaction history with specific individuals. Emotional bookkeeping is a candidate mechanism to keep track of received benefits from specific individuals without requiring high cognitive abilities. However, how this mechanism may work is difficult to study in real animals, due to the complexity of primate social life. To explore this theoretically, we introduce an agent-based model, dubbed EMO-model, in which we implemented emotional bookkeeping. In this model the social behaviors of primate-like individuals are regulated by emotional processes along two dimensions. An individual’s emotional state is described by an aversive and a pleasant dimension (anxiety and satisfaction) and by its activating quality (arousal). Social behaviors affect the individuals’ emotional state. To implement emotional bookkeeping, the receiver of grooming assigns an accumulated affiliative attitude (LIKE) to the groomer. Fixed partner-specific agonistic attitudes (FEAR) reflect the stable dominance relations between group members. While the emotional state affects an individual’s general probability of executing certain behaviors, LIKE and FEAR affect the individual’s partner-specific behavioral probabilities. In this way, emotional processes regulate both spontaneous behaviors and appropriate responses to received behaviors, while emotional bookkeeping via LIKE attitudes regulates the development and maintenance of affiliative relations. Using an array of empirical data, the model processes were substantiated and the emerging model patterns were partially validated. The EMO-model offers a framework to investigate the emotional bookkeeping hypothesis theoretically and pinpoints gaps that need to be investigated empirically. PMID:24504194

  15. The EMO-model: an agent-based model of primate social behavior regulated by two emotional dimensions, anxiety-FEAR and satisfaction-LIKE.

    PubMed

    Evers, Ellen; de Vries, Han; Spruijt, Berry M; Sterck, Elisabeth H M

    2014-01-01

    Agent-based models provide a promising tool to investigate the relationship between individuals' behavior and emerging group-level patterns. An individual's behavior may be regulated by its emotional state and its interaction history with specific individuals. Emotional bookkeeping is a candidate mechanism to keep track of received benefits from specific individuals without requiring high cognitive abilities. However, how this mechanism may work is difficult to study in real animals, due to the complexity of primate social life. To explore this theoretically, we introduce an agent-based model, dubbed EMO-model, in which we implemented emotional bookkeeping. In this model the social behaviors of primate-like individuals are regulated by emotional processes along two dimensions. An individual's emotional state is described by an aversive and a pleasant dimension (anxiety and satisfaction) and by its activating quality (arousal). Social behaviors affect the individuals' emotional state. To implement emotional bookkeeping, the receiver of grooming assigns an accumulated affiliative attitude (LIKE) to the groomer. Fixed partner-specific agonistic attitudes (FEAR) reflect the stable dominance relations between group members. While the emotional state affects an individual's general probability of executing certain behaviors, LIKE and FEAR affect the individual's partner-specific behavioral probabilities. In this way, emotional processes regulate both spontaneous behaviors and appropriate responses to received behaviors, while emotional bookkeeping via LIKE attitudes regulates the development and maintenance of affiliative relations. Using an array of empirical data, the model processes were substantiated and the emerging model patterns were partially validated. The EMO-model offers a framework to investigate the emotional bookkeeping hypothesis theoretically and pinpoints gaps that need to be investigated empirically.

  16. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  17. Genetic and molecular risk factors within the newly identified primate-specific exon of the SAP97/DLG1 gene in the 3q29 schizophrenia-associated locus.

    PubMed

    Uezato, Akihito; Yamamoto, Naoki; Jitoku, Daisuke; Haramo, Emiko; Hiraaki, Eri; Iwayama, Yoshimi; Toyota, Tomoko; Umino, Masakazu; Umino, Asami; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Kurumaji, Akeo; Yoshikawa, Takeo; Nishikawa, Toru

    2017-12-01

    The synapse-associated protein 97/discs, large homolog 1 of Drosophila (DLG1) gene encodes synaptic scaffold PDZ proteins interacting with ionotropic glutamate receptors including the N-methyl-D-aspartate type glutamate receptor (NMDAR) that is presumed to be hypoactive in brains of patients with schizophrenia. The DLG1 gene resides in the chromosomal position 3q29, the microdeletion of which confers a 40-fold increase in the risk for schizophrenia. In the present study, we performed genetic association analyses for DLG1 gene using a Japanese cohort with 1808 schizophrenia patients and 2170 controls. We detected an association which remained significant after multiple comparison testing between schizophrenia and the single nucleotide polymorphism (SNP) rs3915512 that is located within the newly identified primate-specific exon (exon 3b) of the DLG1 gene and constitutes the exonic splicing enhancer sequence. When stratified by onset age, although it did not survive multiple comparisons, the association was observed in non-early onset schizophrenia, whose onset-age selectivity is consistent with our recent postmortem study demonstrating a decrease in the expression of the DLG1 variant in early-onset schizophrenia. Although the present study did not demonstrate the previously reported association of the SNP rs9843659 by itself, a meta-analysis revealed a significant association between DLG1 gene and schizophrenia. These findings provide a valuable clue for molecular mechanisms on how genetic variations in the primate-specific exon of the gene in the schizophrenia-associated 3q29 locus affect its regulation in the glutamate system and lead to the disease onset around a specific stage of brain development. © 2017 Wiley Periodicals, Inc.

  18. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  19. Unlike fellows - a review of primate-non-primate associations.

    PubMed

    Heymann, Eckhard W; Hsia, Shin S

    2015-02-01

    Throughout many regions of the tropics, non-primate animals - mainly birds and mammals - have been observed to follow primate groups and to exploit dropped food and flushed prey. The anecdotal nature of most of the numerous reports on these primate-non-primate associations (PNPAs) may obscure the biological significance of such associations. We review the existing literature and test predictions concerning the influence of primate traits (body size, activity patterns, dietary strategies, habitat, group size) on the occurrence of PNPAs. Furthermore, we examine the influence of non-primates' dietary strategies on the occurrence of PNPAs, and the distribution of benefits and costs. We detected a strong signal in the geographic distribution of PNPAs, with a larger number of such associations in the Neotropics compared to Africa and Asia. Madagascar lacks PNPAs altogether. Primate body size, activity patterns, habitat and dietary strategies as well as non-primate dietary strategies affect the occurrence of PNPAs, while primate group size did not play a role. Benefits are asymmetrically distributed and mainly accrue to non-primates. They consist of foraging benefits through the consumption of dropped leaves and fruits and flushed prey, and anti-predation benefits through eavesdropping on primate alarm calls and vigilance. Where quantitative information is available, it has been shown that benefits for non-primates can be substantial. The majority of PNPAs can thus be categorized as cases of commensalism, while mutualism is very rare. Our review provides evidence that the ecological function of primates extends beyond their manifold interactions with plants, but may remain underestimated. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  20. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    PubMed Central

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination. PMID:28078183

  1. Large animal and primate models of spinal cord injury for the testing of novel therapies.

    PubMed

    Kwon, Brian K; Streijger, Femke; Hill, Caitlin E; Anderson, Aileen J; Bacon, Mark; Beattie, Michael S; Blesch, Armin; Bradbury, Elizabeth J; Brown, Arthur; Bresnahan, Jacqueline C; Case, Casey C; Colburn, Raymond W; David, Samuel; Fawcett, James W; Ferguson, Adam R; Fischer, Itzhak; Floyd, Candace L; Gensel, John C; Houle, John D; Jakeman, Lyn B; Jeffery, Nick D; Jones, Linda Ann Truett; Kleitman, Naomi; Kocsis, Jeffery; Lu, Paul; Magnuson, David S K; Marsala, Martin; Moore, Simon W; Mothe, Andrea J; Oudega, Martin; Plant, Giles W; Rabchevsky, Alexander Sasha; Schwab, Jan M; Silver, Jerry; Steward, Oswald; Xu, Xiao-Ming; Guest, James D; Tetzlaff, Wolfram

    2015-07-01

    Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.

    PubMed

    Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo

    2018-04-30

    Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.

  3. A comparative view of face perception.

    PubMed

    Leopold, David A; Rhodes, Gillian

    2010-08-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and functional magnetic resonance imaging (fMRI) experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and nonprimates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Because the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. 2010 APA, all rights reserved

  4. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  5. A voice region in the monkey brain.

    PubMed

    Petkov, Christopher I; Kayser, Christoph; Steudel, Thomas; Whittingstall, Kevin; Augath, Mark; Logothetis, Nikos K

    2008-03-01

    For vocal animals, recognizing species-specific vocalizations is important for survival and social interactions. In humans, a voice region has been identified that is sensitive to human voices and vocalizations. As this region also strongly responds to speech, it is unclear whether it is tightly associated with linguistic processing and is thus unique to humans. Using functional magnetic resonance imaging of macaque monkeys (Old World primates, Macaca mulatta) we discovered a high-level auditory region that prefers species-specific vocalizations over other vocalizations and sounds. This region not only showed sensitivity to the 'voice' of the species, but also to the vocal identify of conspecific individuals. The monkey voice region is located on the superior-temporal plane and belongs to an anterior auditory 'what' pathway. These results establish functional relationships with the human voice region and support the notion that, for different primate species, the anterior temporal regions of the brain are adapted for recognizing communication signals from conspecifics.

  6. Development of Metabolic Function Biomarkers in the Common Marmoset, Callithrix jacchus

    PubMed Central

    Ziegler, Toni E.; Colman, Ricki J.; Tardif, Suzette D.; Sosa, Megan E.; Wegner, Fredrick H.; Wittwer, Daniel J.; Shrestha, Hemanta

    2013-01-01

    Metabolic assessment of a nonhuman primate model of metabolic syndrome and obesity requires the necessary biomarkers specific to the species. While the rhesus monkey has a number of specific assays for assessing metabolic syndrome, the marmoset does not. Furthermore, the common marmoset (Callithrix jacchus) has a small blood volume that necessitates using a single blood volume for multiple analyses. The common marmoset holds a great potential as an alternative primate model for the study of human disease but assay methods need to be developed and validated for the biomarkers of metabolic syndrome. Here we report on the adaptation, development and validation of commercially available immunoassays for common marmoset samples in small volumes. We have performed biological validations for insulin, adiponectin, leptin, and ghrelin to demonstrate the use of these biomarkers in examining metabolic syndrome and other related diseases in the common marmoset. PMID:23447060

  7. Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing.

    PubMed

    D'Agostino, Ylenia; D'Aniello, Salvatore

    2017-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system is a recently discovered tool for genome editing that has quickly revolutionized the ability to generate site-specific mutations in a wide range of animal models, including nonhuman primates. Indeed, a significant number of scientific reports describing single or multiplex guide RNA microinjection, double-nicking strategies, site-specific knock-in and conditional knock-out have been published in less than three years. However, despite the great potential of this new technology, there are some limitations because of the presence of off-target genomic sites, which must be taken into consideration. To address this issue, various research teams have tried to improve the efficiency of the system through enzymatic modifications of the Cas9 protein or by the introduction of alternative strategies. Although several review articles are available that singly describe the molecular mechanism(s), applications and challenges of each of these strategies, a concise compilation of approaches is lacking. In the current review, we describe and evaluate most CRISPR/Cas9 approaches available at present, describing both mechanism of action, in addition to advantages or disadvantages. The primary goal of this work is to serve as a guide for not skilled researchers, facilitating the selection of the best strategy to target their gene of interest and allowing optimization of particular applications to the specific aims of the study. The present article also offers a unique perspective, focusing on the fact that CRISPR technology is opening a new genomic era, providing the means to manipulate specific genes in a targeted manner in all animal models, an endeavor previously considered to be difficult. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. PrimateLit Database

    Science.gov Websites

    Primate Info Net Related Databases NCRR PrimateLit: A bibliographic database for primatology Top of any problems with this service. We welcome your feedback. The PrimateLit database is no longer being Resources, National Institutes of Health. The database is a collaborative project of the Wisconsin Primate

  9. A Molecular Phylogeny of Living Primates

    PubMed Central

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  10. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation.

    PubMed

    Estrada, Alejandro; Garber, Paul A; Mittermeier, Russell A; Wich, Serge; Gouveia, Sidney; Dobrovolski, Ricardo; Nekaris, K A I; Nijman, Vincent; Rylands, Anthony B; Maisels, Fiona; Williamson, Elizabeth A; Bicca-Marques, Julio; Fuentes, Agustin; Jerusalinsky, Leandro; Johnson, Steig; Rodrigues de Melo, Fabiano; Oliveira, Leonardo; Schwitzer, Christoph; Roos, Christian; Cheyne, Susan M; Martins Kierulff, Maria Cecilia; Raharivololona, Brigitte; Talebi, Mauricio; Ratsimbazafy, Jonah; Supriatna, Jatna; Boonratana, Ramesh; Wedana, Made; Setiawan, Arif

    2018-01-01

    Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.

  11. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation

    PubMed Central

    Mittermeier, Russell A.; Wich, Serge; Gouveia, Sidney; Dobrovolski, Ricardo; Nijman, Vincent; Rylands, Anthony B.; Johnson, Steig; Rodrigues de Melo, Fabiano; Schwitzer, Christoph; Roos, Christian; Cheyne, Susan M.; Martins Kierulff, Maria Cecilia; Raharivololona, Brigitte; Ratsimbazafy, Jonah; Supriatna, Jatna; Boonratana, Ramesh; Wedana, Made; Setiawan, Arif

    2018-01-01

    Primates occur in 90 countries, but four—Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)—harbor 65% of the world’s primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems. PMID:29922508

  12. Transmission of MDR MRSA between primates, their environment and personnel at a United States primate centre.

    PubMed

    Soge, Olusegun O; No, David; Michael, Karen E; Dankoff, Jennifer; Lane, Jennifer; Vogel, Keith; Smedley, Jeremy; Roberts, Marilyn C

    2016-10-01

    MDR MRSA isolates cultured from primates, their facility and primate personnel from the Washington National Primate Research Center were characterized to determine whether they were epidemiologically related to each other and if they represented common local human-associated MRSA strains. Human and primate nasal and composite environmental samples were collected, enriched and selected on medium supplemented with oxacillin and polymyxin B. Isolates were biochemically verified as Staphylococcus aureus and screened for the mecA gene. Selected isolates were characterized using SCCmec typing, MLST and WGS. Nasal cultures were performed on 596 primates and 105 (17.6%) were MRSA positive. Two of 79 (2.5%) personnel and two of 56 (3.6%) composite primate environmental facility samples were MRSA positive. Three MRSA isolates from primates, one MRSA from personnel, two environmental MRSA and one primate MSSA were ST188 and were the same strain type by conventional typing methods. ST188 isolates were related to a 2007 ST188 human isolate from Hong Kong. Both MRSA isolates from out-of-state primates had a novel MLST type, ST3268, and an unrelated group. All isolates carried ≥1 other antibiotic resistance gene(s), including tet(38), the only tet gene identified. ST188 is very rare in North America and has almost exclusively been identified in people from Pan-Asia, while ST3268 is a newly reported MRSA type. The data suggest that the primate MDR MRSA was unlikely to come from primate centre employees. Captive primates are likely to be an unappreciated source of MRSA. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  14. Predictive Suppression of Cortical Excitability and Its Deficit in Schizophrenia

    PubMed Central

    Schroeder, Charles E.; Leitman, David I.

    2013-01-01

    Recent neuroscience advances suggest that when interacting with our environment, along with previous experience, we use contextual cues and regularities to form predictions that guide our perceptions and actions. The goal of such active “predictive sensing” is to selectively enhance the processing and representation of behaviorally relevant information in an efficient manner. Since a hallmark of schizophrenia is impaired information selection, we tested whether this deficiency stems from dysfunctional predictive sensing by measuring the degree to which neuronal activity predicts relevant events. In healthy subjects, we established that these mechanisms are engaged in an effort-dependent manner and that, based on a correspondence between human scalp and intracranial nonhuman primate recordings, their main role is a predictive suppression of excitability in task-irrelevant regions. In contrast, schizophrenia patients displayed a reduced alignment of neuronal activity to attended stimuli, which correlated with their behavioral performance deficits and clinical symptoms. These results support the relevance of predictive sensing for normal and aberrant brain function, and highlight the importance of neuronal mechanisms that mold internal ongoing neuronal activity to model key features of the external environment. PMID:23843536

  15. 78 FR 47215 - Petition to Amend Animal Welfare Act Regulations To Prohibit Public Contact With Big Cats, Bears...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... standards for dogs and cats, guinea pigs and hamsters, rabbits, nonhuman primates, marine mammals, and... contact with animals, and specifically requires that dangerous animals such as lions, tigers, wolves...

  16. Columnar processing in primate pFC: evidence for executive control microcircuits.

    PubMed

    Opris, Ioan; Hampson, Robert E; Gerhardt, Greg A; Berger, Theodore W; Deadwyler, Sam A

    2012-12-01

    A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.

  17. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  18. Facilitation and Restoration of Cognitive Function in Primate Prefrontal Cortex by a Neuroprosthesis that Utilizes Minicolumn-Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Gerhardt, Greg A.; Marmarelis, Vasilis; Song, Dong; Opris, Ioan; Santos, Lucas; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    Problem addressed Maintenance of cognitive control is a major concern for many human disease condition, therefore a major goal of human neuroprosthetics is to facilitate and/or recover cognitive function when such circumstances impair appropriate decision making. Methodology Nonhuman primates trained to perform a delayed match to sample (DMS) were employed to record mini-columnar activity in the prefrontal cortex (PFC) via custom designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multi-columnar firing patterns during DMS performance. Results The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation facilitated normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following pharmacological disruption of decision making in the same task. Significance and potential impact These findings provide the first successful application of a neuroprosthesis in primate brain designed specifically to restore or repair disrupted cognitive function. PMID:22976769

  19. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  20. On folivory, competition, and intelligence: generalisms, overgeneralizations, and models of primate evolution.

    PubMed

    Sayers, Ken

    2013-04-01

    Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this "fruit/leaf dichotomy" has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships and is explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characteristics that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to Liem's Paradox, the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs-and, in actuality, many leaf-eating primates-range widely, engage in resource competition (both of which have previously been noted for primate folivores), and solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the use of mainstream evolutionary ecology and thorough linkage of both proximate and ultimate mechanisms.

  1. Avian visual behavior and the organization of the telencephalon.

    PubMed

    Shimizu, Toru; Patton, Tadd B; Husband, Scott A

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.

  2. Avian Visual Behavior and the Organization of the Telencephalon

    PubMed Central

    Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296

  3. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK.

    PubMed

    Regan, Carl S; Yon, Lisa; Hossain, Maqsud; Elsheikha, Hany M

    2014-01-01

    The aim of this study was to determine the prevalence of amoebic infection in non-human primates (NHPs) from six Zoological gardens in the United Kingdom. Initially, 126 faecal samples were collected from 37 individually identified NHPs at Twycross Zoo, UK, and were subjected to microscopic examination. A subsequent, nationwide experiment included 350 faecal samples from 89 individually identified NHPs and 73 unidentified NHPs from a number of UK captive wildlife facilities: Twycross Zoo (n = 60), Colchester Zoo (n = 3), Edinburgh Zoo (n = 6), Port Lympne Wild Animal Park (n = 58), Howletts Wild Animal Park (n = 31), and Cotswold Wildlife Park (n = 4). Samples were examined by PCR and sequencing using four specific primer sets designed to differentiate between the pathogenic E. histolytica, the non-pathogenic E. dispar, and non-pathogenic uninucleate cyst-producing Entamoeba species. In the first experiment, Entamoeba was detected in 30 primates (81.1%). Six (16.2%) primates were infected with E. histolytica species complex. The highest carriage of Entamoeba species was found in Old World Colobinae primates. In the nationwide experiment, molecular analysis of faecal samples revealed notable rates of Entamoeba infection (101 samples, 28.9%), including one sample infected with E. histolytica, 14 samples with E. dispar, and 86 samples with uninucleated-cyst producing Entamoeba species. Sequences of positive uninucleated-cyst producing Entamoeba samples from Twycross Zoo clustered with the E. polecki reference sequences ST4 reported in Homo sapiens, and are widely separated from other Entamoeba species. These findings suggest a low prevalence of the pathogenic Entamoeba infection, but notable prevalence of non-pathogenic E. polecki infection in NHPs in the UK.

  4. Selection and Investigation of a Primate Model of Spontaneous Degenerative Knee Osteoarthritis, the Cynomolgus Monkey (Macaca Fascicularis).

    PubMed

    Liu, Gang; Zhang, Lei; Zhou, Xin; Zhang, Bao L; Guo, Guang X; Xu, Ping; Wang, Guo Y; Fu, Shi J

    2018-07-01

    BACKGROUND The aim of this study was to identify a primate model of degenerative knee osteoarthritis (KOA) that may be more relevant for research studies on degenerative KOA in humans. MATERIAL AND METHODS Sixteen specific-pathogen-free (SPF) male cynomolgus monkeys (Macaca fascicularis) were divided into group A (n=8), an old group (22.0-25.3 years of age), and group B (n=8), a young group (3.0-5.2 years of age). For each primate, the behavior was observed, knee circumference was measured, knee joint X-rays were performed, and peripheral blood white blood cell (WBC) counts were measured, and the Kellgren and Lawrence (K-L) system was used for the classification of osteoarthritis. An enzyme-linked immunoassay (ELISA) was performed on knee joint fluid to measure levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)13. Changes in articular cartilage were evaluated using the Brittberg score and the Mankin histopathology grading score, respectively. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to measure the expression of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and the findings in the two groups of primates were compared. RESULTS Seven old aged primates in group A were compared with group B, and showed significant differences in WBC count, synovial fluid IL-1β, TGF-β1, and MMP13 levels, expression levels of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and in the Brittberg and Mankin scores (all, P<0.05). CONCLUSIONS Cynomolgus monkeys (Macaca fascicularis) might be a model for age-related degenerative KOA.

  5. Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis.

    PubMed

    Luo, Yuanjun; Fujita, Hirofumi; Nedelescu, Hermina; Biswas, Mohammad Shahangir; Sato, Chika; Ying, Sarah; Takahashi, Mayu; Akita, Keiichi; Higashi, Tatsuya; Aoki, Ichio; Sugihara, Izumi

    2017-08-01

    Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as "ansiform area (AA)" across animals. Our results show that the AA's olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.

  6. Understanding the control of ingestive behavior in primates.

    PubMed

    Wilson, Mark E; Moore, Carla J; Ethun, Kelly F; Johnson, Zachary P

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Ingestive behavior in free-ranging populations of nonhuman primates is influenced by resource availability and social group organization and provides valuable insight on the evolution of ecologically adaptive behaviors and physiological systems. As captive populations were established, questions regarding proximate mechanisms that regulate food intake in these animals could be more easily addressed. The availability of these captive populations has led to the use of selected species to understand appetite control or metabolic physiology in humans. Recognizing the difficulty of quantitating food intake in free-ranging groups, the use of captive, singly-housed animals provided a distinct advantage though, at the same time, produced a different social ecology from the animals' natural habitat. However, the recent application of novel technologies to quantitate caloric intake and energy expenditure in free-feeding, socially housed monkeys permits prospective studies that can accurately define how food intake changes in response to any number of interventions in the context of a social environment. This review provides an overview of studies examining food intake using captive nonhuman primates organized into three areas: a) neurochemical regulation of food intake in nonhuman primates; b) whether exposure to specific diets during key developmental periods programs differences in diet preferences or changes the expression of feeding related neuropeptides; and c) how psychosocial factors influence appetite regulation. Because feeding patterns are driven by more than just satiety and orexigenic signals, appreciating how the social context influences pattern of feeding in nonhuman primates may be quite informative for understanding the biological complexity of feeding in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Origin of Malarial Parasites in Orangutans

    PubMed Central

    Pacheco, M. Andreína; Reid, Michael J. C.; Schillaci, Michael A.; Lowenberger, Carl A.; Galdikas, Biruté M. F.; Jones-Engel, Lisa; Escalante, Ananias A.

    2012-01-01

    Background Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. Methodology/Principal Findings We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. Conclusion The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates. PMID:22536346

  8. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK

    PubMed Central

    Regan, Carl S.; Yon, Lisa; Hossain, Maqsud

    2014-01-01

    The aim of this study was to determine the prevalence of amoebic infection in non-human primates (NHPs) from six Zoological gardens in the United Kingdom. Initially, 126 faecal samples were collected from 37 individually identified NHPs at Twycross Zoo, UK, and were subjected to microscopic examination. A subsequent, nationwide experiment included 350 faecal samples from 89 individually identified NHPs and 73 unidentified NHPs from a number of UK captive wildlife facilities: Twycross Zoo (n = 60), Colchester Zoo (n = 3), Edinburgh Zoo (n = 6), Port Lympne Wild Animal Park (n = 58), Howletts Wild Animal Park (n = 31), and Cotswold Wildlife Park (n = 4). Samples were examined by PCR and sequencing using four specific primer sets designed to differentiate between the pathogenic E. histolytica, the non-pathogenic E. dispar, and non-pathogenic uninucleate cyst-producing Entamoeba species. In the first experiment, Entamoeba was detected in 30 primates (81.1%). Six (16.2%) primates were infected with E. histolytica species complex. The highest carriage of Entamoeba species was found in Old World Colobinae primates. In the nationwide experiment, molecular analysis of faecal samples revealed notable rates of Entamoeba infection (101 samples, 28.9%), including one sample infected with E. histolytica, 14 samples with E. dispar, and 86 samples with uninucleated-cyst producing Entamoeba species. Sequences of positive uninucleated-cyst producing Entamoeba samples from Twycross Zoo clustered with the E. polecki reference sequences ST4 reported in Homo sapiens, and are widely separated from other Entamoeba species. These findings suggest a low prevalence of the pathogenic Entamoeba infection, but notable prevalence of non-pathogenic E. polecki infection in NHPs in the UK. PMID:25097822

  9. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community.

    PubMed

    Thurber, Mary I; Ghai, Ria R; Hyeroba, David; Weny, Geoffrey; Tumukunde, Alex; Chapman, Colin A; Wiseman, Roger W; Dinis, Jorge; Steeil, James; Greiner, Ellis C; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L

    2013-07-01

    Hemoparasites of the apicomplexan family Plasmodiidae include the etiological agents of malaria, as well as a suite of non-human primate parasites from which the human malaria agents evolved. Despite the significance of these parasites for global health, little information is available about their ecology in multi-host communities. Primates were investigated in Kibale National Park, Uganda, where ecological relationships among host species are well characterized. Blood samples were examined for parasites of the genera Plasmodium and Hepatocystis using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene, followed by Sanger sequencing. To assess co-infection, "deep sequencing" of a variable region within cytochrome b was performed. Out of nine black-and-white colobus (Colobus guereza), one blue guenon (Cercopithecus mitis), five grey-cheeked mangabeys (Lophocebus albigena), 23 olive baboons (Papio anubis), 52 red colobus (Procolobus rufomitratus) and 12 red-tailed guenons (Cercopithecus ascanius), 79 infections (77.5%) were found, all of which were Hepatocystis spp. Sanger sequencing revealed 25 different parasite haplotypes that sorted phylogenetically into six species-specific but morphologically similar lineages. "Deep sequencing" revealed mixed-lineage co-infections in baboons and red colobus (41.7% and 64.7% of individuals, respectively) but not in other host species. One lineage infecting red colobus also infected baboons, but always as the minor variant, suggesting directional cross-species transmission. Hepatocystis parasites in this primate community are a diverse assemblage of cryptic lineages, some of which co-infect hosts and at least one of which can cross primate species barriers. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda

    PubMed Central

    Gillespie, Thomas R.; Rwego, Innocent B.; Estoff, Elizabeth L.; Chapman, Colin A.

    2008-01-01

    We conducted a prospective study of bacterial transmission among humans, nonhuman primates (primates hereafter), and livestock in western Uganda. Humans living near forest fragments harbored Escherichia coli bacteria that were ≈75% more similar to bacteria from primates in those fragments than to bacteria from primates in nearby undisturbed forests. Genetic similarity between human/livestock and primate bacteria increased ≈3-fold as anthropogenic disturbance within forest fragments increased from moderate to high. Bacteria harbored by humans and livestock were approximately twice as similar to those of red-tailed guenons, which habitually enter human settlements to raid crops, than to bacteria of other primate species. Tending livestock, experiencing gastrointestinal symptoms, and residing near a disturbed forest fragment increased genetic similarity between a participant’s bacteria and those of nearby primates. Forest fragmentation, anthropogenic disturbance within fragments, primate ecology, and human behavior all influence bidirectional, interspecific bacterial transmission. Targeted interventions on any of these levels should reduce disease transmission and emergence. PMID:18760003

  11. PrimateLit Database: Submit Literature for Indexing

    Science.gov Websites

    Access PrimateLit Using this Site About the Project Submit Literature for Indexing Copyright Info Center WI Regional Primate Resource Center Submit Literature for Indexing PrimateLit has not been

  12. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.

    PubMed

    Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume

    2017-02-28

    A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.

  13. Primate Drum Kit: A System for Studying Acoustic Pattern Production by Non-Human Primates Using Acceleration and Strain Sensors

    PubMed Central

    Ravignani, Andrea; Olivera, Vicente Matellán; Gingras, Bruno; Hofer, Riccardo; Hernández, Carlos Rodríguez; Sonnweber, Ruth-Sophie; Fitch, W. Tecumseh

    2013-01-01

    The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i) spontaneous production of sound or music by non-human animals via object manipulation, (ii) systematical recording of data sensed from these movements, (iii) the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes) which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments. PMID:23912427

  14. Primate drum kit: a system for studying acoustic pattern production by non-human primates using acceleration and strain sensors.

    PubMed

    Ravignani, Andrea; Matellán Olivera, Vicente; Gingras, Bruno; Hofer, Riccardo; Rodríguez Hernández, Carlos; Sonnweber, Ruth-Sophie; Fitch, W Tecumseh

    2013-07-31

    The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i) spontaneous production of sound or music by non-human animals via object manipulation, (ii) systematical recording of data sensed from these movements, (iii) the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes) which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments.

  15. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution

    PubMed Central

    Homman-Ludiye, Jihane; Bourne, James A.

    2014-01-01

    The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460

  16. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  17. Evolution of columns, modules, and domains in the neocortex of primates.

    PubMed

    Kaas, Jon H

    2012-06-26

    The specialized regions of neocortex of mammals, called areas, have been divided into smaller functional units called minicolumns, columns, modules, and domains. Here we describe some of these functional subdivisions of areas in primates and suggest when they emerged in mammalian evolution. We distinguish several types of these smaller subdivisions. Minicolumns, vertical arrays of neurons that are more densely interconnected with each other than with laterally neighboring neurons, are present in all cortical areas. Classic columns are defined by a repeating pattern of two or more types of cortex distinguished by having different inputs and neurons with different response properties. Sensory stimuli that continuously vary along a stimulus dimension may activate groups of neurons that vary continuously in location, producing "columns" without specific boundaries. Other groups or columns of cortical neurons are separated by narrow septa of fibers that reflect discontinuities in the receptor sheet. Larger regions of posterior parietal cortex and frontal motor cortex are parts of networks devoted to producing different sequences of movements. We distinguish these larger functionally distinct regions as domains. Columns of several types have evolved independently a number of times. Some of the columns found in primates likely emerged with the first primates, whereas others likely were present in earlier ancestors. The sizes and shapes of columns seem to depend on the balance of neuron activation patterns and molecular signals during development.

  18. Oligocene primates from China reveal divergence between African and Asian primate evolution.

    PubMed

    Ni, Xijun; Li, Qiang; Li, Lüzhou; Beard, K Christopher

    2016-05-06

    Profound environmental and faunal changes are associated with climatic deterioration during the Eocene-Oligocene transition (EOT) roughly 34 million years ago. Reconstructing how Asian primates responded to the EOT has been hindered by a sparse record of Oligocene primates on that continent. Here, we report the discovery of a diverse primate fauna from the early Oligocene of southern China. In marked contrast to Afro-Arabian Oligocene primate faunas, this Asian fauna is dominated by strepsirhines. There appears to be a strong break between Paleogene and Neogene Asian anthropoid assemblages. Asian and Afro-Arabian primate faunas responded differently to EOT climatic deterioration, indicating that the EOT functioned as a critical evolutionary filter constraining the subsequent course of primate evolution across the Old World. Copyright © 2016, American Association for the Advancement of Science.

  19. Impending extinction crisis of the world's primates: Why primates matter.

    PubMed

    Estrada, Alejandro; Garber, Paul A; Rylands, Anthony B; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K Anne-Isola; Nijman, Vincent; Heymann, Eckhard W; Lambert, Joanna E; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M; Gillespie, Thomas R; Mittermeier, Russell A; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A; Fuentes, Agustin; MacKinnon, Katherine C; Amato, Katherine R; Meyer, Andreas L S; Wich, Serge; Sussman, Robert W; Pan, Ruliang; Kone, Inza; Li, Baoguo

    2017-01-01

    Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.

  20. Impending extinction crisis of the world’s primates: Why primates matter

    PubMed Central

    Estrada, Alejandro; Garber, Paul A.; Rylands, Anthony B.; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K. Anne-Isola; Nijman, Vincent; Heymann, Eckhard W.; Lambert, Joanna E.; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M.; Gillespie, Thomas R.; Mittermeier, Russell A.; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A.; Fuentes, Agustin; MacKinnon, Katherine C.; Amato, Katherine R.; Meyer, Andreas L. S.; Wich, Serge; Sussman, Robert W.; Pan, Ruliang; Kone, Inza; Li, Baoguo

    2017-01-01

    Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats—mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world’s primates and the costs of their loss to ecosystem health and human society is imperative. PMID:28116351

  1. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

    PubMed Central

    Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias

    2017-01-01

    Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823

  2. Genomic signatures of diet-related shifts during human origins

    PubMed Central

    Babbitt, Courtney C.; Warner, Lisa R.; Fedrigo, Olivier; Wall, Christine E.; Wray, Gregory A.

    2011-01-01

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates. PMID:21177690

  3. Primates as pets in Mexico City: an assessment of the species involved, source of origin, and general aspects of treatment.

    PubMed

    Duarte-Quiroga, Alejandra; Estrada, Alejandro

    2003-10-01

    The large human populations in cities are an important source of demand for wildlife pets, including primates, and not much is known about the primate species involved in terms of their general origin, the length of time they are kept as pets, and some of the maintenance problems encountered with their use as pets. We report the results of a survey conducted in Mexico City among primate pet owners, which was aimed at providing some of the above information. We used an ethnographic approach, and pet owners were treated as informants to gain their trust so that we could enter their homes and learn about the life of their primate pets. We surveyed 179 owners of primate pets, which included 12 primate species. Of these, three were native species (Ateles geoffroyi, Alouatta pigra, and A. palliata). The rest were other neotropical primate species not native to Mexico, and some paleotropical species. Spider monkeys and two species of howler monkeys native to Mexico accounted for 67% and 15%, respectively, of the primate cases investigated. The most expensive primate pets were those imported from abroad, while the least expensive were the Mexican species. About 45% of the native primate pets were obtained by their owners in a large market in Mexico City, and the rest were obtained in southern Mexico. Although they can provide companionship for children and adults, primate pets are subject to a number of hazards, some of which put their lives at risk. The demand by city dwellers for primate pets, along with habitat destruction and fragmentation, exerts a significant pressure on wild populations in southern Mexico. Copyright 2003 Wiley-Liss, Inc.

  4. Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation

    PubMed Central

    Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne

    2018-01-01

    A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260

  5. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    PubMed

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: A protective neutralizing epitope from Bacillus anthracis protective antigen.

    PubMed

    Oscherwitz, Jon; Quinn, Conrad P; Cease, Kemp B

    2015-05-11

    Epitope-focused immunogens can elicit antibody against the loop neutralizing determinant (LND), a neutralizing epitope found within the 2β2-2β3 loop of protective antigen (PA), which can protect rabbits from high-dose inhalation challenge with Bacillus anthracis Ames strain. Interestingly, data suggests that this epitope is relatively immunosilent in rabbits and non-human primates immunized with full length PA. To determine whether the LND is immunosilent among humans vaccinated with PA, we screened antisera from AVA- or placebo-vaccinees from a clinical trial for antibody reactive with the LND. AVA-vaccinee sera had significant PA-specific antibody compared to placebo-vaccinee sera; however, sera from the two cohorts were indistinguishable with regard to the frequency of individuals with antibody specific for the LND. AVA-vaccinees have a low frequency of antibody reactive with the LND. As with rabbits and non-human primates, the elicitation of LND-specific antibody in humans appears to require immunization with an epitope-focused vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory.

    PubMed

    Lu, Zhi-xiang; Peng, Jia; Su, Bing

    2007-10-01

    Neuropsin (kallikrein 8, KLK8) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only expressed in human. Sequence analysis suggested a recent origin of type II during primate evolution. Here we demonstrate that the type II form is absent in nonhuman primates, and is thus a human-specific splice form. With the use of an in vitro splicing assay, we show that a human-specific T to A mutation (c.71-127T>A) triggers the change of splicing pattern, leading to the origin of a novel splice form in the human brain. Using mutation assay, we prove that this mutation is not only necessary but also sufficient for type II expression. Our results demonstrate a molecular mechanism for the creation of novel proteins through alternative splicing in the central nervous system during human evolution. Copyright 2007 Wiley-Liss, Inc.

  8. Using non-human primates to benefit humans: research and organ transplantation.

    PubMed

    Shaw, David; Dondorp, Wybo; de Wert, Guido

    2014-11-01

    Emerging biotechnology may soon allow the creation of genetically human organs inside animals, with non-human primates (henceforth simply "primates") and pigs being the best candidate species. This prospect raises the question of whether creating organs in primates in order to then transplant them into humans would be more (or less) acceptable than using them for research. In this paper, we examine the validity of the purported moral distinction between primates and other animals, and analyze the ethical acceptability of using primates to create organs for human use.

  9. Comparative sacral morphology and the reconstructed tail lengths of five extinct primates: Proconsul heseloni, Epipliopithecus vindobonensis, Archaeolemur edwardsi, Megaladapis grandidieri, and Palaeopropithecus kelyus.

    PubMed

    Russo, Gabrielle A

    2016-01-01

    This study evaluated the relationship between the morphology of the sacrum-the sole bony link between the tail or coccyx and the rest of the body-and tail length (including presence/absence) and function using a comparative sample of extant mammals spanning six orders (Primates, Carnivora, Rodentia, Diprotodontia, Pilosa, Scandentia; N = 472). Phylogenetically-informed regression methods were used to assess how tail length varied with respect to 11 external and internal (i.e., trabecular) bony sacral variables with known or suspected biomechanical significance across all mammals, only primates, and only non-primates. Sacral variables were also evaluated for primates assigned to tail categories ('tailless,' 'nonprehensile short-tailed,' 'nonprehensile long-tailed,' and 'prehensile-tailed'). Compared to primates with reduced tail lengths, primates with longer tails generally exhibited sacra having larger caudal neural openings than cranial neural openings, and last sacral vertebrae with more mediolaterally-expanded caudal articular surfaces than cranial articular surfaces, more laterally-expanded transverse processes, more dorsally-projecting spinous processes, and larger caudal articular surface areas. Observations were corroborated by the comparative sample, which showed that shorter-tailed (e.g., Lynx rufus [bobcat]) and longer-tailed (e.g., Acinonyx jubatus [cheetah]) non-primate mammals morphologically converge with shorter-tailed (e.g., Macaca nemestrina) and longer-tailed (e.g., Macaca fascicularis) primates, respectively. 'Prehensile-tailed' primates exhibited last sacral vertebrae with more laterally-expanded transverse processes and greater caudal articular surface areas than 'nonprehensile long-tailed' primates. Internal sacral variables performed poorly compared to external sacral variables in analyses of extant primates, and were thus deemed less useful for making inferences concerning tail length and function in extinct primates. The tails lengths of five extinct primates were reconstructed from the external sacral variables: Archaeolemur edwardsi had a 'nonprehensile long tail,' Megaladapis grandidieri, Palaeopropithecus kelyus, and Epipliopithecus vindobonensis probably had 'nonprehensile short tails,' and Proconsul heseloni was 'tailless.' Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Primate vocal communication: a useful tool for understanding human speech and language evolution?

    PubMed

    Fedurek, Pawel; Slocombe, Katie E

    2011-04-01

    Language is a uniquely human trait, and questions of how and why it evolved have been intriguing scientists for years. Nonhuman primates (primates) are our closest living relatives, and their behavior can be used to estimate the capacities of our extinct ancestors. As humans and many primate species rely on vocalizations as their primary mode of communication, the vocal behavior of primates has been an obvious target for studies investigating the evolutionary roots of human speech and language. By studying the similarities and differences between human and primate vocalizations, comparative research has the potential to clarify the evolutionary processes that shaped human speech and language. This review examines some of the seminal and recent studies that contribute to our knowledge regarding the link between primate calls and human language and speech. We focus on three main aspects of primate vocal behavior: functional reference, call combinations, and vocal learning. Studies in these areas indicate that despite important differences, primate vocal communication exhibits some key features characterizing human language. They also indicate, however, that some critical aspects of speech, such as vocal plasticity, are not shared with our primate cousins. We conclude that comparative research on primate vocal behavior is a very promising tool for deepening our understanding of the evolution of human speech and language, but much is still to be done as many aspects of monkey and ape vocalizations remain largely unexplored.

  11. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  12. Social Behavior, Prolactin and the Immune Response

    DTIC Science & Technology

    1989-04-01

    an ubiquitous characteristic of primate societies , including man’s. While social behavior and organization confer definite advantages on primate...groups, is characteristic of most primate species, including man. The ubiquity of primate societies makes the study of nonhuman primate groups of...organizations, man is much more flexible in terms of the kinds of social organization exhibited in his societies . Thus, generalizations from studies of

  13. On folivory, competition, and intelligence: generalism, overgeneralizations, and models of primate evolution

    PubMed Central

    Sayers, Ken

    2013-01-01

    Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this “fruit/leaf dichotomy” has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships, and explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characters that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to “Liem’s paradox,” the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs—and, in actuality, many leaf eating primates—range widely and engage in resource competition (both of which have previously been noted for primate folivores) as well as solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the utilization of mainstream evolutionary ecology, and thorough linkage of both proximate and ultimate mechanisms. PMID:23263563

  14. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes.

    PubMed

    Pozzi, Luca; Hodgson, Jason A; Burrell, Andrew S; Sterner, Kirstin N; Raaum, Ryan L; Disotell, Todd R

    2014-06-01

    The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Campbell's monkeys concatenate vocalizations into context-specific call sequences

    PubMed Central

    Ouattara, Karim; Lemasson, Alban; Zuberbühler, Klaus

    2009-01-01

    Primate vocal behavior is often considered irrelevant in modeling human language evolution, mainly because of the caller's limited vocal control and apparent lack of intentional signaling. Here, we present the results of a long-term study on Campbell's monkeys, which has revealed an unrivaled degree of vocal complexity. Adult males produced six different loud call types, which they combined into various sequences in highly context-specific ways. We found stereotyped sequences that were strongly associated with cohesion and travel, falling trees, neighboring groups, nonpredatory animals, unspecific predatory threat, and specific predator classes. Within the responses to predators, we found that crowned eagles triggered four and leopards three different sequences, depending on how the caller learned about their presence. Callers followed a number of principles when concatenating sequences, such as nonrandom transition probabilities of call types, addition of specific calls into an existing sequence to form a different one, or recombination of two sequences to form a third one. We conclude that these primates have overcome some of the constraints of limited vocal control by combinatorial organization. As the different sequences were so tightly linked to specific external events, the Campbell's monkey call system may be the most complex example of ‘proto-syntax’ in animal communication known to date. PMID:20007377

  16. The evolution of neocortex in primates

    PubMed Central

    Kaas, Jon H.

    2013-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624

  17. The evolution of neocortex in primates.

    PubMed

    Kaas, Jon H

    2012-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Moving beyond the welfare standard of psychological well-being for nonhuman primates: the case of chimpanzees.

    PubMed

    Gluck, John P

    2014-04-01

    Since 1985, the US Animal Welfare Act and Public Health Service policy have required that researchers using nonhuman primates in biomedical and behavioral research develop a plan "for a physical environment adequate to promote the psychological well-being of primates." In pursuing this charge, housing attributes such as social companionship, opportunities to express species-typical behavior, suitable space for expanded locomotor activity, and nonstressful relationships with laboratory personnel are dimensions that have dominated the discussion. Regulators were careful not to direct a specific set of prescriptions (i.e., engineering standards) for the attainment of these goals, but to leave the design of the programs substantially up to "professional judgment" at the local level. Recently, however, the Institute of Medicine, in its path-finding 2011 report on the necessity of chimpanzee use in research, bypassed this flexible and contingent concept, and instead, required as a central precondition that chimpanzees be housed in "ethologically appropriate" environments. In so doing, obligations of ethical treatment of one great ape species were elevated above the needs of some research. The evolution and significance of this change are discussed.

  19. Human Clinical-Grade Parthenogenetic ESC-Derived Dopaminergic Neurons Recover Locomotive Defects of Nonhuman Primate Models of Parkinson's Disease.

    PubMed

    Wang, Yu-Kai; Zhu, Wan-Wan; Wu, Meng-Hua; Wu, Yi-Hui; Liu, Zheng-Xin; Liang, Ling-Min; Sheng, Chao; Hao, Jie; Wang, Liu; Li, Wei; Zhou, Qi; Hu, Bao-Yang

    2018-06-07

    Clinical application of stem cell derivatives requires clinical-grade cells and sufficient preclinical proof of safety and efficacy, preferably in primates. We previously successfully established a clinical-grade human parthenogenetic embryonic stem cell (hPESC) line, but the suitability of its subtype-specific progenies for therapy is not clear. Here, we compared the function of clinical-grade hPESC-derived midbrain dopaminergic (DA) neurons in two canonical protocols in a primate Parkinson's disease (PD) model. We found that the grafts did not form tumors and produced variable but apparent behavioral improvement for at least 24 months in most monkeys in both groups. In addition, a slight DA increase in the striatum correlates with significant functional improvement. These results demonstrated that clinical-grade hPESCs can serve as a reliable source of cells for PD treatment. Our proof-of-concept findings provide preclinical data for China's first ESC-based phase I/IIa clinical study of PD (ClinicalTrials.gov number NCT03119636). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

    PubMed Central

    Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate

    2013-01-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633

  1. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    PubMed

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  2. The Primate Life History Database: A unique shared ecological data resource

    PubMed Central

    Strier, Karen B.; Altmann, Jeanne; Brockman, Diane K.; Bronikowski, Anne M.; Cords, Marina; Fedigan, Linda M.; Lapp, Hilmar; Liu, Xianhua; Morris, William F.; Pusey, Anne E.; Stoinski, Tara S.; Alberts, Susan C.

    2011-01-01

    Summary The importance of data archiving, data sharing, and public access to data has received considerable attention. Awareness is growing among scientists that collaborative databases can facilitate these activities.We provide a detailed description of the collaborative life history database developed by our Working Group at the National Evolutionary Synthesis Center (NESCent) to address questions about life history patterns and the evolution of mortality and demographic variability in wild primates.Examples from each of the seven primate species included in our database illustrate the range of data incorporated and the challenges, decision-making processes, and criteria applied to standardize data across diverse field studies. In addition to the descriptive and structural metadata associated with our database, we also describe the process metadata (how the database was designed and delivered) and the technical specifications of the database.Our database provides a useful model for other researchers interested in developing similar types of databases for other organisms, while our process metadata may be helpful to other groups of researchers interested in developing databases for other types of collaborative analyses. PMID:21698066

  3. Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs

    PubMed Central

    Zhao, Siming; Luo, Kaixuan; Pavlovic, Bryan J; Karimi, Mohammad M; Stephens, Matthew

    2018-01-01

    Transposable elements (TEs) comprise almost half of primate genomes and their aberrant regulation can result in deleterious effects. In pluripotent stem cells, rapidly evolving KRAB-ZNF genes target TEs for silencing by H3K9me3. To investigate the evolution of TE silencing, we performed H3K9me3 ChIP-seq experiments in induced pluripotent stem cells from 10 human and 7 chimpanzee individuals. We identified four million orthologous TEs and found the SVA and ERV families to be marked most frequently by H3K9me3. We found little evidence of inter-species differences in TE silencing, with as many as 82% of putatively silenced TEs marked at similar levels in humans and chimpanzees. TEs that are preferentially silenced in one species are a similar age to those silenced in both species and are not more likely to be associated with expression divergence of nearby orthologous genes. Our data suggest limited species-specificity of TE silencing across 6 million years of primate evolution. PMID:29648536

  4. A decade of theory of mind research on Cayo Santiago: Insights into rhesus macaque social cognition.

    PubMed

    Drayton, Lindsey A; Santos, Laurie R

    2016-01-01

    Over the past several decades, researchers have become increasingly interested in understanding how primates understand the behavior of others. One open question concerns whether nonhuman primates think about others' behavior in psychological terms, that is, whether they have a theory of mind. Over the last ten years, experiments conducted on the free-ranging rhesus monkeys (Macaca mulatta) living on Cayo Santiago have provided important insights into this question. In this review, we highlight what we think are some of the most exciting results of this body of work. Specifically we describe experiments suggesting that rhesus monkeys may understand some psychological states, such as what others see, hear, and know, but that they fail to demonstrate an understanding of others' beliefs. Thus, while some aspects of theory of mind may be shared between humans and other primates, others capacities are likely to be uniquely human. We also discuss some of the broader debates surrounding comparative theory of mind research, as well as what we think may be productive lines for future research with the rhesus macaques of Cayo Santiago. © 2016 Wiley Periodicals, Inc.

  5. The adaptive value of primate color vision for predator detection.

    PubMed

    Pessoa, Daniel Marques Almeida; Maia, Rafael; de Albuquerque Ajuz, Rafael Cavalcanti; De Moraes, Pedro Zurvaino Palmeira Melo Rosa; Spyrides, Maria Helena Constantino; Pessoa, Valdir Filgueiras

    2014-08-01

    The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively. © 2014 Wiley Periodicals, Inc.

  6. Human Variation in Short Regions Predisposed to Deep Evolutionary Conservation

    PubMed Central

    Loots, Gabriela G.; Ovcharenko, Ivan

    2010-01-01

    The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species. PMID:20093432

  7. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191

  8. A conveyor belt task for assessing visuo-motor coordination in the marmoset (Callithrix jacchus): effects of diazepam, chlorpromazine, pentobarbital and d-amphetamine.

    PubMed

    D'Mello, G D; Duffy, E A; Miles, S S

    1985-01-01

    A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.

  9. Serological evidence of Ebola virus infection in Indonesian orangutans.

    PubMed

    Nidom, Chairul A; Nakayama, Eri; Nidom, Reviany V; Alamudi, Mohamad Y; Daulay, Syafril; Dharmayanti, Indi N L P; Dachlan, Yoes P; Amin, Mohamad; Igarashi, Manabu; Miyamoto, Hiroko; Yoshida, Reiko; Takada, Ayato

    2012-01-01

    Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d'Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia.

  10. Serological Evidence of Ebola Virus Infection in Indonesian Orangutans

    PubMed Central

    Nidom, Reviany V.; Alamudi, Mohamad Y.; Daulay, Syafril; Dharmayanti, Indi N. L. P.; Dachlan, Yoes P.; Amin, Mohamad; Igarashi, Manabu; Miyamoto, Hiroko; Yoshida, Reiko; Takada, Ayato

    2012-01-01

    Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d’Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia. PMID:22815803

  11. Diagnostic overview of the illegal trade in primates and law enforcement in Peru.

    PubMed

    Shanee, Noga; Mendoza, A Patricia; Shanee, Sam

    2017-11-01

    Peru has one of the richest primate faunas of any country. The illegal trade in wild primates is one of the largest threats to this fauna in Peru. We characterize the illegal trade in primates through empirical and ethnographic data. We collected data from traffic routes and centers throughout Peru and evaluate current efforts to combat this traffic. Based on our findings from 2,070 instances of wildlife crime involving 6,872 primates, we estimate the domestic trade in primates for pets and bushmeat in Peru in the hundreds of thousands per year, with the larger bodied Atelidae facing the highest direct consequences. We found that government authorities lack sufficient staff, capacity, resources, infrastructure, and protocols to efficiently combat illegal trade in primates. Also, the complicated legal framework and lack of cooperation and antagonism with the public further limit these efforts. Wildlife authorities in Peru are able to confiscate only a fraction of primates traded and mostly intervene in cases of private pet owners rather than traffickers. We estimate that the current rate of illegal trade in primates is comparable to levels of trade prior to the 1973 ban on primates' exportation. The combination of direct observations on primate trade and ethnographic data allows a comprehensive look at primate trade in Peru. We call upon decision makers and international funders to channel their efforts toward "on the ground" actions such as increasing the ability of the authorities to act, giving them "in action" training in law enforcement and establishing strict control measures against corruption. Am. J. Primatol. 79:e22516, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.

    PubMed

    Faust, Christina; Dobson, Andrew P

    2015-12-01

    Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  13. Scaling of Convex Hull Volume to Body Mass in Modern Primates, Non-Primate Mammals and Birds

    PubMed Central

    Brassey, Charlotte A.; Sellers, William I.

    2014-01-01

    The volumetric method of ‘convex hulling’ has recently been put forward as a mass prediction technique for fossil vertebrates. Convex hulling involves the calculation of minimum convex hull volumes (vol CH) from the complete mounted skeletons of modern museum specimens, which are subsequently regressed against body mass (M b) to derive predictive equations for extinct species. The convex hulling technique has recently been applied to estimate body mass in giant sauropods and fossil ratites, however the biomechanical signal contained within vol CH has remained unclear. Specifically, when vol CH scaling departs from isometry in a group of vertebrates, how might this be interpreted? Here we derive predictive equations for primates, non-primate mammals and birds and compare the scaling behaviour of M b to vol CH between groups. We find predictive equations to be characterised by extremely high correlation coefficients (r 2 = 0.97–0.99) and low mean percentage prediction error (11–20%). Results suggest non-primate mammals scale body mass to vol CH isometrically (b = 0.92, 95%CI = 0.85–1.00, p = 0.08). Birds scale body mass to vol CH with negative allometry (b = 0.81, 95%CI = 0.70–0.91, p = 0.011) and apparent density (vol CH/M b) therefore decreases with mass (r 2 = 0.36, p<0.05). In contrast, primates scale body mass to vol CH with positive allometry (b = 1.07, 95%CI = 1.01–1.12, p = 0.05) and apparent density therefore increases with size (r 2 = 0.46, p = 0.025). We interpret such departures from isometry in the context of the ‘missing mass’ of soft tissues that are excluded from the convex hulling process. We conclude that the convex hulling technique can be justifiably applied to the fossil record when a large proportion of the skeleton is preserved. However we emphasise the need for future studies to quantify interspecific variation in the distribution of soft tissues such as muscle, integument and body fat. PMID:24618736

  14. Primates in 21st century ecosystems: does primate conservation promote ecosystem conservation?

    PubMed

    Norconk, Marilyn A; Boinski, Sue; Forget, Pierre-Michel

    2011-01-01

    Contributors to this issue of the American Journal of Primatology were among the participants in an invited symposium at the 2008 Association for Tropical Biology and Conservation meeting in Paramaribo, Suriname. They were asked to assess how essential primates are to tropical ecosystems and, given their research interests, discuss how primate research contributes to the broader understanding about how ecosystems function. This introduction to the issue is divided into three parts: a review of the roles that nonhuman primates play in tropical ecosystems; the implementation of large-scale landscape methods used to identify primate densities; and concerns about the increasingly porous boundaries between humans, nonhuman primates, and pathogens. Although 20th century primate research created a rich database on individual species, including both theoretical and descriptive approaches, the dual effects of high human population densities and widespread habitat destruction should warn us that creative, interdisciplinary and human-related research is needed to solve 21st century problems. © 2010 Wiley-Liss, Inc.

  15. Eocene primates of South America and the African origins of New World monkeys

    NASA Astrophysics Data System (ADS)

    Bond, Mariano; Tejedor, Marcelo F.; Campbell, Kenneth E.; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-01

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  16. PrimateLit:Using this Site

    Science.gov Websites

    Contact Information Primate Info Net Related Databases National Center for Research Resources WA Primate Information Center, Washington National Primate Research Center. Using The Search History The History button journal articles, books, theses, and other documents related to their area of research. The advantages of

  17. You mob my owl, I'll mob yours: birds play tit-for-tat game.

    PubMed

    Krama, Tatjana; Vrublevska, Jolanta; Freeberg, Todd M; Kullberg, Cecilia; Rantala, Markus J; Krams, Indrikis

    2012-01-01

    Reciprocity is fundamental to cooperative behaviour and has been verified in theoretical models. However, there is still limited experimental evidence for reciprocity in non-primate species. Our results more decisively clarify that reciprocity with a tit-for-tat enforcement strategy can occur among breeding pied flycatchers Ficedula hypoleuca separate from considerations of byproduct mutualism. Breeding pairs living in close proximity (20-24 m) did exhibit byproduct mutualism and always assisted in mobbing regardless of their neighbours' prior actions. However, breeding pairs with distant neighbours (69-84 m) either assisted or refused to assist in mobbing a predatory owl based on whether or not the distant pair had previously helped them in their own nest defense against the predator. Clearly, these birds are aware of their specific spatial security context, remember their neighbours' prior behaviour, and choose a situation-specific strategic course of action, which could promote their longer-term security, a capacity previously thought unique to primates.

  18. You mob my owl, I'll mob yours: birds play tit-for-tat game

    PubMed Central

    Krama, Tatjana; Vrublevska, Jolanta; Freeberg, Todd M.; Kullberg, Cecilia; Rantala, Markus J.; Krams, Indrikis

    2012-01-01

    Reciprocity is fundamental to cooperative behaviour and has been verified in theoretical models. However, there is still limited experimental evidence for reciprocity in non-primate species. Our results more decisively clarify that reciprocity with a tit-for-tat enforcement strategy can occur among breeding pied flycatchers Ficedula hypoleuca separate from considerations of byproduct mutualism. Breeding pairs living in close proximity (20–24 m) did exhibit byproduct mutualism and always assisted in mobbing regardless of their neighbours' prior actions. However, breeding pairs with distant neighbours (69–84 m) either assisted or refused to assist in mobbing a predatory owl based on whether or not the distant pair had previously helped them in their own nest defense against the predator. Clearly, these birds are aware of their specific spatial security context, remember their neighbours' prior behaviour, and choose a situation-specific strategic course of action, which could promote their longer-term security, a capacity previously thought unique to primates. PMID:23150772

  19. Relatedness communicated in lemur scent

    NASA Astrophysics Data System (ADS)

    Morelli, Toni Lyn; Hayes, R. Andrew; Nahrung, Helen F.; Goodwin, Thomas E.; Harelimana, Innocent H.; MacDonald, Laura J.; Wright, Patricia C.

    2013-08-01

    Lemurs are the most olfactory-oriented of primates, yet there is still only a basic level of understanding of what their scent marks communicate. We analyzed scent secretions from Milne-Edwards' sifakas ( Propithecus edwardsi) collected in their natural habitat of Ranomafana National Park, Madagascar. We sought to test whether the scent mark could signal genetic relatedness in addition to species, sex, season, and individuality. We not only found correlations ( r 2 = 0.38, P = 0.017) between the total olfactory fingerprint and genetic relatedness but also between relatedness and specific components of the odor, despite the complex environmental signals from differences in diet and behavior in a natural setting. To the best of our knowledge, this is the first demonstration of an association between genetic relatedness and chemical communication in a wild primate population. Furthermore, we found a variety of compounds that were specific to each sex and each sampling period. This research shows that scent marks could act as a remote signal to avoid inbreeding, optimize mating opportunities, and potentially aid kin selection.

  20. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats

    PubMed Central

    Laing, R.J.; Turecek, J.; Takahata, T.; Olavarria, J.F.

    2015-01-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. PMID:24969475

  1. Probing the evolutionary origins of music perception.

    PubMed

    McDermott, Josh; Hauser, Marc D

    2005-12-01

    Empirical data have recently begun to inform debates on the evolutionary origins of music. In this paper we discuss some of our recent findings and related theoretical issues. We claim that theories of the origins of music will be usefully constrained if we can determine which aspects of music perception are innate, and, of those, which are uniquely human and specific to music. Comparative research in nonhuman animals, particularly nonhuman primates, is thus critical to the debate. In this paper we focus on the preferences that characterize most humans' experience of music, testing whether similar preferences exist in nonhuman primates. Our research suggests that many rudimentary acoustic preferences, such as those for consonant over dissonant intervals, may be unique to humans. If these preferences prove to be innate in humans, they may be candidates for music-specific adaptations. To establish whether such preferences are innate in humans, one important avenue for future research will be the collection of data from different cultures. This may be facilitated by studies conducted over the internet.

  2. Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates

    PubMed Central

    Tao, Nannan; Wu, Shuai; Kim, Jaehan; An, Hyun Joo; Hinde, Katie; Power, Michael L.; Gagneux, Pascal; German, J. Bruce; Lebrilla, Carlito B.

    2011-01-01

    Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. Mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study was to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective in order to assess the extent to which the compositions of hMOs derives from ancestral, primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in non-primate milk. A detailed comparison of the oligosaccharides across evolution revealed non-sequential developmental pattern, i.e. that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates. PMID:21214271

  3. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  4. Ancient DNA analyses of museum specimens from selected Presbytis (primate: Colobinae) based on partial Cyt b sequences

    NASA Astrophysics Data System (ADS)

    Aifat, N. R.; Yaakop, S.; Md-Zain, B. M.

    2016-11-01

    The IUCN Red List of Threatened Species has categorized Malaysian primates from being data deficient to critically endanger. Thus, ancient DNA analyses hold great potential to understand phylogeny, phylogeography and population history of extinct and extant species. Museum samples are one of the alternatives to provide important sources of biological materials for a large proportion of ancient DNA studies. In this study, a total of six museum skin samples from species Presbytis hosei (4 samples) and Presbytis frontata (2 samples), aged between 43 and 124 years old were extracted to obtain the DNA. Extraction was done by using QIAGEN QIAamp DNA Investigator Kit and the ability of this kit to extract museum skin samples was tested by amplification of partial Cyt b sequence using species-specific designed primer. Two primer pairs were designed specifically for P. hosei and P. frontata, respectively. These primer pairs proved to be efficient in amplifying 200bp of the targeted species in the optimized PCR conditions. The performance of the sequences were tested to determine genetic distance of genus Presbytis in Malaysia. From the analyses, P. hosei is closely related to P. chrysomelas and P. frontata with the value of 0.095 and 0.106, respectively. Cyt b gave a clear data in determining relationships among Bornean species. Thus, with the optimized condition, museum specimens can be used for molecular systematic studies of the Malaysian primates.

  5. Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates.

    PubMed

    Engram, Jessica C; Cervasi, Barbara; Borghans, Jose A M; Klatt, Nichole R; Gordon, Shari N; Chahroudi, Ann; Else, James G; Mittler, Robert S; Sodora, Donald L; de Boer, Rob J; Brenchley, Jason M; Silvestri, Guido; Paiardini, Mirko

    2010-08-05

    Many features of T-cell homeostasis in primates are still unclear, thus limiting our understanding of AIDS pathogenesis, in which T-cell homeostasis is lost. Here, we performed experiments of in vivo CD4(+) or CD8(+) lymphocyte depletion in 2 nonhuman primate species, rhesus macaques (RMs) and sooty mangabeys (SMs). Whereas RMs develop AIDS after infection with simian immunodeficiency virus (SIV), SIV-infected SMs are typically AIDS-resistant. We found that, in both species, most CD4(+) or CD8(+) T cells in blood and lymph nodes were depleted after treatment with their respective antibodies. These CD4(+) and CD8(+) lymphocyte depletions were followed by a largely lineage-specific CD4(+) and CD8(+) T-cell proliferation, involving mainly memory T cells, which correlated with interleukin-7 plasma levels. Interestingly, SMs showed a faster repopulation of naive CD4(+) T cells than RMs. In addition, in both species CD8(+) T-cell repopulation was faster than that of CD4(+) T cells, with CD8(+) T cells reconstituting a normal pool within 60 days and CD4(+) T cells remaining below baseline levels up to day 180 after depletion. While this study revealed subtle differences in CD4(+) T-cell repopulation in an AIDS-sensitive versus an AIDS-resistant species, such differences may have particular relevance in the presence of active SIV repli cation, where CD4(+) T-cell destruction is chronic.

  6. Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates

    PubMed Central

    Engram, Jessica C.; Cervasi, Barbara; Borghans, Jose A. M.; Klatt, Nichole R.; Gordon, Shari N.; Chahroudi, Ann; Else, James G.; Mittler, Robert S.; Sodora, Donald L.; de Boer, Rob J.; Brenchley, Jason M.; Silvestri, Guido

    2010-01-01

    Many features of T-cell homeostasis in primates are still unclear, thus limiting our understanding of AIDS pathogenesis, in which T-cell homeostasis is lost. Here, we performed experiments of in vivo CD4+ or CD8+ lymphocyte depletion in 2 nonhuman primate species, rhesus macaques (RMs) and sooty mangabeys (SMs). Whereas RMs develop AIDS after infection with simian immunodeficiency virus (SIV), SIV-infected SMs are typically AIDS-resistant. We found that, in both species, most CD4+ or CD8+ T cells in blood and lymph nodes were depleted after treatment with their respective antibodies. These CD4+ and CD8+ lymphocyte depletions were followed by a largely lineage-specific CD4+ and CD8+ T-cell proliferation, involving mainly memory T cells, which correlated with interleukin-7 plasma levels. Interestingly, SMs showed a faster repopulation of naive CD4+ T cells than RMs. In addition, in both species CD8+ T-cell repopulation was faster than that of CD4+ T cells, with CD8+ T cells reconstituting a normal pool within 60 days and CD4+ T cells remaining below baseline levels up to day 180 after depletion. While this study revealed subtle differences in CD4+ T-cell repopulation in an AIDS-sensitive versus an AIDS-resistant species, such differences may have particular relevance in the presence of active SIV repli cation, where CD4+ T-cell destruction is chronic. PMID:20484087

  7. Response Properties of Cochlear Nucleus Neurons in Monkeys

    PubMed Central

    Roth, G. Linn; Recio, A.

    2009-01-01

    Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377

  8. Cerebral volumetric asymmetries in non-human primates: A magnetic resonance imaging study

    PubMed Central

    Pilcher, Dawn L.; Hammock, Elizabeth A.D.; Hopkins, William D.

    2007-01-01

    Magnetic resonance images (MRI) were collected in a sample of 23 apes, 14 Old World monkeys, and 8 New World monkeys. The total area or volume of the anterior and posterior cerebral regions of each hemisphere of the brain was measured. The results indicated that a rightward frontal and leftward occipital pattern of asymmetry was present at a population level in the great ape sample. Population-level cerebral asymmetries were not revealed in the sample of New or Old World monkeys. The total area or volume of the planum temporale, which was localised only in the great apes, was also measured in both hemispheres. A leftward planum temporale asymmetry was evident at the population level in the great apes. It was hypothesised that the rightward frontal and leftward occipital asymmetries would correlate with leftward planum temporale asymmetries. This hypothesis was based on the assumption that, similar to development of the human brain, the non-human primate brain ‘‘torques’’ during development due to a growth gradient which progresses anterior to posterior, ventral to dorsal, and right to left. The results of this study confirmed the predicted relationship between cerebral volume and the planum temporale asymmetries. This supports the hypothesis that the great ape brain may develop in a ‘‘torquing’’ manner, producing similar anatomical asymmetries as reported in humans. PMID:15513168

  9. Primates' Socio-Cognitive Abilities: What Kind of Comparisons Makes Sense?

    PubMed

    Byrnit, Jill T

    2015-09-01

    Referential gestures are of pivotal importance to the human species. We effortlessly make use of each others' referential gestures to attend to the same things, and our ability to use these gestures show themselves from very early in life. Almost 20 years ago, James Anderson and colleagues presented an experimental paradigm with which to examine the use of referential gestures in non-human primates: the object-choice task. Since then, numerous object-choice studies have been made, not only with primates but also with a range of other animal taxa. Surprisingly, several non-primate species appear to perform better in the object-choice task than primates do. Different hypotheses have been offered to explain the results. Some of these have employed generalizations about primates or subsets of primate taxa that do not take into account the unparalleled diversity that exists between species within the primate order on parameters relevant to the requirements of the object-choice task, such as social structure, feeding ecology, and general morphology. To examine whether these broad primate generalizations offer a fruitful organizing framework within which to interpret the results, a review was made of all published primate results on the use of gazing and glancing cues with species ordered along the primate phylogenetic tree. It was concluded that differences between species may be larger than differences between ancestry taxa, and it is suggested that we need to start rethinking why we are testing animals on experimental paradigms that do not take into account what are the challenges of their natural habitat.

  10. Interactions between social structure, demography, and transmission determine disease persistence in primates.

    PubMed

    Ryan, Sadie J; Jones, James H; Dobson, Andrew P

    2013-01-01

    Catastrophic declines in African great ape populations due to disease outbreaks have been reported in recent years, yet we rarely hear of similar disease impacts for the more solitary Asian great apes, or for smaller primates. We used an age-structured model of different primate social systems to illustrate that interactions between social structure and demography create 'dynamic constraints' on the pathogens that can establish and persist in primate host species with different social systems. We showed that this varies by disease transmission mode. Sexually transmitted infections (STIs) require high rates of transmissibility to persist within a primate population. In particular, for a unimale social system, STIs require extremely high rates of transmissibility for persistence, and remain at extremely low prevalence in small primates, but this is less constrained in longer-lived, larger-bodied primates. In contrast, aerosol transmitted infections (ATIs) spread and persist at high prevalence in medium and large primates with moderate transmissibility;, establishment and persistence in small-bodied primates require higher relative rates of transmissibility. Intragroup contact structure - the social network - creates different constraints for different transmission modes, and our model underscores the importance of intragroup contacts on infection prior to intergroup movement in a structured population. When alpha males dominate sexual encounters, the resulting disease transmission dynamics differ from when social interactions are dominated by mother-infant grooming events, for example. This has important repercussions for pathogen spread across populations. Our framework reveals essential social and demographic characteristics of primates that predispose them to different disease risks that will be important for disease management and conservation planning for protected primate populations.

  11. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    PubMed

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  12. Evolution of Olfactory Receptor Genes in Primates Dominated by Birth-and-Death Process

    PubMed Central

    Dong, Dong; He, Guimei; Zhang, Shuyi

    2009-01-01

    Olfactory receptor (OR) is a large family of G protein–coupled receptors that can detect odorant in order to generate the sense of smell. They constitute one of the largest multiple gene families in animals including primates. To better understand the variation in odor perception and evolution of OR genes among primates, we computationally identified OR gene repertoires in orangutans, marmosets, and mouse lemurs and investigated the birth-and-death process of OR genes in the primate lineage. The results showed that 1) all the primate species studied have no more than 400 intact OR genes, fewer than rodents and canine; 2) Despite the similar number of OR genes in the genome, the makeup of the OR gene repertoires between different primate species is quite different as they had undergone dramatic birth-and-death evolution with extensive gene losses in the lineages leading to current species; 3) Apes and Old World monkey (OWM) have similar fraction of pseudogenes, whereas New World monkey (NWM) have fewer pseudogenes. To measure the selective pressure that had affected the OR gene repertoires in primates, we compared the ratio of nonsynonymous with synonymous substitution rates by using 70 one-to-one orthologous quintets among five primate species. We found that OR genes showed relaxed selective constraints in apes (humans, chimpanzees, and orangutans) than in OWMs (macaques) and NWMs (marmosets). We concluded that OR gene repertoires in primates have evolved in such a way to adapt to their respective living environments. Differential selective constraints might play important role in the primate OR gene evolution in each primate species. PMID:20333195

  13. Using stereotactic brain atlases for small rodents and nonhuman primates for optrode array customization

    NASA Astrophysics Data System (ADS)

    Boutte, Ronald W.; Merlin, Sam; Griffiths, Brandon; Parry, Trent; Blair, Steve

    2017-02-01

    As the optogenetic field expands its need to target with high specificity only grows more crucial. This work will show a method for customizing soda-lime glass optrode arrays so that fine structures within the brains of small rodents and nonhuman primates can be optically interrogated below the outer cortical layer. An 8 × 6 array is customized for optrode length (400 μm ), optrode width (75 μm ), optrode pitch (400 μm ), backplane thickness (500 μm ), and overall form factor (3.45 mm × 2.65 mm ). The 400 μm long optrode is capable of illuminating the cortical Layer IV of rhesus macaque ( Macaca Fascicularis ) and the motor cortex of small mice ( Mus Musculus ).

  14. 9 CFR 3.91 - Terminal facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Primates 2 Transportation Standards § 3.91 Terminal facilities. (a) Placement. Any persons subject to the Animal Welfare regulations (9 CFR parts l, 2, and 3) must not commingle shipments of nonhuman primates... primates must not be placed near any other animals, including other species of nonhuman primates, and must...

  15. 42 CFR 71.53 - Nonhuman primates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Nonhuman primates. 71.53 Section 71.53 Public... FOREIGN QUARANTINE Importations § 71.53 Nonhuman primates. (a) Definitions. As used in this section the... nonhuman primates from a foreign country within a period of 31 days, beginning with the importation date...

  16. 76 FR 13120 - Requirements for Importers of Nonhuman Primates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Requirements for Importers of Nonhuman Primates AGENCY: Centers for Disease Control and Prevention (CDC... primates (NHPs). Written comments were to be received on or before March 7, 2011. We have received a... regulations (42 CFR 71.53) for the imporation of live nonhuman primates (NHPs) by extending existing...

  17. 9 CFR 3.91 - Terminal facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Primates 2 Transportation Standards § 3.91 Terminal facilities. (a) Placement. Any persons subject to the Animal Welfare regulations (9 CFR parts l, 2, and 3) must not commingle shipments of nonhuman primates... primates must not be placed near any other animals, including other species of nonhuman primates, and must...

  18. 42 CFR 71.53 - Nonhuman primates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Nonhuman primates. 71.53 Section 71.53 Public... FOREIGN QUARANTINE Importations § 71.53 Nonhuman primates. (a) Definitions. As used in this section the... nonhuman primates from a foreign country within a period of 31 days, beginning with the importation date...

  19. Transcriptional regulation of human eosinophil RNases by an evolutionary- conserved sequence motif in primate genome

    PubMed Central

    Wang, Hsiu-Yu; Chang, Hao-Teng; Pai, Tun-Wen; Wu, Chung-I; Lee, Yuan-Hung; Chang, Yen-Hsin; Tai, Hsiu-Ling; Tang, Chuan-Yi; Chou, Wei-Yao; Chang, Margaret Dah-Tsyr

    2007-01-01

    Background Human eosinophil-derived neurotoxin (edn) and eosinophil cationic protein (ecp) are members of a subfamily of primate ribonuclease (rnase) genes. Although they are generated by gene duplication event, distinct edn and ecp expression profile in various tissues have been reported. Results In this study, we obtained the upstream promoter sequences of several representative primate eosinophil rnases. Bioinformatic analysis revealed the presence of a shared 34-nucleotide (nt) sequence stretch located at -81 to -48 in all edn promoters and macaque ecp promoter. Such a unique sequence motif constituted a region essential for transactivation of human edn in hepatocellular carcinoma cells. Gel electrophoretic mobility shift assay, transient transfection and scanning mutagenesis experiments allowed us to identify binding sites for two transcription factors, Myc-associated zinc finger protein (MAZ) and SV-40 protein-1 (Sp1), within the 34-nt segment. Subsequent in vitro and in vivo binding assays demonstrated a direct molecular interaction between this 34-nt region and MAZ and Sp1. Interestingly, overexpression of MAZ and Sp1 respectively repressed and enhanced edn promoter activity. The regulatory transactivation motif was mapped to the evolutionarily conserved -74/-65 region of the edn promoter, which was guanidine-rich and critical for recognition by both transcription factors. Conclusion Our results provide the first direct evidence that MAZ and Sp1 play important roles on the transcriptional activation of the human edn promoter through specific binding to a 34-nt segment present in representative primate eosinophil rnase promoters. PMID:17927842

  20. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    PubMed Central

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  1. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  2. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  3. The oldest known primate skeleton and early haplorhine evolution.

    PubMed

    Ni, Xijun; Gebo, Daniel L; Dagosto, Marian; Meng, Jin; Tafforeau, Paul; Flynn, John J; Beard, K Christopher

    2013-06-06

    Reconstructing the earliest phases of primate evolution has been impeded by gaps in the fossil record, so that disagreements persist regarding the palaeobiology and phylogenetic relationships of the earliest primates. Here we report the discovery of a nearly complete and partly articulated skeleton of a primitive haplorhine primate from the early Eocene of China, about 55 million years ago, the oldest fossil primate of this quality ever recovered. Coupled with detailed morphological examination using propagation phase contrast X-ray synchrotron microtomography, our phylogenetic analysis based on total available evidence indicates that this fossil is the most basal known member of the tarsiiform clade. In addition to providing further support for an early dichotomy between the strepsirrhine and haplorhine clades, this new primate further constrains the age of divergence between tarsiiforms and anthropoids. It also strengthens the hypothesis that the earliest primates were probably diurnal, arboreal and primarily insectivorous mammals the size of modern pygmy mouse lemurs.

  4. Being human and doing primatology: national, socioeconomic, and ethnic influences on primatological practice.

    PubMed

    Fuentes, Agustin

    2011-03-01

    The emerging manifesto, center of the essay collection this commentary is part of, points out that primatology is a primate's science and field of endeavor. It is about primates, and constructed and carried out by primates. But the relationships between different primates involved in primatology cannot be described merely as scientific, zoological, or conservatory. A main point emerging from this perspective is that the relationships amongst primates (as scientists and as subjects) are affected by primatologists' experiences outside of academic science and within the cultural schema that we acquire as members of human societies. My contribution focuses on the primatologists and their sometimes discussed, but too often ignored, cultural and ethnic contexts as influences on how they study, think about, and interact with other primates. In our views and bonds with other primates, do national, class, and ethnic factors count? 2010 Wiley-Liss, Inc.

  5. Youngsters do not pay attention to conversational rules: is this so for nonhuman primates?

    PubMed

    Lemasson, A; Glas, L; Barbu, S; Lacroix, A; Guilloux, M; Remeuf, K; Koda, H

    2011-01-01

    The potentiality to find precursors of human language in nonhuman primates is questioned because of differences related to the genetic determinism of human and nonhuman primate acoustic structures. Limiting the debate to production and acoustic plasticity might have led to underestimating parallels between human and nonhuman primates. Adult-young differences concerning vocal usage have been reported in various primate species. A key feature of language is the ability to converse, respecting turn-taking rules. Turn-taking structures some nonhuman primates' adult vocal exchanges, but the development and the cognitive relevancy of this rule have never been investigated in monkeys. Our observations of Campbell's monkeys' spontaneous vocal utterances revealed that juveniles broke the turn-taking rule more often than did experienced adults. Only adults displayed different levels of interest when hearing playbacks of vocal exchanges respecting or not the turn-taking rule. This study strengthens parallels between human conversations and nonhuman primate vocal exchanges.

  6. Modification of spectral features by nonhuman primates

    PubMed Central

    Weiss, Daniel J.; Hotchkin, Cara F.; Parks, Susan E.

    2017-01-01

    Ackermann et al. discuss the lack of evidence for vocal control in nonhuman primates. We suggest that nonhuman primates may be capable of achieving greater vocal control than previously supposed. In support of this assertion, we discuss new evidence that nonhuman primates are capable of modifying spectral features in their vocalizations. PMID:25514964

  7. Comparison of the social systems of primates and feral horses: data from a newly established horse research site on Serra D'Arga, northern Portugal.

    PubMed

    Ringhofer, Monamie; Inoue, Sota; Mendonça, Renata S; Pereira, Carlos; Matsuzawa, Tetsuro; Hirata, Satoshi; Yamamoto, Shinya

    2017-10-01

    Horses are phylogenetically distant from primates, but considerable behavioral links exist between the two. The sociality of horses, characterized by group stability, is similar to that of primates, but different from that of many other ungulates. Although horses and primates are good models for exploring the evolution of societies in human and non-human animals, fewer studies have been conducted on the social system of horses than primates. Here, we investigated the social system of feral horses, particularly the determinant factors of single-male/multi-male group dichotomy, in light of hypotheses derived from studies of primate societies. Socioecological data from 26 groups comprising 208 feral horses on Serra D'Arga, northern Portugal suggest that these primate-based hypotheses cannot adequately explain the social system of horses. In view of the sympatric existence of multi- and single-male groups, and the frequent intergroup transfers and promiscuous mating of females with males of different groups, male-female relationships of horses appear to differ from those of polygynous primates.

  8. Eocene primates of South America and the African origins of New World monkeys.

    PubMed

    Bond, Mariano; Tejedor, Marcelo F; Campbell, Kenneth E; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-23

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  9. Why is a landscape perspective important in studies of primates?

    PubMed

    Arroyo-Rodríguez, Víctor; Fahrig, Lenore

    2014-10-01

    With accelerated deforestation and fragmentation through the tropics, assessing the impact that landscape spatial changes may have on biodiversity is paramount, as this information is required to design and implement effective management and conservation plans. Primates are expected to be particularly dependent on the landscape context; yet, our understanding on this topic is limited as the majority of primate studies are at the local scale, meaning that landscape-scale inferences are not possible. To encourage primatologists to assess the impact of landscape changes on primates, and help future studies on the topic, we describe the meaning of a "landscape perspective" and evaluate important assumptions of using such a methodological approach. We also summarize a number of important, but unanswered, questions that can be addressed using a landscape-scale study design. For example, it is still unclear if habitat loss has larger consistent negative effects on primates than habitat fragmentation per se. Furthermore, interaction effects between habitat area and other landscape effects (e.g., fragmentation) are unknown for primates. We also do not know if primates are affected by synergistic interactions among factors at the landscape scale (e.g., habitat loss and diseases, habitat loss and climate change, hunting, and land-use change), or whether landscape complexity (or landscape heterogeneity) is important for primate conservation. Testing for patterns in the responses of primates to landscape change will facilitate the development of new guidelines and principles for improving primate conservation. © 2014 Wiley Periodicals, Inc.

  10. Human-nonhuman primate interactions amongst Tikuna people: perceptions and local initiatives for resource management in Amacayacu in the Colombian Amazon.

    PubMed

    Parathian, Hannah E; Maldonado, Angela M

    2010-09-01

    This study assesses the impact of hunting on the densities of nonhuman primates in two indigenous Tikuna territories (Mocagua and San Martín), overlapping Amacayacu National Park in the Colombian Amazon. Large-bodied primates were once favored prey by Tikunas, but are now rarely hunted owing to the diminishing primate populations. We evaluate the effect of a hunting ban on woolly monkeys (Lagothrix lagothricha) by the residents of Mocagua, using qualitative and quantitative methods. Hunting records showed that from February 2005 to February 2009, a total of 25,142 kg of mammal bushmeat were harvested in Mocagua and San Martín. Primates constituted 345 kg of the total harvest. From 223 kg of large-bodied primates extracted for subsistence purposes, 160 kg were hunted in San Martín and 64 kg in Mocagua. Large-bodied primates made up 70% of the total primate biomass in Mocagua (398 kg/km(2)) and 22% in San Martín (199 kg/km(2)). From dietary records, we found bushmeat constituted 30% of protein consumption in Mocagua and 37% in San Martín. Primates were absent in records from Mocagua, and appeared only three times in those from San Martín suggesting inconsistencies with hunting data. Despite its moderate consumption, bushmeat was identified as a highly valued food source during focus group activities. Primate pet-keeping and part utilization were observed in San Martín but not in Mocagua, possibly as a consequence of fewer primates being hunted. We suggest that Mocagua provides an example of how community-based conservation strategies can be achieved, where opportunities for employment in tourism and alternative food sources are available. 2010 Wiley-Liss, Inc.

  11. Context-Dependent Duration Signals in the Primate Prefrontal Cortex

    PubMed Central

    Genovesio, Aldo; Seitz, Lucia K.; Tsujimoto, Satoshi; Wise, Steven P.

    2016-01-01

    The activity of some prefrontal (PF) cortex neurons distinguishes short from long time intervals. Here, we examined whether this property reflected a general timing mechanism or one dependent on behavioral context. In one task, monkeys discriminated the relative duration of 2 stimuli; in the other, they discriminated the relative distance of 2 stimuli from a fixed reference point. Both tasks had a pre-cue period (interval 1) and a delay period (interval 2) with no discriminant stimulus. Interval 1 elapsed before the presentation of the first discriminant stimulus, and interval 2 began after that stimulus. Both intervals had durations of either 400 or 800 ms. Most PF neurons distinguished short from long durations in one task or interval, but not in the others. When neurons did signal something about duration for both intervals, they did so in an uncorrelated or weakly correlated manner. These results demonstrate a high degree of context dependency in PF time processing. The PF, therefore, does not appear to signal durations abstractedly, as would be expected of a general temporal encoder, but instead does so in a highly context-dependent manner, both within and between tasks. PMID:26209845

  12. Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of Pteropus poliocephalus.

    PubMed

    Ichida, J M; Rosa, M G; Casagrande, V A

    2000-01-31

    It has been proposed that flying foxes and echolocating bats evolved independently from early mammalian ancestors in such a way that flying foxes form one of the suborders most closely related to primates. A major piece of evidence offered in support of a flying fox-primate link is the highly developed visual system of flying foxes, which is theorized to be primate-like in several different ways. Because the calcium-binding proteins parvalbumin (PV) and calbindin (CB) show distinct and consistent distributions in the primate visual system, the distribution of these same proteins was examined in the flying fox (Pteropus poliocephalus) visual system. Standard immunocytochemical techniques reveal that PV labeling within the lateral geniculate nucleus (LGN) of the flying fox is sparse, with clearly labeled cells located only within layer 1, adjacent to the optic tract. CB labeling in the LGN is profuse, with cells labeled in all layers throughout the nucleus. Double labeling reveals that all PV+ cells also contain CB, and that these cells are among the largest in the LGN. In primary visual cortex (V1) PV and CB label different classes of non-pyramidal neurons. PV+ cells are found in all cortical layers, although labeled cells are found only rarely in layer I. CB+ cells are found primarily in layers II and III. The density of PV+ neuropil correlates with the density of cytochrome oxidase staining; however, no CO+ or PV+ or CB+ patches or blobs are found in V1. These results show that the distribution of calcium-binding proteins in the flying fox LGN is unlike that found in primates, in which antibodies for PV and CB label specific separate populations of relay cells that exist in different layers. Indeed, the pattern of calcium-binding protein distribution in the flying fox LGN is different from that reported in any other terrestrial mammal. Within V1 no PV+ patches, CO blobs, or patchy distribution of CB+ neuropil that might reveal interblobs characteristic of primate V1 are found; however, PV and CB are found in separate populations of non-pyramidal neurons. The types of V1 cells labeled with antibodies to PV and CB in all mammals examined including the flying fox suggest that the similarities in the cellular distribution of these proteins in cortex reflect the fact that this feature is common to all mammals.

  13. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).

    PubMed

    Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin

    2016-11-30

    Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate. Human frontal cortex plays a crucial role in speech production. However, it has remained unclear whether the frontal cortex of nonhuman primates is involved in the production of self-initiated vocalizations during natural vocal communication. Using a wireless multichannel neural recording technique, we observed in the premotor cortex neural activation and suppression both before and during self-initiated vocalizations when marmosets, a highly vocal New World primate species, engaged in vocal exchanges with conspecifics. A novel finding of the present study is the discovery of a subpopulation of premotor cortex neurons that was activated by vocal production, but not by orofacial movement. These observations provide clear evidence of the premotor cortex's involvement in vocal production in a New World primate species. Copyright © 2016 the authors 0270-6474/16/3612168-12$15.00/0.

  14. Tread drum for animals. [having an electrical shock station

    NASA Technical Reports Server (NTRS)

    Howard, W. H. (Inventor)

    1978-01-01

    A device for exercising animals such as primates is described, which includes a cylindrical housing mounted for rotation about a horizontal axis of revolution and has a cylindrical treadway portion on which the animal treads while the drum is rotated by means of a motorized drive. The treadway portion of the drum includes an electrode structure with sectors being independently energizable by means of a commutator and source of potential so that an electrical shock station is created behind a running-in-place station on the moving treadway. In this manner, if the animal should fall behind its running-in-place station, it may be shocked by treading on the energized electrode structure. One end of the tread drum comprises a transparent wall for unobstructed viewing of the animal being exercised.

  15. NeuN+ Neuronal Nuclei in Non-Human Primate Prefrontal Cortex and Subcortical White Matter After Clozapine Exposure

    PubMed Central

    Halene, Tobias B.; Kozlenkov, Alexey; Jiang, Yan; Mitchell, Amanda; Javidfar, Behnam; Dincer, Aslihan; Park, Royce; Wiseman, Jennifer; Croxson, Paula; Giannaris, Eustathia Lela; Hof, Patrick R.; Roussos, Panos; Dracheva, Stella; Hemby, Scott E.; Akbarian, Schahram

    2016-01-01

    Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted. PMID:26776227

  16. The evolution of intelligence in mammalian carnivores.

    PubMed

    Holekamp, Kay E; Benson-Amram, Sarah

    2017-06-06

    Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.

  17. The evolution of intelligence in mammalian carnivores

    PubMed Central

    Benson-Amram, Sarah

    2017-01-01

    Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands. PMID:28479979

  18. 77 FR 35878 - Establishment of User Fees for Filovirus Testing of Nonhuman Primate Liver Samples

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Establishment of User Fees for Filovirus Testing of Nonhuman Primate Liver Samples AGENCY: Centers for Disease... comment on the establishment of user fees for filovirus testing of all nonhuman primates that die during... nonhuman primates. HHS/CDC took this action because (1) testing is no longer being offered by the only...

  19. Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    PubMed Central

    Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.

    2012-01-01

    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590

  20. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay.

    PubMed

    Lucas, Bronwyn A; Lavi, Eitan; Shiue, Lily; Cho, Hana; Katzman, Sol; Miyoshi, Keita; Siomi, Mikiko C; Carmel, Liran; Ares, Manuel; Maquat, Lynne E

    2018-01-30

    Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.

  1. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency

    PubMed Central

    Chen, Yuhan; Wang, Shengjun

    2017-01-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235

  2. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.

    PubMed

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong

    2017-09-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.

  3. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    PubMed

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might reflect a compromise between the demands of the physical and the social environments. © 2016 Anatomical Society.

  4. Recurrent Loss of APOBEC3H Activity during Primate Evolution.

    PubMed

    Garcia, Erin I; Emerman, Michael

    2018-06-20

    Genes in the APOBEC3 family encode cytidine deaminases that provide a barrier against viral infection and retrotransposition. Of all APOBEC3 genes in humans, APOBEC3H ( A3H ) is the most polymorphic: some haplotypes encode stable and active A3H proteins, while others are unstable and poorly antiviral. Such variation in human A3H affects interactions with the lentiviral antagonist Vif, which counteracts A3H via proteasomal degradation. In order to broaden our understanding of A3H-Vif interactions, as well as its evolution in Old World monkeys, we characterized A3H variation within four African green monkey (AGM) subspecies. We found that A3H is highly polymorphic in AGMs and has lost antiviral activity in multiple Old World monkeys. This loss of function was partially related to protein expression levels but was also influenced by amino acid mutations in the N-terminus. Moreover, we demonstrate that the evolution of A3H in the primate lineages leading to AGMs was not driven by Vif. Our work suggests that activity of A3H is evolutionarily dynamic and may have a negative effect on host fitness, resulting in its recurrent loss in primates. IMPORTANCE Adaptation of viruses to their hosts is critical for transmission of viruses between different species. Previous studies had identified changes in a protein from the APOBEC3 family that influenced species-specificity of simian immunodeficiency viruses (SIVs) in African green monkeys. We studied the evolution of a related protein in the same system, APOBEC3H, which has experienced a loss of function in humans. This evolutionary approach revealed that recurrent loss of APOBEC3H activity has taken place during primate evolution suggesting that APOBEC3H places a fitness cost on hosts. The variability of APOBEC3H activity between different primates highlights the differential selective pressures on the APOBEC3 gene family. Copyright © 2018 American Society for Microbiology.

  5. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.

    PubMed

    Bekpen, Cemalettin; Künzel, Sven; Xie, Chen; Eaaswarkhanth, Muthukrishnan; Lin, Yen-Lung; Gokcumen, Omer; Akdis, Cezmi A; Tautz, Diethard

    2017-03-06

    Segmental duplications are an abundant source for novel gene functions and evolutionary adaptations. This mechanism of generating novelty was very active during the evolution of primates particularly in the human lineage. Here, we characterize the evolution and function of the SPATA31 gene family (former designation FAM75A), which was previously shown to be among the gene families with the strongest signal of positive selection in hominoids. The mouse homologue for this gene family is a single copy gene expressed during spermatogenesis. We show that in primates, the SPATA31 gene duplicated into SPATA31A and SPATA31C types and broadened the expression into many tissues. Each type became further segmentally duplicated in the line towards humans with the largest number of full-length copies found for SPATA31A in humans. Copy number estimates of SPATA31A based on digital PCR show an average of 7.5 with a range of 5-11 copies per diploid genome among human individuals. The primate SPATA31 genes also acquired new protein domains that suggest an involvement in UV response and DNA repair. We generated antibodies and show that the protein is re-localized from the nucleolus to the whole nucleus upon UV-irradiation suggesting a UV damage response. We used CRISPR/Cas mediated mutagenesis to knockout copies of the gene in human primary fibroblast cells. We find that cell lines with reduced functional copies as well as naturally occurring low copy number HFF cells show enhanced sensitivity towards UV-irradiation. The acquisition of new SPATA31 protein functions and its broadening of expression may be related to the evolution of the diurnal life style in primates that required a higher UV tolerance. The increased segmental duplications in hominoids as well as its fast evolution suggest the acquisition of further specific functions particularly in humans.

  6. 9 CFR 3.80 - Primary enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Nonhuman... the primate when standing on four feet. (2) On and after February 15, 1994: (i) The minimum space that...) 36 (91.44) 6 over 55.0 (over 25) 25.1 (2.33) 84 (213.36) (ii) Dealers. exhibitors, and research...

  7. 9 CFR 3.80 - Primary enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Nonhuman... the primate when standing on four feet. (2) On and after February 15, 1994: (i) The minimum space that...) 36 (91.44) 6 over 55.0 (over 25) 25.1 (2.33) 84 (213.36) (ii) Dealers. exhibitors, and research...

  8. 9 CFR 3.81 - Environment enhancement to promote psychological well-being.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... address each of the following: (a) Social grouping. The environment enhancement plan must include specific provisions to address the social needs of nonhuman primates of species known to exist in social groups in... interaction with the care giver or other familiar and knowledgeable person consistent with personnel safety...

  9. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  10. Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex

    PubMed Central

    Tsunada, Joji; Sawaguchi, Toshiyuki

    2012-01-01

    It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments. PMID:23285110

  11. Mitochondrial and Nuclear Ribosomal DNA Evidence Supports the Existence of a New Trichuris Species in the Endangered François’ Leaf-Monkey

    PubMed Central

    Liu, Guo-Hua; Gasser, Robin B.; Nejsum, Peter; Wang, Yan; Chen, Qiang; Song, Hui-Qun; Zhu, Xing-Quan

    2013-01-01

    The whipworm of humans, Trichuris trichiura, is responsible for a neglected tropical disease (NTD) of major importance in tropical and subtropical countries of the world. Whipworms also infect animal hosts, including pigs, dogs and non-human primates, cause clinical disease (trichuriasis) similar to that of humans. Although Trichuris species are usually considered to be host specific, it is not clear whether non-human primates are infected with T. trichiura or other species. In the present study, we sequenced the complete mitochondrial (mt) genome as well as the first and second internal transcribed spacers (ITS-1 and ITS-2) of Trichuris from the François’ leaf-monkey (langur), and compared them with homologous sequences from human- and pig-derived Trichuris. In addition, sequence comparison of a conserved mt ribosomal gene among multiple individual whipworms revealed substantial nucleotide differences among these three host species but limited sequence variation within each of them. The molecular data indicate that the monkey-derived whipworm is a separate species from that of humans. Future work should focus on detailed population genetic and morphological studies (by electron microscopy) of whipworms from various non-humans primates and humans. PMID:23840431

  12. Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered françois' leaf-monkey.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Nejsum, Peter; Wang, Yan; Chen, Qiang; Song, Hui-Qun; Zhu, Xing-Quan

    2013-01-01

    The whipworm of humans, Trichuris trichiura, is responsible for a neglected tropical disease (NTD) of major importance in tropical and subtropical countries of the world. Whipworms also infect animal hosts, including pigs, dogs and non-human primates, cause clinical disease (trichuriasis) similar to that of humans. Although Trichuris species are usually considered to be host specific, it is not clear whether non-human primates are infected with T. trichiura or other species. In the present study, we sequenced the complete mitochondrial (mt) genome as well as the first and second internal transcribed spacers (ITS-1 and ITS-2) of Trichuris from the François' leaf-monkey (langur), and compared them with homologous sequences from human- and pig-derived Trichuris. In addition, sequence comparison of a conserved mt ribosomal gene among multiple individual whipworms revealed substantial nucleotide differences among these three host species but limited sequence variation within each of them. The molecular data indicate that the monkey-derived whipworm is a separate species from that of humans. Future work should focus on detailed population genetic and morphological studies (by electron microscopy) of whipworms from various non-humans primates and humans.

  13. Yellow fever risk assessment in the Central African Republic

    PubMed Central

    Staples, J. Erin; Diallo, Mawlouth; Janusz, Kristen B.; Manengu, Casimir; Lewis, Rosamund F.; Perea, William; Yactayo, Sergio; Sall, Amadou A.

    2015-01-01

    Background Starting in 2008, the Central African Republic (CAR) experienced an unprecedented number of reported yellow fever (YF) cases. A risk assessment of YF virus (YFV) activity was conducted to estimate potential disease risk and vaccine needs. Methods A multistage cluster sampling design was used to sample humans, non-human primates, and mosquitoes in distinct ecologic zones. Humans and non-human primates were tested for YFV-specific antibodies; mosquitoes were tested for YFV RNA. Results Overall, 13.3% (125/938) of humans were found to have naturally-acquired YFV antibodies. Antibody levels were higher in zones in the southern and south central regions of CAR. All sampled non-human primates (n=56) were known YFV reservoirs; one tested positive for YFV antibodies. Several known YF vectors were identified including Aedes africanus, Ae. aegypti, Ae. luteocephalus, and Ae. simpsoni. Several more urban locations were found to have elevated Breateau and Container indices for Ae. aegypti. Conclusions A country-wide assessment of YF risk found YFV to be endemic in CAR. The potential for future YF cases and outbreaks, however, varied by ecologic zone. Improved vaccination coverage through mass campaign and childhood immunization was recommended to mitigate the YF risk. PMID:24947520

  14. Current Ebola vaccines

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  15. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain

    PubMed Central

    Fiandaca, Massimo S.; Varenika, Vanja; Eberling, Jamie; McKnight, Tracy; Bringas, John; Pivirotto, Phillip; Beyer, Janine; Hadaczek, Piotr; Bowers, William; Park, John; Federoff, Howard; Forsayeth, John; Bankiewicz, Krystof S.

    2009-01-01

    We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes. PMID:19095069

  16. Comparing primate crania: The importance of fossils.

    PubMed

    Fleagle, John G; Gilbert, Christopher C; Baden, Andrea L

    2016-10-01

    Extant primate crania represent a small subset of primate crania that have existed. The main objective here is to examine how the inclusion of fossil crania changes our understanding of primate cranial diversity relative to analyses of extant primates. We hypothesize that fossil taxa will change the major axes of cranial shape, occupy new areas of morphospace, change the relative diversity of major primate clades, and fill in notable gaps separating major primate taxa/clades. Eighteen 3D landmarks were collected on 157 extant and fossil crania representing 90 genera. Data were subjected to a Generalized Procrustes Analysis then principal components analysis. Relative diversity between clades was assessed using an F-statistic. Fossil taxa do not significantly alter major axes of cranial shape, but they do occupy unique areas of morphospace, change the relative diversity between clades, and fill in notable gaps in primate cranial evolution. Strepsirrhines remain significantly less diverse than anthropoids. Fossil hominins fill the gap in cranial morphospace between extant great apes and modern humans. The morphospace outlined by living primates largely includes that occupied by fossil taxa, suggesting that the cranial diversity of living primates generally encompasses the total diversity that has evolved in this Order. The evolution of the anthropoid cranium was a significant event allowing anthropoids to achieve significantly greater cranial diversity compared to strepsirrhines. Fossil taxa fill in notable gaps within and between clades, highlighting their transitional nature and eliminating the appearance of large morphological distances between extant taxa, particularly in the case of extant hominids. © 2016 Wiley Periodicals, Inc.

  17. Meeting report: Spontaneous lesions and diseases in wild, captive-bred, and zoo-housed nonhuman primates and in nonhuman primate species used in drug safety studies.

    PubMed

    Sasseville, V G; Mansfield, K G; Mankowski, J L; Tremblay, C; Terio, K A; Mätz-Rensing, K; Gruber-Dujardin, E; Delaney, M A; Schmidt, L D; Liu, D; Markovits, J E; Owston, M; Harbison, C; Shanmukhappa, S; Miller, A D; Kaliyaperumal, S; Assaf, B T; Kattenhorn, L; Macri, S Cummings; Simmons, H A; Baldessari, A; Sharma, P; Courtney, C; Bradley, A; Cline, J M; Reindel, J F; Hutto, D L; Montali, R J; Lowenstine, L J

    2012-11-01

    The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies.

  18. Putting the spotlight on internally displaced animals (IDAs): a survey of primate sanctuaries in Africa, Asia, and the Americas.

    PubMed

    Trayford, Hannah R; Farmer, Kay H

    2013-02-01

    As anthropogenic activity makes deeper incursions into forests, fragmenting habitat, wildlife is forced into closer proximity to humans leading to increased incidences of human-wildlife conflict and wildlife displacement. These same incursions facilitate poaching for the commercial trade in dead and live animals. As a direct result, the number of sanctuaries and internally displaced animals (IDAs) in need of sanctuary placement and rehabilitation are increasing. We focus on internally displaced primates given the prevalence of primate-focused facilities and anthropomorphic considerations surrounding this taxonomic group. Surveys were distributed globally to map the extent and range of native primate sanctuaries and species. Over 70 facilities care for more than 6,000 native primates comprising 64 species, with almost half listed as endangered or critically endangered. As not all sanctuaries were identified at the time of the survey distribution, we estimate that the actual number of facilities is closer to double this number with a captive population in excess of 10,000 individual primates. Native primate sanctuaries hold significant numbers of primates in long-term captive care, with less than half (37%) identified as candidates for release. The surveyed sanctuary population accounts for 35% of the world's captive primates, as compared to ISIS-registered (where ISIS is International Species Information System) zoological facilities, although we estimate that the actual population is closer to 58%. For some species, the sanctuary population represents the only population in captivity. We discuss the prevalence of range-state sanctuaries and their primate populations, and issues surrounding their future development and management. © 2012 Wiley Periodicals, Inc.

  19. Nutritional contributions of insects to primate diets: implications for primate evolution.

    PubMed

    Rothman, Jessica M; Raubenheimer, David; Bryer, Margaret A H; Takahashi, Maressa; Gilbert, Christopher C

    2014-06-01

    Insects and other invertebrates form a portion of many living and extinct primate diets. We review the nutritional profiles of insects in comparison with other dietary items, and discuss insect nutrients in relation to the nutritional needs of living primates. We find that insects are incorporated into some primate diets as staple foods whereby they are the majority of food intake. They can also be incorporated as complements to other foods in the diet, providing protein in a diet otherwise dominated by gums and/or fruits, or be incorporated as supplements to likely provide an essential nutrient that is not available in the typical diet. During times when they are very abundant, such as in insect outbreaks, insects can serve as replacements to the usual foods eaten by primates. Nutritionally, insects are high in protein and fat compared with typical dietary items like fruit and vegetation. However, insects are small in size and for larger primates (>1 kg) it is usually nutritionally profitable only to consume insects when they are available in large quantities. In small quantities, they may serve to provide important vitamins and fatty acids typically unavailable in primate diets. In a brief analysis, we found that soft-bodied insects are higher in fat though similar in chitin and protein than hard-bodied insects. In the fossil record, primates can be defined as soft- or hard-bodied insect feeders based on dental morphology. The differences in the nutritional composition of insects may have implications for understanding early primate evolution and ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Nonhuman primate infections after organ transplantation.

    PubMed

    Haustein, Silke V; Kolterman, Amanda J; Sundblad, Jeffrey J; Fechner, John H; Knechtle, Stuart J

    2008-01-01

    Nonhuman primates, primarily rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), and baboons (Papio spp.), have been used extensively in research models of solid organ transplantation, mainly because the nonhuman primate (NHP) immune system closely resembles that of the human. Nonhuman primates are also frequently the model of choice for preclinical testing of new immunosuppressive strategies. But the management of post-transplant nonhuman primates is complex, because it often involves multiple immunosuppressive agents, many of which are new and have unknown effects. Additionally, the resulting immunosuppression carries a risk of infectious complications, which are challenging to diagnose. Last, because of the natural tendency of animals to hide signs of weakness, infectious complications may not be obvious until the animal becomes severely ill. For these reasons the diagnosis of infectious complications is difficult among post-transplant NHPs. Because most nonhuman primate studies in organ transplantation are quite small, there are only a few published reports concerning infections after transplantation in nonhuman primates. Based on our survey of these reports, the incidence of infection in NHP transplant models is 14%. The majority of reports suggest that many of these infections are due to reactivation of viruses endemic to the primate species, such as cytomegalovirus (CMV), polyomavirus, and Epstein-Barr virus (EBV)-related infections. In this review, we address the epidemiology, pathogenesis, role of prophylaxis, clinical presentation, and treatment of infectious complications after solid organ transplantation in nonhuman primates.

  1. Nonhuman Primate Infections after Organ Transplantation

    PubMed Central

    Haustein, Silke V.; Kolterman, Amanda J.; Sundblad, Jeffrey J.; Fechner, John H.; Knechtle, Stuart J.

    2016-01-01

    Nonhuman primates, primarily rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), and baboons (Papio spp.), have been used extensively in research models of solid organ transplantation, mainly because the nonhuman primate (NHP) immune system closely resembles that of the human. Nonhuman primates are also frequently the model of choice for preclinical testing of new immunosuppressive strategies. But the management of post-transplant nonhuman primates is complex, because it often involves multiple immunosuppressive agents, many of which are new and have unknown effects. Additionally, the resulting immunosuppression carries a risk of infectious complications, which are challenging to diagnose. Last, because of the natural tendency of animals to hide signs of weakness, infectious complications may not be obvious until the animal becomes severely ill. For these reasons the diagnosis of infectious complications is difficult among post-transplant NHPs. Because most nonhuman primate studies in organ transplantation are quite small, there are only a few published reports concerning infections after transplantation in nonhuman primates. Based on our survey of these reports, the incidence of infection in NHP transplant models is 14%. The majority of reports suggest that many of these infections are due to reactivation of viruses endemic to the primate species, such as cytomegalovirus (CMV), polyomavirus, and Epstein-Barr virus (EBV)–related infections. In this review, we address the epidemiology, pathogenesis, role of prophylaxis, clinical presentation, and treatment of infectious complications after solid organ transplantation in nonhuman primates. PMID:18323582

  2. The comparative anatomy of the forelimb veins of primates.

    PubMed Central

    Thiranagama, R; Chamberlain, A T; Wood, B A

    1989-01-01

    One hundred and thirteen forelimbs taken from 62 individuals belonging to 17 primate genera were dissected to reveal the entire course of the superficial venous system. The course of the deep venous system was also documented in at least one forelimb of each primate genus, and the number and location of perforating veins was recorded in 18 human and 45 non-human primate limbs. In Pan, Gorilla and in about 25% of human specimens the lateral superficial vein was confined to the forearm, while in all other primates, and in the majority of humans, this vein extended from the carpus to the clavicular region. Only Pongo and humans exhibited a second main superficial vein on the medial side of the forearm. In all primates the deep veins of the forelimb usually accompanied the arteries. Thus variation in the deep venous system reflected the different arterial patterns exhibited by these primates. The number of perforating veins in the forelimb was related to the length of the limb. Primate genera with longer forelimbs had more perforators, though not as many as would be expected if the number of perforators scaled linearly with limb length. PMID:2514175

  3. Postcopulatory sexual selection influences baculum evolution in primates and carnivores.

    PubMed

    Brindle, Matilda; Opie, Christopher

    2016-12-14

    The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. © 2016 The Authors.

  4. Postcopulatory sexual selection influences baculum evolution in primates and carnivores

    PubMed Central

    Brindle, Matilda

    2016-01-01

    The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. PMID:27974519

  5. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    PubMed Central

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  6. IACUC Review of Nonhuman Primate Research

    PubMed Central

    Tardif, Suzette D.; Coleman, Kristine; Hobbs, Theodore R.; Lutz, Corrine

    2013-01-01

    This article will detail some of the issues that must be considered as institutional animal care and use committees (IACUCs) review the use of nonhuman primates (NHPs) in research. As large, intelligent, social, long-lived, and non-domesticated animals, monkeys are amongst the most challenging species used in biomedical research and the duties of the IACUC in relation to reviewing research use of these species can also be challenging. Issues of specific concern for review of NHP research protocols that are discussed in this article include scientific justification, reuse, social housing requirements, amelioration of distress, surgical procedures, and humane endpoints. Clear institutional policies and procedures as regards NHP in these areas are critical, and the discussion of these issues presented here can serve as a basis for the informed establishment of such policies and procedures. PMID:24174445

  7. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  8. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  9. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.

  10. Establishing 'quality of life' parameters using behavioural guidelines for humane euthanasia of captive non-human primates.

    PubMed

    Lambeth, Sp; Schapiro, Sj; Bernacky, Bj; Wilkerson, Gk

    2013-09-01

    Chronic pain and distress are universally accepted conditions that may adversely affect an animal's quality of life (QOL) and lead to the humane euthanasia of an animal. At most research institutions and zoological parks in the USA, a veterinarian, who has physically examined the animal and reviewed the clinical records, ultimately decides when an animal has reached a humane endpoint. To aid in the difficult process of interpreting pain and distress, we have developed specific behavioural guidelines, in addition to standard clinical information, to help define unique characteristics and traits of primates to assess and promote discussion of an individual primate's QOL, and thereby, to assist in the decision-making process regarding euthanasia. These guidelines advocate the creation of a QOL team when the animal is diagnosed with a life-threatening or debilitating chronic condition, or at the time the animal is entered into a terminal study. The team compiles a list of characteristics unique to that individual animal by utilising a questionnaire and a behavioural ethogram. This list enables the team to quantitatively assess any deviations from the established normal behavioural repertoire of that individual. Concurrently, the QOL team determines the number of behavioural deviations that are needed to trigger an immediate discussion of the necessity for humane euthanasia of the animal. The team remains intact once created, and revisits the animal's condition as frequently as deemed necessary. This process improves animal welfare by continuing the quest to optimally define QOL for captive primates, and potentially for all captive animals.

  11. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates

    PubMed Central

    Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba

    2013-01-01

    Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607

  12. Old World Monkeys Compare to Apes in the Primate Cognition Test Battery

    PubMed Central

    Schmitt, Vanessa; Pankau, Birte; Fischer, Julia

    2012-01-01

    Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and – prima facie – support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences. PMID:22485130

  13. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells

    PubMed Central

    Berger, Carolina; Sommermeyer, Daniel; Hudecek, Michael; Berger, Michael; Balakrishnan, Ashwini; Paszkiewicz, Paulina J.; Kosasih, Paula L.; Rader, Christoph; Riddell, Stanley R.

    2014-01-01

    Genetic engineering of T cells for adoptive transfer by introducing a tumor-targeting chimeric antigen receptor (CAR) is a new approach to cancer immunotherapy. A challenge for the field is to define cell surface molecules that are both preferentially expressed on tumor cells and can be safely targeted with T cells. The orphan tyrosine kinase receptor ROR1 is a candidate target for T-cell therapy with CAR-modified T cells (CAR-T cells) since it is expressed on the surface of many lymphatic and epithelial malignancies and has a putative role in tumor cell survival. The cell surface isoform of ROR1 is expressed in embryogenesis but absent in adult tissues except for B-cell precursors, and low levels of transcripts in adipocytes, pancreas, and lung. ROR1 is highly conserved between humans and macaques and has a similar pattern of tissue expression. To determine if low-level ROR1-expression on normal cells would result in toxicity or adversely affect CAR-T cell survival and/or function, we adoptively transferred autologous ROR1 CAR-T cells into nonhuman primates. ROR1 CAR-T cells did not cause overt toxicity to normal organs and accumulated in bone marrow and lymph node sites where ROR1-positive B cells were present. The findings support the clinical evaluation of ROR1 CAR-T cells for ROR1+ malignancies and demonstrate the utility of nonhuman primates for evaluating the safety of immunotherapy with engineered T cells specific for tumor-associated molecules that are homologous between humans and nonhuman primates. PMID:25355068

  14. Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects.

    PubMed

    Leonard, Timothy K; Hoffman, Kari L

    2017-01-23

    The hippocampus plays an important role in memory for events that are distinct in space and time. One of the strongest, most synchronous neural signals produced by the hippocampus is the sharp-wave ripple (SWR), observed in a variety of mammalian species during offline behaviors, such as slow-wave sleep [1-3] and quiescent waking and pauses in exploration [4-8], leading to long-standing and widespread theories of its contribution to plasticity and memory during these inactive or immobile states [9-14]. Indeed, during sleep and waking inactivity, hippocampal SWRs in rodents appear to support spatial long-term and working memory [4, 15-23], but so far, they have not been linked to memory in primates. More recently, SWRs have been observed during active, visual scene exploration in macaques [24], opening up the possibility that these active-state ripples in the primate hippocampus are linked to memory for objects embedded in scenes. By measuring hippocampal SWRs in macaques during search for scene-contextualized objects, we found that SWR rate increased with repeated presentations. Furthermore, gaze during SWRs was more likely to be near the target object on repeated than on novel presentations, even after accounting for overall differences in gaze location with scene repetition. This proximity bias with repetition occurred near the time of target object detection for remembered targets. The increase in ripple likelihood near remembered visual objects suggests a link between ripples and memory in primates; specifically, SWRs may reflect part of a mechanism supporting the guidance of search based on past experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Minerals in the foods and diet of diademed sifakas: Are they nutritional challenges?

    PubMed

    Irwin, Mitchell T; Raharison, Jean-Luc; Chapman, Colin A; Junge, Randall E; Rothman, Jessica M

    2017-04-01

    Minerals, though needed in small quantities, are essential to metabolic processes, and deficiencies can seriously threaten health, reproduction and survival. Despite this, few studies have measured mineral composition of wild primate foods and fewer have quantified mineral intake. Here we measured the concentration of nine minerals in 75 foods of diademed sifakas (Propithecus diadema; five groups) in habitats with varying levels of disturbance at Tsinjoarivo and estimated daily intakes using focal-animal feeding data and intake rates over one year. For six minerals (Ca, P, Na, Fe, Zn, and Cu), mean concentrations in foods fell short of the National Research Council's (NRC) recommendations for captive primates. Concentrations were highest in lianas, herbs, and epiphytes, and hemiparasites had exceptionally high Na. Leaves tended to have higher concentrations than fruits or flowers, but overlap was extensive. Mineral concentrations in daily diets varied little seasonally, but absolute intakes (g/day) were higher in the abundant season, due to the increase in food ingested. Disturbed habitat groups' diets had higher mineral concentrations for five minerals, but this translated into increased intakes only for Cu, as these groups ate less food overall. Overall, comparisons with percentage-based NRC recommendations suggests deficiencies, but this is contradicted by: (1) the fact that mass-specific intakes exceeded human recommendations, and (2) the lack of observed signs of deficiency. Ongoing efforts to quantify mineral consumption across wild primate populations and better understanding requirements on both a percentage and absolute basis will help in understanding effects on food selection, managing primate habitats and formulating captive diets. © 2017 Wiley Periodicals, Inc.

  16. Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys.

    PubMed

    Spinelli, Simona; Ballard, Theresa; Feldon, Joram; Higgins, Guy A; Pryce, Christopher R

    2006-08-01

    With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.

  17. Dietary Correlates of Primate Masticatory Muscle Fiber Architecture.

    PubMed

    Hartstone-Rose, Adam; Deutsch, Ashley R; Leischner, Carissa L; Pastor, Francisco

    2018-02-01

    Analyses of masticatory muscle architecture-specifically fascicle length (FL; a correlate of muscle stretch and contraction speed) and physiological cross-sectional area (PCSA; a correlate of force)-reveal soft-tissue dietary adaptations. For instance, consumers of large, soft foods are expected to have relatively long FL, while consumers of obdurate foods are expected to have relatively high PCSA. Unfortunately, only a few studies have analyzed these variables across large primate samples-an order of particular interest because it is our own. Previous studies found that, in strepsirrhines, force variables (PCSA and muscle masses; MM) scale with isometry or slight positive allometry, while the body size corrected FL residuals correlate with food sizes. However, a study of platyrrhines using different methods (in which the authors physically cut muscles between fascicles) found very different trends: negative allometry for both the stretch and force variables. Here, we apply the methods used in the strepsirrhine study (chemical dissection of fascicles to ensure full length measurements) to reevaluate these trends in platyrrhines and extend this research to include catarrhines. Our results conform to the previous strepsirrhine trends: there is no evidence of negative allometry in platyrrhines. Rather, in primates broadly and catarrhines specifically, MM and PCSA scale with isometry or positive allometry. When examining size-adjusted variables, it is clear that fascicle lengths (especially those of the temporalis muscle) correlate with diet: species that consume soft, larger, foods have longer masticatory fiber lengths which would allow them to open their jaws to wider gape angles. Anat Rec, 301:311-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. Gene targeting and subsequent site-specific transgenesis at the β-actin (ACTB) locus in common marmoset embryonic stem cells.

    PubMed

    Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki

    2011-09-01

    Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.

  19. Measles Vaccination of Nonhuman Primates Provides Partial Protection against Infection with Canine Distemper Virus

    PubMed Central

    de Vries, Rory D.; Ludlow, Martin; Verburgh, R. Joyce; van Amerongen, Geert; Yüksel, Selma; Nguyen, D. Tien; McQuaid, Stephen; Osterhaus, Albert D. M. E.; Duprex, W. Paul

    2014-01-01

    ABSTRACT Measles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus (CDV). Natural CDV infection causing clinical signs has never been reported in humans, but recent outbreaks in captive macaques have shown that CDV can cause disease in primates. We studied the virulence and tropism of recombinant CDV expressing enhanced green fluorescent protein in naive and measles-vaccinated cynomolgus macaques. In naive animals CDV caused viremia and fever and predominantly infected CD150+ lymphocytes and dendritic cells. Virus was reisolated from the upper and lower respiratory tracts, but infection of epithelial or neuronal cells was not detectable at the time points examined, and the infections were self-limiting. This demonstrates that CDV readily infects nonhuman primates but suggests that additional mutations are necessary to achieve full virulence in nonnatural hosts. Partial protection against CDV was observed in measles-vaccinated macaques, as demonstrated by accelerated control of virus replication and limited shedding from the upper respiratory tract. While neither CDV infection nor MV vaccination induced detectable cross-reactive neutralizing antibodies, MV-specific neutralizing antibody levels of MV-vaccinated macaques were boosted by CDV challenge infection, suggesting that cross-reactive VN epitopes exist. Rapid increases in white blood cell counts in MV-vaccinated macaques following CDV challenge suggested that cross-reactive cellular immune responses were also present. This study demonstrates that zoonotic morbillivirus infections can be controlled by measles vaccination. IMPORTANCE Throughout history viral zoonoses have had a substantial impact on human health. Given the drive toward global eradication of measles, it is essential to understand the zoonotic potential of animal morbilliviruses. Morbilliviruses are thought to have evolved from a common ancestral virus that jumped species and adapted to new hosts. Recently, canine distemper virus (CDV), a morbillivirus normally restricted to carnivores, caused disease outbreaks in nonhuman primates. Here, we report that experimental CDV infection of monkeys resulted in fever and leukopenia. The virus replicated to high levels in lymphocytes but did not spread to epithelial cells or the central nervous system. Importantly, like measles virus in macaques, the infections were self-limiting. In measles-vaccinated macaques CDV was cleared more rapidly, resulting in limited virus shedding from the upper respiratory tract. These studies demonstrate that although CDV can readily infect primates, measles immunity is protective, and CDV infection is self-limiting. PMID:24501402

  20. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus.

    PubMed

    de Vries, Rory D; Ludlow, Martin; Verburgh, R Joyce; van Amerongen, Geert; Yüksel, Selma; Nguyen, D Tien; McQuaid, Stephen; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2014-04-01

    Measles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus (CDV). Natural CDV infection causing clinical signs has never been reported in humans, but recent outbreaks in captive macaques have shown that CDV can cause disease in primates. We studied the virulence and tropism of recombinant CDV expressing enhanced green fluorescent protein in naive and measles-vaccinated cynomolgus macaques. In naive animals CDV caused viremia and fever and predominantly infected CD150(+) lymphocytes and dendritic cells. Virus was reisolated from the upper and lower respiratory tracts, but infection of epithelial or neuronal cells was not detectable at the time points examined, and the infections were self-limiting. This demonstrates that CDV readily infects nonhuman primates but suggests that additional mutations are necessary to achieve full virulence in nonnatural hosts. Partial protection against CDV was observed in measles-vaccinated macaques, as demonstrated by accelerated control of virus replication and limited shedding from the upper respiratory tract. While neither CDV infection nor MV vaccination induced detectable cross-reactive neutralizing antibodies, MV-specific neutralizing antibody levels of MV-vaccinated macaques were boosted by CDV challenge infection, suggesting that cross-reactive VN epitopes exist. Rapid increases in white blood cell counts in MV-vaccinated macaques following CDV challenge suggested that cross-reactive cellular immune responses were also present. This study demonstrates that zoonotic morbillivirus infections can be controlled by measles vaccination. Throughout history viral zoonoses have had a substantial impact on human health. Given the drive toward global eradication of measles, it is essential to understand the zoonotic potential of animal morbilliviruses. Morbilliviruses are thought to have evolved from a common ancestral virus that jumped species and adapted to new hosts. Recently, canine distemper virus (CDV), a morbillivirus normally restricted to carnivores, caused disease outbreaks in nonhuman primates. Here, we report that experimental CDV infection of monkeys resulted in fever and leukopenia. The virus replicated to high levels in lymphocytes but did not spread to epithelial cells or the central nervous system. Importantly, like measles virus in macaques, the infections were self-limiting. In measles-vaccinated macaques CDV was cleared more rapidly, resulting in limited virus shedding from the upper respiratory tract. These studies demonstrate that although CDV can readily infect primates, measles immunity is protective, and CDV infection is self-limiting.

  1. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    PubMed

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  2. The natural place to begin: The ethnoprimatology of the Waorani

    PubMed Central

    Papworth, Sarah; Milner-Gulland, EJ; Slocombe, Katie

    2013-01-01

    Ethnoprimatology is an important and growing discipline, studying the diverse relationships between humans and primates. However there is a danger that too great a focus on primates as important to humans may obscure the importance of other animal groups to local people. The Waorani of Amazonian Ecuador were described by Sponsel [Sponsel (1997) New World Primates: Ecology, evolution and behavior. New York: Aldine de Gruyter. p 143–165] as the “natural place” for ethnoprimatology, because of their close relationship to primates, including primates forming a substantial part of their diet. Therefore they are an ideal group in which to examine contemporary perceptions of primates in comparison to other types of animal. We examine how Waorani living in Yasuní National Park name and categorize primates and other common mammals. Although there is some evidence that the Waorani consider primates a unique group, the non-primate kinkajou and olingo are also included as part of the group “monkeys,” and no evidence was found that primates were more important than other mammals to Waorani culture. Instead, a small number of key species, in particular the woolly monkey (Lagothrix poeppigii) and white-lipped peccary (Tayassu pecari), were found to be both important in the diet and highly culturally salient. These results have implications for both ethnoprimatologists and those working with local communities towards broader conservation goals. Firstly, researchers should ensure that they and local communities are referring to the same animals when they use broad terms such as “monkey,” and secondly the results caution ethnoprimatologists against imposing western taxonomic groups on indigenous peoples, rather than allowing them to define themselves which species are important. Am. J. Primatol. 75:1117–1128, 2013. © 2013 The Authors. American Journal of Primatology Published by Wiley Periodicals, Inc. PMID:23818096

  3. The natural place to begin: the ethnoprimatology of the Waorani.

    PubMed

    Papworth, Sarah; Milner-Gulland, E J; Slocombe, Katie

    2013-11-01

    Ethnoprimatology is an important and growing discipline, studying the diverse relationships between humans and primates. However there is a danger that too great a focus on primates as important to humans may obscure the importance of other animal groups to local people. The Waorani of Amazonian Ecuador were described by Sponsel [Sponsel (1997) New World Primates: Ecology, evolution and behavior. New York: Aldine de Gruyter. p 143-165] as the "natural place" for ethnoprimatology, because of their close relationship to primates, including primates forming a substantial part of their diet. Therefore they are an ideal group in which to examine contemporary perceptions of primates in comparison to other types of animal. We examine how Waorani living in Yasuní National Park name and categorize primates and other common mammals. Although there is some evidence that the Waorani consider primates a unique group, the non-primate kinkajou and olingo are also included as part of the group "monkeys," and no evidence was found that primates were more important than other mammals to Waorani culture. Instead, a small number of key species, in particular the woolly monkey (Lagothrix poeppigii) and white-lipped peccary (Tayassu pecari), were found to be both important in the diet and highly culturally salient. These results have implications for both ethnoprimatologists and those working with local communities towards broader conservation goals. Firstly, researchers should ensure that they and local communities are referring to the same animals when they use broad terms such as "monkey," and secondly the results caution ethnoprimatologists against imposing western taxonomic groups on indigenous peoples, rather than allowing them to define themselves which species are important. © 2013 The Authors. American Journal of Primatology Published by Wiley Periodicals, Inc.

  4. Special issue: Comparative biogeography of Neotropical primates.

    PubMed

    Lynch Alfaro, Jessica W; Cortés-Ortiz, Liliana; Di Fiore, Anthony; Boubli, Jean P

    2015-01-01

    New research presented in this special issue of Molecular Phylogenetics and Evolution on the "Phylogeny and Biogeography of Neotropical Primates" greatly improves our understanding of the evolutionary history of the New World monkeys and provides insights into the multiple platyrrhine radiations, diversifications, extinctions, and recolonizations that have taken place over time and over space in the Neotropics. Here, we synthesize genetic and biogeographic research from the past several years to construct an overarching hypothesis for platyrrhine evolution. We also highlight continuing controversies in Neotropical primate biogeography, such as whether the location of origin of platyrrhines was Africa or Asia; whether Patagonian fossil primates are stem or crown platyrrhines; and whether cis- and trans-Andean Neotropical primates were subject to vicariance through Andes mountain building, or instead diversified through isolation in mountain valleys after skirting around the Andes on the northwestern coast of South America. We also consider the role of the Amazon River and its major tributaries in shaping platyrrhine biodiversity, and how and when primates from the Amazon reached the Atlantic Forest. A key focus is on primate colonizations and extirpations in Central America, the Andes, and the seasonally dry tropical forests and savannas (such as the Llanos, Caatinga, and Cerrado habitats), all ecosystems that have been understudied up until now for primates. We suggest that most primates currently inhabiting drier open habitats are relatively recent arrivals, having expanded from rainforest habitats in the Pleistocene. We point to the Pitheciidae as the taxonomic group most in need of further phylogenetic and biogeographic research. Additionally, genomic studies on the Platyrrhini are deeply needed and are expected to bring new surprises and insights to the field of Neotropical primate biogeography. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Meeting Report: Spontaneous Lesions and Diseases in Wild, Captive-Bred, and Zoo-Housed Nonhuman Primates and in Nonhuman Primate Species Used in Drug Safety Studies

    PubMed Central

    Sasseville, V. G.; Mansfield, K. G.; Mankowski, J. L.; Tremblay, C.; Terio, K. A.; Mätz-Rensing, K.; Gruber-Dujardin, E.; Delaney, M. A.; Schmidt, L. D.; Liu, D.; Markovits, J. E.; Owston, M.; Harbison, C.; Shanmukhappa, S.; Miller, A. D.; Kaliyaperumal, S.; Assaf, B. T.; Kattenhorn, L.; Macri, S. Cummings; Simmons, H. A.; Baldessari, A.; Sharma, P.; Courtney, C.; Bradley, A.; Cline, J. M.; Reindel, J. F.; Hutto, D. L.; Montali, R. J.; Lowenstine, L. J.

    2014-01-01

    The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3–4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20 Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies. PMID:23135296

  6. A road for a promising future for China's primates: The potential for restoration.

    PubMed

    Chapman, Colin A

    2018-07-18

    China is one of the most dynamic countries of the world and it shelters some amazing levels of biodiversity, including some very special primate species. However, primarily as a result of forest loss, most of which occurred in historical times, approximately 70% of China's primate species have less than 3 000 individuals. Here I evaluate one road for future conservation/development that could produce very positive gains for China's primates; namely forest restoration. I argue that for a large scale restoration project to be possible two conditions must be met; the right societal conditions must exist and the right knowledge must be in hand. This evaluation suggests that the restoration of native forest to support many of China's primates holds great potential to advance conservation goals and to promote primate population recovery.

  7. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  8. A Mitogenomic Phylogeny of Living Primates

    PubMed Central

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  9. Crying tapir: the functionality of errors and accuracy in predator recognition in two neotropical high-canopy primates.

    PubMed

    Mourthé, Ítalo; Barnett, Adrian A

    2014-01-01

    Predation is often considered to be a prime driver in primate evolution, but, as predation is rarely observed in nature, little is known of primate antipredator responses. Time-limited primates should be highly discerning when responding to predators, since time spent in vigilance and avoidance behaviour may supplant other activities. We present data from two independent studies describing and quantifying the frequency, nature and duration of predator-linked behaviours in 2 high-canopy primates, Ateles belzebuth and Cacajao ouakary. We introduce the concept of 'pseudopredators' (harmless species whose appearance is sufficiently similar to that of predators to elicit antipredator responses) and predict that changes in behaviour should increase with risk posed by a perceived predator. We studied primate group encounters with non-primate vertebrates across 14 (Ateles) and 19 (Cacajao) months in 2 undisturbed Amazonian forests. Although preliminary, data on both primates revealed that they distinguished the potential predation capacities of other species, as predicted. They appeared to differentiate predators from non-predators and distinguished when potential predators were not an immediate threat, although they reacted erroneously to pseudopredators, on average in about 20% of the responses given toward other vertebrates. Reacting to pseudopredators would be interesting since, in predation, one error can be fatal to the prey. © 2015 S. Karger AG, Basel.

  10. Generation of transgenic monkeys with human inherited genetic disease.

    PubMed

    Chan, Anthony W S; Yang, Shang-Hsun

    2009-09-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.

  11. Handbook of Parenting. Volume 2: Biology and Ecology of Parenting.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with social settings and correlates of parenting, this volume, the second of four volumes on parenting deals specifically with the biology and the ecology of parenting. The volume consists of 12 chapters as follows: (1) "Hormonal Basis of Parenting in Mammals" (Jay S. Rosenblatt); (2) "Parenting in Primates" (Kim A.…

  12. Play Initiating Behaviors and Responses in Red Colobus Monkeys

    ERIC Educational Resources Information Center

    Worch, Eric A.

    2012-01-01

    Red colobus monkeys are playful primates, making them an important species in which to study animal play. The author examines play behaviors and responses in the species for its play initiation events, age differences in initiating frequency and initiating behavior, and the types of social play that result from specific initiating behaviors. Out…

  13. Fatal Metacestode Infection in Bornean Orangutan Caused by Unknown Versteria Species

    PubMed Central

    Gendron-Fitzpatrick, Annette; Deering, Kathleen M.; Wallace, Roberta S.; Clyde, Victoria L.; Lauck, Michael; Rosen, Gail E.; Bennett, Andrew J.; Greiner, Ellis C.; O’Connor, David H.

    2014-01-01

    A captive juvenile Bornean orangutan (Pongo pygmaeus) died from an unknown disseminated parasitic infection. Deep sequencing of DNA from infected tissues, followed by gene-specific PCR and sequencing, revealed a divergent species within the newly proposed genus Versteria (Cestoda: Taeniidae). Versteria may represent a previously unrecognized risk to primate health. PMID:24377497

  14. Efficacy of fenbendazole formulated in a commercial primate diet for treating specific pathogen-free baboons (Papio cynocephalus anubis) infected with Trichuris trichiura.

    PubMed

    Reichard, Mason V; Wolf, Roman F; Clingenpeel, Lindsay C; Doan, Sandra K; Jones, Amy N; Gray, Kristene M

    2008-11-01

    Trichuris trichiura is a common intestinal nematode parasite of captive baboons. We evaluated the efficacy of fenbendazole formulated in a commercial primate diet (FBZ-PD) for treating specific pathogen-free (SPF) baboons (Papio cynocephalus anubis) naturally infected with Trichuris trichiura. Twenty-nine baboons, housed indoors in 3 separate rooms, were fed FBZ-PD for 5 d, whereas 4 baboons housed in another isolated area served as untreated controls. The efficacy of FBZ-PD was measured as reduction in the number of T. trichiura eggs in host feces after treatment as determined by quantitative fecal flotation examination. All baboons that received FBZ-PD stopped shedding T. trichiura eggs by 7 d after initiation of treatment, and remained negative until at least 119 d after treatment. However, eggs of T. trichiura were present in the feces of 3 (10.3%) experimental baboons at 154 d after treatment. Untreated control baboons shed T. trichiura eggs throughout the entire study. Our results indicate that FBZ-PD was efficacious for treating SPF baboons infected with T. trichiura.

  15. Visitor circulation and nonhuman animal welfare: an overlooked variable?

    PubMed

    Davey, Gareth; Henzi, Peter

    2004-01-01

    This article investigates visitor circulation and behaviors within a gallery of primate exhibits in relation to their possible implications for nonhuman animal welfare. When entering a primate house, the majority of visitors (84%) turned right, a pattern upheld throughout all times of the day. These findings demonstrate the existence of the "right-turn" principle, a concept previously identified and investigated in the museum setting. The existence of this circulation pattern in zoos has important implications for the practical management of animal welfare issues because unbalanced or large numbers of visitors at specific enclosures could present a stressful influence. The "direction bias" could not be attributed to demographic or behavioral traits, therefore suggesting that the principle, like similar findings from museum research, generalizes across visitor populations and, therefore, zoos. A visitor sample at another exhibit (located outside the exhibit gallery) did not display a direction bias, suggesting that the marked circulation pattern may be specific to exhibit galleries. The article discusses the significance and consequences of visitor circulation with respect to visitor management and animal welfare.

  16. Efficacy of Fenbendazole Formulated in a Commercial Primate Diet for Treating Specific Pathogen-free Baboons (Papio cynocephalus anubis) Infected with Trichuris trichiura

    PubMed Central

    Reichard, Mason V; Wolf, Roman F; Clingenpeel, Lindsay C; Doan, Sandra K; Jones, Amy N; Gray, Kristene M

    2008-01-01

    Trichuris trichiura is a common intestinal nematode parasite of captive baboons. We evaluated the efficacy of fenbendazole formulated in a commercial primate diet (FBZ-PD) for treating specific pathogen-free (SPF) baboons (Papio cynocephalus anubis) naturally infected with Trichuris trichiura. Twenty-nine baboons, housed indoors in 3 separate rooms, were fed FBZ-PD for 5 d, whereas 4 baboons housed in another isolated area served as untreated controls. The efficacy of FBZ-PD was measured as reduction in the number of T. trichiura eggs in host feces after treatment as determined by quantitative fecal flotation examination. All baboons that received FBZ-PD stopped shedding T. trichiura eggs by 7 d after initiation of treatment, and remained negative until at least 119 d after treatment. However, eggs of T. trichiura were present in the feces of 3 (10.3%) experimental baboons at 154 d after treatment. Untreated control baboons shed T. trichiura eggs throughout the entire study. Our results indicate that FBZ-PD was efficacious for treating SPF baboons infected with T. trichiura. PMID:19049254

  17. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats.

    PubMed

    Laing, R J; Turecek, J; Takahata, T; Olavarria, J F

    2015-10-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    PubMed

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Acquisition and generalization of visuomotor transformations by nonhuman primates.

    PubMed

    Paz, Rony; Nathan, Chen; Boraud, Thomas; Bergman, Hagai; Vaadia, Eilon

    2005-02-01

    The kinematics of straight reaching movements can be specified vectorially by the direction of the movement and its extent. To explore the representation in the brain of these two properties, psychophysical studies have examined learning of visuomotor transformations of either rotation or gain and their generalization. However, the neuronal substrates of such complex learning are only beginning to be addressed. As an initial step in ensuring the validity of such investigations, it must be shown that monkeys indeed learn and generalize visuomotor transformations in the same manner as humans. Here, we analyze trajectories and velocities of movements as monkeys adapt to either rotational or gain transformations. We used rotations with different signs and magnitudes, and gains with different signs, and analyzed transfer of learning to untrained movements. The results show that monkeys can adapt to both types of transformation with a time course that resembles human learning. Analysis of the aftereffects reveals that rotation is learned locally and generalizes poorly to untrained directions, whereas gain is learned more globally and can be transferred to other amplitudes. The results lend additional support to the hypothesis that reaching movements are learned locally but can be easily rescaled to other magnitudes by scaling the peak velocity. The findings also indicate that reaching movements in monkeys are planned and executed very similarly to those in humans. This validates the underlying presumption that neuronal recordings in primates can help elucidate the mechanisms of motor learning in particular and motor planning in general.

  20. The Primates.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about primates, including definitions and examples. Includes the activities "Thumbless Relay" and "Face It," which relate attributes of primates. Includes a story about chimpanzees along with discussion questions about the story. Reproducible worksheets and a quiz are also provided. (TW)

  1. Raptors and primate evolution.

    PubMed

    McGraw, W Scott; Berger, Lee R

    2013-01-01

    Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review. Copyright © 2013 Wiley Periodicals, Inc.

  2. Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.

    2013-01-01

    A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653

  3. Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution

    PubMed Central

    Niimura, Yoshihito; Nei, Masatoshi

    2007-01-01

    Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800–1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression. PMID:17684554

  4. The last fossil primate in North America, new material of the enigmatic Ekgmowechashala from the Arikareean of Oregon.

    PubMed

    Samuels, Joshua X; Albright, L Barry; Fremd, Theodore J

    2015-09-01

    Primates were common in North America through most of the Eocene, but vanished in the Chadronian, about 35 million years ago. In the Arikareean, about 6 million years later, the enigmatic primate Ekgmowechashala appeared in the Great Plains and Oregon. This taxon shows little resemblance to other North American primates and its phylogenetic position has long been debated. New material of this taxon allows a revised assessment of its age and how it is related to other primates. Recently collected Ekgmowechashala specimens from the Turtle Cove Member of the John Day Formation in Oregon are described. These specimens are compared to previously collected material from South Dakota and Nebraska, as well as other fossil primates from North America and Asia. Study of the John Day material allows diagnosis of a new, distinct species. Comparison of Ekgmowechashala to a pair of recently described Asian primates, Muangthanhinius and Bugtilemur, suggests that it is a strepsirrhine adapiform, rather than an omomyid. The well-defined stratigraphy and dated marker beds of the Turtle Cove Member provide a refined age for Ekgmowechashala occurrences in Oregon, during the Oligocene (early Arikareean). The age and morphology of these ekgmowechashaline taxa suggest that the group originated in Asia and dispersed to North America in the Oligocene, after the extinction of other primates in North America. Contemporaneous occurrences of Ekgmowechashala in Oregon and the Great Plains indicate the last non-human primates vanished in North America about 26 million years ago. © 2015 Wiley Periodicals, Inc.

  5. Edge effects in the primate community of the biological dynamics of Forest Fragments Project, Amazonas, Brazil.

    PubMed

    Lenz, Bryan B; Jack, Katharine M; Spironello, Wilson R

    2014-11-01

    While much is known about abiotic and vegetative edge effects in tropical forests, considerably less is known about the impact of forest edges on large mammals. In this study, we examine edge effects in a primate community to determine: 1) the distance from the edge over which edge effects in primate density are detectable, 2) whether individual species exhibit edge effects in their density, and 3) whether biological characteristics can be used to predict primate presence in edge habitats. Given their importance to many primate species, we also examine the influence of the number of large trees. We found edge penetration distances of 150 m for the five species that experienced edge effects, suggesting that primates respond to edge-related changes in the plant community that are known to be strongest over the first 150 m. Four species had higher edge densities: Alouatta macconnelli (folivore-frugivore), Chiropotes chiropotes (frugivorous seed predator), Saguinus midas (frugivore-faunivore), and Sapajus apella apella (frugivore-faunivore); one species' density was lower: Ateles paniscus (frugivore); and the final species, Pithecia chrysocephala (frugivorous seed predator), did not show an edge-related pattern. The lone significant relationship between the biological characteristics examined (body weight, diet, group size, and home range size) and primate presence in edge habitats was a negative relationship with the amount of fruit consumed. Though we did not examine primate responses to edges that border a denuded matrix, we have shown that edges influence primate distribution even following decades of secondary forest regeneration at habitat edges. © 2014 Wiley Periodicals, Inc.

  6. Use of film for community conservation education in primate habitat countries.

    PubMed

    Wright, Juliet H

    2010-05-01

    Wildlife films have become an integral part of broadcast schedules in developed countries. As charismatic mammals, primates are frequently the focus of the wildlife filmmaker's attention. Yet the people watching these films tend to be situated on different continents from the species concerned. Communities in primate habitat countries are unlikely to ever have the opportunity to gain such an insight into the species with which they share their environment and the threats these species face. Over recent years, an increasing number of filmmakers are realizing the importance of reaching local audiences through film for conservation purposes. Published research on the impact films can have on eliciting conservation action in developed or developing countries is minimal. The perceived power of wildlife films to change attitudes and behaviors is largely based on anecdotal evidence. This commentary highlights the on-going debate regarding the conservation impact of wildlife films, discusses the work of various NGOs that are using films for conservation purposes in habitat countries and makes recommendations with regards to the film type and situational context necessary to promote positive conservation behavior in communities. Bespoke conservation films convey a specific message to a specific audience at a particular point in time. If produced by trained local conservation educators, these films are likely to have the biggest impact. Films must be shown as a part of a conservation education program that incorporates other education materials and group discussion so that the desired conservation message can be clearly defined and reinforced. Audiences should not be made to feel disillusioned, depressed or vilified by the content of wildlife films. Rather films should increase support for conservation and empower people to act. Once enthusiasm for specific conservation actions has been created, practical assistance and follow-up support is necessary to ensure ideas are implemented. (c) 2009 Wiley-Liss, Inc.

  7. Intermediate-term emotional bookkeeping is necessary for long-term reciprocal grooming partner preferences in an agent-based model of macaque groups

    PubMed Central

    Evers, Ellen; de Vries, Han; Spruijt, Berry M.

    2016-01-01

    Whether and how primates are able to maintain long-term affiliative relationships is still under debate. Emotional bookkeeping (EB), the partner-specific accumulation of emotional responses to earlier interactions, is a candidate mechanism that does not require high cognitive abilities. EB is difficult to study in real animals, due to the complexity of primate social life. Therefore, we developed an agent-based model based on macaque behavior, the EMO-model, that implements arousal and two emotional dimensions, anxiety-FEAR and satisfaction-LIKE, which regulate social behavior. To implement EB, model individuals assign dynamic LIKE attitudes towards their group members, integrating partner-specific emotional responses to earlier received grooming episodes. Two key parameters in the model were varied to explore their effects on long-term affiliative relationships: (1) the timeframe over which earlier affiliation is accumulated into the LIKE attitudes; and (2) the degree of partner selectivity. EB over short and long timeframes gave rise to low variation in LIKE attitudes, and grooming partner preferences were only maintained over one to two months. Only EB over intermediate-term timeframes resulted in enough variation in LIKE attitudes, which, in combination with high partner selectivity, enables individuals to differentiate between regular and incidental grooming partners. These specific settings resulted in a strong feedback between differentiated LIKE attitudes and the distribution of grooming, giving rise to strongly reciprocated partner preferences that could be maintained for longer periods, occasionally up to one or two years. Moreover, at these settings the individual’s internal, socio-emotional memory of earlier affiliative episodes (LIKE attitudes) corresponded best to observable behavior (grooming partner preferences). In sum, our model suggests that intermediate-term LIKE dynamics and high partner selectivity seem most plausible for primates relying on emotional bookkeeping to maintain their social bonds. PMID:26839737

  8. Intermediate-term emotional bookkeeping is necessary for long-term reciprocal grooming partner preferences in an agent-based model of macaque groups.

    PubMed

    Evers, Ellen; de Vries, Han; Spruijt, Berry M; Sterck, Elisabeth H M

    2016-01-01

    Whether and how primates are able to maintain long-term affiliative relationships is still under debate. Emotional bookkeeping (EB), the partner-specific accumulation of emotional responses to earlier interactions, is a candidate mechanism that does not require high cognitive abilities. EB is difficult to study in real animals, due to the complexity of primate social life. Therefore, we developed an agent-based model based on macaque behavior, the EMO-model, that implements arousal and two emotional dimensions, anxiety-FEAR and satisfaction-LIKE, which regulate social behavior. To implement EB, model individuals assign dynamic LIKE attitudes towards their group members, integrating partner-specific emotional responses to earlier received grooming episodes. Two key parameters in the model were varied to explore their effects on long-term affiliative relationships: (1) the timeframe over which earlier affiliation is accumulated into the LIKE attitudes; and (2) the degree of partner selectivity. EB over short and long timeframes gave rise to low variation in LIKE attitudes, and grooming partner preferences were only maintained over one to two months. Only EB over intermediate-term timeframes resulted in enough variation in LIKE attitudes, which, in combination with high partner selectivity, enables individuals to differentiate between regular and incidental grooming partners. These specific settings resulted in a strong feedback between differentiated LIKE attitudes and the distribution of grooming, giving rise to strongly reciprocated partner preferences that could be maintained for longer periods, occasionally up to one or two years. Moreover, at these settings the individual's internal, socio-emotional memory of earlier affiliative episodes (LIKE attitudes) corresponded best to observable behavior (grooming partner preferences). In sum, our model suggests that intermediate-term LIKE dynamics and high partner selectivity seem most plausible for primates relying on emotional bookkeeping to maintain their social bonds.

  9. Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    PubMed Central

    Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang

    2014-01-01

    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639

  10. A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses.

    PubMed

    de Carvalho Dominguez Souza, Breno Frederico; König, Alexander; Rasche, Andrea; de Oliveira Carneiro, Ianei; Stephan, Nora; Corman, Victor Max; Roppert, Pia Luise; Goldmann, Nora; Kepper, Ramona; Müller, Simon Franz; Völker, Christof; de Souza, Alex Junior Souza; Gomes-Gouvêa, Michele Soares; Moreira-Soto, Andrés; Stöcker, Andreas; Nassal, Michael; Franke, Carlos Roberto; Rebello Pinho, João Renato; Soares, Manoel do Carmo Pereira; Geyer, Joachim; Lemey, Philippe; Drosten, Christian; Netto, Eduardo Martins; Glebe, Dieter; Drexler, Jan Felix

    2018-06-01

    All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.)

    PubMed Central

    Braune, Pia; Schmidt, Sabine; Zimmermann, Elke

    2008-01-01

    Background A central question in evolutionary biology is how cryptic species maintain species cohesiveness in an area of sympatry. The coexistence of sympatrically living cryptic species requires the evolution of species-specific signalling and recognition systems. In nocturnal, dispersed living species, specific vocalisations have been suggested to act as an ideal premating isolation mechanism. We studied the structure and perception of male advertisement calls of three nocturnal, dispersed living mouse lemur species, the grey mouse lemur (Microcebus murinus), the golden brown mouse lemur (M. ravelobensis) and the Goodman's mouse lemur (M. lehilahytsara). The first two species occur sympatrically, the latter lives allopatrically to them. Results A multi-parameter sound analysis revealed prominent differences in the frequency contour and in the duration of advertisement calls. To test whether mouse lemurs respond specifically to calls of the different species, we conducted a playback experiment with M. murinus from the field using advertisement calls and alarm whistle calls of all three species. Individuals responded significantly stronger to conspecific than to heterospecific advertisement calls but there were no differences in response behaviour towards statistically similar whistle calls of the three species. Furthermore, sympatric calls evoked weaker interest than allopatric advertisement calls. Conclusion Our results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates. They furthermore support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species. PMID:18462484

  12. Genetic diversity of neotropical primates: phylogeny, population genetics, and animal models for infectious diseases.

    PubMed

    Moreira, M A M; Bonvicino, C R; Soares, M A; Seuánez, H N

    2010-01-01

    The classification of neotropical primates has been controversial, and different arrangements have been proposed based on disparate taxonomic criteria and on the traits selected for elucidating phylogenetic reconstructions, like morphologic characters, nuclear DNA and mitochondrial DNA. Population studies of some neotropical primates have been useful for assessing their extant genetic variability and for understanding their social structure and dynamics. Finally, neotropical primates have become valuable models for some human infectious deseases, especially for HIV studies related to viral resistance. In this review, we comment on these aspects that make neotropical primates a group of highly valuable species for basic and applied research. Copyright 2010 S. Karger AG, Basel.

  13. Prevalence of gastrointestinal parasites in captive non-human primates of twenty-four zoological gardens in China.

    PubMed

    Li, Mei; Zhao, Bo; Li, Bo; Wang, Qiang; Niu, Lili; Deng, Jiabo; Gu, Xiaobin; Peng, Xuerong; Wang, Tao; Yang, Guangyou

    2015-06-01

    Captive primates are susceptible to gastrointestinal (GIT) parasitic infections, which are often zoonotic and can contribute to morbidity and mortality. Fecal samples were examined by the means of direct smear, fecal flotation, fecal sedimentation, and fecal cultures. Of 26.51% (317/1196) of the captive primates were diagnosed gastrointestinal parasitic infections. Trichuris spp. were the most predominant in the primates, while Entamoeba spp. were the most prevalent in Old World monkeys (P < 0.05). These preliminary data will improve the management of captive primates and the safety of animal keepers and visitors. © 2015 The Authors. Journal of Medical Primatology Published by John Wiley & Sons Ltd.

  14. [The need for experiments using primates from a scientific point of view].

    PubMed

    Kaup, F J

    2007-03-01

    Concerning the public discussion on animal experiments using primates, various research fields are demonstrated where non-human primates are necessary for certain scientific reasons at this time. Non-human Primates are used in Germany mainly in regulatory toxicology and pharmaceutical safety studies.A small amount is disposed in different fields of biological or biomedical basic research. This includes in particular neurosciences and infection research. 2006 New and Old World monkeys were needed in Germany in 2005. No chimpanzees are used anymore as laboratory animals in Germany since many years. Several examples are presented to demonstrate that certain research fields need non-human primates as laboratory animals in the foreseeable future.

  15. Pain Relief in Nonhuman Primate Models of Arthritis.

    PubMed

    Vierboom, Michel P M; Breedveld, Elia; Keehnen, Merei; Klomp, Rianne; Bakker, Jaco

    2017-01-01

    Animal models of rheumatoid arthritis are important in the elucidation of etiopathogenic mechanisms of the disease and for the development of promising new therapies. Species specificity of new biological compounds and their mode of action preclude safety and efficacy testing in rodent models of disease. Nonhuman primates (NHP) can fill this niche and provide the only relevant model. Over the last two decades models of collagen-induced arthritis (CIA) were developed in the rhesus monkey and the common marmoset. However, NHP are higher-order animals and complex sentient beings. So especially in models where pain is an intricate part of the disease, analgesia needs to be addressed because of ethical considerations. In our model, a morphine-based pain relief was used that does not interfere with the normal development of disease allowing us to evaluate important mechanistic aspects of the arthritis.

  16. Big bang in the evolution of extant malaria parasites.

    PubMed

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  17. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis.

    PubMed

    Herrmann, Esther; Call, Josep; Hernàndez-Lloreda, Maráa Victoria; Hare, Brian; Tomasello, Michael

    2007-09-07

    Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social-cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans' closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more "general intelligence," we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.

  18. Contributions of Nonhuman Primates to Research on Aging

    PubMed Central

    Didier, E. S.; MacLean, A. G.; Mohan, M.; Didier, P. J.; Lackner, A. A.; Kuroda, M. J.

    2016-01-01

    Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans. PMID:26869153

  19. Contributions of Nonhuman Primates to Research on Aging.

    PubMed

    Didier, E S; MacLean, A G; Mohan, M; Didier, P J; Lackner, A A; Kuroda, M J

    2016-03-01

    Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans. © The Author(s) 2016.

  20. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    PubMed

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.

  1. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates.

    PubMed

    Hwang, Dah-Ren; Hu, Essa; Allen, Jennifer R; Davis, Carl; Treanor, James; Miller, Silke; Chen, Hang; Shi, Bingzhi; Narayanan, Tanjorie K; Barret, Olivier; Alagille, David; Yu, Zhigang; Slifstein, Mark

    2015-08-01

    Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important second messengers for neurotransmission. Inhibition of PDE10A has been identified as a potential target for treatment of various neuropsychiatric disorders. To assist drug development, we have identified a selective PDE10A positron emission tomography (PET) tracer, AMG 580. We describe here the radiosynthesis of [(18)F]AMG 580 and in vitro and in vivo characterization results. The potency and selectivity were determined by in vitro assay using [(3)H]AMG 580 and baboon brain tissues. [(18)F]AMG 580 was prepared by a 1-step [(18)F]fluorination procedure. Dynamic brain PET scans were performed in non-human primates. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using two tissue compartment analysis (2TC), Logan graphical (Logan) analysis with metabolite-corrected input function and the simplified reference tissue model (SRTM) method. A PDE10A inhibitor and unlabeled AMG 580 were used to demonstrate the PDE10A specificity. KD was estimated by Scatchard analysis of high and low affinity PET scans. AMG 580 has an in vitro KD of 71.9 pM. Autoradiography showed specific uptake in striatum. Mean activity of 121 ± 18 MBq was used in PET studies. In Rhesus, the baseline BPND for putamen and caudate was 3.38 and 2.34, respectively, via 2TC, and 3.16, 2.34 via Logan, and 2.92, and 2.01 via SRTM. A dose dependent decrease of BPND was observed by the pre-treatment with a PDE10A inhibitor. In baboons, 0.24 mg/kg dose of AMG 580 resulted in about 70% decrease of BPND. The in vivo KD of [(18)F]AMG 580 was estimated to be around 0.44 nM in baboons. [(18)F]AMG 580 is a selective and potent PDE10A PET tracer with excellent specific striatal binding in non-human primates. It warrants further evaluation in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    PubMed Central

    Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme

    2009-01-01

    Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models. PMID:19778450

  3. Talar morphology, phylogenetic affinities, and locomotor adaptation of a large-bodied amphipithecid primate from the late middle eocene of Myanmar.

    PubMed

    Marivaux, Laurent; Beard, K Christopher; Chaimanee, Yaowalak; Dagosto, Marian; Gebo, Daniel L; Guy, Franck; Marandat, Bernard; Khaing, Kyaw; Kyaw, Aung Aung; Oo, Myo; Sein, Chit; Soe, Aung Naing; Swe, Myat; Jaeger, Jean-Jacques

    2010-10-01

    A well-preserved fossil talus [National Museum of Myanmar Primates (NMMP) 82] of a large-bodied primate is described from the late middle Eocene Pondaung Formation of central Myanmar. The specimen was collected at Thandaung Kyitchaung, a well-known amphipithecid primate-bearing locality near the village of Mogaung. NMMP 82 adds to a meager but growing sample of postcranial remains documenting the large-bodied primates of the Pondaung Formation. This new talus exhibits a suite of features that resemble conditions found in living and fossil haplorhine primates, notably anthropoids. As such, the phylogenetic signal deriving from the morphology of NMMP 82 conflicts with that provided by NMMP 20, a partial skeleton (including a fragmentary calcaneus) of a second large-bodied Pondaung primate showing undoubted adapiform affinities. Analysis subtalar joint compatibility in a hypothetical NMMP 82/NMMP 20 combination (talus/calcaneus) reveals a substantial degree of functional mismatch between these two tarsal bones. The functional incongruence in subtalar joint morphology between NMMP 20 and NMMP 82 is consistent with the seemingly divergent phylogenetic affinities of these specimens, indicating that two higher level taxa of relatively large-bodied primates are documented in the Pondaung Formation. On the basis of its size and morphology, we refer the NMMP 82 talus to the large-bodied amphipithecid Pondaungia. The occurrence of anthropoid-like tali in the Pondaung Formation obviates the need to invoke homoplasy to explain the shared, derived dental characters that are common to amphipithecids and undoubted anthropoids. Functionally, the NMMP 82 talus appears to have pertained to a primate that is engaged in active quadrupedalism in an arboreal environment along broad and subhorizontal branches. The primate taxon represented by NMMP 82 was capable of climbing and leaping, although it was not particularly specialized for either of these activities. © 2010 Wiley-Liss, Inc.

  4. Evolution of eye size and shape in primates.

    PubMed

    Ross, Callum F; Kirk, E Christopher

    2007-03-01

    Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.

  5. First comparative study of primate morphological and molecular evolutionary rates including muscle data: implications for the tempo and mode of primate and human evolution

    PubMed Central

    Diogo, Rui; Peng, Zuogang; Wood, Bernard

    2013-01-01

    Here we provide the first report about the rates of muscle evolution derived from Bayesian and parsimony cladistic analyses of primate higher-level phylogeny, and compare these rates with published rates of molecular evolution. It is commonly accepted that there is a ‘general molecular slow-down of hominoids’, but interestingly the rates of muscle evolution in the nodes leading and within the hominoid clade are higher than those in the vast majority of other primate clades. The rate of muscle evolution at the node leading to Homo (1.77) is higher than that at the nodes leading to Pan (0.89) and particularly to Gorilla (0.28). Notably, the rates of muscle evolution at the major euarchontan and primate nodes are different, but within each major primate clade (Strepsirrhini, Platyrrhini, Cercopithecidae and Hominoidea) the rates at the various nodes, and particularly at the nodes leading to the higher groups (i.e. including more than one genera), are strikingly similar. We explore the implications of these new data for the tempo and mode of primate and human evolution. PMID:23320764

  6. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates.

    PubMed

    Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi

    2017-04-01

    The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Eye-blink behaviors in 71 species of primates.

    PubMed

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and "isolated" blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution.

  8. Eye-Blink Behaviors in 71 Species of Primates

    PubMed Central

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and “isolated” blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution. PMID:23741522

  9. A Translational Neuroscience Approach to Understanding the Development of Social Anxiety Disorder and its Pathophysiology

    PubMed Central

    Fox, Andrew S.; Kalin, Ned H.

    2014-01-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to understand the neurodevelopmental mechanisms underlying Social Anxiety Disorder (SAD). SAD is common, debilitating, and often leads to further psychopathology. Numerous studies demonstrate that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk to develop SAD. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including: central nucleus of the amygdala, anterior hippocampus and orbitofrontal cortex. Moreover, studies in nonhuman primates demonstrate that alterations in this circuit are trait-like in that they are stable over time and across contexts. Importantly, the components of this circuit are differentially influenced by heritable and environmental factors and specific lesion studies demonstrate a causal role for multiple components of the circuit. Molecular studies in rodents and primates are pointing to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology. PMID:25157566

  10. A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology.

    PubMed

    Fox, Andrew S; Kalin, Ned H

    2014-11-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to help understand the neurodevelopmental mechanisms underlying social anxiety disorder. Social anxiety disorder is common and debilitating, and it often leads to further psychopathology. Numerous studies have demonstrated that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk of developing social anxiety disorder. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including the central nucleus of the amygdala, the anterior hippocampus, and the orbitofrontal cortex. Studies in nonhuman primates have demonstrated that alterations in this circuit are trait-like in that they are stable over time and across contexts. Notably, the components of this circuit are differentially influenced by heritable and environmental factors, and specific lesion studies have demonstrated a causal role for multiple components of the circuit. Molecular studies in rodents and primates point to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology.

  11. Social Use of Facial Expressions in Hylobatids

    PubMed Central

    Scheider, Linda; Waller, Bridget M.; Oña, Leonardo; Burrows, Anne M.; Liebal, Katja

    2016-01-01

    Non-human primates use various communicative means in interactions with others. While primate gestures are commonly considered to be intentionally and flexibly used signals, facial expressions are often referred to as inflexible, automatic expressions of affective internal states. To explore whether and how non-human primates use facial expressions in specific communicative interactions, we studied five species of small apes (gibbons) by employing a newly established Facial Action Coding System for hylobatid species (GibbonFACS). We found that, despite individuals often being in close proximity to each other, in social (as opposed to non-social contexts) the duration of facial expressions was significantly longer when gibbons were facing another individual compared to non-facing situations. Social contexts included grooming, agonistic interactions and play, whereas non-social contexts included resting and self-grooming. Additionally, gibbons used facial expressions while facing another individual more often in social contexts than non-social contexts where facial expressions were produced regardless of the attentional state of the partner. Also, facial expressions were more likely ‘responded to’ by the partner’s facial expressions when facing another individual than non-facing. Taken together, our results indicate that gibbons use their facial expressions differentially depending on the social context and are able to use them in a directed way in communicative interactions with other conspecifics. PMID:26978660

  12. Breaking cover: neural responses to slow and fast camouflage-breaking motion.

    PubMed

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei

    2015-08-22

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.

  13. Breaking cover: neural responses to slow and fast camouflage-breaking motion

    PubMed Central

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei

    2015-01-01

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500

  14. Infectious disease, behavioural flexibility and the evolution of culture in primates.

    PubMed

    McCabe, Collin M; Reader, Simon M; Nunn, Charles L

    2015-01-22

    Culturally transmitted traits are observed in a wide array of animal species, yet we understand little about the costs of the behavioural patterns that underlie culture, such as innovation and social learning. We propose that infectious diseases are a significant cost associated with cultural transmission. We investigated two hypotheses that may explain such a connection: that social learning and exploratory behaviours (specifically, innovation and extractive foraging) either compensate for existing infection or increase exposure to infectious agents. We used Bayesian comparative methods, controlling for sampling effort, body mass, group size, geographical range size, terrestriality, latitude and phylogenetic uncertainty. Across 127 primate species, we found a positive association between pathogen richness and rates of innovation, extractive foraging and social learning. This relationship was driven by two independent phenomena: socially contagious diseases were positively associated with rates of social learning, and environmentally transmitted diseases were positively associated with rates of exploration. Because higher pathogen burdens can contribute to morbidity and mortality, we propose that parasitism is a significant cost associated with the behavioural patterns that underpin culture, and that increased pathogen exposure is likely to have played an important role in the evolution of culture in both non-human primates and humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  16. Microbicide safety/efficacy studies in animals: macaques and small animal models.

    PubMed

    Veazey, Ronald S

    2008-09-01

    A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. The unique host and cell specificity of HIV, however, provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a prerequisite for advancing additional microbicide candidates to human clinical trials.

  17. Microbicide Safety/Efficacy studies in animals -macaques and small animal models

    PubMed Central

    Veazey, Ronald S.

    2009-01-01

    Purpose of review A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. However, the unique host and cell specificity of HIV provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. Recent findings A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Summary Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a pre-requisite for advancing additional microbicide candidates to human clinical trials. PMID:19373023

  18. The Automated Primate Research Laboratory (APRL)

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, G. D.

    1972-01-01

    A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.

  19. A comparative psychophysical approach to visual perception in primates.

    PubMed

    Matsuno, Toyomi; Fujita, Kazuo

    2009-04-01

    Studies on the visual processing of primates, which have well developed visual systems, provide essential information about the perceptual bases of their higher-order cognitive abilities. Although the mechanisms underlying visual processing are largely shared between human and nonhuman primates, differences have also been reported. In this article, we review psychophysical investigations comparing the basic visual processing that operates in human and nonhuman species, and discuss the future contributions potentially deriving from such comparative psychophysical approaches to primate minds.

  20. Conducting an Analysis of a Qualitative Dataset Using the Waikato Environment for Knowledge Analysis (WEKA)

    DTIC Science & Technology

    2015-02-01

    Primate classes: prosimians (left), monkeys (center), and apes (right) 2 The context of the task follows: A robot was sent to the zoo to visit the...determine the best classifiers for this qualitative dataset. Primates at the zoo are described by the following 7 attributes: 1. Tail attribute: 2...problem for classifying each primate at the zoo may be determined by the following given information: • Instances, X: each of the primates at the local

Top