Sample records for primed systemically boosted

  1. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    PubMed Central

    Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD

    2005-01-01

    Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390

  2. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric plant virus construct.

    PubMed

    Nicholas, B L; Brennan, F R; Hamilton, W D O; Wakelin, D

    2003-06-02

    Expression of a 17-mer peptide sequence from canine parvovirus expressed on cowpea mosaic virus (CPMV) to form chimaeric virus particles (CVPs) creates vaccine antigens that elicit strong anti-peptide immune responses in mice. Systemic (subcutaneous, s.c.) immunisation and boosting with such CVP constructs produces IgG(2a) serum antibody responses, while mucosal (intranasal, i.n.) immunisation and boosting elicits intestinal IgA responses. Combinations of systemic and mucosal routes for priming and boosting immunisations were used to examine their influence on the level, type and location of immune response generated to one of these constructs (CVP-1). In all cases, s.c. administration, whether for immunisation or boosting, generated a Th1-biased response, reflected in a predominantly IgG(2a) serum antibody isotype and secretion of IFN-gamma from in vitro-stimulated lymphocytes. Serum antibody responses were greatest in animals primed and boosted subcutaneously, and least in mucosally vaccinated mice. The i.n. exposure also led to IFN-gamma release from in vitro-stimulated cells, but serum IgG(2a) was significantly elevated only in mice primed intranasally and boosted subcutaneously. Peptide- and wild-type CPMV-specific IgA responses in gut lavage fluid were greatest in animals exposed mucosally and least in those primed and boosted subcutaneously or primed subcutaneously and boosted orally. Lymphocytes from immunised mice proliferated in response to in vitro stimulation with CPMV but not with peptide. The predominant secretion of IFN-gamma from all immunising/boosting combinations indicates that the route of vaccination and challenge does not alter the Th1 bias of the response to CVP constructs. However, optimal serum and intestinal antibody responses were achieved by combining s.c. and i.n. administration.

  3. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes.

    PubMed

    Jegaskanda, Sinthujan; Mason, Rosemarie D; Andrews, Sarah F; Wheatley, Adam K; Zhang, Ruijun; Reynoso, Glennys V; Ambrozak, David R; Santos, Celia P; Luke, Catherine J; Matsuoka, Yumiko; Brenchley, Jason M; Hickman, Heather D; Talaat, Kawsar R; Permar, Sallie R; Liao, Hua-Xin; Yewdell, Jonathan W; Koup, Richard A; Roederer, Mario; McDermott, Adrian B; Subbarao, Kanta

    2018-05-01

    Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination. IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites. Copyright © 2018 American Society for Microbiology.

  4. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  5. Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases

    DTIC Science & Technology

    2006-08-01

    of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth

  6. New clinical trial tests prime-and-boost vaccine delivery for advanced solid tumors | Center for Cancer Research

    Cancer.gov

    Researchers are testing a prime-and-boost approach to safely direct the immune system to kill tumor cells that express brachyury, a protein expressed in high levels in some cancers. A new clinical trial is testing an experimental vaccine in patients whose cancers have not responded to standard treatments.

  7. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  8. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140.

    PubMed

    Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J

    2016-10-23

    Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.

  9. Recombinant BCG prime and PPE protein boost provides potent protection against acute Mycobacterium tuberculosis infection in mice.

    PubMed

    Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W

    2016-04-01

    Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Persistence of Protective Immunity to Malaria Induced by DNA Priming and Poxvirus Boosting: Characterization of Effector and Memory CD8+-T-Cell Populations

    PubMed Central

    Sedegah, Martha; Brice, Gary T.; Rogers, William O.; Doolan, Denise L.; Charoenvit, Yupin; Jones, Trevor R.; Majam, Victoria F.; Belmonte, Arnel; Lu, Minh; Belmonte, Maria; Carucci, Daniel J.; Hoffman, Stephen L.

    2002-01-01

    The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 μg of p PyCSP plus 30 μg of pGM-CSF) or low-dose (1 μg of p PyCSP plus 1 μg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-γ) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-γ than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system. PMID:12065488

  11. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Galen, James E.; Baillie, Les W. J.; Pasetti, Marcela F.

    2010-01-01

    The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin-neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life. PMID:20619377

  12. HIV-DNA priming alters T-cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable1

    PubMed Central

    De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana

    2011-01-01

    Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392

  13. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™.

    PubMed

    Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian

    2017-10-27

    The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model.

    PubMed

    Chege, Gerald K; Burgers, Wendy A; Stutz, Helen; Meyers, Ann E; Chapman, Rosamund; Kiravu, Agano; Bunjun, Rubina; Shephard, Enid G; Jacobs, William R; Rybicki, Edward P; Williamson, Anna-Lise

    2013-05-01

    We previously reported that a recombinant pantothenate auxotroph of Mycobacterium bovis BCG expressing human immunodeficiency virus type 1 (HIV-1) subtype C Gag (rBCGpan-Gag) efficiently primes the mouse immune system for a boost with a recombinant modified vaccinia virus Ankara (rMVA) vaccine. In this study, we further evaluated the immunogenicity of rBCGpan-Gag in a nonhuman primate model. Two groups of chacma baboons were primed or mock primed twice with either rBCGpan-Gag or a control BCG. Both groups were boosted with HIV-1 Pr55(gag) virus-like particles (Gag VLPs). The magnitude and breadth of HIV-specific cellular responses were measured using a gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay, and the cytokine profiles and memory phenotypes of T cells were evaluated by polychromatic flow cytometry. Gag-specific responses were detected in all animals after the second inoculation with rBCGpan-Gag. Boosting with Gag VLPs significantly increased the magnitude and breadth of the responses in the baboons that were primed with rBCGpan-Gag. These responses targeted an average of 12 Gag peptides per animal, compared to an average of 3 peptides per animal for the mock-primed controls. Robust responses of Gag-specific polyfunctional T cells capable of simultaneously producing IFN-γ, tumor necrosis alpha (TNF-α), and interleukin-2 (IL-2) were detected in the rBCGpan-Gag-primed animals. Gag-specific memory T cells were skewed toward a central memory phenotype in both CD4(+) and CD8(+) T cell populations. These data show that the rBCGpan-Gag prime and Gag VLP boost vaccine regimen is highly immunogenic, inducing a broad and polyfunctional central memory T cell response. This report further indicates the feasibility of developing a BCG-based HIV vaccine that is safe for childhood HIV immunization.

  15. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    PubMed

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  16. A Single Dose of a DNA Vaccine Encoding Apa Coencapsulated with 6,6′-Trehalose Dimycolate in Microspheres Confers Long-Term Protection against Tuberculosis in Mycobacterium bovis BCG-Primed Mice

    PubMed Central

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C. C.; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon

    2013-01-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6′-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB. PMID:23740922

  17. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks

    PubMed Central

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-01-01

    ABSTRACT The consequences of the 2013–16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks. PMID:27925844

  18. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    PubMed

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  19. Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.

    PubMed

    Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle

    2017-09-01

    In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.

  20. Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines

    PubMed Central

    Zhang, Min; Herrero, Miguel A.; Acosta, Francisco J.; Tsuji, Moriya

    2018-01-01

    Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model. PMID:29329308

  1. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    PubMed

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    PubMed

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  3. Bioterrorism Preparedness for Infectious Disease Proposal

    DTIC Science & Technology

    2006-01-01

    Schnell at Thomas Jefferson University investigating a rhabdovirus prime/boost strategy designed to induce both cellular and humoral immune responses...helper cells [3], a novel dendritic cell based HIV vaccine [11], and use of IL-7 [18] and rhabdovirus prime/boost strategy [7]. Dr. Q Yu has been...of humoral immune responses to HIV envelope antigens following rhabdovirus prime/boost vaccine and after STI (J. Kim). More recent initiatives

  4. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia).

    PubMed

    Jayakumar, Asha; Castilho, Tiago M; Park, Esther; Goldsmith-Pestana, Karen; Blackwell, Jenefer M; McMahon-Pratt, Diane

    2011-06-01

    Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective. Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease. Heterologous prime - boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses. Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania (Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.

  5. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    PubMed

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  6. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Lydia R.

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less

  7. Immunogenicity and protective efficacy of heterologous prime-boost regimens with mycobacterial vaccines and recombinant adenovirus- and poxvirus-vectored vaccines against murine tuberculosis.

    PubMed

    You, Qingrui; Wu, Yongge; Wu, Yang; Wei, Wei; Wang, Changyong; Jiang, Dehua; Yu, Xianghui; Zhang, Xizhen; Wang, Yong; Tang, Zhijiao; Jiang, Chunlai; Kong, Wei

    2012-11-01

    To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    PubMed

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.

  9. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation. PMID:25856308

  10. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine.

    PubMed

    Lopera-Madrid, Jaime; Osorio, Jorge E; He, Yongqun; Xiang, Zuoshuang; Adams, L Garry; Laughlin, Richard C; Mwangi, Waithaka; Subramanya, Sandesh; Neilan, John; Brake, David; Burrage, Thomas G; Brown, William Clay; Clavijo, Alfonso; Bounpheng, Mangkey A

    2017-03-01

    A reverse vaccinology system, Vaxign, was used to identify and select a subset of five African Swine Fever (ASF) antigens that were successfully purified from human embryonic kidney 293 (HEK) cells and produced in Modified vaccinia virus Ankara (MVA) viral vectors. Three HEK-purified antigens [B646L (p72), E183L (p54), and O61R (p12)], and three MVA-vectored antigens [B646L, EP153R, and EP402R (CD2v)] were evaluated using a prime-boost immunization regimen swine safety and immunogenicity study. Antibody responses were detected in pigs following prime-boost immunization four weeks apart with the HEK-293-purified p72, p54, and p12 antigens. Notably, sera from the vaccinees were positive by immunofluorescence on ASFV (Georgia 2007/1)-infected primary macrophages. Although MVA-vectored p72, CD2v, and EP153R failed to induce antibody responses, interferon-gamma (IFN-γ + ) spot forming cell responses against all three antigens were detected one week post-boost. The highest IFN-γ + spot forming cell responses were detected against p72 in pigs primed with MVA-p72 and boosted with the recombinant p72. Antigen-specific (p12, p72, CD2v, and EP153R) T-cell proliferative responses were also detected post-boost. Collectively, these results are the first demonstration that ASFV subunit antigens purified from mammalian cells or expressed in MVA vectors are safe and can induce ASFV-specific antibody and T-cell responses following a prime-boost immunization regimen in swine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A prime-boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus.

    PubMed

    Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao

    2010-04-23

    Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.

  12. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.

  13. Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy

    PubMed Central

    Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn; West, Kim; Wang, Shixia; Lien, Egil; Lu, Shan

    2013-01-01

    In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general. PMID:24019983

  14. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    PubMed

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials

    PubMed Central

    Brown, Scott A.; Surman, Sherri L.; Sealy, Robert; Jones, Bart G.; Slobod, Karen S.; Branum, Kristen; Lockey, Timothy D.; Howlett, Nanna; Freiden, Pamela; Flynn, Patricia; Hurwitz, Julia L.

    2010-01-01

    Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans. PMID:20407589

  16. Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection

    PubMed Central

    Mazumder, Saumyabrata; Maji, Mithun; Ali, Nahid

    2011-01-01

    Background Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Methodology/Principal Findings Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Conclusion Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL. PMID:22206029

  17. Syntactic Priming and the Lexical Boost Effect during Sentence Production and Sentence Comprehension: An fMRI Study

    ERIC Educational Resources Information Center

    Segaert, Katrien; Kempen, Gerard; Petersson, Karl Magnus; Hagoort, Peter

    2013-01-01

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal…

  18. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    PubMed

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  19. Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA Prime-Modified Vaccinia Virus Ankara Boost HIV-1 Vaccine Regimen.

    PubMed

    Bauer, Asli; Podola, Lilli; Mann, Philipp; Missanga, Marco; Haule, Antelmo; Sudi, Lwitiho; Nilsson, Charlotta; Kaluwa, Bahati; Lueer, Cornelia; Mwakatima, Maria; Munseri, Patricia J; Maboko, Leonard; Robb, Merlin L; Tovanabutra, Sodsai; Kijak, Gustavo; Marovich, Mary; McCormack, Sheena; Joseph, Sarah; Lyamuya, Eligius; Wahren, Britta; Sandström, Eric; Biberfeld, Gunnel; Hoelscher, Michael; Bakari, Muhammad; Kroidl, Arne; Geldmacher, Christof

    2017-09-15

    Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function, and specificity of Gag-specific T cells induced by a DNA-prime modified vaccinia virus Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding a subtype B and AB-recombinant Gag p37 and two vaccinations with MVA-CMDR encoding subtype A Gag p55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced gamma interferon-positive (IFN-γ + ) Gag-specific T-cell responses were dominated by CD4 + T cells ( P < 0.001 compared to CD8 + T cells) that coexpressed interleukin-2 (IL-2) (66.4%) and/or tumor necrosis factor alpha (TNF-α) (63.7%). A median of 3 antigenic regions were targeted with a higher-magnitude median response to Gag p24 regions, more conserved between prime and boost, compared to those of regions within Gag p15 (not primed) and Gag p17 (less conserved; P < 0.0001 for both). Four regions within Gag p24 each were targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA- and DNA Gag-encoded immunogens ( P = 0.04, r 2 = 0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T-cell response that was dominated by polyfunctional CD4 + T cells and that targeted multiple antigenic regions within the conserved Gag p24 protein. IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved, either by improved cross-recognition of multiple variants for a given antigenic region or through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses. Copyright © 2017 American Society for Microbiology.

  20. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime boost immunization strategy

    PubMed Central

    Baillie, Leslie W.J.; Rodriguez, Ana L.; Moore, Stephen; Atkins, Helen S.; Feng, Chiguang; Nataro, James P.; Pasetti, Marcela F.

    2008-01-01

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [1]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax. PMID:18805452

  1. HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine.

    PubMed

    Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L

    2017-12-15

    An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4 + T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses. Copyright © 2017 Shen et al.

  2. Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins.

    PubMed

    Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K

    2016-02-01

    Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins.

    PubMed

    Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth

    2014-08-06

    In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    PubMed

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

    PubMed Central

    Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter

    2015-01-01

    International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002

  6. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis

    PubMed Central

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.

    2016-01-01

    Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443

  7. Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies

    PubMed Central

    Jiang, George; Shi, Meng; Conteh, Solomon; Richie, Nancy; Banania, Glenna; Geneshan, Harini; Valencia, Anais; Singh, Priti; Aguiar, Joao; Limbach, Keith; Kamrud, Kurt I.; Rayner, Jonathan; Smith, Jonathan; Bruder, Joseph T.; King, C. Richter; Tsuboi, Takafumi; Takeo, Satoru; Endo, Yaeta; Doolan, Denise L.; Richie, Thomas L.; Weiss, Walter R.

    2009-01-01

    Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost. PMID:19668343

  8. Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B–ESAT6 fusion protein

    PubMed Central

    Hall, Lindsay J.; Clare, Simon; Pickard, Derek; Clark, Simon O.; Kelly, Dominic L.F.; Ghany, Moataz Abd El; Hale, Christine; Dietrich, Jes; Andersen, Peter; Marsh, Philip D.; Dougan, Gordon

    2009-01-01

    A recombinant Salmonella enterica serovar Typhimurium (S. Typhimurium) vaccine strain was constructed that stably expressed the Mycobacterium tuberculosis fusion antigen Ag85B–ESAT6 from the chromosome. Live oral vaccination of mice with the Salmonella/Ag85B–ESAT6 strain generated a potent anti-Ag85B–ESAT6 TH1 response with high antibody titres with a IgG2a-bias and significant IFN-γ production lasting over a 120-day period. When mice primed with the Salmonella/Ag85B–ESAT6 vaccine were mucosally boosted with the Ag85B–ESAT6 antigen and adjuvant the IFN-γ responses increased markedly. To determine the protective efficacy of this vaccine strain, guinea pigs were immunised and followed for a 30-week period after aerosol challenge with M. tuberculosis. The heterologous prime-boost strategy of live Salmonella vaccine followed by a systemic boost of antigen and adjuvant reduced the levels of M. tuberculosis bacteria in the lungs and spleen to the same extent as BCG. Additionally, this vaccination regimen was observed to be statistically equivalent in terms of protection to immunisation with BCG. Thus, live oral priming with the recombinant Salmonella/Ag85B–ESAT6 and boosting with Ag85B–ESAT6 plus the adjuvant LTK63 represents an effective mucosal vaccination regimen. PMID:19755145

  9. Combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost generate H5 hemagglutinin specific broad neutralizing antibodies

    PubMed Central

    Wang, Guiqin; Yin, Renfu; Zhou, Paul; Ding, Zhuang

    2017-01-01

    Hemagglutinin (HA) head has long been considered to be able to elicit only a narrow, strain-specific antibody response as it undergoes rapid antigenic drift. However, we previously showed that a heterologous prime-boost strategy, in which mice were primed twice with DNA encoding HA and boosted once with virus-like particles (VLP) from an H5N1 strain A/Thailand/1(KAN)-1/2004 (noted as TH DDV), induced anti-head broad cross-H5 neutralizing antibody response. To explain why TH DDV immunization could generate such breadth, we systemically compared the neutralization breadth and potency between TH DDV sera and immune sera elicited by TH DDD (three times of DNA immunizations), TH VVV (three times of VLP immunizations), TH DV (one DNA prime plus one VLP boost) and TK DDV (plasmid DNA and VLP derived from another H5N1 strain, A/Turkey/65596/2006). Then we determined the antigenic sites (AS) on TH HA head and the key residues of the main antigenic site. Through the comparison of different regiments, we found that the combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost caused that TH DDV immunization generate broad neutralizing antibodies. Antigenic analysis showed that TH DDV, TH DV, TH DDD and TH VVV sera recognize the common antigenic site AS1. Antibodies directed to AS1 contribute to the largest proportion of the neutralizing activity of these immune sera. Residues 188 and 193 in AS1 are the key residues which are responsible for neutralization breadth of the immune sera. Interestingly, residues 188 and 193 locate in classical antigen sites but are relatively conserved among the 16 tested strains and 1,663 HA sequences from NCBI database. Thus, our results strongly indicate that it is feasible to develop broad cross-H5 influenza vaccines against HA head. PMID:28542275

  10. Prime-boost immunization using a DNA vaccine delivered by attenuated Salmonella enterica serovar typhimurium and a killed vaccine completely protects chickens from H5N1 highly pathogenic avian influenza virus.

    PubMed

    Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan

    2010-04-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.

  11. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. PMID:27440894

  12. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization.

    PubMed

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok

    2016-10-01

    Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Randomized Trial to Compare the Immunogenicity and Safety of a CRM or TT Conjugated Quadrivalent Meningococcal Vaccine in Teenagers who Received a CRM or TT Conjugated Serogroup C Vaccine at Preschool Age.

    PubMed

    Ishola, David A; Andrews, Nick; Waight, Pauline; Yung, Chee-Fu; Southern, Jo; Bai, Xilian; Findlow, Helen; Matheson, Mary; England, Anna; Hallis, Bassam; Findlow, Jamie; Borrow, Ray; Miller, Elizabeth

    2015-08-01

    Protection after meningococcal C (MenC) conjugate (MCC) vaccination in early childhood is short-lived. Boosting with a quadrivalent vaccine in teenage years, a high-risk period for MenC disease, should protect against additional serogroups but might compromise MenC response. The carrier protein in the primary MCC vaccine determines the response to MCC booster in toddlers, but the relationship between primary vaccine and booster given later is unclear. This study compared responses to a CRM-conjugated or tetanus toxoid (TT)-conjugated MenACWY vaccine in teenagers primed with different MCC vaccines at preschool age. Ninety-three teenagers (16-19 years), who were previously randomized at age 3-6 years to receive single-dose MCC-CRM or MCC-TT, were randomized to receive either MenACWY-CRM or MenACWY-TT booster. Serum bactericidal antibodies (SBA, protective titer ≥ 8) were measured before, 1 month and 6 or 9 months after boosting. Preboosting, MCC-TT-primed teenagers had significantly higher MenC SBA titers than those MCC-CRM-primed (P = 0.02). Postboosting, both MenACWY vaccines induced protective SBA titers to all 4 serogroups in most participants (≥ 98% at 1 month and ≥ 90% by 9 months postboost). The highest MenC SBA titers were seen in those MCC-TT-primed and MenACWY-TT-boosted [geometric mean titer (GMT) ~ 22,000] followed by those boosted with MenACWY-CRM irrespective of priming (GMT ~ 12,000) and then those MCC-CRM-primed and MenACWY-TT-boosted (GMT ~ 5500). The estimated postbooster MenC SBA decline beyond 1 month was ~40% as time since booster doubles. Both vaccines were well tolerated with no attributable serious adverse events. Both MenACWY vaccines safely induced protective sustained antibody responses against all targeted serogroups in MCC-primed teenagers.

  14. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    PubMed Central

    de Oliveira, Lucas Felipe; Almeida, Thalles Ramos; Ribeiro Machado, Marcus Paulo; Cuba, Marilia Beatriz; Alves, Angélica Cristina; da Silva, Marcos Vinícius; Rodrigues Júnior, Virmondes; Dias da Silva, Valdo José

    2015-01-01

    Systemic arterial hypertension (SAH), a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs), which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2) increases their therapeutic effects in spontaneously hypertensive rats (SHRs). Adult female SHRs were administered an intraperitoneal injection of vehicle solution (n = 10), MSCs cultured in conventional medium (DMEM plus 10% FBS, n = 11), or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n = 10). Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days) in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH. PMID:26300922

  15. Syntactic priming during sentence comprehension: evidence for the lexical boost.

    PubMed

    Traxler, Matthew J; Tooley, Kristen M; Pickering, Martin J

    2014-07-01

    Syntactic priming occurs when structural information from one sentence influences processing of a subsequently encountered sentence (Bock, 1986; Ledoux et al., 2007). This article reports 2 eye-tracking experiments investigating the effects of a prime sentence on the processing of a target sentence that shared aspects of syntactic form. The experiments were designed to determine the degree to which lexical overlap between prime and target sentences produced larger effects, comparable to the widely observed "lexical boost" in production experiments (Pickering & Branigan, 1998; Pickering & Ferreira, 2008). The current experiments showed that priming effects during online comprehension were in fact larger when a verb was repeated across the prime and target sentences (see also Tooley et al., 2009). The finding of larger priming effects with lexical repetition supports accounts under which syntactic form representations are connected to individual lexical items (e.g., Tomasello, 2003; Vosse & Kempen, 2000, 2009). PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma

    PubMed Central

    Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi

    2016-01-01

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670

  17. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime-boost immunization strategy.

    PubMed

    Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F

    2008-11-11

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax.

  18. Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice.

    PubMed

    Chiuppesi, Flavia; Wussow, Felix; Scharf, Louise; Contreras, Heidi; Gao, Han; Meng, Zhuo; Nguyen, Jenny; Barry, Peter A; Bjorkman, Pamela J; Diamond, Don J

    2017-01-01

    Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.

  19. Emotion potentiates response activation and inhibition in masked priming

    PubMed Central

    Bocanegra, Bruno R.; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness. PMID:23162447

  20. Emotion potentiates response activation and inhibition in masked priming.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness.

  1. Priming with a simplified intradermal HIV-1 DNA vaccine regimen followed by boosting with recombinant HIV-1 MVA vaccine is safe and immunogenic: a phase IIa randomized clinical trial.

    PubMed

    Munseri, Patricia J; Kroidl, Arne; Nilsson, Charlotta; Joachim, Agricola; Geldmacher, Christof; Mann, Philipp; Moshiro, Candida; Aboud, Said; Lyamuya, Eligius; Maboko, Leonard; Missanga, Marco; Kaluwa, Bahati; Mfinanga, Sayoki; Podola, Lilly; Bauer, Asli; Godoy-Ramirez, Karina; Marovich, Mary; Moss, Bernard; Hoelscher, Michael; Gotch, Frances; Stöhr, Wolfgang; Stout, Richard; McCormack, Sheena; Wahren, Britta; Mhalu, Fred; Robb, Merlin L; Biberfeld, Gunnel; Sandström, Eric; Bakari, Muhammad

    2015-01-01

    Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools. In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two "simplified" regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 108 pfu HIV-MVA at weeks 30 and 46. 129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups. A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA. World Health Organization International Clinical Trials Registry Platform PACTR2010050002122368.

  2. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease.

    PubMed

    Morello, Christopher S; Levinson, Michael S; Kraynyak, Kimberly A; Spector, Deborah H

    2011-04-01

    To date, no vaccine that is safe and effective against herpes simplex virus 2 (HSV-2) disease has been licensed. In this study, we evaluated a DNA prime-formalin-inactivated-HSV-2 (FI-HSV2) boost vaccine approach in the guinea pig model of acute and recurrent HSV-2 genital disease. Five groups of guinea pigs were immunized and intravaginally challenged with HSV-2. Two groups were primed with plasmid DNAs encoding the secreted form of glycoprotein D2 (gD2t) together with two genes required for viral replication, either the helicase (UL5) and DNA polymerase (UL30) genes or the single-stranded DNA binding protein (UL29) and primase (UL52) genes. Both DNA-primed groups were boosted with FI-HSV2 formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Two additional groups were primed with the empty backbone plasmid DNA (pVAX). These two groups were boosted with MPL and alum (MPL-alum) together with either formalin-inactivated mock HSV-2 (FI-Mock) or with FI-HSV2. The final group was immunized with gD2t protein in MPL-alum. After challenge, 0/9 animals in the group primed with UL5, UL30, and gD2t DNAs and all 10 animals in the mock-immunized control group (pVAX-FI-Mock) developed primary lesions. All mock controls developed recurrent lesions through day 100 postchallenge. Only 1 guinea pig in the group primed with pVAX DNA and boosted with FI-HSV2 (pVAX-FI-HSV2 group) and 2 guinea pigs in the group primed with UL5, UL30, and gD2t DNAs and boosted with FI-HSV2 (UL5, UL30, gD2t DNA-FI-HSV2 group) developed recurrent lesions. Strikingly, the UL5, UL30, gD2t DNA-FI-HSV2 group showed a 97% reduction in recurrent lesion days compared with the mock controls, had the highest reduction in days with recurrent disease, and contained the lowest mean HSV-2 DNA load in the dorsal root ganglia.

  3. A computational cognitive model of syntactic priming.

    PubMed

    Reitter, David; Keller, Frank; Moore, Johanna D

    2011-01-01

    The psycholinguistic literature has identified two syntactic adaptation effects in language production: rapidly decaying short-term priming and long-lasting adaptation. To explain both effects, we present an ACT-R model of syntactic priming based on a wide-coverage, lexicalized syntactic theory that explains priming as facilitation of lexical access. In this model, two well-established ACT-R mechanisms, base-level learning and spreading activation, account for long-term adaptation and short-term priming, respectively. Our model simulates incremental language production and in a series of modeling studies, we show that it accounts for (a) the inverse frequency interaction; (b) the absence of a decay in long-term priming; and (c) the cumulativity of long-term adaptation. The model also explains the lexical boost effect and the fact that it only applies to short-term priming. We also present corpus data that verify a prediction of the model, that is, that the lexical boost affects all lexical material, rather than just heads. Copyright © 2011 Cognitive Science Society, Inc.

  4. Using a prime and pull approach, lentivector vaccines expressing Ag85A induce immunogenicity but fail to induce protection against Mycobacterium bovis bacillus Calmette–Guérin challenge in mice

    PubMed Central

    Britton, Gary; MacDonald, Douglas C; Brown, Jeremy S; Collins, Mary K; Goodman, Anna L

    2015-01-01

    Although bacillus Calmette–Guérin (BCG) is an established vaccine with excellent efficacy against disseminated Mycobacterium tuberculosis infection in young children, efficacy in adults suffering from respiratory tuberculosis (TB) is suboptimal. Prime-boost viral vectored vaccines have been shown to induce effective immune responses and lentivectors (LV) have been shown to improve mucosal immunity in the lung. A mucosal boost to induce local immunogenicity is also referred to as a ‘pull’ in a prime and pull approach, which has been found to be a promising vaccine strategy. The majority of infants worldwide receive BCG immunization through current vaccine protocols. We therefore aimed to investigate the role of a boost (or pull) immunization with an LV vaccine expressing the promising TB antigen (Ag85A). We immunized BALB/c mice subcutaneously with BCG or an LV vaccine expressing a nuclear factor-κB activator vFLIP together with Ag85A (LV vF/85A), then boosted with intranasal LV vF/85A. Prime and pull immunization with LV85A induced significantly enhanced CD8+ and CD4+ T-cell responses in the lung, but did not protect against intranasal BCG challenge. In contrast, little T-cell response in the lung was seen when the prime vaccine was BCG, and intranasal vF/85A provided no additional protection against mucosal BCG infection. Our study demonstrates that not all LV prime and pull approaches may be successful against TB in man and careful antigen and immune activator selection is therefore required. PMID:26095282

  5. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    PubMed

    Xing, Zhou; McFarland, Christine T; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMurray, David N

    2009-06-10

    Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  6. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    PubMed

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p < 0.005) after intravaginal HSV-2 challenge. Polyfunctional CD8(+) T cells, producing IFN-γ, TNF-α, and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8(+) T cell response was significantly compromised in the absence of the adapter MyD88 (p = 0.0001). Taken together, these findings indicate that targeting of the vaginal mucosa with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8(+) T cell protective immunity against sexually transmitted herpes infection and disease.

  7. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    PubMed Central

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456

  8. A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects

    PubMed Central

    Keefer, Michael C.; Frey, Sharon E.; Elizaga, Marnie; Metch, Barbara; De Rosa, Stephen C.; Barroso, Paulo F.; Tomaras, Georgia; Cardinali, Massimo; Goepfert, Paul; Kalichman, Artur; Philippon, Valérie; McElrath, M. Juliana; Jin, Xia; Ferrari, Guido; Defawe, Olivier D.; Mazzara, Gail P.; Montefiori, David; Pensiero, Michael; Panicali, Dennis L.; Corey, Lawrence

    2011-01-01

    We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (109 pfu/2ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 [51.9%] of participants post-4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce an HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination. PMID:21216311

  9. Syntactic priming in American Sign Language.

    PubMed

    Hall, Matthew L; Ferreira, Victor S; Mayberry, Rachel I

    2015-01-01

    Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL). Experiment 1 shows that second language (L2) signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect). Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming) operates similarly in sign and speech.

  10. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease.

    PubMed

    Lambracht-Washington, Doris; Qu, Bao-xi; Fu, Min; Anderson, Larry D; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N

    2013-01-15

    Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma.

    PubMed

    Stark, Felicity C; McCluskie, Michael J; Krishnan, Lakshmi

    2016-11-17

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62 low ) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.

  12. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques.

    PubMed

    Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K

    2014-01-01

    We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.

  13. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.

  14. Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination▿

    PubMed Central

    de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.

    2009-01-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  15. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  16. Conserved Elements Vaccine for HIV | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.

  17. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  18. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity.

    PubMed

    Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo

    2005-10-01

    Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.

  20. Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens

    PubMed Central

    Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L.; Montefiori, David C.; LaBranche, Celia C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Landucci, Gary; Forthal, Donald N.; Seaman, Michael S.; Hawkins, Natalie; Self, Steven G.; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L.; Pantaleo, Giuseppe

    2016-01-01

    ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols. PMID:26865719

  1. Syntactic Priming during Sentence Comprehension: Evidence for the Lexical Boost

    ERIC Educational Resources Information Center

    Traxler, Matthew J.; Tooley, Kristen M.; Pickering, Martin J.

    2014-01-01

    Syntactic priming occurs when structural information from one sentence influences processing of a subsequently encountered sentence (Bock, 1986; Ledoux et al., 2007). This article reports 2 eye-tracking experiments investigating the effects of a prime sentence on the processing of a target sentence that shared aspects of syntactic form. The…

  2. Approaches to Preventative and Therapeutic HIV vaccines

    PubMed Central

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  3. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆

    PubMed Central

    Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric

    2016-01-01

    Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher and broader cell-mediated immune responses to Env after HIV-MVA boost compared to a higher HIV-DNA priming dose given im. Three HIV-DNA priming immunizations followed by two HIV-MVA boosts efficiently induced Env-antibody responses. PMID:21864626

  4. Positive immunomodulatory effects of heterologous DNA vaccine- modified live vaccine, prime-boost immunization, against the highly-pathogenic PRRSV infection.

    PubMed

    Sirisereewan, Chaitawat; Nedumpun, Teerawut; Kesdangsakonwut, Sawang; Woonwong, Yonlayong; Kedkovid, Roongtham; Arunorat, Jirapat; Thanawongnuwech, Roongroje; Suradhat, Sanipa

    2017-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection is one of the most important swine pathogens, and causes a major economic impact worldwide. Recently, a new variant type 2 PRRSV, highly pathogenic PRRSV (HP-PRRSV) has emerged and continued to circulate in Southeast Asia region. Currently, commercially available PRRSV vaccines, modified live PRRS vaccines (MLV) are not able to provide complete protection against HP-PRRSV and been reported to induce negative immunomodulatory effects. Interestingly, a novel DNA vaccine was developed and successfully used to improve PRRSV-specific immune responses following MLV vaccination. To investigate the efficacy of a heterologous DNA-MLV prime-boost immunization against the HP-PRRSV infection, an experimental vaccinated-challenged study was conducted. Two-week-old, PRRSV-seronegative, crossbred pigs (5-8 pigs/group) were allocated into 5 groups. At day -14 (D-14), the treatment group (DNA-MLV) was immunized with a DNA vaccine encoding PRRSV-truncated nucleocapsid protein (pORF7t), followed by a commercial modified live type 2 PRRS vaccine (MLV) at D0. The other groups included the group that received PBS at D-14 followed by MLV at D0 (MLV), pORF7t at D-14 (DNA), PBS at D0 (PBS) and the negative control group. At D42, all groups, except the negative control group, were challenged with HP-PRRSV (strain 10PL1). The results demonstrated that pigs that received MLV, regardless of the DNA priming, exhibited less clinical signs and faster viral clearance. Following HP-PRRSV challenge, the DNA-MLV group exhibited improved PRRSV-specific immunity, as observed by increased neutralizing antibody titers and PRRSV-specific IFN-γ production, and reduced IL-10 and PRRSV-specific Treg productions. However, neither the prime-boost immunization nor the MLV was able to induce complete clinical protection against HP-PRRSV infection. In conclusion, improved immunological responses, but not clinical protection, were achieved by DNA-MLV prime-boost immunization. This study highlights the potential use of heterologous prime-boost vaccination regimen, where DNA can be incorporated with other vaccine candidates, for improving anti-PRRSV immunity that may eventually lead induction of complete PRRSV protection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge

    PubMed Central

    De Filette, Marina; Soehle, Silke; Ulbert, Sebastian; Richner, Justin; Diamond, Michael S.; Sinigaglia, Alessandro; Barzon, Luisa; Roels, Stefan; Lisziewicz, Julianna; Lorincz, Orsolya; Sanders, Niek N.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection. PMID:24503579

  6. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    PubMed Central

    Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.

    2016-01-01

    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505

  7. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  8. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Reiner; Suh, You-Suk; Sauermann, Ulrike

    2009-01-20

    We investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization. Both immunization strategies induced strong SIV Gag-specific IFN-{gamma} and T-cell proliferation responses and mediated a conservation of CD4{sup +} memory T-cells and a reduction of viralmore » load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply.« less

  9. Vaccination of calves using the BRSV nucleocapsid protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects the lungs against BRSV replication and pathology.

    PubMed

    Letellier, Carine; Boxus, Mathieu; Rosar, Laurent; Toussaint, Jean-François; Walravens, Karl; Roels, Stefan; Meyer, Gilles; Letesson, Jean-Jacques; Kerkhofs, Pierre

    2008-09-02

    Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8(+) T cells in cattle. This was performed according to a DNA prime-protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-gamma production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.

  10. Induction of strong anti-HIV cellular immunity by a combination of Clostridium perfringens expressing HIV gag and virus like particles.

    PubMed

    Pegu, Poonam; Helmus, Ruth; Gupta, Phalguni; Tarwater, Patrick; Caruso, Lori; Shen, Chengli; Ross, Ted; Chen, Yue

    2011-12-01

    The lower gastrointestinal tract is a major mucosal site of HIV entry and initial infection. Thus, the induction of strong cellular immune responses at this mucosal site will be an important feature of an effective HIV vaccine. We have used a novel prime-boost vaccination approach to induce immune responses at mucosal sites. Orally delivered recombinant Clostridium perfringens expressing HIV-1 gag (Cp-Gag) was evaluated for induction of HIV-1 Gag specific T cell responses in a prime-boost model with intranasal inoculation of HIV-1 virus like particles (VLP). HIV-1 specific cellular immune responses in both the effector (Lamina propria) and inductive sites (Peyer's patches) of the gastrointestinal (GI) tract were significantly higher in mice immunized using Cp-Gag and VLPs in a prime-boost approach compared to mice immunized with either Cp-Gag or VLPs alone. Such cellular immune response was found to be mediated by both CD8(+) and CD4(+) T cells. Such a strong mucosal immune response could be very useful in developing a mucosal vaccine against HIV-1.

  11. Evaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial

    DTIC Science & Technology

    2013-03-26

    virus (IIV) vaccine (dose 0.5 mL intramuscularly, purchased in Thailand from Sanofi Pasteur). Both vaccines contained the three strains for the 2009/10...H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial. 5a. CONTRACT NUMBER...reported by WHO since 2003 [1]. Current seasonal trivalent influenza vaccines rely on predicted antigens based on the previous season’s circulating

  12. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant.

    PubMed

    Barnett, Susan W; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; Zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R; Miller, Christopher J; Vajdy, Michael; Srivastava, Indresh K

    2010-06-01

    We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.

  13. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  15. DNA prime–protein boost increased the titer, avidity and persistence of anti-Aβ antibodies in wild-type mice

    PubMed Central

    Davtyan, H; Mkrtichyan, M; Movsesyan, N; Petrushina, I; Mamikonyan, G; Cribbs, DH; Agadjanyan, MG; Ghochikyan, A

    2010-01-01

    Recently, we reported that a DNA vaccine, composed of three copies of a self B cell epitope of amyloid-β (Aβ42) and the foreign T-cell epitope, Pan DR epitope (PADRE), generated strong anti-Aβ immune responses in wild-type and amyloid precursor protein transgenic animals. Although DNA vaccines have several advantages over peptide–protein vaccines, they induce lower immune responses in large animals and humans compared with those in mice. The focus of this study was to further enhance anti-Aβ11 immune responses by developing an improved DNA vaccination protocol of the prime–boost regimen, in which the priming step would use DNA and the boosting step would use recombinant protein. Accordingly, we generated DNA and recombinant protein-based epitope vaccines and showed that priming with DNA followed by boosting with a homologous recombinant protein vaccine significantly increases the anti-Aβ antibody responses and do not change the immunoglobulin G1 (IgG1) profile of humoral immune responses. Furthermore, the antibodies generated by this prime–boost regimen were long-lasting and possessed a higher avidity for binding with an Aβ42 peptide. Thus, we showed that a heterologous prime–boost regimen could be an effective protocol for developing a potent Alzheimer’s disease (AD) vaccine. PMID:19865176

  16. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.

  17. Effective Induction of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Macaques by Using a Multiepitope Gene and DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccination Regimen

    PubMed Central

    Hanke, Tomas; Samuel, Rachel V.; Blanchard, Tom J.; Neumann, Veronica C.; Allen, Todd M.; Boyson, Jon E.; Sharpe, Sally A.; Cook, Nicola; Smith, Geoffrey L.; Watkins, David I.; Cranage, Martin P.; McMichael, Andrew J.

    1999-01-01

    DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed. PMID:10438842

  18. An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates

    PubMed Central

    Wise, Megan C.; Hutnick, Natalie A.; Pollara, Justin; Myles, Devin J. F.; Williams, Constance; Yan, Jian; LaBranche, Celia C.; Khan, Amir S.; Sardesai, Niranjan Y.; Montefiori, David; Barnett, Susan W.; Zolla-Pazner, Susan; Ferrari, Guido

    2015-01-01

    ABSTRACT The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4+ and CD8+ T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine regimen due to the resource-limited setting in which the HIV pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of diversity included in a vaccine due to the ease of manufacturing multiple plasmids and formulating them as a single immunization. By increasing the number of Envs within a formulation, we were able to show an increased breadth of responses as well as improved functionality induced in a nonhuman primate model. This increased breadth could be built upon, leading to better coverage against circulating strains with broader vaccine-induced protection. PMID:26085155

  19. Money priming can change people's thoughts, feelings, motivations, and behaviors: An update on 10 years of experiments.

    PubMed

    Vohs, Kathleen D

    2015-08-01

    Caruso, Vohs, Baxter, and Waytz (2013) posited that because money is used in free market exchanges, cues of money would lead people to justify and support the systems that allow those exchanges to take place. Hence, the authors predicted that money primes would boost system justification, social dominance, belief in a just world, and free market ideology, and found supportive evidence. Rohrer, Pashler, and Harris (2015) failed to replicate those effects. This article discusses the factors that predict priming effects, and particularly those pertinent to differences between Caruso et al. and Rohrer et al. Variations in a prime's meaning, the ease with which primed content comes to mind, the prime's motivational importance, and the ambiguity of the outcome situation influence the impact of the prime. Money priming experiments (totaling 165 to date, from 18 countries) point to at least 2 major effects. First, compared to neutral primes, people reminded of money are less interpersonally attuned. They are not prosocial, caring, or warm. They eschew interdependence. Second, people reminded of money shift into professional, business, and work mentality. They exert effort on challenging tasks, demonstrate good performance, and feel efficacious. Money priming is not the same as priming another popular means of exchange, credit cards, and can have bigger effects when there is an implied connection between the self and having money. The practical benefits of money have been studied by other disciplines for decades, and the time is now for psychologists to study the effects of merely being reminded of money. (c) 2015 APA, all rights reserved).

  20. Viral Booster Vaccines Improve Mycobacterium bovis BCG-Induced Protection Against Bovine Tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Previous work in small animal laboratory models of tuberculosis have shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacille Calmette-Guerin (BCG) to prime and Modified Vaccinia Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad8...

  1. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa.

    PubMed

    Nkolola, J P; Wee, E G-T; Im, E-J; Jewell, C P; Chen, N; Xu, X-N; McMichael, A J; Hanke, T

    2004-07-01

    For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.

  2. Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice.

    PubMed

    Wang, Xiaoyan; Wang, Jian-Ping; Rao, Xiao-Mei; Price, Janet E; Zhou, Heshan S; Lachman, Lawrence B

    2005-01-01

    Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.

  3. Transcutaneous immunization with cross-reacting material CRM(197) of diphtheria toxin boosts functional antibody levels in mice primed parenterally with adsorbed diphtheria toxoid vaccine.

    PubMed

    Stickings, Paul; Peyre, Marisa; Coombes, Laura; Muller, Sylviane; Rappuoli, Rino; Del Giudice, Giuseppe; Partidos, Charalambos D; Sesardic, Dorothea

    2008-04-01

    Transcutaneous immunization (TCI) capitalizes on the accessibility and immunocompetence of the skin, elicits protective immunity, simplifies vaccine delivery, and may be particularly advantageous when frequent boosting is required. In this study we examined the potential of TCI to boost preexisting immune responses to diphtheria in mice. The cross-reacting material (CRM(197)) of diphtheria toxin was used as the boosting antigen and was administered alone or together with either one of two commonly used mucosal adjuvants, cholera toxin (CT) and a partially detoxified mutant of heat-labile enterotoxin of Escherichia coli (LTR72). We report that TCI with CRM(197) significantly boosted preexisting immune responses elicited after parenteral priming with aluminum hydroxide-adsorbed diphtheria toxoid (DTxd) vaccine. In the presence of LTR72 as an adjuvant, toxin-neutralizing antibody titers were significantly higher than those elicited by CRM(197) alone and were comparable to the functional antibody levels induced after parenteral booster immunization with the adsorbed DTxd vaccine. Time course study showed that high levels of toxin-neutralizing antibodies persisted for at least 14 weeks after the transcutaneous boost. In addition, TCI resulted in a vigorous antigen-specific proliferative response in all groups of mice boosted with the CRM(197) protein. These findings highlight the promising prospect of using booster administrations of CRM(197) via the transcutaneous route to establish good herd immunity against diphtheria.

  4. Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein

    PubMed Central

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E.; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-01-01

    Our knowledge of the binding sites for neutralizing antibodies (NAbs) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B-cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). Here we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and SIV Envs. Heterologous NAb titres, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of antibody binding reactivity revealed preferential recognition of the C1, C2, V2, V3 and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. PMID:24829409

  5. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    PubMed

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  6. Visual Processing in Rapid-Chase Systems: Image Processing, Attention, and Awareness

    PubMed Central

    Schmidt, Thomas; Haberkamp, Anke; Veltkamp, G. Marina; Weber, Andreas; Seydell-Greenwald, Anna; Schmidt, Filipp

    2011-01-01

    Visual stimuli can be classified so rapidly that their analysis may be based on a single sweep of feedforward processing through the visuomotor system. Behavioral criteria for feedforward processing can be evaluated in response priming tasks where speeded pointing or keypress responses are performed toward target stimuli which are preceded by prime stimuli. We apply this method to several classes of complex stimuli. (1) When participants classify natural images into animals or non-animals, the time course of their pointing responses indicates that prime and target signals remain strictly sequential throughout all processing stages, meeting stringent behavioral criteria for feedforward processing (rapid-chase criteria). (2) Such priming effects are boosted by selective visual attention for positions, shapes, and colors, in a way consistent with bottom-up enhancement of visuomotor processing, even when primes cannot be consciously identified. (3) Speeded processing of phobic images is observed in participants specifically fearful of spiders or snakes, suggesting enhancement of feedforward processing by long-term perceptual learning. (4) When the perceived brightness of primes in complex displays is altered by means of illumination or transparency illusions, priming effects in speeded keypress responses can systematically contradict subjective brightness judgments, such that one prime appears brighter than the other but activates motor responses as if it was darker. We propose that response priming captures the output of the first feedforward pass of visual signals through the visuomotor system, and that this output lacks some characteristic features of more elaborate, recurrent processing. This way, visuomotor measures may become dissociated from several aspects of conscious vision. We argue that “fast” visuomotor measures predominantly driven by feedforward processing should supplement “slow” psychophysical measures predominantly based on visual awareness. PMID:21811484

  7. Prime-boost vaccination with toxoplasma lysate antigen, but not with a mixture of recombinant protein antigens, leads to reduction of brain cyst formation in BALB/c mice.

    PubMed

    Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula

    2015-01-01

    Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection.

  8. Short- and long-term protective efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus following prime-boost vaccination in turkeys

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has spread throu...

  9. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987. PMID:23457473

  10. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    PubMed

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  11. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  12. Assessment of the Protective Effect of Imvamune and Acam2000 Vaccines against Aerosolized Monkeypox Virus in Cynomolgus Macaques

    PubMed Central

    Graham, Victoria A.; Bewley, Kevin R.; Dennis, Mike; Taylor, Irene; Funnell, Simon G. P.; Bate, Simon R.; Steeds, Kimberley; Tipton, Thomas; Bean, Thomas; Hudson, Laura; Atkinson, Deborah J.; McLuckie, Gemma; Charlwood, Melanie; Roberts, Allen D. G.; Vipond, Julia

    2013-01-01

    To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies. PMID:23658452

  13. A DNA prime-oral Listeria boost vaccine in rhesus macaques induces a SIV-specific CD8 T cell mucosal response characterized by high levels of α4β7 integrin and an effector memory phenotype

    PubMed Central

    Neeson, Paul; Boyer, Jean; Kumar, Sanjeev; Lewis, Mark G.; Veazey, Lennox MattiasRon; Weiner, David; Paterson, Yvonne

    2006-01-01

    In this study in Rhesus macaques, we tested whether IL-12 or IL-15 in a DNA prime-oral Listeria boost amplifies the SIV-Gag specific CD8 mucosal response. SIV-specific CD8 T cells were demonstrated in the peripheral blood (PB) in all test vaccine groups, but not the control group. SIV Gag-specific CD8 T cells in the PB expressed α4β7 integrin, the gut-homing receptor; a minor subset co-express αEβ7 integrin. SIV Gag-specific CD8 T cells were also detected in the gut tissue, intraepithelial (IEL) and lamina propria lymphocytes (LPL) of the duodenum and ileum. These cells were characterized by high levels of β7 integrin expression and a predominance of the effector memory phenotype. Neither Il-12 nor IL-15 amplified the frequency of SIV-specific CD8 T cells in the gut. Thus, the DNA prime oral Listeria boost strategy induced a mucosal SIV-Gag specific CD8 T cell response characterized by expression of the α4β7 integrin gut-homing receptor. PMID:16904153

  14. Protection Against Dengue Virus by Non-Replicating and Live Attenuated Vaccines Used Together in a Prime Boost Vaccination Strategy

    DTIC Science & Technology

    2010-01-01

    vaccines primed rhesus maca - ques for an immune response to a tetravalent live attenuated virus (TLAV) vaccine. An initial experiment was performed in 16...and 4 and no measurable increase for DENV 1. These two experiments clearly demonstrated that rhesus maca - ques could be successfully immunized and

  15. The Development of Abstract Syntax: Evidence from Structural Priming and the Lexical Boost

    ERIC Educational Resources Information Center

    Rowland, Caroline F.; Chang, Franklin; Ambridge, Ben; Pine, Julian M.; Lieven, Elena V. M.

    2012-01-01

    Structural priming paradigms have been influential in shaping theories of adult sentence processing and theories of syntactic development. However, until recently there have been few attempts to provide an integrated account that explains both adult and developmental data. The aim of the present paper was to begin the process of integration by…

  16. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis

    PubMed Central

    Lahey, Timothy; Laddy, Dominick; Hill, Krystal; Schaeffer, Jacqueline; Hogg, Alison; Keeble, James; Dagg, Belinda; Ho, Mei Mei; Arbeit, Robert D.; von Reyn, C. Fordham

    2016-01-01

    Background The development of a novel tuberculosis vaccine is a leading global health priority. SRL172, an inactivated, whole-cell mycobacterial vaccine, was safe, immunogenic and reduced the incidence of culture-confirmed tuberculosis in a phase III trial in HIV-infected and BCG immunized adults in Tanzania. Here we describe the immunogenicity and protective efficacy of DAR-901, a booster vaccine against tuberculosis manufactured from the same seed strain using a new scalable method. Methods We evaluated IFN-γ responses by ELISpot and antibody responses by enzyme linked immunosorbent assay in C57BL/6 and BALB/c mice after three doses of DAR-901. In an aerosol challenge model, we evaluated the protective efficacy of the DAR-901 booster in C57BL/6 mice primed with BCG and boosted with two doses of DAR-901 at 4 dosage levels in comparison with homologous BCG boost. Results DAR-901 vaccination elicited IFN-γ responses to mycobacterial antigen preparations derived from both DAR-901 and Mycobacterium tuberculosis. DAR-901 immunization enhanced antibody responses to DAR-901 but not Mycobacterium tuberculosis lysate or purified protein derivative. Among animals primed with BCG, boosting with DAR-901 at 1 mg provided greater protection against aerosol challenge than a homologous BCG boost (lungs P = 0.036, spleen P = 0.028). Conclusions DAR-901 induces cellular and humoral immunity and boosts protection from M. tuberculosis compared to a homologous BCG boost. PMID:27997597

  17. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results of potency, breadth, and safety demonstrated in the mouse model support further studies in higher animal models for clinical relevance.

  18. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    PubMed

    Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W

    2013-01-01

    Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.

  19. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.

    PubMed

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-06-15

    Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins.

    PubMed

    Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo

    2017-12-19

    Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  1. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis.

    PubMed

    Clark, Simon; Lanni, Faye; Marinova, Dessislava; Rayner, Emma; Martin, Carlos; Williams, Ann

    2017-09-01

    The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Attachment anxiety benefits from security priming: Evidence from working memory performance

    PubMed Central

    2018-01-01

    The present study investigates the relationship between the attachment dimensions (anxious vs. avoidance) and the cognitive performance of individuals, specifically whether the attachment dimensions would predict the working memory (WM) performance. In the n-back task, reflecting the WM capacity, both attachment related and non-attachment related words were used. Participants were randomly assigned into two groups that received either the secure or the neutral subliminal priming. In the secure priming condition, the aim was to induce sense of security by presenting secure attachment words prior to the n-back task performance. In neutral priming condition, neutral words that did not elicit sense of security were presented. Structural equation modeling revealed divergent patterns for attachment anxiety and avoidance dimensions under the different priming conditions. In neutral priming condition, WM performance declined in terms of capacity in the n-back task for individuals who rated higher levels of attachment anxiety. However in the secure priming condition, WM performance was boosted in the n-back task for individuals who rated higher levels of attachment anxiety. In other words, the subliminal priming of the security led to increased WM capacity of individuals who rated higher levels of attachment anxiety. This effect, however, was not observed for higher levels of attachment avoidance. Results are discussed along the lines of hyperactivation and deactivation strategies of the attachment system. PMID:29522549

  3. The Centaur G-Prime - Meeting mission needs today for tomorrow's space environment

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.

    1983-05-01

    The performance history and capabilities, design features, and missions for the Centaur G-Prime upper stage for the STS are described. The Centaur has had 43 consecutive successes on expendable launch systems since 1971, and is equipped to transfer 13,500 lb from LEO to GEO. The vehicle dimensions include a 29.1 ft length, a 14.2 ft LH2 tank, and a 15 ft diameter designed for the Orbiter bay. It carries an avionics system that comprises a 16 K core memory computer, a four-gimballed platform inertial measurement group, a sequence control unit, a servo inverter unit, two remote multiplexing units, two signal conditioners, a telemetry system, batteries, etc. Twin RL-10 engines each furnish 16,500 lb of thrust. Near term missions for the Centaur include boosting the Galileo and Solar Polar Mission out of earth orbit towards their destination.

  4. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    PubMed

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  5. Texting "boosts" felt security.

    PubMed

    Otway, Lorna J; Carnelley, Katherine B; Rowe, Angela C

    2014-01-01

    Attachment security can be induced in laboratory settings (e.g., Rowe & Carnelley, 2003) and the beneficial effects of repeated security priming can last for a number of days (e.g., Carnelley & Rowe, 2007). The priming process, however, can be costly in terms of time. We explored the effectiveness of security priming via text message. Participants completed a visualisation task (a secure attachment experience or neutral experience) in the laboratory. On three consecutive days following the laboratory task, participants received (secure or neutral) text message visualisation tasks. Participants in the secure condition reported significantly higher felt security than those in the neutral condition, immediately after the laboratory prime, after the last text message prime and one day after the last text prime. These findings suggest that security priming via text messages is an innovative methodological advancement that effectively induces felt security, representing a potential direction forward for security priming research.

  6. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates.

    PubMed

    Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio

    2007-02-01

    Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.

  7. Mechanisms of masked priming: a meta-analysis.

    PubMed

    Van den Bussche, Eva; Van den Noortgate, Wim; Reynvoet, Bert

    2009-05-01

    The extent to which unconscious information can influence behavior has been a topic of considerable debate throughout the history of psychology. A frequently used method for studying subliminal processing is the masked priming paradigm. The authors focused on studies in which this paradigm was used. Their aim was twofold: first, to assess the magnitude of subliminal priming across the literature and to determine whether subliminal primes are processed semantically, and second, to examine potential moderators of priming effects. The authors found significant priming in their analyses, indicating that unconsciously presented information can influence behavior. Furthermore, priming was observed under circumstances in which a nonsemantic interpretation could not fully explain the effects, suggesting that subliminally presented information can be processed semantically. Nonetheless, the nonsemantic processing of primes is enhanced and priming effects are boosted when the experimental context allows the formation of automatic stimulus-response mappings. This quantitative review also revealed several moderators that influence the strength of priming. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  8. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    PubMed

    McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance.

  9. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    PubMed Central

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance. PMID:22970131

  10. Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308.

    PubMed

    Dabral, Neha; Martha-Moreno-Lafont; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2014-01-01

    Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4(+) and CD8(+) T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 10(9), 10(10) and 10(11) CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 10(11) CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.

  11. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated.

  12. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.

    PubMed

    Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N

    2016-06-01

    Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.

  13. Prime-Boost Vaccination with Toxoplasma Lysate Antigen, but Not with a Mixture of Recombinant Protein Antigens, Leads to Reduction of Brain Cyst Formation in BALB/c Mice

    PubMed Central

    Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula

    2015-01-01

    Introduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Results Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. Conclusion In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection. PMID:26010355

  14. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders.

    PubMed

    Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S

    2011-05-01

    The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.

  15. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.

    PubMed

    Po-Wen, Chen; Singh, Prashant; Zimmerli, Laurent

    2013-01-01

    Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  16. Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum But Boosts Deoxynivalenol Production1

    PubMed Central

    Ameye, Maarten; Audenaert, Kris; De Zutter, Nathalie; Steppe, Kathy; Van Meulebroek, Lieven; Vanhaecke, Lynn; De Vleesschauwer, David; Haesaert, Geert; Smagghe, Guy

    2015-01-01

    Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection. PMID:25713338

  17. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  19. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  20. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    PubMed

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  1. Improved Anti-Treg Vaccination Targeting Foxp3 Efficiently Decreases Regulatory T Cells in Mice.

    PubMed

    Mousavi Niri, Neda; Memarnejadian, Arash; Pilehvar-Soltanahmadi, Younes; Agha Sadeghi, Mohammadreza; Mahdavi, Mehdi; Kheshtchin, Nasim; Arab, Samaneh; Namdar, Afshin; Jadidi, Farhad; Zarghami, Nosratollah; Hajati, Jamshid

    2016-09-01

    The critical role of regulatory T (Treg) cells in dampening immune responses against tumor cells is apparent. Therefore, several methods have been introduced for eliminating Treg. Among them, inducing immune responses against Treg cells expressing Foxp3 transcription factor is a hopeful approach to decrease the frequency of Tregs. In current study, we used the chimeric FoxP3-Fc(IgG) fusion construct/protein to effectively stimulate the immune responses against Treg cells. Previously constructed FoxP3-Fc(IgG) DNA vaccine and its protein counterpart were injected into C57BL/6 mice in a prime/boost regimen. After 2 weeks, the mice were killed to measure the frequency of Tregs in their spleens, as well as analyze their specific cytokine production, T-cell proliferation, and CD8 T-cell cytotoxicity against FoxP3 protein. FACS analysis of FoxP3 CD4 cells in splenocytes revealed the efficiency of FoxP3 DNA-prime protein-boost strategy to decrease the Treg cells and further showed considerable superiority of Fc(IgG) fusion strategy. This significant reduction in Treg frequency was also concomitant with higher FoxP3-specific CTL and Th1 responses in FoxP3-Fc vaccinated animals. Prime/boost vaccination against FoxP3 in addition to enhanced antigen presentation by means of Fc fusion strategy could be successfully considered for Treg depletion studies. Validity of this approach should be experimentally tested in preclinical tumor models.

  2. Big power from walking

    NASA Astrophysics Data System (ADS)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  3. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    PubMed

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  4. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    immunization, was severe (Grade 3), preventing daily activities . Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum...administering a drug selectively active against blood stage parasites such as chloroquine [4,5]. While the immunological mechanisms underlying the...promoter sequence activated within the host cell. Alternatively, the genes are inserted into a viral vector, which efficiently transports the DNA into

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasalmore » prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.« less

  6. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.

    PubMed

    Fausther-Bovendo, Hugues; Kobinger, Gary P

    2014-01-01

    Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.

  7. Translations on North Korea No. 601

    DTIC Science & Technology

    1978-07-13

    Boosting War Fever"] [Text] On 21 June, with the anniversary of the outbreak of the 24 June war just a few days away, the South Korean puppet clique...conducted the puppet farce of shooting matches between ministerial posts of the puppet adminis- tration, thus boosting war fever. At the war racket site...the puppet "prime minister" led the way in openly inciting war , raving about the "threat of southward aggression," the "nation’s stability" and the

  8. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-05

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  10. Translating the Immunogenicity of Prime-boost Immunization With ChAd63 and MVA ME-TRAP From Malaria Naive to Malaria-endemic Populations

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Cox, Momodou; Kimani, Eva; Bliss, Carly M; Gitau, Evelyn; Ogwang, Caroline; Afolabi, Muhammed O; Bowyer, Georgina; Collins, Katharine A; Edwards, Nick; Hodgson, Susanne H; Duncan, Christopher J A; Spencer, Alexandra J; Knight, Miguel G; Drammeh, Abdoulie; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Soipei, Peninah; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Chilengi, Roma; Bojang, Kalifa; Flanagan, Katie L; Hill, Adrian V S; Urban, Britta C; Ewer, Katie J

    2014-01-01

    To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4+ and CD8+ T cells with the frequency of CD8+ IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population. PMID:24930599

  11. Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis

    PubMed Central

    Saljoughian, Noushin; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Doustdari, Fatemeh; Bolhassani, Azam; Doroud, Delaram; Azizi, Hiva; Heidari, Kazem; Vasei, Mohammad; Namvar Asl, Nabiollah; Papadopoulou, Barbara; Rafati, Sima

    2013-01-01

    Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. PMID:23638195

  12. Enhanced Control of Pathogenic Simian Immunodeficiency Virus SIVmac239 Replication in Macaques Immunized with an Interleukin-12 Plasmid and a DNA Prime-Viral Vector Boost Vaccine Regimen ▿ §

    PubMed Central

    Winstone, Nicola; Wilson, Aaron J.; Morrow, Gavin; Boggiano, Cesar; Chiuchiolo, Maria J.; Lopez, Mary; Kemelman, Marina; Ginsberg, Arielle A.; Mullen, Karl; Coleman, John W.; Wu, Chih-Da; Narpala, Sandeep; Ouellette, Ian; Dean, Hansi J.; Lin, Feng; Sardesai, Niranjan Y.; Cassamasa, Holly; McBride, Dawn; Felber, Barbara K.; Pavlakis, George N.; Schultz, Alan; Hudgens, Michael G.; King, C. Richter; Zamb, Timothy J.; Parks, Christopher L.; McDermott, Adrian B.

    2011-01-01

    DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent “blips” in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication. PMID:21734035

  13. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins

    PubMed Central

    2018-01-01

    ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. PMID:29386289

  14. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique

    2013-08-28

    Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to the epidemiological situation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    PubMed

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. Copyright © 2018 Jancovich et al.

  16. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    PubMed

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  17. Humoral and B-cell memory responses in children five years after pertussis acellular vaccine priming.

    PubMed

    Carollo, Maria; Pandolfi, Elisabetta; Tozzi, Alberto Eugenio; Buisman, Anne-Marie; Mascart, Françoise; Ausiello, Clara Maria

    2014-04-11

    The resurgence of pertussis suggests the need for greater efforts in understanding the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of humoral and B-cell memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac(®) vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa(®) (Infanrix) (GlaxoSmithKline Biologicals). We evaluated the specific immune responses in the two groups of children, 5 years after primary vaccination by measuring the persistence of IgG and antibody secreting cells (ASC) specific for vaccine antigens. Part of the enrolled children received only primary vaccination, while others had the pre-school boost dose. A similar level of antigen-specific IgG and ASC was found in Infanrix and Hexavac vaccinated children. The mean IgG levels were significantly higher in children that received the pre-school boost as compared with children that did not receive the boost dose. A longer persistence after the pre-school boost of IgG-Pertussis Toxin (PT) and IgG-pertactin levels was observed in Infanrix primed children, but it was not statistically significant. More than 80% of children presented a positive ASC B memory response. Around 50% of children still presented protective IgG-PT levels which are reduced to 36% in no-boosted children. The pre-school booster dose restores the percentage of protected children above 50%. In conclusion our data underline the importance of giving a booster dose 5 years after primary vaccination and suggest the need for a new vaccine able to induce a long lasting protective response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  19. Priming Intelligent Behavior: An Elusive Phenomenon

    PubMed Central

    Shanks, David R.; Newell, Ben R.; Lee, Eun Hee; Balakrishnan, Divya; Ekelund, Lisa; Cenac, Zarus; Kavvadia, Fragkiski; Moore, Christopher

    2013-01-01

    Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal) influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained. PMID:23637732

  20. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract.

    PubMed

    Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S

    2016-09-01

    Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.

  1. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults

    PubMed Central

    Grunenberg, Nicole A.; Sanchez, Brittany J.; Seaton, Kelly E.; Ferrari, Guido; Moody, M. Anthony; Frahm, Nicole; Montefiori, David C.; Hay, Christine M.; Goepfert, Paul A.; Baden, Lindsey R.; Robinson, Harriet L.; Yu, Xuesong; Gilbert, Peter B.; McElrath, M. Juliana; Huang, Yunda; Tomaras, Georgia D.

    2017-01-01

    Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960 PMID:28727817

  2. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults.

    PubMed

    Buchbinder, Susan P; Grunenberg, Nicole A; Sanchez, Brittany J; Seaton, Kelly E; Ferrari, Guido; Moody, M Anthony; Frahm, Nicole; Montefiori, David C; Hay, Christine M; Goepfert, Paul A; Baden, Lindsey R; Robinson, Harriet L; Yu, Xuesong; Gilbert, Peter B; McElrath, M Juliana; Huang, Yunda; Tomaras, Georgia D

    2017-01-01

    A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. ClinicalTrials.gov NCT01571960.

  3. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  4. Antibody persistence and immunologic memory in children vaccinated with 4 doses of pneumococcal conjugate vaccines: Results from 2 long-term follow-up studies

    PubMed Central

    Wysocki, Jacek; Brzostek, Jerzy; Konior, Ryszard; Panzer, Falko G.; François, Nancy A.; Ravula, Sudheer M.; Kolhe, Devayani A.; Song, Yue; Dieussaert, Ilse; Schuerman, Lode; Borys, Dorota

    2017-01-01

    ABSTRACT To investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 – Study A) and 5 years (NCT00891176 – Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster. An age-matched control group, unvaccinated against Streptococcus pneumoniae, was enrolled in Study A, allowing assessment of immunologic memory by administration of one dose of PHiD-CV to both primed (4 years post-booster) and unprimed 6-year-old children. Four years post-booster (Study A), antibody concentrations and opsonophagocytic activity (OPA) titers remained higher compared to the pre-booster timepoint, with no major differences between the 3 primed groups. Antibody persistence was also observed in Study B, with minimal differences between groups. The additional PHiD-CV dose administered 4 years post-booster in Study A elicited more robust immune responses in primed children than in unprimed children. Long-term serotype-specific antibody persistence and robust immunologic memory responses observed in these 2 studies suggest induction of long-term protection against pneumococcal disease after PHiD-CV vaccination. PMID:27736293

  5. Antibody persistence and immunologic memory in children vaccinated with 4 doses of pneumococcal conjugate vaccines: Results from 2 long-term follow-up studies.

    PubMed

    Wysocki, Jacek; Brzostek, Jerzy; Konior, Ryszard; Panzer, Falko G; François, Nancy A; Ravula, Sudheer M; Kolhe, Devayani A; Song, Yue; Dieussaert, Ilse; Schuerman, Lode; Borys, Dorota

    2017-03-04

    To investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 - Study A) and 5 years (NCT00891176 - Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster. An age-matched control group, unvaccinated against Streptococcus pneumoniae, was enrolled in Study A, allowing assessment of immunologic memory by administration of one dose of PHiD-CV to both primed (4 years post-booster) and unprimed 6-year-old children. Four years post-booster (Study A), antibody concentrations and opsonophagocytic activity (OPA) titers remained higher compared to the pre-booster timepoint, with no major differences between the 3 primed groups. Antibody persistence was also observed in Study B, with minimal differences between groups. The additional PHiD-CV dose administered 4 years post-booster in Study A elicited more robust immune responses in primed children than in unprimed children. Long-term serotype-specific antibody persistence and robust immunologic memory responses observed in these 2 studies suggest induction of long-term protection against pneumococcal disease after PHiD-CV vaccination.

  6. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    PubMed

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1

    PubMed Central

    Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.

    2010-01-01

    Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869

  8. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    PubMed

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  9. Vaccine Efficacy against Malaria by the Combination of Porcine Parvovirus-Like Particles and Vaccinia Virus Vectors Expressing CS of Plasmodium

    PubMed Central

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915

  10. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    PubMed

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  11. Comparison of human and rhesus macaque T-cell responses elicited by boosting with NYVAC encoding human immunodeficiency virus type 1 clade C immunogens.

    PubMed

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L

    2009-06-01

    Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.

  12. Comparison of Human and Rhesus Macaque T-Cell Responses Elicited by Boosting with NYVAC Encoding Human Immunodeficiency Virus Type 1 Clade C Immunogens▿

    PubMed Central

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S.; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G.; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L.

    2009-01-01

    Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-γ) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4+ and CD8+ T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-γ, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-γ T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved. PMID:19321612

  13. Antibody to the gp120 V1/V2 loops and CD4+and CD8+ T-cell responses in protection from SIVmac251 vaginal acquisition and persistent viremia

    PubMed Central

    Gordon, Shari N.; Doster, Melvin N; Kines, Rhonda C.; Keele, Brandon F; Cofano, Egidio Brocca; Guan, Yongjun; Pegu, Poonam; Liyanage, Namal P.M.; Vaccari, Monica; Cuburu, Nicolas; Buck, Christopher B.; Ferrari, Guido; Montefiori, David; Piatak, Mike; Lifson, Jeffrey D; Xenophontos, Anastasia M.; Venzon, David; Robert-Guroff, Marjorie; Graham, Barney S.; Lowy, Douglas R.; Schiller, John T.; Franchini, Genoveffa

    2015-01-01

    The human papilloma virus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of non human primates and mice. Intra-vaginal vaccination with HPV-PsVs expressing SIV genes, combined with an intra-muscular gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with intramuscular immunization with ALVAC-SIV vaccines, followed by intra-vaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T-cells in the female genital tract. Using a stringent repeated low dose intra-vaginal challenge with the highly pathogenic SIVmac251, we show that while these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High avidity antibody responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, while virus levels in mucosal tissues were inversely correlated with anti-envelope CD4+T-cell responses. CD8+T-cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8+T-cells in virus control. This study highlights the importance of CD8+ cells and anti-envelope CD4+ T-cell in curtailing virus replication and anti-envelope V1/V2 antibodies in preventing SIVmac251 acquisition. PMID:25398324

  14. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    PubMed Central

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  15. TAUKAM: a new prime-focus camera for the Tautenburg Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Stecklum, Bringfried; Eislöffel, Jochen; Klose, Sylvio; Laux, Uwe; Löwinger, Tom; Meusinger, Helmut; Pluto, Michael; Winkler, Johannes; Dionies, Frank

    2016-08-01

    TAUKAM stands for "TAUtenburg KAMera", which will become the new prime-focus imager for the Tautenburg Schmidt telescope. It employs an e2v 6kx6k CCD and is under manufacture by Spectral Instruments Inc. We describe the design of the instrument and the auxiliary components, its specifications as well as the concept for integrating the device into the telescope infrastructure. First light is foreseen in 2017. TAUKAM will boost the observational capabilities of the telescope for what concerns optical wide-field surveys.

  16. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    PubMed Central

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  17. Multiple Low-Dose Challenges in a Rhesus Macaque AIDS Vaccine Trial Result in an Evolving Host Response That Affects Protective Outcome

    PubMed Central

    Selinger, Christian; Strbo, Natasa; Gonzalez, Louis; Aicher, Lauri; Weiss, Jeffrey M.; Law, G. Lynn; Palermo, Robert E.; Vaccari, Monica; Franchini, Genoveffa; Podack, Eckhard R.

    2014-01-01

    Using whole-blood transcriptional profiling, we investigated differences in the host response to vaccination and challenge in a rhesus macaque AIDS vaccine trial. Samples were collected from animals prior to and after vaccination with live, irradiated vaccine cells secreting the modified endoplasmic reticulum chaperone gp96-Ig loaded with simian immunodeficiency virus (SIV) peptides, either alone or in combination with a SIV-gp120 protein boost. Additional samples were collected following multiple low-dose rectal challenges with SIVmac251. Animals in the boosted group had a 73% reduced risk of infection. Surprisingly, few changes in gene expression were observed during the vaccination phase. Focusing on postchallenge comparisons, in particular for protected animals, we identified a host response signature of protection comprised of strong interferon signaling after the first challenge, which then largely abated after further challenges. We also identified a host response signature, comprised of early macrophage-mediated inflammatory responses, in animals with undetectable viral loads 5 days after the first challenge but with unusually high viral titers after subsequent challenges. Statistical analysis showed that prime-boost vaccination significantly lowered the probability of infection in a time-consistent manner throughout several challenges. Given that humoral responses in the prime-boost group were highly significant prechallenge correlates of protection, the strong innate signaling after the first challenge suggests that interferon signaling may enhance vaccine-induced antibody responses and is an important contributor to protection from infection during repeated low-dose exposure to SIV. PMID:25274805

  18. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  19. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni.

    PubMed

    Shollenberger, Lisa M; Bui, Cac T; Paterson, Yvonne; Nyhoff, Lindsay; Harn, Donald A

    2013-11-19

    In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of therapeutic intensification followed by HIV DNA prime and rAd5 boost vaccination on HIV-specific immunity and HIV reservoir (EraMune 02): a multicentre randomised clinical trial.

    PubMed

    Achenbach, Chad J; Assoumou, Lambert; Deeks, Steven G; Wilkin, Timothy J; Berzins, Baiba; Casazza, Joseph P; Lambert-Niclot, Sidonie; Koup, Richard A; Costagliola, Dominique; Calvez, Vincent; Katlama, Christine; Autran, Brigitte; Murphy, Robert L

    2015-03-01

    Achievement of a cure for HIV infection might need reactivation of latent virus and improvement of HIV-specific immunity. As an initial step, in this trial we assessed the effect of antiretroviral therapy intensification and immune modulation with a DNA prime and recombinant adenovirus 5 (rAd5) boost vaccine. In this multicentre, randomised, open-label, non-comparative, phase 2 clinical trial, we enrolled eligible adults 18-70 years of age with chronic HIV-1 infection on suppressive antiretroviral therapy with current CD4 count of at least 350 cells per μL and HIV DNA between 10 and 1000 copies per 10(6) peripheral blood mononuclear cells. After an 8 week lead-in of antiretroviral intensification therapy (standard dose raltegravir and dose-adjusted maraviroc based on baseline antiretroviral therapy), patients were randomly assigned (1:1) to receive antiretroviral therapy intensification alone or intensification plus injections of HIV DNA prime vaccine (4 mg VRC-HIVDNA016-00-VP) at weeks 8, 12, and 16, followed by HIV rAd5 boost vaccine (10(10) particle units of VRC-HIVADV014-00-VP) at week 32. Randomisation was computer generated in permuted blocks of six and was stratified by study site. The primary endpoint was a 0·5 log10 or greater decrease in HIV DNA in peripheral blood mononuclear cells at week 56. This study is registered with ClinicalTrials.gov, number NCT00976404. Between Nov 29, 2010, and Oct 28, 2011, we enrolled 28 eligible patients from three academic HIV clinics in the USA. After the 8 week lead-in of antiretroviral intensification therapy, 14 patients were randomly assigned to continue antiretroviral therapy intensification alone and 14 to intensification plus vaccine. Enrolled participants had median CD4 count of 636 cells per μL, median HIV DNA 170 copies per 10(6) peripheral blood mononuclear cells, and duration of antiretroviral therapy of 13 years. The median amount of HIV DNA did not change significantly between baseline and week 56 in the antiretroviral therapy intensification plus vaccine group. One participant in the antiretroviral therapy intensification alone group reached the primary endpoint, with 0·55 log10 decrease in HIV DNA in peripheral blood mononuclear cells. Both treatments were well tolerated. No severe or systemic reactions to vaccination occurred, and five serious adverse events were recorded during the study, most of which resolved spontaneously or were judged unrelated to study treatments. Antiretroviral therapy intensification followed by DNA prime and rAd5 boost vaccine did not significantly increase HIV expression or reduce the latent HIV reservoir. A multifaceted approach that includes stronger activators of HIV expression and novel immune modulators will probably be needed to reduce the latent HIV reservoir and allow for long-term control in patients off antiretroviral therapy. Objectif Recherche Vaccin SIDA (ORVACS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Analgesic effect of Facebook: Priming with online social networking may boost felt relatedness that buffers against physical pain.

    PubMed

    Ho, Liang-Chu; Wu, Wen-Hsiung; Chiou, Wen-Bin

    2016-10-01

    Social networking sites (SNSs) are extremely popular for providing users with a convenient platform for acquiring social connections and thereby feeling relatedness. Plenty of literature has shown that mental representations of social support can reduce the perception of physical pain. The current study tested whether thinking about SNS would interfere with users' perceptions of experimentally induced pain. Ninety-six undergraduate Facebook users were recruited to participate in a priming-based experiment. They were randomly assigned to one of the three study conditions (SNS prime, neutral prime, or no prime) via rating the aesthetics of logos. The results showed that participants exposed to SNS primes reported less pain of immersion in hot water than did both control groups (neutral- and no-prime). Felt relatedness mediated the link between SNS primes and diminished pain perceptions. This research provides the first demonstration that thinking about SNS can lower experienced physical pain among Facebook users. Online social networking may serve as an analgesic buffer against pain experience than previously thought. The SNS-enabled analgesia has far reaching implications for pain relief applications and the enhancement of well-being in human-interaction techniques. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  2. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses.

    PubMed

    Lindh, Ingrid; Bråve, Andreas; Hallengärd, David; Hadad, Ronza; Kalbina, Irina; Strid, Åke; Andersson, Sören

    2014-04-25

    During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses. Copyright © 2014. Published by Elsevier Ltd.

  3. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost

    PubMed Central

    Xiao, Yuhong; Aldaz-Carroll, Lydia; Ortiz, Alexandra M.; Whitbeck, J. Charles; Alexander, Edward; Lou, Huan; Davis, J. Heather L.; Braciale, Thomas J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Isaacs, Stuart N.

    2007-01-01

    The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG-ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine. PMID:17098336

  4. Enhanced Vaccine-Induced CD8+ T Cell Responses to Malaria Antigen ME-TRAP by Fusion to MHC Class II Invariant Chain

    PubMed Central

    Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.

    2014-01-01

    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248

  5. Safety and Immunogenicity of ChAd63 and MVA ME-TRAP in West African Children and Infants

    PubMed Central

    Afolabi, Muhammed O; Tiono, Alfred B; Adetifa, Uche J; Yaro, Jean Baptiste; Drammeh, Abdoulie; Nébié, Issa; Bliss, Carly; Hodgson, Susanne H; Anagnostou, Nicholas A; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Tamara, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mirielle; Njie-Jobe, Jainaba; Diarra, Amidou; Duncan, Christopher JA; Cortese, Riccardo; Nicosia, Alfredo; Roberts, Rachel; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampman, Beate; Bejon, Philip; Imoukhuede, Egeruan B; Ewer, Katie J; Hill, Adrian VS; Bojang, Kalifa; Sirima, Sodiomon B

    2016-01-01

    Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants. We enrolled 138 Gambian and Burkinabe children in four different age-groups: 2–6 years old in The Gambia; 5–17 months old in Burkina Faso; 5–12 months old, and also 10 weeks old, in The Gambia; and evaluated the safety and immunogenicity of Chimpanzee Adenovirus 63 Modified Vaccinia Ankara ME-TRAP heterologous prime-boost immunization. The vaccines were well tolerated in all age groups with no vaccine-related serious adverse events. T-cell responses to vaccination peaked 7 days after boosting with Modified Vaccinia Ankara, with T-cell responses highest in 10 week-old infants. Heterologous prime-boost immunization with Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara ME-TRAP was well tolerated in infants and children, inducing strong T-cell responses. We identify an approach that induces potent T-cell responses in infants, which may be useful for preventing other infectious diseases requiring cellular immunity. PMID:27109630

  6. Heterologous Prime-Boost Vaccination Using an AS03B-Adjuvanted Influenza A(H5N1) Vaccine in Infants and Children <3 Years of Age

    PubMed Central

    Nolan, Terry; Izurieta, Patricia; Lee, Bee-Wah; Chan, Poh Chong; Marshall, Helen; Booy, Robert; Drame, Mamadou; Vaughn, David W.

    2014-01-01

    Background. Protecting young children from pandemic influenza should also reduce transmission to susceptible adults, including pregnant women. Methods. An open study assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005(H5N1)-AS03B (AS03B is an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion [5.93 mg tocopherol]) in infants and children aged 6 to < 36 months that was given 6 months following 2-dose primary vaccination with A/Indonesia/05/2005(H5N1)-AS03B. Vaccines contained 1.9 µg of hemagglutinin antigen and AS03B. Hemagglutinin inhibition (HI) responses, microneutralization titers, and antineuraminidase antibody levels were assessed for 6 months following the booster vaccination. Results. For each age stratum (defined on the basis of the subject's age at first vaccination as 6 to < 12 months, 12 to < 24 months, and 24 to < 36 months) and overall (n = 113), European influenza vaccine licensure criteria were fulfilled for responses to A/turkey/Turkey/1/2005(H5N1) 10 days following the booster vaccination. Local pain and fever increased with consecutive doses. Anamnestic immune responses were demonstrated for HI, neutralizing, and antineuraminidase antibodies against vaccine-homologous/heterologous strains. Antibody responses to vaccine-homologous/heterologous strains persisted in all children 6 months following the booster vaccination. Conclusions. Prevaccination of young children with a clade 2 strain influenza A(H5N1) AS03-adjuvanted vaccine followed by heterologous booster vaccination boosted immune responses to the homologous strain and a related clade, with persistence for at least 6 months. The results support a prime-boost vaccination approach in young children for pandemic influenza preparedness. Clinical Trials Registration. NCT01323946. PMID:24973461

  7. Vaccines of the future.

    PubMed

    Nossal, G J V

    2011-12-30

    Vaccines of the future can be divided into three broad groups, namely those of the near future (<10 years); the medium-term future (10-19 years); and the long-term future (20-50 years). For the near future, there is some "low hanging fruit" which is clearly on the horizon, such as a Vi-conjugate vaccine for typhoid or a protein-based vaccine for Neisseria meningitidis serogroup B. Just slightly more distant will be vaccines for shigellosis and a common protein vaccine for Streptococcus pneumoniae. Also in this group, but not as far advanced, will be a vaccine for Group A streptococcus. I place vaccines for the "big three", malaria, tuberculosis and HIV/AIDS in the medium term basket. The sporozoite malaria vaccine RTS-S is closest, but surely a definitive malaria vaccine will also require antigens from other stages of the life cycle. A tuberculosis vaccine will be either a re-engineered BCG; or a molecular vaccine with several protein antigens; or one based on prime-boost strategies. What will delay this is the high cost of clinical trials. For HIV/AIDS, the partial success of the Sanofi-Pasteur prime-boost vaccine has given some hope. I still place much faith in antibody-based vaccines and especially on mimotopes of the env transitional state assumed after initial CD4 binding. Monoclonal antibodies are also leading us in interesting directions. Longer term, the vaccine approach will be successful for autoimmune diseases, e.g. juvenile diabetes and coeliac disease. Cancer vaccines are also briefly surveyed. Adjunct issues needing to be addressed include more extensive combinations; alternate delivery systems; and more intelligently designed adjuvants based on knowledge of the innate immune system. Copyright © 2011. Published by Elsevier Ltd.

  8. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity.

    PubMed

    Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena

    2014-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.

  9. Apollo-Soyuz test project. Operations handbook command/service/docking modules (CSM 119/DM 1): Operational procedures reference issue

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Operational and configuration checks for the Apollo-Soyuz Test Project are presented. The checks include: backup crew prelaunch, prime crew prelaunch, boost and insertion, G and C reference data, G and N reference modes, rendezvous, navigation, Apollo-Soyuz operations, abort procedures, and emergency procedures.

  10. Governors Take Varied Routes in Boosting Aid

    ERIC Educational Resources Information Center

    Ujifusa, Andrew

    2013-01-01

    As states consider increases to K-12 spending amid better economic conditions, governors on opposite sides of the partisan divide are proposing significantly different plans and arguments for the best ways to use new education aid. Two prime examples: Minnesota and Ohio, a pair of Midwestern states with chief executives intent on pumping more…

  11. Genetic cancer vaccines: current status and perspectives.

    PubMed

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2012-08-01

    The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.

  12. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine

    PubMed Central

    Ahmad, Gul; Zhang, Weidong; Torben, Workineh; Haskins, Chad; Diggs, Sue; Noor, Zahid; Le, Loc

    2009-01-01

    Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis. PMID:19809833

  13. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  14. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  15. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer.

    PubMed

    Le, Dung T; Wang-Gillam, Andrea; Picozzi, Vincent; Greten, Tim F; Crocenzi, Todd; Springett, Gregory; Morse, Michael; Zeh, Herbert; Cohen, Deirdre; Fine, Robert L; Onners, Beth; Uram, Jennifer N; Laheru, Daniel A; Lutz, Eric R; Solt, Sara; Murphy, Aimee Luck; Skoble, Justin; Lemmens, Ed; Grous, John; Dubensky, Thomas; Brockstedt, Dirk G; Jaffee, Elizabeth M

    2015-04-20

    GVAX pancreas, granulocyte-macrophage colony-stimulating factor-secreting allogeneic pancreatic tumor cells, induces T-cell immunity to cancer antigens, including mesothelin. GVAX is administered with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells. CRS-207, live-attenuated Listeria monocytogenes-expressing mesothelin, induces innate and adaptive immunity. On the basis of preclinical synergy, we tested prime/boost vaccination with GVAX and CRS-207 in pancreatic adenocarcinoma. Previously treated patients with metastatic pancreatic adenocarcinoma were randomly assigned at a ratio of 2:1 to two doses of Cy/GVAX followed by four doses of CRS-207 (arm A) or six doses of Cy/GVAX (arm B) every 3 weeks. Stable patients were offered additional courses. The primary end point was overall survival (OS) between arms. Secondary end points were safety and clinical response. A total of 90 patients were treated (arm A, n = 61; arm B, n = 29); 97% had received prior chemotherapy; 51% had received ≥ two regimens for metastatic disease. Mean number of doses (± standard deviation) administered in arms A and B were 5.5 ± 4.5 and 3.7 ± 2.2, respectively. The most frequent grade 3 to 4 related toxicities were transient fevers, lymphopenia, elevated liver enzymes, and fatigue. OS was 6.1 months in arm A versus 3.9 months in arm B (hazard ratio [HR], 0.59; P = .02). In a prespecified per-protocol analysis of patients who received at least three doses (two doses of Cy/GVAX plus one of CRS-207 or three of Cy/GVAX), OS was 9.7 versus 4.6 months (arm A v B; HR, 0.53; P = .02). Enhanced mesothelin-specific CD8 T-cell responses were associated with longer OS, regardless of treatment arm. Heterologous prime/boost with Cy/GVAX and CRS-207 extended survival for patients with pancreatic cancer, with minimal toxicity. © 2015 by American Society of Clinical Oncology.

  16. Safety and Survival With GVAX Pancreas Prime and Listeria Monocytogenes–Expressing Mesothelin (CRS-207) Boost Vaccines for Metastatic Pancreatic Cancer

    PubMed Central

    Le, Dung T.; Wang-Gillam, Andrea; Picozzi, Vincent; Greten, Tim F.; Crocenzi, Todd; Springett, Gregory; Morse, Michael; Zeh, Herbert; Cohen, Deirdre; Fine, Robert L.; Onners, Beth; Uram, Jennifer N.; Laheru, Daniel A.; Lutz, Eric R.; Solt, Sara; Murphy, Aimee Luck; Skoble, Justin; Lemmens, Ed; Grous, John; Dubensky, Thomas; Brockstedt, Dirk G.; Jaffee, Elizabeth M.

    2015-01-01

    Purpose GVAX pancreas, granulocyte-macrophage colony-stimulating factor–secreting allogeneic pancreatic tumor cells, induces T-cell immunity to cancer antigens, including mesothelin. GVAX is administered with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells. CRS-207, live-attenuated Listeria monocytogenes–expressing mesothelin, induces innate and adaptive immunity. On the basis of preclinical synergy, we tested prime/boost vaccination with GVAX and CRS-207 in pancreatic adenocarcinoma. Patients and Methods Previously treated patients with metastatic pancreatic adenocarcinoma were randomly assigned at a ratio of 2:1 to two doses of Cy/GVAX followed by four doses of CRS-207 (arm A) or six doses of Cy/GVAX (arm B) every 3 weeks. Stable patients were offered additional courses. The primary end point was overall survival (OS) between arms. Secondary end points were safety and clinical response. Results A total of 90 patients were treated (arm A, n = 61; arm B, n = 29); 97% had received prior chemotherapy; 51% had received ≥ two regimens for metastatic disease. Mean number of doses (± standard deviation) administered in arms A and B were 5.5 ± 4.5 and 3.7 ± 2.2, respectively. The most frequent grade 3 to 4 related toxicities were transient fevers, lymphopenia, elevated liver enzymes, and fatigue. OS was 6.1 months in arm A versus 3.9 months in arm B (hazard ratio [HR], 0.59; P = .02). In a prespecified per-protocol analysis of patients who received at least three doses (two doses of Cy/GVAX plus one of CRS-207 or three of Cy/GVAX), OS was 9.7 versus 4.6 months (arm A v B; HR, 0.53; P = .02). Enhanced mesothelin-specific CD8 T-cell responses were associated with longer OS, regardless of treatment arm. Conclusion Heterologous prime/boost with Cy/GVAX and CRS-207 extended survival for patients with pancreatic cancer, with minimal toxicity. PMID:25584002

  17. A Bivalent Heterologous DNA Virus-Like-Particle Prime-Boost Vaccine Elicits Broad Protection against both Group 1 and 2 Influenza A Viruses

    PubMed Central

    Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ling; Chen, Zhiwei

    2017-01-01

    ABSTRACT Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called “universal” vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a “universal” influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this, there is an urgent need to develop so-called “universal” influenza vaccines that can protect against both current and future influenza strains. In the present study, we developed a bivalent heterologous prime-boost vaccine strategy. We show that a bivalent vaccine regimen elicited broad binding and neutralizing antibody and T cell responses that conferred broad protection against diverse challenge viruses in mice, suggesting that this bivalent prime-boost strategy could practically be a candidate for a “universal” influenza vaccine. PMID:28179535

  18. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach.

    PubMed

    Mohan, Dhanya Menoth; Kumar, Parmod; Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H D

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants' explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes.

  19. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach

    PubMed Central

    Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H. D.

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants’ explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes. PMID:26866807

  20. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect. PMID:17957247

  1. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model

    PubMed Central

    Luukinen, Hanna; Vanha-aho, Leena-Maija; Svorjova, Aleksandra; Kantanen, Laura; Järvinen, Sampsa; Dufour, Eric; Rämet, Mika; Hytönen, Vesa Pekka

    2018-01-01

    ABSTRACT Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper. PMID:29208761

  2. Recovery from Cyclophosphamide-Induced Lymphopenia Results in Expansion of Immature Dendritic Cells Which Can Mediate Enhanced Prime-Boost Vaccination Antitumor Responses In Vivo When Stimulated with the TLR3 Agonist Poly(I:C)1

    PubMed Central

    Salem, Mohamed L.; Díaz-Montero, C. Marcela; Al-Khami, Amir A.; El-Naggar, Sabry A.; Naga, Osama; Montero, Alberto J.; Khafagy, Ahmed; Cole, David J.

    2011-01-01

    Recent preclinical studies suggest that vaccination following adoptive transfer of CD8+ T cells into a lymphopenic host can augment the therapeutic antitumor responses of the transferred cells. However, the mechanism by which the lymphopenic microenvironment benefits Ag-specific CD8+ T cell responses remains elusive. We show herein that induction of lymphodepletion by a single 4 mg cyclophosphamide (CTX) treatment induces a marked expansion of immature dendritic cells (DCs) in the peripheral blood on days 8–16 post-CTX (termed restoration phase). In vitro, these DCs were functional, because they showed normal phagocytosis and effective Ag presentation capability upon activation. In vivo, administration of the TLR3 agonist poly(I:C) at the peak of DC expansion (day 12 postlymphopenia) induced inflammatory cytokine production and increases in the number of activated DCs in lymph nodes. Importantly, boosting with gp10025–33 melanoma peptide combined with poly(I:C) 12 days after an initial priming with the same regimen significantly increased the expansion and the antitumor efficacy of adoptively transferred pmel-1 CD8+ T cells. These responses were abrogated after depletion of activated DCs during Ag boosting. In conclusion, our data show that CTX treatment induces, during the restoration phase, expansion of immature DCs, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies. PMID:19201856

  3. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies

    USDA-ARS?s Scientific Manuscript database

    Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...

  4. infections bronchitis virus S2 of 4/91 expressed from recombinant virus does not protect against ark-type challenge

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that chickens primed with a recombinant Newcastle disease virus LaSota (rLS) expressing the S2 gene of infectious bronchitis virus (IBV) and boosted with an attenuated IBV Massachusetts (Mass)-type vaccine were protected against IBV Arkansas (Ark)-type virulent challenge. ...

  5. Breadth of neutralizing antibodies elicited by stable, homogeneous clade A and clade C HIV-1 gp140 envelope trimers in guinea pigs.

    PubMed

    Nkolola, Joseph P; Peng, Hanqin; Settembre, Ethan C; Freeman, Michael; Grandpre, Lauren E; Devoy, Colleen; Lynch, Diana M; La Porte, Annalena; Simmons, Nathaniel L; Bradley, Ritu; Montefiori, David C; Seaman, Michael S; Chen, Bing; Barouch, Dan H

    2010-04-01

    The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.

  6. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caivano, Antonella; Doria-Rose, Nicole A.; Dept. of Molecular and Cell Biology, University of Washington, Seattle, WA 98124-6108

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activitymore » and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.« less

  7. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  8. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease.

    PubMed

    Penkert, Rhiannon R; Young, Neal S; Surman, Sherri L; Sealy, Robert E; Rosch, Jason; Dormitzer, Philip R; Settembre, Ethan C; Chandramouli, Sumana; Wong, Susan; Hankins, Jane S; Hurwitz, Julia L

    2017-06-22

    Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Main-belt asteroid exploration - Mission options for the 1990s

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1982-01-01

    Mission configurations, propulsion systems, and target bodies for possible NASA asteroid exploration projects are examined. Noting that an announced delay in the development of a solar electric propulsion system has led to a consideration of chemical rocket systems, asteroid missions are grouped in terms of five potential areas for investigation, each successively further from the sun. The Shuttle-launched IUS is suggested as the prime candidate for boosting probes into trajectories for asteroid rendezvous with a number of the 3000 known asteroids. Planetary swingbys are mentioned as the only suitable method for satisfying the large energy requirements of the asteroid missions. Performance analyses are presented of the IUS 2-stage/Star-48 and Centaur vehicles, and sample missions to Fortuna, Anahita, and Urania in 1990 and further missions to the middle, outer, and Trojans asteroids are outlined.

  10. Enhancing the Immune Response to Recombinant Plague Antigens

    DTIC Science & Technology

    2006-05-01

    Wakelin. 2003. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric...onset, the high mortality, and the rapid spread of the disease. Immunization against aerosolized plague presents a particular challenge for vaccine ...homologous boosting at increasing the magnitude and/or duration of the antibody response. 15. SUBJECT TERMS Biological warfare, vaccine , adjuvant

  11. Clostridium perfringens beta toxin DNA prime-protein boost elicits enhanced protective immune response in mice.

    PubMed

    Solanki, Amit Kumar; Bhatia, Bharati; Kaushik, Himani; Deshmukh, Sachin K; Dixit, Aparna; Garg, Lalit C

    2017-07-01

    Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.

  12. A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge.

    PubMed

    Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea

    2018-01-16

    Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.

  13. Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012).

    PubMed

    Crank, Michelle C; Wilson, Eleanor M P; Novik, Laura; Enama, Mary E; Hendel, Cynthia S; Gu, Wenjuan; Nason, Martha C; Bailer, Robert T; Nabel, Gary J; McDermott, Adrian B; Mascola, John R; Koup, Richard A; Ledgerwood, Julie E; Graham, Barney S

    2016-01-01

    VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. ClinicalTrials.gov NCT00479999.

  14. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results of potency, breadth, and safety demonstrated in the mouse model support further studies in higher animal models for clinical relevance. PMID:29449842

  15. Priming of Early Closure: Evidence for the Lexical Boost during Sentence Comprehension

    PubMed Central

    Traxler, Matthew J.

    2014-01-01

    Two self-paced reading experiments investigated priming in sentences containing “early” vs. “late closure” ambiguities. Early closure sentences impose relatively large processing costs at the point of syntactic disambiguation (Frazier & Rayner, 1982). The current study investigated a possible way to reduce processing costs. Target sentences were temporarily ambiguous and were disambiguated towards either the preferred “late” closure analysis or the dispreferred “early” closure analysis. Each target sentence was preceded by a prime that was either structurally identical or that required a different syntactic analysis. In Experiment 1, all of the prime sentences shared the same critical verb as the target (Arai et al., 2007; Carminati et al., 2008; Tooley et al., 2009, in press; Traxler et al., in press; Weber & Indefrey, 2009). In Experiment 2, verb repetition was eliminated by reorganizing the stimuli from Experiment 1. In Experiment 1, processing of the disambiguating verb was facilitated when an “early” closure target sentence followed an “early” closure prime. In Experiment 2, there were no significant priming effects, although an overall difference in processing time favored “late closure” targets. Combined analyses verified that the pattern of results in Experiment 1 differed significantly from Experiment 2. These experiments provide the first indication that “early” closure analyses can be primed and that such priming is more robust when a critical verb appears in both the prime and the target sentence. The results add to the body of data indicating a “lexical boost” for syntactic priming effects during comprehension. They have implications for theories of syntactic representation and processing (e.g., Boland & Blodgett, 2006; Vosse & Kempen, 2009; Sag et al., 2003). PMID:25750915

  16. Promoting Recruitment using Information Management Efficiently (PRIME): study protocol for a stepped-wedge cluster randomised controlled trial within the REstart or STop Antithrombotics Randomised Trial (RESTART).

    PubMed

    Maxwell, Amy E; Dennis, Martin; Rudd, Anthony; Weir, Christopher J; Parker, Richard A; Al-Shahi Salman, Rustam

    2017-03-01

    Research into methods to boost recruitment has been identified as the highest priority for randomised controlled trial (RCT) methodological research in the United Kingdom. Slow recruitment delays the delivery of research and inflates costs. Using electronic patient records has been shown to boost recruitment to ongoing RCTs in primary care by identifying potentially eligible participants, but this approach remains relatively unexplored in secondary care, and for stroke in particular. The REstart or STop Antithrombotics Randomised Trial (RESTART; ISRCTN71907627) is an ongoing RCT of secondary prevention after stroke due to intracerebral haemorrhage. Promoting Recruitment using Information Management Efficiently (PRIME) is a stepped-wedge cluster randomised trial of a complex intervention to help RESTART sites increase their recruitment and attain their own target numbers of participants. Seventy-two hospital sites that were located in England, Wales or Scotland and were active in RESTART in June 2015 opted into PRIME. Sites were randomly allocated (using a computer-generated block randomisation algorithm, stratified by hospital location in Scotland vs. England/Wales) to one of 12 months in which the intervention would be delivered. All sites began in the control state. The intervention was delivered by a recruitment co-ordinator via a teleconference with each site. The intervention involved discussing recruitment strategies, providing software for each site to extract from their own stroke audit data lists of patients who were potentially eligible for RESTART, and a second teleconference to review progress 6 months later. The recruitment co-ordinator was blinded to the timing of the intervention until 2 months before it was due at a site. Staff at RESTART sites were blinded to the nature and timing of the intervention. The primary outcome is the total number of patients randomised into RESTART per month per site and will be analysed in a negative binomial generalised linear mixed model. PRIME began in September 2015. The last intervention was delivered in August 2016. Six-month follow-up will be complete in February 2017. The final results of PRIME will be analysed and disseminated in 2017. The PRIME study was registered in the Northern Ireland Hub for Trials Methodology Research Studies Within a Trial (SWAT) repository (SWAT22) on 23 December 2015.

  17. Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response.

    PubMed

    Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia

    2013-12-25

    Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8(+) T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8(+) T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.

  18. Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs.

    PubMed

    Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K

    2011-10-01

    Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.

  19. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  20. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  1. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge.

    PubMed

    Morello, Christopher S; Kraynyak, Kimberly A; Levinson, Michael S; Chen, Zhijiang; Lee, Kuo-Fen; Spector, Deborah H

    2012-10-12

    Herpes Simplex Virus Type 2 (HSV-2) infection can result in life-long recurrent genital disease, asymptomatic virus shedding, and transmission. No vaccine to date has shown significant protection clinically. Here, we used a mouse model of genital HSV-2 infection to test the efficacy of a vaccine consisting of whole, formalin-inactivated HSV-2 (FI-HSV2) formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Vaccine components were administered alone or as a prime-boost immunization together with DNA vaccines encoding a truncated glycoprotein D2 (gD2t) and two conserved HSV-2 genes necessary for virus replication, UL5 (DNA helicase) and UL30 (DNA polymerase). Our results show: (1) compared with mock immunized controls, mice immunized with FI-HSV2 plus MPL/alum consistently showed protection against disease burden and total viral shedding while the mice immunized with gD2t protein with MPL/alum did not; (2) protection against genital disease and viral replication correlated with the type of boost in a prime-boost immunization with little advantage afforded by a DNA prime; (3) intramuscular (i.m.) immunization with FI-HSV2 in MPL/Alhydrogel adjuvant provided nearly complete protection against vaginal HSV-2 shedding after a lethal intravaginal (i.vag.) short-term challenge and long-term rechallenge; (4) single formulation immunization with DNA vaccines, FI-HSV2, and MPL in an aluminum phosphate (Adju-Phos) adjuvant did not increase protection relative to FI-HSV2/MPL/Adju-Phos alone; and (5) addition of MPL/alum to the FI-HSV2 was required for optimal protection against disease, viral replication, and latent virus load in the dorsal root ganglia (DRG). Most notably, an optimized vaccine formulation of FI-HSV2 MPL/Alhydrogel given i.m. completely protected against detectable vaginal HSV-2 shedding in the majority of animals and HSV-2 latent DNA in the DRG of all animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. MUC1 and survivin combination tumor gene vaccine generates specific immune responses and anti-tumor effects in a murine melanoma model.

    PubMed

    Zhang, Haihong; Liu, Chenlu; Zhang, Fangfang; Geng, Fei; Xia, Qiu; Lu, Zhenzhen; Xu, Ping; Xie, Yu; Wu, Hui; Yu, Bin; Wu, Jiaxin; Yu, Xianghui; Kong, Wei

    2016-05-23

    MUC1 and survivin are ideal tumor antigens. Although many cancer vaccines targeting survivin or MUC1 have entered clinical trials, no vaccine combining MUC1 and survivin have been reported. Due to tumor heterogeneity, vaccines containing a combination of antigens may have improved efficacy and coverage of a broader spectrum of cancer targets. Here, cellular responses and anti-tumor activities induced by a combination of DNA vaccine targeting MUC1 and survivin (MS) were evaluated. Results showed that CTL activity and inhibition of tumor growth were obviously enhanced in mice immunized with the combined vaccine in a protection assay. However, in order to enhance the therapeutic effect in the treatment assay, a recombinant adenovirus (rAd) vaccine expressing MUC1 and survivin (Ad-MS) was used as a booster following the DNA vaccine prime. Meanwhile, IL-2 promoting T cell proliferation was used as an immunoadjuvant for the DNA vaccine. Results showed that the CTL activity response to the DNA vaccine was enhanced nearly 200% when boosted by the rAd vaccine and was further enhanced by nearly 60% when combined with the IL-2 adjuvant. Therefore, DNA prime combined with rAd boost and IL-2 (MS/IL2/Ad-MS) adjuvant was considered as the best strategy and further evaluated. Multiple cytokines promoting cellular immune responses were shown to be greatly enhanced in mice immunized with MS/IL2/Ad-MS. Moreover, in the treatment assay, the tumor inhibition rate of MS/IL2/Ad-MS reached up to 50.1%, which may be attributed to the enhancement of immune responses and reduction of immunosuppressive factors in tumor-bearing mice. These results suggested that immunization with the combination vaccine targeting MUC1 and survivin using a DNA prime-rAd boost strategy along with IL-2 adjuvant may be an effective method for breaking through immune tolerance to tumors expressing these antigens with potential therapeutic benefits in melanoma cancer. Copyright © 2016. Published by Elsevier Ltd.

  3. Effect of delayed anthrax vaccine dose on Bacillus anthracis protective antigen IgG response and lethal toxin neutralization activity.

    PubMed

    Pittman, Phillip R; Fisher, Diana; Quinn, Xiaofei; Schmader, Trevor; Barrera-Oro, Julio G

    2013-10-17

    We describe the Bacillus anthracis protective antigen IgG antibody response and the B. anthracis lethal toxin neutralization activity to a delayed dose of anthrax vaccine adsorbed (AVA, BioThrax(®)) using validated assays. 373 individuals received 1, 2, or 3 priming doses, 18-24 months afterward, they received a delayed dose of AVA. Overall, 23.6% of subjects showed detectable anti-PA IgG before the boost, compared to 99.2% (P<0.0001) 28 days after the boost. Geometric mean anti-PA IgG concentration (GMC) was 1.66 μg/mL before and 887.82 μg/mL after the boost (P<0.0001). The proportion of individuals with four-fold increase in GMC following the boost ranged from 93.8% to 100%. Robust anti-PA IgG levels and B. anthracis lethal toxin neutralization activity are induced when an AVA dose is delayed as long as two years. These data support continuing with the vaccination schedule when a dose is delayed as long as two years rather than restarting the series. Published by Elsevier Ltd.

  4. Safety and Immunogenicity of PENNVAX-G DNA Prime Administered by Biojector 2000 or CELLECTRA Electroporation Device With Modified Vaccinia Ankara-CMDR Boost.

    PubMed

    Ake, Julie A; Schuetz, Alexandra; Pegu, Poonam; Wieczorek, Lindsay; Eller, Michael A; Kibuuka, Hannah; Sawe, Fredrick; Maboko, Leonard; Polonis, Victoria; Karasavva, Nicos; Weiner, David; Sekiziyivu, Arthur; Kosgei, Josphat; Missanga, Marco; Kroidl, Arne; Mann, Philipp; Ratto-Kim, Silvia; Anne Eller, Leigh; Earl, Patricia; Moss, Bernard; Dorsey-Spitz, Julie; Milazzo, Mark; Laissa Ouedraogo, G; Rizvi, Farrukh; Yan, Jian; Khan, Amir S; Peel, Sheila; Sardesai, Niranjan Y; Michael, Nelson L; Ngauy, Viseth; Marovich, Mary; Robb, Merlin L

    2017-11-27

    We report the first-in-human safety and immunogenicity evaluation of PENNVAX-G DNA/modified vaccinia Ankara-Chiang Mai double recombinant (MVA-CMDR) prime-boost human immuonodeficiency virus (HIV) vaccine, with intramuscular DNA delivery by either Biojector 2000 needle-free injection system (Biojector) or CELLECTRA electroporation device. Healthy, HIV-uninfected adults were randomized to receive 4 mg of PENNVAX-G DNA delivered intramuscularly by Biojector or electroporation at baseline and week 4 followed by intramuscular injection of 108 plaque forming units of MVA-CMDR at weeks 12 and 24. The open-label part A was conducted in the United States, followed by a double-blind, placebo-controlled part B in East Africa. Solicited and unsolicited adverse events were recorded, and immune responses were measured. Eighty-eight of 100 enrolled participants completed all study injections, which were generally safe and well tolerated, with more immediate, but transient, pain in the electroporation group. Cellular responses were observed in 57% of vaccine recipients tested and were CD4 predominant. High rates of binding antibody responses to CRF01_AE antigens, including gp70 V1V2 scaffold, were observed. Neutralizing antibodies were detected in a peripheral blood mononuclear cell assay, and moderate antibody-dependent, cell-mediated cytotoxicity activity was demonstrated. The PVG/MVA-CMDR HIV-1 vaccine regimen is safe and immunogenic. Substantial differences in safety or immunogenicity between modes of DNA delivery were not observed. NCT01260727. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial.

    PubMed

    Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric

    2017-11-27

    We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.

  6. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    PubMed

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.

    PubMed

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A

    2006-03-24

    Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.

  8. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    PubMed

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  9. Recombinant Zika virus envelope protein elicited protective immunity against Zika virus in immunocompetent mice

    PubMed Central

    Liu, Zhihua; Li, Min; Liu, Haitao

    2018-01-01

    Zika virus (ZIKV) has caused great public concerns due to its recent large outbreaks and a close association with microcephaly in fetus and Guillain-Barre syndrome in adults. Rapid development of vaccines against ZIKV is a public health priority. To this end, we have constructed and purified recombinant ZIKV envelope protein using both prokaryotic and eukaryotic expression systems, and then tested their immunogenicity and protective efficacy in immune competent mice. Both protein immunogens elicited humoral and cellular immune responses, and protected immune competent mice from ZIKV challenge in vivo. These products could be further evaluated either as stand-alone vaccine candidate, or used in a prime-and-boost regimen with other forms of ZIKV vaccine. PMID:29590178

  10. Adjuvant-Specific Genetic and Immune Signatures Associated with Lower SIV Infection Risk in Animal Models | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV) vaccine trial, RV144, employed a priming Canarypox-based vector, ALVAC-HIV, along with a boost composed of segments of the HIV envelope protein, gp120, with the adjuvant alum.  Results from the trial suggested the vaccine provided protection and, because of the importance of antibodies to that protection, using an adjuvant that could

  11. An update on vaccines for tuberculosis - there is more to it than just waning of BCG efficacy with time.

    PubMed

    Romano, Marta; Huygen, Kris

    2012-12-01

    Apart from better diagnostics and new anti-microbial drugs, an effective vaccine for tuberculosis is urgently needed to halt this poverty-related disease, afflicting millions of people worldwide. After a general introduction on the global threat of tuberculosis, the pros and cons of the existing M. bovis BCG vaccine are discussed. As the correlates of protection against tuberculosis remain largely unknown, new findings in biomarker research are described. Next, an update on the ongoing Phase I and Phase II clinical trials is given. Finally, some of the most promising novel pre-clinical developments using live attenuated vaccines, sub-unit vaccines, prime-boost strategies, and new vaccination routes are discussed. The field has made considerable progress and 12 vaccine candidates have now actually entered Phase I or Phase IIa and IIb clinical trials. It is argued that the variable protection conferred by the existing BCG vaccine against reactivation of latent TB is caused not only by waning of its efficacy with time but also by its weak induction of MHC class I restricted responses. Prime-boost strategies based on the actual BCG vaccine may not be sufficient to overcome this hurdle. The use of plasmid DNA vaccination might offer a solution.

  12. Oral immunization with hepatitis B surface antigen expressed in transgenic plants

    PubMed Central

    Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin

    2001-01-01

    Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic plant samples revealed evidence that the HBsAg accumulated intracellularly; we conclude that natural bioencapsulation of the antigen may provide protection from degradation in the digestive tract until plant cell degradation occurs near an immune effector site in the gut. The correlate of protection from hepatitis B virus infection is serum antibody titers induced by vaccination; the protective level in humans is 10 milliunits/ml or greater. Mice fed HBsAg-transgenic potatoes produced HBsAg-specific serum antibodies that exceeded the protective level and, on parenteral boosting, generated a strong long-lasting secondary antibody response. We have also shown the effectiveness of oral delivery by using a parenteral prime-oral boost immunization schedule. The demonstrated success of oral immunization for hepatitis B virus with an “edible vaccine” provides a strategy for contributing a means to achieve global immunization for hepatitis B prevention and eradication. PMID:11553782

  13. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  14. Adjuvant Activity of the Catalytic A1 Domain of Cholera Toxin for Retroviral Antigens Delivered by GeneGun▿

    PubMed Central

    Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.

    2011-01-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173

  15. Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun.

    PubMed

    Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R

    2011-06-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.

  16. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  17. Expansion and retention of pulmonary CD4+ T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia.

    PubMed

    Roberts, Lydia M; Wehrly, Tara D; Crane, Deborah D; Bosio, Catharine M

    2017-05-02

    Francisella tularensis subsp. tularensis strain SchuS4 (Ftt) is a highly virulent intracellular bacterium. Inhalation of 10 or fewer organisms results in an acute and potentially lethal disease called pneumonic tularemia. Ftt infections occur naturally in the U.S. and Ftt was developed as a bioweapon. Thus, there is a need for vaccines that protect against this deadly pathogen. Although a live vaccine strain of Francisella tularensis (LVS) exists, LVS fails to generate long-lived protective immunity against modest challenge doses of Ftt. We recently identified an important role for high avidity CD4 + T cells in short-term protection and hypothesized that expanding this pool of cells would improve overall vaccine efficacy with regard to longevity and challenge dose. In support of our hypothesis, application of a prime/boost vaccination strategy increased the pool of high avidity CD4 + T cells which correlated with improved survival following challenge with either increased doses of virulent Ftt or at late time points after vaccination. In summary, we demonstrate that both epitope selection and vaccination strategies that expand antigen-specific T cells correlate with superior immunity to Ftt as measured by survival. Copyright © 2017. Published by Elsevier Ltd.

  18. Durable protection of rhesus macaques immunized with a replicating adenovirus-SIV multigene prime/protein boost vaccine regimen against a second SIVmac251 rectal challenge: role of SIV-specific CD8+ T cell responses.

    PubMed

    Malkevitch, Nina V; Patterson, L Jean; Aldrich, M Kristine; Wu, Yichen; Venzon, David; Florese, Ruth H; Kalyanaraman, V S; Pal, Ranajit; Lee, Eun Mi; Zhao, Jun; Cristillo, Anthony; Robert-Guroff, Marjorie

    2006-09-15

    Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting <50 SIV RNA copies. Decreased viremia compared to naïve controls was observed in the other three. The SIV-infected unimmunized macaques modestly controlled viremia but exhibited CD4 counts < or =200, unlike the protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained <50 SIV RNA copies; SIV RNA emerged in 6. Re-appearance of CD8 cells and restoration of SIV-specific cellular immunity coincided with viremia suppression. Overall, cellular immunity induced by vaccination and/or low-level, inapparent viremia post-first SIV(mac251) challenge, was associated with durable protection against re-challenge.

  19. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice

    PubMed Central

    Wang, Jiong; Hilchey, Shannon P.; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J.; Treanor, John J.; Sangster, Mark Y.

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity. PMID:29641537

  20. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice.

    PubMed

    Wang, Jiong; Hilchey, Shannon P; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J; Treanor, John J; Sangster, Mark Y; Zand, Martin S

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.

  1. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    PubMed

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response

    PubMed Central

    Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia

    2013-01-01

    Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses. PMID:24400008

  3. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment.

    PubMed

    Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara

    2016-01-01

    Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation.

  4. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    DTIC Science & Technology

    2016-08-01

    is safe and well tolerated, but does not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human...injection for enhancing TVDV in non -human primates. Specific Aim 2: Develop an improved dengue vaccine using a heterologous prime boost approach...not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human primates to enhance the immunogenicity of

  5. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults.

    PubMed

    Gillard, Paul; Chu, Daniel Wai Sing; Hwang, Shinn-Jang; Yang, Pan-Chyr; Thongcharoen, Prasert; Lim, Fong Seng; Dramé, Mamadou; Walravens, Karl; Roman, François

    2014-03-15

    The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime-boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic.

  6. Cost-effectiveness of novel vaccines for tuberculosis control: a decision analysis study

    PubMed Central

    2011-01-01

    Background The development of a successful new tuberculosis (TB) vaccine would circumvent many limitations of current diagnostic and treatment practices. However, vaccine development is complex and costly. We aimed to assess the potential cost effectiveness of novel vaccines for TB control in a sub-Saharan African country - Zambia - relative to the existing strategy of directly observed treatment, short course (DOTS) and current level of bacille Calmette-Guérin (BCG) vaccination coverage. Methods We conducted a decision analysis model-based simulation from the societal perspective, with a 3% discount rate and all costs expressed in 2007 US dollars. Health outcomes and costs were projected over a 30-year period, for persons born in Zambia (population 11,478,000 in 2005) in year 1. Initial development costs for single vaccination and prime-boost strategies were prorated to the Zambian share (0.398%) of global BCG vaccine coverage for newborns. Main outcome measures were TB-related morbidity, mortality, and costs over a range of potential scenarios for vaccine efficacy. Results Relative to the status quo strategy, a BCG replacement vaccine administered at birth, with 70% efficacy in preventing rapid progression to TB disease after initial infection, is estimated to avert 932 TB cases and 422 TB-related deaths (prevention of 199 cases/100,000 vaccinated, and 90 deaths/100,000 vaccinated). This would result in estimated net savings of $3.6 million over 30 years for 468,073 Zambians born in year 1 of the simulation. The addition of a booster at age 10 results in estimated savings of $5.6 million compared to the status quo, averting 1,863 TB cases and 1,011 TB-related deaths (prevention of 398 cases/100,000 vaccinated, and of 216 deaths/100,000 vaccinated). With vaccination at birth alone, net savings would be realized within 1 year, whereas the prime-boost strategy would require an additional 5 years to realize savings, reflecting a greater initial development cost. Conclusions Investment in an improved TB vaccine is predicted to result in considerable cost savings, as well as a reduction in TB morbidity and TB-related mortality, when added to existing control strategies. For a vaccine with waning efficacy, a prime-boost strategy is more cost-effective in the long term. PMID:21269503

  7. A Novel Prime and Boost Regimen of HIV Virus-Like Particles with TLR4 Adjuvant MPLA Induces Th1 Oriented Immune Responses against HIV

    PubMed Central

    Poteet, Ethan; Lewis, Phoebe; Li, Feng; Zhang, Sheng; Gu, Jianhua; Chen, Changyi; Ho, Sam On; Do, Thai; Chiang, SuMing; Fujii, Gary; Yao, Qizhi

    2015-01-01

    HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses. PMID:26312747

  8. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Influence of Route of Administration on Immediate and Extended Protection in Rats Immunized with Escherichia coli Heat-Labile Enterotoxin

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1980-01-01

    The effect of route of administration, dosage, and number of boosts employed during immunization with the polymyxin-release form of Escherichia coli heat-labile (LT) enterotoxin on the degree and duration of protection afforded was evaluated in rats which were challenged by the ligated loop technique. Increasing the boosting dosage by fivefold from 50 to 250 μg resulted in a marked increase in protection against challenge with toxin in rats immunized either just by the parenteral route (i.p./i.p.) or by a parenteral prime, followed by peroral boosts (i.p./p.o.) in rats pretreated with cimetidine to ablate gastric secretions; such was not the case, however, even with a 50-fold increase in dosage in rats immunized just by the peroral route (p.o./p.o.). Four weekly peroral boosts were required to achieve the strongest degree of protection. Increasing the boosting dosage also increased the degree of protection against challenge with viable LT+/ST− and LT+/ST+ strains (ST indicates heat-stable enterotoxin) in rats immunized by the i.p./p.o., but not by the i.p./i.p., route; no protection was evident against an LT−/ST+ strain. Protection was lost within 3 weeks after immunization in rats immunized by the i.p./i.p. route. In contrast, protection was extended over the 3-month observation period in those immunized by the i.p./p.o. route; the degree of protection was enhanced in rats which received an additional boost at 2 months. These observations establish the fact that immunization with LT is similar to that with cholera toxin in that arousal of the local immune intestinal response by means of peroral immunization provides maximal extended protection. PMID:6987180

  10. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    PubMed

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-05

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. T cell cytokine polarity as a determinant of immunoglobulin A (IgA) glycosylation and the severity of experimental IgA nephropathy.

    PubMed

    Chintalacharuvu, S R; Yamashita, M; Bagheri, N; Blanchard, T G; Nedrud, J G; Lamm, M E; Tomino, Y; Emancipator, S N

    2008-09-01

    Immunoglobulin A (IgA) glycosylation, recognized as an important pathogenic factor in IgA nephropathy (IgAN), is apparently controlled by the polarity of T helper (Th) cytokine responses. To examine the role of cytokine polarity in IgAN, inbred mice were immunized by intraperitoneal priming with inactivated Sendai virus (SeV) emulsified in either complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), which promote Th1- or Th2-immune response, respectively, and then boosted identically twice orally with aqueous suspensions of inactivated virus. Next, some mice were challenged intranasally with infectious SeV. Mice primed with CFA or IFA had equal reductions in nasal viral titre relative to non-immune controls, and equally increased serum levels of SeV-specific IgA antibody. Mice primed with CFA showed higher SeV-specific IgG than those with IFA. Splenocytes from mice primed with IFA produced copious amounts of interleukin (IL)-4 and IL-5, but little interferon-gamma and IL-2; those primed with CFA had reciprocal cytokine recall responses. Total serum IgA and especially SeV-specific IgA from mice primed with IFA showed a selective defect in sialylation and galactosylation. Although the frequency and intensity of glomerular deposits and haematuria did not differ, glomerulonephritis in mice primed with IFA and challenged with infectious virus was more severe than in those given CFA, as judged by serum creatinine level. We conclude that the polarity of T cell cytokines controls the pattern of IgA glycosylation and exerts direct or indirect effects on functional glomerular responses to immune complex deposition.

  12. Adjuvant-Specific Genetic and Immune Signatures Associated with Lower SIV Infection Risk in Animal Models | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV) vaccine trial, RV144, employed a priming Canarypox-based vector, ALVAC-HIV, along with a boost composed of segments of the HIV envelope protein, gp120, with the adjuvant alum.  Results from the trial suggested the vaccine provided protection and, because of the importance of antibodies to that protection, using an adjuvant that could elicit a stronger immune response might improve efficacy.

  13. Unintended Embodiment of Concepts into Percepts: Sensory Activation Boosts Attention for Same-Modality Concepts in the Attentional Blink Paradigm

    ERIC Educational Resources Information Center

    Vermeulen, Nicolas; Mermillod, Martial; Godefroid, Jimmy; Corneille, Olivier

    2009-01-01

    This study shows that sensory priming facilitates reports of same-modality concepts in an attentional blink paradigm. Participants had to detect and report two target words (T1 and T2) presented for 53 ms each among a series of nonwords distractors at a frequency of up to 19 items per second. SOA between target words was set to 53 ms or 213 ms,…

  14. [Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].

    PubMed

    Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie

    2012-07-01

    To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.

  15. Safety and Immunogenicity of Heterologous Prime-Boost Immunisation with Plasmodium falciparum Malaria Candidate Vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in Healthy Gambian and Kenyan Adults

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H.; Bliss, Carly M.; Duncan, Christopher J. A.; Collins, Katharine A.; Garcia Knight, Miguel A.; Kimani, Eva; Anagnostou, Nicholas A.; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C.; Spencer, Alexandra J.; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K.; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M.; Nicosia, Alfredo; Imoukhuede, Egeruan B.; Bejon, Philip; Urban, Britta C.; Flanagan, Katie L.; Ewer, Katie J.; Chilengi, Roma; Hill, Adrian V. S.; Bojang, Kalifa

    2013-01-01

    Background Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). Methodology We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. Results ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). Conclusions ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Trial Registration Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430 PMID:23526949

  16. Human Immunodeficiency Virus Vaccine Trials

    PubMed Central

    O’Connell, Robert J.; Kim, Jerome H.; Corey, Lawrence; Michael, Nelson L.

    2012-01-01

    More than 2 million AIDS-related deaths occurred globally in 2008, and more than 33 million people are living with HIV/AIDS. Despite promising advances in prevention, an estimated 2.7 million new HIV infections occurred in that year, so that for every two patients placed on combination antiretroviral treatment, five people became infected. The pandemic poses a formidable challenge to the development, progress, and stability of global society 30 years after it was recognized. Experimental preventive HIV-1 vaccines have been administered to more than 44,000 human volunteers in more than 187 separate trials since 1987. Only five candidate vaccine strategies have been advanced to efficacy testing. The recombinant glycoprotein (rgp)120 subunit vaccines, AIDSVAX B/B and AIDSVAX B/E, and the Merck Adenovirus serotype (Ad)5 viral-vector expressing HIV-1 Gag, Pol, and Nef failed to show a reduction in infection rate or lowering of postinfection viral set point. Most recently, a phase III trial that tested a heterologous prime-boost vaccine combination of ALVAC-HIV vCP1521 and bivalent rgp120 (AIDSVAX B/E) showed 31% efficacy in protection from infection among community-risk Thai participants. A fifth efficacy trial testing a DNA/recombinant(r) Ad5 prime-boost combination is currently under way. We review the clinical trials of HIV vaccines that have provided insight into human immunogenicity or efficacy in preventing HIV-1 infection. PMID:23209178

  17. Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults.

    PubMed

    Ogwang, Caroline; Afolabi, Muhammed; Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H; Bliss, Carly M; Duncan, Christopher J A; Collins, Katharine A; Garcia Knight, Miguel A; Kimani, Eva; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Spencer, Alexandra J; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Urban, Britta C; Flanagan, Katie L; Ewer, Katie J; Chilengi, Roma; Hill, Adrian V S; Bojang, Kalifa

    2013-01-01

    Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.

  18. A Promising Listeria-Vectored Vaccine Induces Th1-Type Immune Responses and Confers Protection Against Tuberculosis.

    PubMed

    Yin, Yuelan; Lian, Kai; Zhao, Dan; Tao, Chengwu; Chen, Xiang; Tan, Weijun; Wang, Xiaobo; Xu, Zhengzhong; Hu, Maozhi; Rao, Yan; Zhou, Xiaohui; Pan, Zhiming; Zhang, Xiaoming; Jiao, Xin'an

    2017-01-01

    Deaths associated with tuberculosis (TB) is rising and accounted for 1.4 million deaths in 2015 many of which were due to drug-resistant bacteria. Vaccines represent an important medical intervention, but the current Bacilli Calmette-Guerin (BCG) vaccine is not ideal for the protection of teenagers and adults. Therefore, a safe and effective vaccine is urgently needed. In this study, we designed a novel vaccine using an attenuated Listeria monocytogenes strain carrying fusion antigen FbpB-ESAT-6 (rLM) and characterized its safety and protective efficacy against Mycobacterium tuberculosis ( M.tb ) infection in mice. Compared to the wild type strain yzuLM4 and parental strain LMΔ actA/plcB (LM1-2), the virulence of rLM was significantly reduced as judged by its infectious kinetics and LD 50 dose. Further characterization of intravenous immunization showed that prime-boost vaccination significantly increased the levels of Th1 cytokines (IFN-γ, IL-17, and IL-6), and enhanced cytotoxic T lymphocyte (CTL) CTLs activity, suggesting that rLM could elicit potent Th1/Th17 responses. More importantly, rLM significantly conferred the protection against M.tb H37Rv challenge. Collectively, our findings indicated that rLM is a novel and useful tool to prevent M.tb infection, and can be potentially be used to boost BCG-primed immunity.

  19. Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia.

    PubMed

    Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A

    2018-05-03

    Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.

  20. Use of a booster dose of capsular group C meningococcal glycoconjugate vaccine to demonstrate immunologic memory in children primed with one or two vaccine doses in infancy.

    PubMed

    Pace, David; Khatami, Ameneh; Attard-Montalto, Simon; Voysey, Merryn; Finn, Adam; Faust, Saul N; Heath, Paul T; Borrow, Ray; Snape, Matthew D; Pollard, Andrew J

    2016-12-07

    Use of a polysaccharide vaccine challenge to demonstrate immunologic memory after priming with capsular group C meningococcal conjugate vaccines (MenCC) risks induction of immunologic hyporesponsiveness. For this reason, MenCC vaccines are now used as probes of immunologic memory, however, no studies have demonstrated their ability to distinguish primed from unprimed children. This study was part of a randomised controlled trial investigating the immunogenicity of a booster dose of the combined Haemophilus influenzae type b and MenC-tetanus toxoid vaccine (Hib-MenC-TT) in infants receiving reduced dose MenCC vaccine priming schedules (one MenC-CRM/MenC-TT or two MenC-CRM vaccine doses) compared with an unprimed group. Antibody kinetics were studied in a subset of 269 children by measuring changes in the MenC serum bactericidal antibody, using rabbit complement, (MenC rSBA) titres and MenC specific IgG memory B-cells before and at 6 and 28days following the 12month booster vaccination. At 6days after the 12monthMenCC vaccine, the rise in MenC rSBA titres and MenC specific IgG memory B-cells of the primed groups were significantly higher than the infant MenCC naïve group. Participants primed with one MenC-TT dose had the highest increase in MenC rSBA titres compared with all other groups. The MenC rSBA titres at the 28th compared with the 6th day after boosting was significantly higher in those primed with a single MenC-TT/MenC-CRM vaccine in infancy compared with those who were not primed or who were primed with two doses of the MenC-CRM vaccine. Immunologic memory can be demonstrated by a MenCC booster vaccination but is affected by the type and number of MenCC doses used for infant priming. The MenC rSBA responses can be used to demonstrate successful immunologic priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    PubMed Central

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  2. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    PubMed

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  3. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen

    PubMed Central

    Lynch, Heather E.; Stewart, Shelley M.; Kepler, Thomas B.; Sempowski, Gregory D.; Alam, S. Munir

    2014-01-01

    Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development. PMID:24316020

  4. A nonadjuvanted transcutaneous tetanus patch is effective in boosting anti-tetanus toxoid immune responses.

    PubMed

    Seid, Robert C; Reinisch, Christoph; Schlegl, Robert; Moehlen, Michael; Meinke, Andreas; Lundberg, Urban

    2014-02-01

    Dry tetanus toxoid (TTx) patches were formulated without any adjuvant, with excipients to impart antigen stabilization and to enhance skin delivery. The booster effects of the TTx patches were assessed using a guinea pig model. The study revealed significant rises in TTx IgG titers induced by the TTx patches after a low-dose subcutaneous (s.c.) prime with TTx adsorbed to aluminum hydroxide. The TTx patch can therefore be considered an effective alternative to a subcutaneous booster.

  5. De novo alloreactive memory CD8+ T cells develop following allogeneic challenge when CNI immunosuppression is delayed.

    PubMed

    Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G

    2015-01-01

    Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p<0.001), but not 6days post-prime. Following a boost challenge, these memory CD8+ T cells were capable of producing a similarly sized population of secondary effectors as recipients not treated with CyA (p>0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine

    PubMed Central

    Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.

    2015-01-01

    Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794

  7. Induction of immunologic memory following primary vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine in infants.

    PubMed

    Knuf, Markus; Pankow-Culot, Heidemarie; Grunert, Detlef; Rapp, Michael; Panzer, Falko; Köllges, Ralph; Fanic, Aurélie; Habib, Ahsan; Borys, Dorota; Dieussaert, Ilse; Schuerman, Lode

    2012-01-01

    Induction of immunologic memory was assessed following primary vaccination with 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV). Infants were randomized (1:1) to receive 3 doses of PHiD-CV or 7vCRM (7-valent CRM197-conjugated pneumococcal conjugate vaccine [PCV]) at 2, 3, and 4 months of age followed by 23-valent pneumococcal polysaccharide vaccine (23vPS) booster dose at 11 to 14 months of age. Pneumococcal geometric mean antibody concentrations (GMCs) and opsonophagocytic activity (OPA) geometric mean titers were measured. Postprimary immune responses were consistent with those in previous PHiD-CV and 7vCRM studies. Following 23vPS boosting, vaccine serotype-specific antibody GMCs increased 6.5- to 33.3-fold and 4.8- to 32.2-fold versus prebooster in the PHiD-CV and 7vCRM groups, respectively. Postbooster OPA titers increased 2.8- to 38.8-fold and 2.6- to 58.9-fold, respectively. Postbooster antibody GMCs exceeded postprimary levels but, for some serotypes, postbooster OPA geometric mean titers were lower than postprimary in both groups. An additional dose of the same PCV received for priming was administered to 52 children aged 46 to 50 months, resulting in higher responses versus postprimary vaccination for all serotypes, but not always higher than post-23vPS booster. Induction of immunologic memory following PHiD-CV priming was confirmed. Additional PCV boosting in 4-year-olds did not provide strong evidence of hyporesponsiveness induced by previous 23vPS boosting. However, our results did not rule out depletion of the memory B cell pool following 23vPS vaccination, resulting in subsequent attenuated immune responses, and therefore support the use of PCV rather than 23vPS for booster vaccination in the second year of life.

  8. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming.

    PubMed

    Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen

    2015-01-01

    We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.

  9. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults

    PubMed Central

    Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances

    2015-01-01

    Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283

  10. Cross-protection elicited by primary and booster vaccinations against Japanese encephalitis: a two-year follow-up study.

    PubMed

    Erra, Elina O; Askling, Helena Hervius; Yoksan, Sutee; Rombo, Lars; Riutta, Jukka; Vene, Sirkka; Lindquist, Lars; Vapalahti, Olli; Kantele, Anu

    2013-12-17

    The inactivated Vero cell-derived vaccine (JE-VC, IXIARO) has replaced the traditional mouse brain-derived preparations (JE-MB) in travelers' vaccinations against Japanese encephalitis. We showed recently that a single JE-VC dose efficiently boosts immunity in JE-MB-primed vaccinees, and that JE-VC elicits cross-protective immunity against non-vaccine genotypes, including the emerging genotype I. While these studies only provided short-term data, the present investigation evaluates the longevity of seroprotection in the same volunteers. The study comprised 48 travelers who had received (1) JE-VC primary series, (2) JE-MB primary series followed by a single JE-VC booster dose, or (3) JE-MB primary series and a single JE-MB booster dose. Serum samples were collected two years after the last vaccine dose, and evaluated with the plaque-reduction neutralization test against seven Japanese encephalitis virus strains representing genotypes I-IV. PRNT50 titers ≥ 10 were considered protective. Two years after the primary series with JE-VC, 87-93% of the vaccinees proved to be cross-protected against test strains representing genotypes II-IV and 73% against those of genotype I. After a single homologous or heterologous booster dose to JE-MB-primed subjects, the two-year seroprotection rates against genotype I-IV strains were 89-100%. After JE-VC primary series, seroprotection appeared to wane first against genotype I. The first booster should not be delayed beyond two years. In JE-MB-primed subjects, a single JE-VC booster provided cross-protective immunity against genotype I-IV strains in almost all vaccinees, suggesting an interval of two years or even longer for the second booster. These data further support the use of a single JE-VC dose for boosting JE-MB immunity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen

    PubMed Central

    Mealey, Robert H.; Leib, Steven R.; Littke, Matt H.; Wagner, Bettina; Horohov, David W.; McGuire, Travis C.

    2009-01-01

    Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that 1.) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, 2.) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, 3.) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, 4.) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and 5.) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines. PMID:19368787

  12. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial.

    PubMed

    Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L; Stout, Richard R; Robb, Merlin L; Shattock, Robin J; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta

    2015-01-01

    We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.

  13. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial

    PubMed Central

    Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L.; Stout, Richard R.; Robb, Merlin L.; Shattock, Robin J.; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta

    2015-01-01

    Background We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. Methods HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. Results The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Conclusion Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. Trial Registration International Standard Randomised Controlled Trial Number (ISRCTN) 60284968 PMID:26121679

  14. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  15. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  16. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  17. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  18. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  19. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  20. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  1. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  2. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  3. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  4. Vaccine Platform for Prevention of Tuberculosis and Mother-to-Child Transmission of Human Immunodeficiency Virus Type 1 through Breastfeeding▿

    PubMed Central

    Im, Eung-Jun; Saubi, Narcís; Virgili, Goretti; Sander, Clare; Teoh, Denise; Gatell, Jose M.; McShane, Helen; Joseph, Joan; Hanke, Tomáš

    2007-01-01

    Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4+- and CD8+-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding. PMID:17596303

  5. Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines

    PubMed Central

    Wang, Shixia; Chou, Te-hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; Clapham, Paul; Arthos, James; Montefiori, David; Lu, Shan

    2017-01-01

    ABSTRACT Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes. PMID:28933684

  6. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants.

    PubMed

    Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J

    2017-02-01

    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 +  and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses. PMID:26208356

  9. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice

    PubMed Central

    Lennemann, Nicholas J.; Herbert, Andrew S.; Brouillette, Rachel; Rhein, Bethany; Bakken, Russell A.; Perschbacher, Katherine J.; Cooney, Ashley L.; Miller-Hunt, Catherine L.; Ten Eyck, Patrick; Biggins, Julia; Olinger, Gene; Dye, John M.

    2017-01-01

    ABSTRACT The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success. IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy. PMID:28615211

  10. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    PubMed

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  11. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  12. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    PubMed

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  13. EV02: a Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone.

    PubMed

    McCormack, Sheena; Stöhr, Wolfgang; Barber, Tristan; Bart, Pierre-Alexandre; Harari, Alexandre; Moog, Christiane; Ciuffreda, Donatella; Cellerai, Cristina; Cowen, Miranda; Gamboni, Romilda; Burnet, Séverine; Legg, Ken; Brodnicki, Elizabeth; Wolf, Hans; Wagner, Ralf; Heeney, Jonathan; Frachette, Marie-Joëlle; Tartaglia, Jim; Babiker, Abdel; Pantaleo, Giuseppe; Weber, Jonathan

    2008-06-13

    The aim of this randomised controlled trial was to see if the addition of 4 mg/ml DNA-C priming given by the intramuscular route at weeks 0 and 4 to NYVAC-C at weeks 20 and 24, safely increased the proportion of participants with HIV-specific T-cell responses measured by the interferon (IFN)-gamma ELISpot assay at weeks 26 and/or 28 compared to NYVAC-C alone. Although 2 individuals discontinued after the first DNA-C due to adverse events (1 vaso-vagal; 1 transient, asymptomatic elevation in alanine transaminase), the vaccines were well tolerated. Three others failed to complete the regimen (1 changed her mind; 2 lost to follow-up). Of the 35 that completed the regimen 90% (18/20) in the DNA-C group had ELISpot responses compared to 33% (5/15) that received NYVAC-C alone (p=0.001). Responses were to envelope in the majority (21/23). Of the 9 individuals with responses to envelope and other peptides, 8 were in the DNA-C group. These promising results suggest that DNA-C was an effective priming agent, that merits further investigation.

  14. Effortful semantic decision-making boosts memory performance in older adults.

    PubMed

    Fu, Li; Maes, Joseph H R; Varma, Samarth; Kessels, Roy P C; Daselaar, Sander M

    2017-04-01

    A major concern in age-related cognitive decline is episodic memory (EM). Previous studies indicate that both resource and binding deficits contribute to EM decline. Environmental support by task manipulations encouraging stronger cognitive effort and deeper levels of processing may facilitate compensation for these two deficits. To clarify factors that can counteract age-related EM decline, we assessed effects of cognitive effort (four levels) and level of processing (LoP, shallow/deep) during encoding on subsequent retrieval. Young (YAs, N = 23) and older (OAs, N = 23) adults performed two incidental encoding tasks, deep/semantic and shallow/perceptual. Cognitive effort was manipulated by varying decision-making demands. EM performance, indexed by d-prime, was later tested using a recognition task. Results showed that regardless of LoP, increased cognitive effort caused higher d-primes in both age groups. Compared to YAs, OAs showed a lower d-prime after shallow encoding across all cognitive effort levels, and after deep encoding with low cognitive effort. Deep encoding with higher levels of cognitive effort completely eliminated these age differences. Our findings support an environmental-compensatory account of cognitive ageing and can have important therapeutic implications.

  15. Naked DNA Immunization for Prevention of Prostate Cancer in a Dunning Rat Prostate Tumor Model

    DTIC Science & Technology

    2005-06-01

    immunized with H PSA-T or H PSMA-T developed antibodies against the target antigen. In contrast, immunization with the "secreted" vaccines, HPSMA-S or...HPSA-S resulted in production of antibodies against the target antigen. The antibodies were of mixed (Thl and Th2) type (IgGl and IgG2a). When priming...was performed with the "truncated" version of the vaccines (H PSMA-T or H PSA-T), however and boosting with the "secreted" ones, the antibodies were

  16. Prevention of bubonic and pneumonic plague using plant-derived vaccines.

    PubMed

    Alvarez, M Lucrecia; Cardineau, Guy A

    2010-01-01

    Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.

  17. A 2020 vision for vaccines against HIV, tuberculosis and malaria.

    PubMed

    Rappuoli, Rino; Aderem, Alan

    2011-05-26

    Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.

  18. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  19. A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes

    PubMed Central

    Joseph, Sarah; Quinn, Killian; Greenwood, Aldona; Cope, Alethea V.; McKay, Paul F.; Hayes, Peter J.; Kopycinski, Jakub T.; Gilmour, Jill; Miller, Aleisha N.; Geldmacher, Christof; Nadai, Yuka; Ahmed, Mohamed I. M.; Montefiori, David C.; Dally, Len; Bouliotis, George; Lewis, David J. M.; Tatoud, Roger; Wagner, Ralf; Esteban, Mariano; Shattock, Robin J.; McCormack, Sheena; Weber, Jonathan

    2017-01-01

    There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen. PMID:28275375

  20. The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus.

    PubMed

    Shrestha, Bimmi; Ng, Terry; Chu, Hsien-Jue; Noll, Michelle; Diamond, Michael S

    2008-04-07

    West Nile virus (WNV) is a mosquito borne, neurotropic flavivirus that causes a severe central nervous system (CNS) infection in humans and animals. Although commercial vaccines are available for horses, none is currently approved for human use. In this study, we evaluated the efficacy and mechanism of immune protection of two candidate WNV vaccines in mice. A formalin-inactivated WNV vaccine induced higher levels of specific and neutralizing antibodies compared to a DNA plasmid vaccine that produces virus-like particles. Accordingly, partial and almost complete protection against a highly stringent lethal intracranial WNV challenge were observed in mice 60 days after single dose immunization with the DNA plasmid and inactivated virus vaccines, respectively. In mice immunized with a single dose of DNA plasmid or inactivated vaccine, antigen-specific CD8(+) T cells were induced and contributed to protective immunity as acquired or genetic deficiencies of CD8(+) T cells lowered the survival rates. In contrast, in boosted animals, WNV-specific antibody titers were higher, survival rates after challenge were greater, and an absence of CD8(+) T cells did not appreciably affect mortality. Overall, our experiments suggest that in mice, both inactivated WNV and DNA plasmid vaccines are protective after two doses, and the specific contribution of antibody and CD8(+) T cells to vaccine immunity against WNV is modulated by the prime-boost strategy.

  1. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  2. Systemic and mucosal immunization with Candida albicans hsp90 elicits hsp90-specific humoral response in vaginal mucosa which is further enhanced during experimental vaginal candidiasis.

    PubMed

    Raska, Milan; Belakova, Jana; Horynova, Milada; Krupka, Michal; Novotny, Jiri; Sebestova, Martina; Weigl, Evzen

    2008-08-01

    The Candida albicans heat shock protein 90 kDa (hsp90-CA) is an important target for protective antibodies in disseminated candidiasis of experimental mice and humans. Hsp90-CA is present in the cell wall of Candida pseudohyphae or hyphae--typical pathogenic morphotypes in both mucosal and systemic Candida infections. However, the potential protective effects of hsp90-CA-specific antibodies in vaginal candidiasis has not yet been reported. In the present study we used various vaccine formulations (recombinant hsp90-CA protein and hsp90-CA-encoding DNA vaccine) and routes of administration (intradermal, intranasal, and intravenous) to induce both hsp90-CA-specific systemic and vaginal mucosa immune responses in experimental BALB/c mice. The results showed that intradermal recombinant hsp90-CA protein priming, followed by intranasal or intradermal recombinant hsp90-CA protein boosting induced significant increases in both serum and vaginal hsp90-CA-specific IgG and IgA antibodies compared to the control group, as well as enhanced hsp90-CA-specific splenocyte responses in vitro. In the intradermally boosted group, subsequent experimental vaginal Candida infection induced additional increases in the hsp90-CA specific IgG isotype, suggesting that Candida has the ability to induce a local hsp90-specific antibody (IgG) response during vulvovaginal candidiasis. Further work is required to elucidate the importance of immunity to highly conserved antigens during infection of the human female reproductive tract where a balance between immunity to and tolerance for commonly antigens such as hsp90 is necessary for the maintenance of fertility.

  3. Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86. [Langley Unitary Plan Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.; Small, W. J.; Morris, O. A.

    1981-01-01

    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations.

  4. A Sequential Phase 2b Trial Design for Evaluating Vaccine Efficacy and Immune Correlates for Multiple HIV Vaccine Regimens

    PubMed Central

    Gilbert, Peter B.; Grove, Douglas; Gabriel, Erin; Huang, Ying; Gray, Glenda; Hammer, Scott M.; Buchbinder, Susan P.; Kublin, James; Corey, Lawrence; Self, Steven G.

    2012-01-01

    Five preventative HIV vaccine efficacy trials have been conducted over the last 12 years, all of which evaluated vaccine efficacy (VE) to prevent HIV infection for a single vaccine regimen versus placebo. Now that one of these trials has supported partial VE of a prime-boost vaccine regimen, there is interest in conducting efficacy trials that simultaneously evaluate multiple prime-boost vaccine regimens against a shared placebo group in the same geographic region, for accelerating the pace of vaccine development. This article proposes such a design, which has main objectives (1) to evaluate VE of each regimen versus placebo against HIV exposures occurring near the time of the immunizations; (2) to evaluate durability of VE for each vaccine regimen showing reliable evidence for positive VE; (3) to expeditiously evaluate the immune correlates of protection if any vaccine regimen shows reliable evidence for positive VE; and (4) to compare VE among the vaccine regimens. The design uses sequential monitoring for the events of vaccine harm, non-efficacy, and high efficacy, selected to weed out poor vaccines as rapidly as possible while guarding against prematurely weeding out a vaccine that does not confer efficacy until most of the immunizations are received. The evaluation of the design shows that testing multiple vaccine regimens is important for providing a well-powered assessment of the correlation of vaccine-induced immune responses with HIV infection, and is critically important for providing a reasonably powered assessment of the value of identified correlates as surrogate endpoints for HIV infection. PMID:23181167

  5. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Malaria vaccines: past, present and future.

    PubMed

    von Seidlein, Lorenz; Bejon, Philip

    2013-12-01

    The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.

  7. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. Published by Elsevier Ltd.

  8. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L'Agence Nationale de Recherches sur Le Sida.

    PubMed

    Salmon-Céron, D; Excler, J L; Finkielsztejn, L; Autran, B; Gluckman, J C; Sicard, D; Matthews, T J; Meignier, B; Valentin, C; El Habib, R; Blondeau, C; Raux, M; Moog, C; Tartaglia, J; Chong, P; Klein, M; Milcamps, B; Heshmati, F; Plotkin, S

    1999-05-01

    A live recombinant canarypox vector expressing HIV-1 gpl20 MN tm/gag/protease LAI (ALVAC-HIV, vCP205) alone or boosted by a p24E-V3 MN synthetic peptide (CLTB-36) was tested in healthy volunteers at low risk for HIV infection for their safety and immunogenicity. Both antigens were well tolerated. ALVAC-HIV (vCP205) induced low levels of neutralizing antibodies against HIV-1 MN in 33% of the volunteers. None of them had detectable neutralizing antibodies against a nonsyncytium-inducing HIV-1 clade B primary isolate (Bx08). After the fourth injection of vCP205, CTL activity was detected in 33% of the volunteers and was directed against Env, Gag, and Pol. This activity was mediated by both CD4+ and CD8+ lymphocytes. On the other hand, the CLTB-36 peptide was poorly immunogenic and induced no neutralizing antibodies or CTLs. Although the ALVAC-HIV (vCP205) and CLTB-36 prime-boost regimen was not optimal, further studies with ALVAC-HIV (vCP205) are warranted because of its clear induction of a cellular immune response and utility as a priming agent for other subunit antigens such as envelope glycoproteins, pseudoparticles, or new peptides.

  9. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    PubMed Central

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  10. Feeling Better When Someone Is Alike: Poor Emotion Regulators Profit From Pro-Social Values and Priming for Similarities With Close Others.

    PubMed

    Chatterjee, Monischa B; Baumann, Nicola; Koole, Sander L

    2017-12-01

    The dispositional inability to self-regulate one's own emotions intuitively is described as state orientation and has been associated with numerous psychological impairments. The necessity to search for buffering effects against negative outcomes of state orientation is evident. Research suggests that state-oriented individuals can benefit from feeling close to others. Yet, there are individual differences in the extent to which supportive relationships are valued. The objective of the present article was to examine whether high importance of relatedness increases the utilization of its situational activation among state-oriented individuals. In two studies, we examined whether situational activation of relatedness (by priming for similarities with a close other) is particularly advantageous for state-oriented individuals who attach high importance to relatedness (i.e., benevolence values). The sample consisted of 170 psychology undergraduates in Study 1 and 177 in Study 2. In both studies, state-oriented participants high in benevolence had reduced negative mood after thinking about similarities (vs. differences). State-oriented participants low in benevolence did not benefit from priming for similarities. In Study 2, physical presence of a close other did not boost priming effects for state-oriented participants but stimulated action-oriented participants to attune their self-regulatory efforts to the context. The results show that state-oriented individuals who value benevolence do benefit from a situational activation of relatedness. © 2016 Wiley Periodicals, Inc.

  11. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    PubMed

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion, utilising the SPS formulation technology, spray-drying and terminal sterilisation of influenza A(H1N1)pdm09 split virus vaccine is feasible. Findings indicate the potential utility of such formulated vaccines e.g. for needle-free vaccination routes and delivery to countries with uncertain cold chain facilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Control of SIV infection and subsequent induction of pandemic H1N1 immunity in rhesus macaques using an Ad5 [E1-, E2b-] vector platform.

    PubMed

    Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R

    2012-11-26

    Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (P<0.02; log-rank Mantel-Cox test). There was no correlation of protective MHC contributing to infection control. The RM without detectable circulating SIV, now hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Parental investment matters for maternal and offspring immune defense in the mouthbrooding cichlid Astatotilapia burtoni.

    PubMed

    Keller, Isabel S; Salzburger, Walter; Roth, Olivia

    2017-12-20

    Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.

  14. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii.

    PubMed

    Stoyanov, Cristina T; Boscardin, Silvia B; Deroubaix, Stephanie; Barba-Spaeth, Giovanna; Franco, David; Nussenzweig, Ruth S; Nussenzweig, Michel; Rice, Charles M

    2010-06-23

    The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8(+) T-cells. A single immunization of naïve mice with recombinant YF17D resulted in robust production of IFN-gamma by CD8(+) T-cells and IFN-gamma and IL-2 by CD4(+) T-cells. A prime-boost regimen consisting of recombinant virus followed by a low-dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  17. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    DOE PAGES

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...

    2016-01-06

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less

  18. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi

    PubMed Central

    Gupta, Shivali; Garg, Nisha J.

    2015-01-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. PMID:25951312

  19. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less

  20. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines. PMID:25211344

  1. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  2. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap

    PubMed Central

    Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-01-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021

  3. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    PubMed Central

    Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474

  4. Broadly Neutralizing Immune Responses against Hepatitis C Virus Induced by Vectored Measles Viruses and a Recombinant Envelope Protein Booster

    PubMed Central

    Reyes-del Valle, Jorge; de la Fuente, Cynthia; Turner, Mallory A.; Springfeld, Christoph; Apte-Sengupta, Swapna; Frenzke, Marie E.; Forest, Amelie; Whidby, Jillian; Marcotrigiano, Joseph; Rice, Charles M.

    2012-01-01

    Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination. PMID:22896607

  5. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model

    PubMed Central

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523

  6. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  7. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    PubMed

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A New Genetic Vaccine Platform Based on an Adeno-Associated Virus Isolated from a Rhesus Macaque ▿

    PubMed Central

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M.

    2009-01-01

    We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149

  9. T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine.

    PubMed

    Li, Junwei; Arévalo, Maria T; Chen, Yanping; Chen, Shan; Zeng, Mingtao

    2014-10-01

    Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. H5N1 vaccines in humans

    PubMed Central

    Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta

    2013-01-01

    The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847

  11. Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant

    PubMed Central

    Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-01-01

    Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194

  12. Ad35 and Ad26 Vaccine Vectors Induce Potent and Cross-Reactive Antibody and T-Cell Responses to Multiple Filovirus Species

    PubMed Central

    Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane

    2012-01-01

    Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343

  13. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides.

    PubMed

    Zwaveling, Sander; Ferreira Mota, Sandra C; Nouta, Jan; Johnson, Mark; Lipford, Grayson B; Offringa, Rienk; van der Burg, Sjoerd H; Melief, Cornelis J M

    2002-07-01

    Peptide-based vaccines aimed at the induction of effective T cell responses against established cancers have so far only met with limited clinical success and clearly need to be improved. In a preclinical model of human papillomavirus (HPV)16-induced cervical cancer we show that prime-boost vaccinations with the HPV16-derived 35 amino-acid long peptide E7(43-77), containing both a CTL epitope and a Th epitope, resulted in the induction of far more robust E7-specific CD8(+) T cell responses than vaccinations with the minimal CTL epitope only. We demonstrate that two distinct mechanisms are responsible for this effect. First, vaccinations with the long peptide lead to the generation of E7-specific CD4(+) Th cells. The level of the induced E7-specific CD8(+) T cell response proved to be dependent on the interactions of these Th cells with professional APC. Second, we demonstrate that vaccination with the long peptide and dendritic cell-activating agents resulted in a superior induction of E7-specific CD8(+) T cells, even when T cell help was excluded. This suggests that, due to its size, the long peptide was preferably endocytosed, processed, and presented by professional APCs. Moreover, the efficacy of this superior HPV-specific T cell induction was demonstrated in therapeutic prime-boost vaccinations in which the long peptide admixed with the dendritic cell-activating adjuvant oligodeoxynucleotide-CpG resulted in the eradication of large, established HPV16-expressing tumors. Because the vaccine types used in this study are easy to prepare under good manufacturing practice conditions and are safe to administer to humans, these data provide important information for future clinical trials.

  15. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys

    PubMed Central

    Letvin, Norman L.; Rao, Srinivas S.; Montefiori, David C.; Seaman, Michael S.; Sun, Yue; Lim, So-Yon; Yeh, Wendy W.; Asmal, Mohammed; Gelman, Rebecca S.; Shen, Ling; Whitney, James B.; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J.; Hudgens, Michael G.; Gilbert, Peter B.; Buzby, Adam P.; Mach, Linh V.; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M.; Schmidt, Stephen D.; Todd, John-Paul; Dodson, Alan; Mascola, John R.; Nabel, Gary J.

    2013-01-01

    The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was an about one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanism of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies. PMID:21543722

  16. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

    PubMed

    Letvin, Norman L; Rao, Srinivas S; Montefiori, David C; Seaman, Michael S; Sun, Yue; Lim, So-Yon; Yeh, Wendy W; Asmal, Mohammed; Gelman, Rebecca S; Shen, Ling; Whitney, James B; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J; Hudgens, Michael G; Gilbert, Peter B; Buzby, Adam P; Mach, Linh V; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M; Schmidt, Stephen D; Todd, John-Paul; Dodson, Alan; Mascola, John R; Nabel, Gary J

    2011-05-04

    The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.

  17. Towards a universal vaccine for avian influenza: Protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus

    PubMed Central

    Boyd, Amy C.; Ruiz-Hernandez, Raul; Peroval, Marylene Y.; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V.; Hill, Adrian V.S.; Gilbert, Sarah C.; Butter, Colin

    2013-01-01

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP + M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP + M1 and a secondary vaccination with MVA-NP + M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  18. LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8+ T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection

    PubMed Central

    Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho

    2017-01-01

    Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775

  19. Prime-Boost Immunization of Rabbits with HIV-1 gp120 Elicits Potent Neutralization Activity against a Primary Viral Isolate

    PubMed Central

    Narayan, Kristin M.; Agrawal, Nitish; Du, Sean X.; Muranaka, Janelle E.; Bauer, Katherine; Leaman, Daniel P.; Phung, Pham; Limoli, Kay; Chen, Helen; Boenig, Rebecca I.; Wrin, Terri; Zwick, Michael B.; Whalen, Robert G.

    2013-01-01

    Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env) using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼103 to 104 serum dilution) against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env) or other type-specific responses (targeting V1, V2, or V3 variable regions). The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth. PMID:23326351

  20. Acellular pertussis vaccines effectiveness over time: A systematic review, meta-analysis and modeling study

    PubMed Central

    Chit, Ayman; Zivaripiran, Hossein; Shin, Thomas; Lee, Jason K. H.; Tomovici, Antigona; Macina, Denis; Johnson, David R.; Decker, Michael D.; Wu, Jianhong

    2018-01-01

    Background Acellular pertussis vaccine studies postulate that waning protection, particularly after the adolescent booster, is a major contributor to the increasing US pertussis incidence. However, these studies reported relative (ie, vs a population given prior doses of pertussis vaccine), not absolute (ie, vs a pertussis vaccine naïve population) efficacy following the adolescent booster. We aim to estimate the absolute protection offered by acellular pertussis vaccines. Methods We conducted a systematic review of acellular pertussis vaccine effectiveness (VE) publications. Studies had to comply with the US schedule, evaluate clinical outcomes, and report VE over discrete time points. VE after the 5-dose childhood series and after the adolescent sixth-dose booster were extracted separately and pooled. All relative VE estimates were transformed to absolute estimates. VE waning was estimated using meta-regression modeling. Findings Three studies reported VE after the childhood series and four after the adolescent booster. All booster studies reported relative VE (vs acellular pertussis vaccine-primed population). We estimate initial childhood series absolute VE is 91% (95% CI: 87% to 95%) and declines at 9.6% annually. Initial relative VE after adolescent boosting is 70% (95% CI: 54% to 86%) and declines at 45.3% annually. Initial absolute VE after adolescent boosting is 85% (95% CI: 84% to 86%) and declines at 11.7% (95% CI: 11.1% to 12.3%) annually. Interpretation Acellular pertussis vaccine efficacy is initially high and wanes over time. Observational VE studies of boosting failed to recognize that they were measuring relative, not absolute, VE and the absolute VE in the boosted population is better than appreciated. PMID:29912887

  1. Immunogenicity of Live Attenuated B. pertussis BPZE1 Producing the Universal Influenza Vaccine Candidate M2e

    PubMed Central

    Kammoun, Hana; Roux, Xavier; Raze, Dominique; Debrie, Anne-Sophie; De Filette, Marina; Ysenbaert, Tine; Mielcarek, Nathalie; Saelens, Xavier; Fiers, Walter; Locht, Camille

    2013-01-01

    Background Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. Methodology/Principal Findings We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. Conclusions/Significance Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza. PMID:23555631

  2. The bidirectional congruency effect of brightness-valence metaphoric association in the Stroop-like and priming paradigms.

    PubMed

    Huang, Yanli; Tse, Chi-Shing; Xie, Jiushu

    2017-11-04

    The conceptual metaphor theory (Lakoff & Johnson, 1980, 1999) postulates a unidirectional metaphoric association between abstract and concrete concepts: sensorimotor experience activated by concrete concepts facilitates the processing of abstract concepts, but not the other way around. However, this unidirectional view has been challenged by studies that reported a bidirectional metaphoric association. In three experiments, we tested the directionality of the brightness-valence metaphoric association, using Stroop-like paradigm, priming paradigm, and Stroop-like paradigm with a go/no-go manipulation. Both mean and vincentile analyses of reaction time data were performed. We showed that the directionality of brightness-valence metaphoric congruency effect could be modulated by the activation level of the brightness/valence information. Both brightness-to-valence and valence-to-brightness metaphoric congruency effects occurred in the priming paradigm, which could be attributed to the presentation of prime that pre-activated the brightness or valence information. However, in the Stroop-like paradigm the metaphoric congruency effect was only observed in the brightness-to-valence direction, but not in the valence-to-brightness direction. When the go/no-go manipulation was used to boost the activation of word meaning in the Stroop-like paradigm, the valence-to-brightness metaphoric congruency effect was observed. Vincentile analyses further revealed that valence-to-brightness metaphoric congruency effect approached significance in the Stroop-like paradigm when participants' reaction times were slower (at around 490ms). The implications of the current findings on the conceptual metaphor theory and embodied cognition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Induction of HIV-blocking anti-CCR5 IgA in Peyers's patches without histopathological alterations.

    PubMed

    Pastori, Claudia; Diomede, Lorenzo; Venuti, Assunta; Fisher, Gregory; Jarvik, Jonathan; Bomsel, Morgane; Sanvito, Francesca; Lopalco, Lucia

    2014-04-01

    The chemokine receptor CCR5 is essential for HIV infection and is thus a potential target for vaccine development. However, because CCR5 is a host protein, generation of anti-CCR5 antibodies requires the breaking of immune tolerance and thus carries the risk of autoimmune responses. In this study, performed in mice, we compared 3 different immunogens representing surface domains of murine CCR5, 4 different adjuvants, and 13 different immunization protocols, with the goal of eliciting HIV-blocking activity without inducing autoimmune dysfunction. In all cases the CCR5 sequences were presented as fusions to the Flock House virus (FHV) capsid precursor protein. We found that systemic immunization and mucosal boosting elicited CCR5-specific antibodies and achieved consistent priming in Peyer's patches, where most cells showed a phenotype corresponding to activated B cells and secreted high levels of IgA, representing up to one-third of the total HIV-blocking activity. Histopathological analysis revealed mild to moderate chronic inflammation in some tissues but failed in reporting signs of autoimmune dysfunction associated with immunizations. Antisera against immunogens representing the N terminus and extracellular loops 1 and 2 (Nter1 and ECL1 and ECL2) of CCR5 were generated. All showed specific anti-HIV activity, which was stronger in the anti-ECL1 and -ECL2 sera than in the anti-Nter sera. ECL1 and ECL2 antisera induced nearly complete long-lasting CCR5 downregulation of the receptor, and especially, their IgG-depleted fractions prevented HIV infection in neutralization and transcytosis assays. In conclusion, the ECL1 and ECL2 domains could offer a promising path to achieve significant anti-HIV activity in vivo. The study was the first to adopt a systematic strategy to compare the immunogenicities of all extracellular domains of the CCR5 molecule and to set optimal conditions leading to generation of specific antibodies in the mouse model. There were several relevant findings, which could be translated into human trials. (i) Prime (systemic) and boost (mucosal) immunization is the best protocol to induce anti-self antibodies with the expected properties. (ii) Aluminum is the best adjuvant in mice and thus can be easily used in nonhuman primates (NHP) and humans. (iii) The Flock House virus (FHV) system represents a valid delivery system, as the structure is well known and is not pathogenic for humans, and it is possible to introduce constrained regions able to elicit antibodies that recognize conformational epitopes. (iv) The best CCR5 vaccine candidate should include either extracellular loop 1 or 2 (ECL1 or ECL2), but not N terminus domains.

  4. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine.

    PubMed

    Moravec, Tomas; Schmidt, Monica A; Herman, Eliot M; Woodford-Thomas, Terry

    2007-02-19

    The B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.4% of the total seed protein at maturity and was stable in desiccated seed. LTB-soybean extracts administered orally to mice induced both systemic IgG and IgA, and mucosal IgA antibody responses, and was particularly efficacious when used in a parenteral prime-oral gavage boost immunization strategy. Sera from immunized mice blocked ligand binding in vitro and immunized mice exhibited partial protection against LT challenge. Moreover, soybean-expressed LTB stimulated the antibody response against a co-administered antigen by 500-fold. These results demonstrate the utility of soybean as an efficient production platform for vaccines that can be used for oral delivery.

  5. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A.

    PubMed

    Stylianou, E; Griffiths, K L; Poyntz, H C; Harrington-Kandt, R; Dicks, M D; Stockdale, L; Betts, G; McShane, H

    2015-11-27

    A replication-deficient chimpanzee adenovirus expressing Ag85A (ChAdOx1.85A) was assessed, both alone and in combination with modified vaccinia Ankara also expressing Ag85A (MVA85A), for its immunogenicity and protective efficacy against a Mycobacterium tuberculosis (M.tb) challenge in mice. Naïve and BCG-primed mice were vaccinated or boosted with ChAdOx1.85A and MVA85A in different combinations. Although intranasally administered ChAdOx1.85A induced strong immune responses in the lungs, it failed to consistently protect against aerosol M.tb challenge. In contrast, ChAdOx1.85A followed by MVA85A administered either mucosally or systemically, induced strong immune responses and was able to improve the protective efficacy of BCG. This vaccination regime has consistently shown superior protection over BCG alone and should be evaluated further. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre

    2007-01-20

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less

  7. The role of efficacy and moral outrage norms in creating the potential for international development activism through group-based interaction.

    PubMed

    Thomas, Emma F; McGarty, Craig A

    2009-03-01

    This paper adopts an intergroup perspective on helping as collective action to explore the ways to boost motivation amongst people in developed countries to join the effort to combat poverty and preventable disease in developing countries. Following van Zomeren, Spears, Leach, and Fischer's (2004) model of collective action, we investigated the role of norms about an emotional response (moral outrage) and beliefs about efficacy in motivating commitment to take action amongst members of advantaged groups. Norms about outrage and efficacy were harnessed to an opinion-based group identity (Bliuc, McGarty, Reynolds, & Muntele, 2007) and explored in the context of a novel group-based interaction method. Results showed that the group-based interaction boosted commitment to action especially when primed with an (injunctive) outrage norm. This norm stimulated a range of related effects including increased identification with the pro-international development opinion-based group, and higher efficacy beliefs. Results provide an intriguing instance of the power of group interaction (particularly where strengthened with emotion norms) to bolster commitment to positive social change.

  8. Reversal of papilloma growth in rabbits therapeutically vaccinated against E6 with naked DNA and/or vesicular stomatitis virus vectors

    PubMed Central

    Brandsma, Janet L.; Shlyankevich, Mark; Su, Yuhua; Zelterman, Daniel; Rose, John K.; Buonocore, Linda

    2009-01-01

    Persistent infection with high-risk human papillomaviruses (HPVs) is the greatest risk factor for the development of HPV-associated cancers. In this study rabbits bearing persistent and potentially malignant papillomas were used to test the efficacy of vaccination with a recombinant DNA and/or vesicular stomatitis virus (VSV) targeting the cottontail rabbit papillomavirus (CRPV) E6 protein. Immune responses were primed with either vector and boosted twice with the homologous or heterologous E6 vector. Over the course of 18 weeks, E6 vaccination reduced papilloma volumes to one third the volume in the controls, and the rabbits boosted with an heterologous vector tended to mount stronger responses. Small and medium-sized papillomas responded significantly but only slightly better than large papillomas. Finally the initial papilloma burden per rabbit, ranging from <100 mm3 to >1000 mm3, was not prognostic of antitumor efficacy. In summary both E6 vaccines elicited significant therapeutic immunity, and their sequential use tended to be advantageous. PMID:19615481

  9. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    PubMed

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  10. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    PubMed

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults

    PubMed Central

    2014-01-01

    Background The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. Methods This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. Results After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. Conclusions In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime–boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic. PMID:24628789

  12. A Single-System Account of the Relationship between Priming, Recognition, and Fluency

    ERIC Educational Resources Information Center

    Berry, Christopher J.; Shanks, David R.; Henson, Richard N. A.

    2008-01-01

    A single-system computational model of priming and recognition was applied to studies that have looked at the relationship between priming, recognition, and fluency in continuous identification paradigms. The model was applied to 3 findings that have been interpreted as evidence for a multiple-systems account: (a) priming can occur for items not…

  13. No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample.

    PubMed

    Saunders, Timothy J; Taylor, Alex H; Atkinson, Quentin D

    2016-10-01

    Monitoring cues, such as an image of a face or pair of eyes, have been found to increase prosocial behaviour in several studies. However, other studies have found little or no support for this effect. Here, we examined whether monitoring cues affect online donations to charity while manipulating the emotion displayed, the number of watchers and the cue type. We also include as statistical controls a range of likely covariates of prosocial behaviour. Using the crowdsourcing Internet marketplace, Amazon Mechanical Turk (MTurk), 1535 participants completed our survey and were given the opportunity to donate to charity while being shown an image prime. None of the monitoring primes we tested had a significant effect on charitable giving. By contrast, the control variables of culture, age, sex and previous charity giving frequency did predict donations. This work supports the importance of cultural differences and enduring individual differences in prosocial behaviour and shows that a range of artificial monitoring cues do not reliably boost online charity donation on MTurk.

  14. No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample

    PubMed Central

    Saunders, Timothy J.; Atkinson, Quentin D.

    2016-01-01

    Monitoring cues, such as an image of a face or pair of eyes, have been found to increase prosocial behaviour in several studies. However, other studies have found little or no support for this effect. Here, we examined whether monitoring cues affect online donations to charity while manipulating the emotion displayed, the number of watchers and the cue type. We also include as statistical controls a range of likely covariates of prosocial behaviour. Using the crowdsourcing Internet marketplace, Amazon Mechanical Turk (MTurk), 1535 participants completed our survey and were given the opportunity to donate to charity while being shown an image prime. None of the monitoring primes we tested had a significant effect on charitable giving. By contrast, the control variables of culture, age, sex and previous charity giving frequency did predict donations. This work supports the importance of cultural differences and enduring individual differences in prosocial behaviour and shows that a range of artificial monitoring cues do not reliably boost online charity donation on MTurk. PMID:27853533

  15. The Prime Minister and the platypus: A paradox goes to war.

    PubMed

    Lawrence, Natalie

    2012-03-01

    In February 1943, in the midst of the Second World War, Prime Minister Winston Churchill demanded that a live duck-billed platypus be sent from Australia to Britain. A vigorous male was shipped off but died shortly before arrival in Britain. This request can only be understood if placed in the context of Churchill's passion for exotic pets as well as the rich history of aristocratic menageries and live diplomatic gifts. Obtaining an animal hitherto unseen alive in Europe would have been a great zoological achievement for London Zoo and secured British authority in heated historical taxonomical debates. This zoological triumph, coupled with accomplishing an extravagant enterprise in the middle of war-time austerity would have boosted public morale. Most importantly, despite its death, the platypus, served as a token for mediating the soured relations between Australia and Britain. Churchill's platypus provides a unique case of animal collecting that incorporates effects on international diplomacy and public relations along with a great private eccentricity and passion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Immunogenicity of heterologous H5N1 influenza booster vaccination 6 or 18 months after primary vaccination in adults: a randomized controlled clinical trial.

    PubMed

    Langley, Joanne M; Frenette, Louise; Jeanfreau, Robert; Halperin, Scott A; Kyle, Michael; Chu, Laurence; McNeil, Shelly; Dramé, Mamadou; Moris, Philippe; Fries, Louis; Vaughn, David W

    2015-01-15

    Highly pathogenic avian influenza A/H5N1 viruses continue to circulate in birds and infect humans causing serious illness and death. In this randomized, observer-blinded study, adults ≥18 years of age (n=841) received 3.75 or 7.5 μg hemagglutinin antigen (HA) of an AS03-adjuvanted (AS03A or AS03B) A/Indonesia/5/2005 H5N1 (subclade 2.1) vaccine (priming), followed by the same HA dose of AS03-adjuvanted A/turkey/Turkey/1/05 H5N1 (clade 2.2) influenza vaccine as a booster 6 or 18 months after priming; an unprimed group received placebo at Day 0, and 3.75 μg HA of AS03A-adjuvanted booster vaccine at 6 and 18 months. Antibody responses were assessed by hemagglutination-inhibition assay (HI). Microneutralization (MN) antibody and cellular immunoassays were assessed in a subset of participants. Geometric mean titers (GMTs) and seroconversion rates (SCRs) were higher in primed vs. unprimed subjects against the booster strain 10 days following booster vaccination at month 6 and month 18. After the booster at 18 months, the lower limit of the 97.5% confidence interval for the difference in SCR and GMT ratios between primed and unprimed subjects was >15% and >2.0, respectively, fulfilling the primary endpoint criteria for superiority against the booster strain. MN and cellular immune responses corresponded with the immunogenicity seen in HI measures. Adults primed with a dose-sparing oil-in-water adjuvanted H5N1 subclade vaccine had rapid and durable antibody responses to a heterologous subclade boosting vaccine given 6 or 18 months later. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design.

    PubMed

    Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe

    2014-02-26

    Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.

  18. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOEpatents

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  19. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis.

    PubMed

    Williams, Ann; Hatch, Graham J; Clark, Simon O; Gooch, Karen E; Hatch, Kim A; Hall, Graham A; Huygen, Kris; Ottenhoff, Tom H M; Franken, Kees L M C; Andersen, Peter; Doherty, T Mark; Kaufmann, Stefan H E; Grode, Leander; Seiler, Peter; Martin, Carlos; Gicquel, Brigitte; Cole, Stewart T; Brodin, Priscille; Pym, Alexander S; Dalemans, Wilfried; Cohen, Joe; Lobet, Yves; Goonetilleke, Nilu; McShane, Helen; Hill, Adrian; Parish, Tanya; Smith, Debbie; Stoker, Neil G; Lowrie, Douglas B; Källenius, Gunilla; Svenson, Stefan; Pawlowski, Andrzej; Blake, Karen; Marsh, Philip D

    2005-01-01

    The TB Vaccine Cluster project funded by the EU Fifth Framework programme aims to provide novel vaccines against tuberculosis that are suitable for evaluation in humans. This paper describes the studies of the protective efficacy of vaccines in a guinea pig aerosol-infection model of primary tuberculosis. The objective was to conduct comparative evaluations of vaccines that had previously demonstrated efficacy in other animal models. Groups of 6 guinea pigs were immunized with vaccines provided by the relevant EU Vaccine Cluster partners. Survival over 17 or 26 weeks was used as the principal measure of vaccine efficacy following aerosol challenge with H37Rv. Counts of mycobacteria in lungs and spleens, and histopathological changes in the lungs, were also used to provide evidence of protection. A total of 24 vaccines were evaluated in 4 experiments each of a different design. A heterologous prime-boost strategy of DNA and MVA, each expressing Ag85A and a fusion protein of ESAT-6 and Ag85B in adjuvant, protected the guinea pigs to the same extent as BCG. Genetically modified BCG vaccines and boosted BCG strategies also protected guinea pigs to the same extent as BCG but not statistically significantly better. A relatively high aerosol-challenge dose and evaluation over a protracted time post-challenge allowed superior protection over BCG to be demonstrated by BCG boosted with MVA and fowl pox vectors expressing Ag85A.

  20. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy.

    PubMed

    Jackson, Ronald J; Worley, Matthew; Trivedi, Shubhanshi; Ranasinghe, Charani

    2014-09-29

    We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B cell immunity are required for protection. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Design and realization of high quality prime farmland planning and management information system

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Liu, Guohong; Liu, Yongxue; Jiang, Zhixin

    2007-06-01

    The article discusses the design and realization of a high quality prime farmland planning and management information system based on SDSS. Models in concept integration, management planning are used in High Quality Prime Farmland Planning in order to refine the current model system and the management information system is deigned with a triangular structure. Finally an example of Tonglu county high quality prime farmland planning and management information system is introduced.

  2. Reward Selectively Modulates the Lingering Neural Representation of Recently Attended Objects in Natural Scenes.

    PubMed

    Hickey, Clayton; Peelen, Marius V

    2017-08-02

    Theories of reinforcement learning and approach behavior suggest that reward can increase the perceptual salience of environmental stimuli, ensuring that potential predictors of outcome are noticed in the future. However, outcome commonly follows visual processing of the environment, occurring even when potential reward cues have long disappeared. How can reward feedback retroactively cause now-absent stimuli to become attention-drawing in the future? One possibility is that reward and attention interact to prime lingering visual representations of attended stimuli that sustain through the interval separating stimulus and outcome. Here, we test this idea using multivariate pattern analysis of fMRI data collected from male and female humans. While in the scanner, participants searched for examples of target categories in briefly presented pictures of cityscapes and landscapes. Correct task performance was followed by reward feedback that could randomly have either high or low magnitude. Analysis showed that high-magnitude reward feedback boosted the lingering representation of target categories while reducing the representation of nontarget categories. The magnitude of this effect in each participant predicted the behavioral impact of reward on search performance in subsequent trials. Other analyses show that sensitivity to reward-as expressed in a personality questionnaire and in reactivity to reward feedback in the dopaminergic midbrain-predicted reward-elicited variance in lingering target and nontarget representations. Credit for rewarding outcome thus appears to be assigned to the target representation, causing the visual system to become sensitized for similar objects in the future. SIGNIFICANCE STATEMENT How do reward-predictive visual stimuli become salient and attention-drawing? In the real world, reward cues precede outcome and reward is commonly received long after potential predictors have disappeared. How can the representation of environmental stimuli be affected by outcome that occurs later in time? Here, we show that reward acts on lingering representations of environmental stimuli that sustain through the interval between stimulus and outcome. Using naturalistic scene stimuli and multivariate pattern analysis of fMRI data, we show that reward boosts the representation of attended objects and reduces the representation of unattended objects. This interaction of attention and reward processing acts to prime vision for stimuli that may serve to predict outcome. Copyright © 2017 the authors 0270-6474/17/377297-08$15.00/0.

  3. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2006-08-01

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  4. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2007-09-25

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  5. ERCC1 and RRM1: ready for prime time?

    PubMed

    Besse, Benjamin; Olaussen, Ken A; Soria, Jean-Charles

    2013-03-10

    The quest for markers of sensitivity to cytotoxic agents has been ongoing for decades. In non-small-cell lung cancer, platinum compounds represent the cornerstone of systemic therapy. They target DNA and induce damage that cancer cells struggle to overcome. Somatic excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC1), and ribonucleotide reductase M1 (RRM1) expression levels have been extensively explored as markers of DNA repair capacity in tumor cells. Although low ERCC1 and/or RRM1 expression is generally associated with sensitivity to platinum, the results published in retrospective and prospective studies are not always consistent. Against this background, we will examine in this review the function of these two biomarkers as well as the tools available for their assessment and the associated technical issues. Their prognostic and predictive values will be summarized and considered in terms of customizing systemic therapy according to biomarker (ERCC1 and RRM1) expression levels. We will also discuss why the use of both markers should at this point be restricted to clinical research and underline that functional readouts of DNA repair will help boost future strategies for biomarker discovery in the field.

  6. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene.

    PubMed

    Chun, Jong-Yoon; Kim, Kyoung-Joong; Hwang, In-Taek; Kim, Yun-Jee; Lee, Dae-Hoon; Lee, In-Kyoung; Kim, Jong-Kee

    2007-01-01

    Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5'-segment that initiates stable priming, and a short 3'-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR.

  7. Can gender priming eliminate the effects of stereotype threat? The case of simple dynamic systems.

    PubMed

    Lungwitz, Vivien; Sedlmeier, Peter; Schwarz, Marcus

    2018-05-31

    Mathematics and mental rotation are classic fields where it has been shown that priming women with their gender identity impedes performance. Whereas past research focused mainly on stereotype threat effects in women in a narrowly defined context, this study broadened the research focus: We primed 264 women and men equally with a male, a neutral, or a female prime before they had to solve a simple dynamic system task. As expected, female-primed women subsequently performed worst of all six groups. Solution rates were almost 14% higher for the women in the male-primed condition. Men performed better than women in all three priming conditions. However, this difference was reduced in the male-primed condition as women's performance had increased as anticipated. Unexpected was a decline in the male performance in the same condition. The study showed that gender priming had a significant effect on women in tasks involving simple dynamic systems. However, mathematical knowledge and area of occupation clearly were stronger predictors for both men and women. Priming alone cannot eliminate the effects of stereotype threat. Copyright © 2018. Published by Elsevier B.V.

  8. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  9. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  10. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys

    PubMed Central

    Reed, Steven G.; Coler, Rhea N.; Dalemans, Wilfried; Tan, Esterlina V.; DeLa Cruz, Eduardo C.; Basaraba, Randall J.; Orme, Ian M.; Skeiky, Yasir A. W.; Alderson, Mark R.; Cowgill, Karen D.; Prieels, Jean-Paul; Abalos, Rodolfo M.; Dubois, Marie-Claude; Cohen, Joe; Mettens, Pascal; Lobet, Yves

    2009-01-01

    The development of a vaccine for tuberculosis requires a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. We evaluated Mtb72F formulated in AS02A in the cynomolgus monkey model. The vaccine was immunogenic and caused no adverse reactions. When monkeys were immunized with bacillus Calmette–Guérin (BCG) and then boosted with Mtb72F in AS02A, protection superior to that afforded by using BCG alone was achieved, as measured by clinical parameters, pathology, and survival. We observed long-term survival and evidence of reversal of disease progression in monkeys immunized with the prime-boost regimen. Antigen-specific responses from protected monkeys receiving BCG and Mtb72F/AS02A had a distinctive cytokine profile characterized by an increased ratio between 3 Th1 cytokines, IFN-γ, TNF, and IL-2 and an innate cytokine, IL-6. To our knowledge, this is an initial report of a vaccine capable of inducing long-term protection against tuberculosis in a nonhuman primate model, as determined by protection against severe disease and death, and by other clinical and histopathological parameters. PMID:19188599

  11. Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice.

    PubMed

    Laguía-Becher, Melina; Martín, Valentina; Kraemer, Mauricio; Corigliano, Mariana; Yacono, María L; Goldman, Alejandra; Clemente, Marina

    2010-07-15

    Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1. Leaves agroinfiltrated with an unmodified SAG1 gene accumulated 5- to 10-fold more than leaves agroinfiltrated with a codon-optimized SAG1 gene. ER localization allowed the accumulation of higher levels of native SAG1. However, no significant differences were observed between the mRNA accumulations of the different versions of SAG1. Subcutaneous immunization with leaf extracts-SAG1 (SAG1) protected mice against an oral challenge with a non-lethal cyst dose, and this effect could be associated with the secretion of significant levels of IFN-gamma. The protection was increased when mice were ID boosted with rSAG1 (SAG1+boost). This group elicited a significant Th1 humoral and cellular immune response characterized by high levels of IFN-gamma. In an oral immunization assay, the SAG1+boost group showed a significantly lower brain cyst burden compared to the rest of the groups. Transient agroinfiltration was useful for the expression of all of the recombinant proteins tested. Our results support the usefulness of endoplasmic reticulum signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The results showed that this plant-produced protein has potential for use as vaccine and provides a potential means for protecting humans and animals against toxoplasmosis.

  12. Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material.

    PubMed

    De Wilde, Tineke; Spanoghe, Pieter; Sniegowksi, Kristel; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk

    2010-01-01

    Laboratory column displacement experiments were performed to examine whether addition of pesticide-primed material to the matrix of an on-farm biopurification system (BPS), intended to remove pesticides from agricultural waste water, positively affects the degradation of mobile pesticides in the system. Percolated column microcosms with varying types and amounts of metalaxyl and/or isoproturon-primed material or non-primed material were irrigated with water artificially contaminated with isoproturon and/or metalaxyl. Transport of isoproturon was well described using the convection dispersion equation and no dissipation was observed, even in columns inoculated with isoproturon-primed material. On the other hand, delayed dissipation of metalaxyl, i.e., after an initial lag phase, was encountered in all columns receiving metalaxyl. In all systems, dissipation could be described using the Monod model indicating that a metalaxyl degrading population grew in the systems. There was a clear correlation between the lag phase and the amount of metalaxyl-primed material added to the system, i.e., increasing amounts of added material resulted into shorter lag phases and hence more rapid initiation of growth-associated metalaxyl degradation in the system. Our observations suggest that indeed pesticide-primed material can reduce the start-up phase of degradation of mobile pesticides in a BPS and as such can increase its efficiency. However, the primed material should be chosen carefully and preferentially beforehand tested for its capacity to degrade the pesticide.

  13. Chemistry of anti-AIDS and anticancer compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S.

    1992-01-01

    Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less

  14. Wastewater quality monitoring system using sensor fusion and machine learning techniques.

    PubMed

    Qin, Xusong; Gao, Furong; Chen, Guohua

    2012-03-15

    A multi-sensor water quality monitoring system incorporating an UV/Vis spectrometer and a turbidimeter was used to monitor the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Oil & Grease (O&G) concentrations of the effluents from the Chinese restaurant on campus and an electrocoagulation-electroflotation (EC-EF) pilot plant. In order to handle the noise and information unbalance in the fused UV/Vis spectra and turbidity measurements during the calibration model building, an improved boosting method, Boosting-Iterative Predictor Weighting-Partial Least Squares (Boosting-IPW-PLS), was developed in the present study. The Boosting-IPW-PLS method incorporates IPW into boosting scheme to suppress the quality-irrelevant variables by assigning small weights, and builds up the models for the wastewater quality predictions based on the weighted variables. The monitoring system was tested in the field with satisfactory results, underlying the potential of this technique for the online monitoring of water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Alignment as a Consequence of Expectation Adaptation: Syntactic Priming Is Affected by the Prime's Prediction Error Given both Prior and Recent Experience

    ERIC Educational Resources Information Center

    Jaeger, T. Florian; Snider, Neal E.

    2013-01-01

    Speakers show a remarkable tendency to align their productions with their interlocutors'. Focusing on sentence production, we investigate the cognitive systems underlying such alignment (syntactic priming). Our guiding hypothesis is that syntactic priming is a consequence of a language processing system that is organized to achieve efficient…

  16. A System That Works: Highlights of Effective Intervention Strategies in a Quality Improvement System

    ERIC Educational Resources Information Center

    Sinisterra, Diana; Baker, Stephen

    2010-01-01

    This paper describes one approach to quality improvement efforts: the Quality Improvement System (QIS) implemented by Prime Time Palm Beach County (Prime Time) in Palm Beach County, Florida. Prime Time's QIS is recognized as one promising systemic effort to improve quality in the afterschool field (Yohalem, Granger, & Pittman, 2009). As a…

  17. DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies.

    PubMed

    Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise

    2017-02-07

    Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Testing the Efficacy of a Multi-Component DNA-Prime/DNA-Boost Vaccine against Trypanosoma cruzi Infection in Dogs

    PubMed Central

    Aparicio-Burgos, José E.; Ochoa-García, Laucel; Zepeda-Escobar, José Antonio; Gupta, Shivali; Dhiman, Monisha; Martínez, José Simón; de Oca-Jiménez, Roberto Montes; Arreola, Margarita Val; Barbabosa-Pliego, Alberto; Vázquez-Chagoyán, Juan C.; Garg, Nisha Jain

    2011-01-01

    Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease. PMID:21625470

  19. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.

  20. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  1. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    PubMed

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.

  2. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates

    PubMed Central

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200

  3. Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study.

    PubMed

    Lebreton, K; Desgranges, B; Landeau, B; Baron, J C; Eustache, F

    2001-07-01

    The present work was aimed at characterizing picture priming effects from two complementary behavioral and functional neuroimaging (positron emission tomography, PET) studies. In two experiments, we used the same line drawings of common living/nonliving objects in a tachistoscopic identification task to contrast two forms of priming. In the within-format priming condition (picture-picture), subjects were instructed to perform a perceptual encoding task in the study phase, whereas in the cross-format priming condition (word-picture), they were instructed to perform a semantic encoding task. In Experiment 1, we showed significant priming effects in both priming conditions. However, the magnitude of priming effects in the same-format/perceptual encoding condition was higher than that in the different-format/semantic encoding condition, while the recognition performance did not differ between the two conditions. This finding supports the existence of two forms of priming that may be subserved by different systems. Consistent with these behavioral findings, the PET data for Experiment 2 revealed distinct priming-related patterns of regional cerebral blood flow (rCBF) decreases for the two priming conditions when primed items were compared to unprimed items. The same-format priming condition involved reductions in cerebral activity particularly in the right extrastriate cortex and left cerebellum, while the different-format priming condition was associated with rCBF decreases in the left inferior temporo-occipital cortex, left frontal regions, and the right cerebellum. These results suggest that the extrastriate cortex may subserve general aspects of perceptual priming, independent of the kind of stimuli, and that the right part of this cortex could underlie the same-format-specific system for pictures. These data also support the idea that the cross-format/semantic encoding priming for pictures represents a form of lexico-semantic priming subserved by a semantic neural network extending from left temporo-occipital cortex to left frontal regions. These results reinforce the distinction between perceptual and conceptual priming for pictures, indicating that different cerebral processes and systems are implicated in these two forms of picture priming.

  4. Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.

    1980-01-01

    The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.

  5. STEP--a System for Teaching Experimental Psychology using E-Prime.

    PubMed

    MacWhinney, B; St James, J; Schunn, C; Li, P; Schneider, W

    2001-05-01

    Students in psychology need to learn to design and analyze their own experiments. However, software that allows students to build experiments on their own has been limited in a variety of ways. The shipping of the first full release of the E-Prime system later this year will open up a new opportunity for addressing this problem. Because E-Prime promises to become the standard for building experiments in psychology, it is now possible to construct a Web-based resource that uses E-Prime as the delivery engine for a wide variety of instructional materials. This new system, funded by the National Science Foundation, is called STEP (System for the Teaching of Experimental Psychology). The goal of the STEP Project is to provide instructional materials that will facilitate the use of E-Prime in various learning contexts. We are now compiling a large set of classic experiments implemented in E-Prime and available over the Internet from http://step.psy.cmu.edu. The Web site also distributes instructional materials for building courses in experimental psychology based on E-Prime.

  6. Inverse target- and cue-priming effects of masked stimuli.

    PubMed

    Mattler, Uwe

    2007-02-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses are facilitated after dissimilar primes. Previous studies on inverse priming effects examined target-priming effects, which arise when the prime and the target stimuli share features that are critical for the response decision. In contrast, 3 experiments of the present study demonstrate inverse priming effects in a nonmotor cue-priming paradigm. Inverse cue-priming effects exhibited time courses comparable to inverse target-priming effects. Results suggest that inverse priming effects do not arise from specific processes of the response system but follow from operations that are more general.

  7. From Auger to AugerPrime: Understanding Ultrahigh-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Montanet, F.; Pierre Auger Collaboration

    2016-12-01

    Ultrahigh-energy cosmic rays (UHECRs), whose origin is still mysterious, provide a unique probe of the most extreme environments in the universe, of the intergalactic space and of particle physics beyond the reach of terrestrial accelerators. The Pierre Auger Observatory started operating more than a decade ago. Outperforming preceding experiments both in size and in precision, it has boosted forward the field of UHECRs as witnessed by a wealth of results. These include the study of the energy spectrum beyond 1 EeV with its spectral suppression around 40 EeV, of the large-scale anisotropy, of the mass composition, as well as stringent limits on photon and neutrino fluxes. But any harvest of new results also calls for new questions: what is the true nature of the spectral suppression: a propagation effect (so-called Greisen, Zatsepin and Kuz'min or GZK cutoff) or cosmic accelerators running out of steam? What is the composition of UHECRs at the highest energies? In order to answer these questions, the Auger Collaboration is undertaking a major upgrade program of its detectors, the AugerPrime project. The science case and motivations, the technical strategy and the scientific prospects are presented.

  8. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer.

    PubMed

    Richter, Corinna; Dy, Ron L; McKenzie, Rebecca E; Watson, Bridget N J; Taylor, Corinda; Chang, James T; McNeil, Matthew B; Staals, Raymond H J; Fineran, Peter C

    2014-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Promoting Recruitment using Information Management Efficiently (PRIME): a stepped-wedge, cluster randomised trial of a complex recruitment intervention embedded within the REstart or Stop Antithrombotics Randomised Trial.

    PubMed

    Maxwell, Amy E; Parker, Richard A; Drever, Jonathan; Rudd, Anthony; Dennis, Martin S; Weir, Christopher J; Al-Shahi Salman, Rustam

    2017-12-28

    Few interventions are proven to increase recruitment in clinical trials. Recruitment to RESTART, a randomised controlled trial of secondary prevention after stroke due to intracerebral haemorrhage, has been slower than expected. Therefore, we sought to investigate an intervention to boost recruitment to RESTART. We conducted a stepped-wedge, cluster randomised trial of a complex intervention to increase recruitment, embedded within the RESTART trial. The primary objective was to investigate if the PRIME complex intervention (a recruitment co-ordinator who conducts a recruitment review, provides access to bespoke stroke audit data exports, and conducts a follow-up review after 6 months) increases the recruitment rate to RESTART. We included 72 hospital sites located in England, Wales, or Scotland that were active in RESTART in June 2015. All sites began in the control state and were allocated using block randomisation stratified by hospital location (Scotland versus England/Wales) to start the complex intervention in one of 12 different months. The primary outcome was the number of patients randomised into RESTART per month per site. We quantified the effect of the complex intervention on the primary outcome using a negative binomial, mixed model adjusting for site, December/January months, site location, and background time trends in recruitment rate. We recruited and randomised 72 sites and recorded their monthly recruitment to RESTART over 24 months (March 2015 to February 2017 inclusive), providing 1728 site-months of observations for the primary analysis. The adjusted rate ratio for the number of patients randomised per month after allocation to the PRIME complex intervention versus control time before allocation to the PRIME complex intervention was 1.06 (95% confidence interval 0.55 to 2.03, p = 0.87). Although two thirds of respondents to the 6-month follow-up questionnaire agreed that the audit reports were useful, only six patients were reported to have been randomised using the audit reports. Respondents frequently reported resource and time pressures as being key barriers to running the audit reports. The PRIME complex intervention did not significantly improve the recruitment rate to RESTART. Further research is needed to establish if PRIME might be beneficial at an earlier stage in a prevention trial or for prevention dilemmas that arise more often in clinical practice.

  10. Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hua; Kim, Hyeokjin; Erickson, Robert

    In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less

  11. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  12. Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters

    DOE PAGES

    Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...

    2017-01-01

    In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less

  13. Religious magnanimity: reminding people of their religious belief system reduces hostility after threat.

    PubMed

    Schumann, Karina; McGregor, Ian; Nash, Kyle A; Ross, Michael

    2014-09-01

    The present research tested the hypothesis that many people's ambient religious beliefs are non-hostile and magnanimous by assessing whether reminding people of their religious belief systems would reduce hostility after threat. Across religious affiliations, participants reported that their religious belief systems encourage magnanimous behavior. In addition, priming their religious belief systems caused them to act more magnanimously, but only when motivated to adhere to salient ideals (i.e., after threats; see Gailliot, Stillman, Schmeichel, Maner, & Plant, 2008; Jonas et al., 2008). Specifically, in Studies 1-5, we found that a general religious belief system prime ("Which religious belief system do you identify with?") reduced the hostility of people's thoughts, behaviors, and judgments following threat. In Studies 6 and 7, we found that the religious belief system prime only reduced hostile reactions to threat among participants who held religious beliefs that oriented them toward magnanimous ideals (Study 6) and who were dispositionally inclined to adhere to their ideals (Study 7). In Study 8, we found support for the role of magnanimous ideals by demonstrating that directly priming these ideals yielded effects similar to those produced by a religious belief system prime. These studies provide consistent evidence that, by invoking magnanimous ideals, a religious belief system prime promotes less hostile responses to threat. 2014 APA, all rights reserved

  14. Development and Testing of an Ultra Low Power System-On-Chip (SOC) Platform for Marine Mammal Tags and Passive Acoustic Signal Processing

    DTIC Science & Technology

    2014-09-30

    current (3-5mA). The system can harvest 16 power from a DC input source like a thermoelectric generator (TEG) or photovoltaic cell (PV). The boost...results from components to report. Designed for thermoelectric energy harvesting in 130nm CMOS, the boost converter reduces the achievable input...harvesting. The boost converter further incorporates maximum power point tracking for harvesting from both thermoelectric generators (TEGs) and solar

  15. Effectiveness of different avian influenza (H5) vaccination regimens in layer chickens on the humoral immune response and interferon-alpha signalling immune marker.

    PubMed

    Hamad, Mustafa; Amen, Omar; Mahmoud, Mohamed; Hassanin, Ola; Saif-Edin, Mostafa

    2018-06-01

    Avian influenza (AI) vaccines are widely used to control and eliminate the ongoing avian influenza virus epidemic in Egypt. A strict vaccination policy with inactivated AI vaccines has been widely applied, however the virus still circulating, evolving and causing great negative impact to the poultry sector in Egypt. Therefore, an updated poultry vaccination policy using different vaccine technologies might be valuable as an innovative additional control strategy of AIV in Egypt. In the present study, the effectiveness of different avian influenza (AI) vaccination schedules was evaluated in 300 commercial layer chicks (ISA White) using either the oil-emulsion baculovirus-H5-prototype vaccine (baculovirus-H5 prototype) or turkey herpesvirus (HVT) vector vaccine containing the hemagglutinin (HA) gene from H5N1 strain (rHVT-H5), applied alone or in combination and in different settings. Vaccination with either two injections of the baculovirus-H5 prototype, a single injection of rHVT-H5 or priming with rHVT-H5 at 1 day old followed by boosting with the baculovirus-H5 prototype induced AI-HI protective antibody responses starting as early as 3 to 4 weeks of age and lasting up to the end of the rearing period (16 weeks). A single vaccination with the baculovirus-H5 prototype did not generate a protective antibody titre for the entire rearing period. Furthermore, the present study elucidated that vaccination once or twice with the baculovirus-H5 vaccine prototype activated the chicken interferon-alpha (Ch-IFN-alpha) signalling pathway via transduction of antiviral components, e.g., Mx1 and IRF7. Birds immunized once with rHVT-H5 at 1 day old did not show activation of the Mx1 and IRF7 transcripts; however, following boosting with the baculovirus-H5 prototype vaccine, up-regulation of Mx1 and IRF7 was observed. Based on our findings, it can be concluded that either reinforcement with two injections of the baculovirus-H5 prototype or prime-boost vaccination (rHVT-H5 at 1 day old followed by the baculovirus-H5 prototype vaccine at 8 days old) is a successful strategy to induce both innate and humoral immune responses and could be recommended for the layer production sector over the entire rearing period, especially in AI-endemic areas.

  16. Safety and immunogenicity of novel respiratory syncytial virus (RSV) vaccines based on the RSV viral proteins F, N and M2-1 encoded by simian adenovirus (PanAd3-RSV) and MVA (MVA-RSV); protocol for an open-label, dose-escalation, single-centre, phase 1 clinical trial in healthy adults

    PubMed Central

    Green, C A; Scarselli, E; Voysey, M; Capone, S; Vitelli, A; Nicosia, A; Cortese, R; Thompson, A J; Sande, C S; de Lara, Catherine; Klenerman, P; Pollard, A J

    2015-01-01

    Introduction Respiratory syncytial virus (RSV) infection causes respiratory disease throughout life, with infants and the elderly at risk of severe disease and death. RSV001 is a phase 1 (first-in-man), open-label, dose-escalation, clinical trial of novel genetic viral-vectored vaccine candidates PanAd3-RSV and modified vaccinia virus Ankara (MVA)-RSV. The objective of RSV001 is to characterise the (primary objective) safety and (secondary objective) immunogenicity of these vaccines in healthy younger and older adults. Methods and analysis Heterologous and homologous ‘prime’/boost combinations of PanAd3-RSV and single-dose MVA-RSV are evaluated in healthy adults. 40 healthy adults aged 18–50 years test one of four combinations of intramuscular (IM) or intranasal (IN) PanAd3-RSV prime and IM PanAd3 or IM MVA-RSV boost vaccination, starting at a low dose for safety. The following year an additional 30 healthy adults aged 60–75 years test either a single dose of IM MVA-RSV, one of three combinations of IN or IM PanAd3-RSV prime and PanAd3-RSV or MVA-RSV boost vaccination used in younger volunteers, and a non-vaccinated control group. Study participants are self-selected volunteers who satisfy the eligibility criteria and are assigned to study groups by sequential allocation. Safety assessment includes the daily recording of solicited and unsolicited adverse events for 1 week after vaccination, as well as visit (nursing) observations and safety bloods obtained at all scheduled attendances. Laboratory measures of RSV-specific humoral and cellular immune responses after vaccination will address the secondary end points. All study procedures are performed at the Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Oxford, UK. Ethics and dissemination RSV001 has clinical trial authorisation from the Medicines and Healthcare Products Regulatory Agency (MHRA) and ethics approval from NRES Berkshire (reference 13/SC/0023). All study procedures adhere to International Conference on Harmonisation (ICH) Good Clinical Practice guidelines. The results of the trial are to be published in peer-reviewed journals, conferences and academic forums. Trial registration number NCT01805921. PMID:26510727

  17. Guess what? Implicit motivation boosts the influence of subliminal information on choice.

    PubMed

    Milyavsky, Maxim; Hassin, Ran R; Schul, Yaacov

    2012-09-01

    When is choice affected by subliminal messages? This question has fascinated scientists and lay people alike, but it is only recently that reliable empirical data began to emerge. In the current paper we bridge the literature on implicit motivation and that on subliminal persuasion. We suggest that motivation in general, and implicit motivation more specifically, plays an important role in subliminal persuasion: It sensitizes us to subliminal cues. To examine this hypothesis we developed a new paradigm that allows powerful tests of subliminal influences as well as stringent assessments of subliminality. The results of two experiments suggest that implicit motivation can enhance the effects of subliminal priming on choice. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Designing and building oncolytic viruses

    PubMed Central

    Maroun, Justin; Muñoz-Alía, Miguel; Ammayappan, Arun; Schulze, Autumn; Peng, Kah-Whye; Russell, Stephen

    2017-01-01

    Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care. PMID:29387140

  19. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  20. Peacocks, Picasso, and parental investment: The effects of romantic motives on creativity.

    PubMed

    Griskevicius, Vladas; Cialdini, Robert B; Kenrick, Douglas T

    2006-07-01

    Four experiments explored the effects of mating motivation on creativity. Even without other incentives to be creative, romantic motives enhanced creativity on subjective and objective measures. For men, any cue designed to activate a short-term or a long-term mating goal increased creative displays; however, women displayed more creativity only when primed to attract a high-quality long-term mate. These creative boosts were unrelated to increased effort on creative tasks or to changes in mood or arousal. Furthermore, results were unaffected by the application of monetary incentives for creativity. These findings align with the view that creative displays in both sexes may be linked to sexual selection, qualified by unique exigencies of human parental investment. Copyright 2006 APA, all rights reserved.

  1. 48 CFR 45.501 - Prime contractor alternate locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Prime contractor alternate... CONTRACT MANAGEMENT GOVERNMENT PROPERTY Support Government Property Administration 45.501 Prime contractor... administration from another contract administration office, for purposes of evaluating prime contractor...

  2. 48 CFR 49.108-2 - Prime contractor's rights and obligations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Prime contractor's rights and obligations. 49.108-2 Section 49.108-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108-2 Prime contractor's rights...

  3. A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia

    PubMed Central

    Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.

    2014-01-01

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896

  4. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    PubMed Central

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  5. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese.

    PubMed

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts-orthographically related, but which-in their commonly written form-share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words.

  6. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    PubMed Central

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts—orthographically related, but which—in their commonly written form—share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  7. Primary and booster vaccination with an inactivated poliovirus vaccine (IPV) is immunogenic and well-tolerated in infants and toddlers in China.

    PubMed

    Li, Rongcheng; Li, Chang Gui; Li, Yanping; Liu, Youping; Zhao, Hong; Chen, Xiaoling; Kuriyakose, Sherine; Van Der Meeren, Olivier; Hardt, Karin; Hezareh, Marjan; Roy-Ghanta, Sumita

    2016-03-14

    Replacing live-attenuated oral poliovirus vaccines (OPV) with inactivated poliovirus vaccines (IPV) is part of the global strategy to eradicate poliomyelitis. China was declared polio-free in 2000 but continues to record cases of vaccine-associated-poliomyelitis and vaccine-derived-poliovirus outbreaks. Two pilot safety studies and two larger immunogenicity trials evaluated the non-inferiority of IPV (Poliorix™, GSK Vaccines, Belgium) versus OPV in infants and booster vaccination in toddlers primed with either IPV or OPV in China. In pilot safety studies, 25 infants received 3-dose IPV primary vaccination (Study A, www.clinicaltrial.gov NCT00937404) and 25 received an IPV booster after priming with three OPV doses (Study B, NCT01021293). In the randomised, controlled immunogenicity and safety trial (Study C, NCT00920439), infants received 3-dose primary vaccination with IPV (N=541) or OPV (N=535) at 2,3,4 months of age, and a booster IPV dose at 18-24 months (N=470, Study D, NCT01323647: extension of study C). Blood samples were collected before and one month post-dose-3 and booster. Reactogenicity was assessed using diary cards. Serious adverse events (SAEs) were captured throughout each study. Study A and B showed that IPV priming and IPV boosting (after OPV) was safe. Study C: One month post-dose-3, all IPV and ≥ 98.3% OPV recipients had seroprotective antibody titres towards each poliovirus type. The immune response elicited by IPV was non-inferior to Chinese OPV. Seroprotective antibody titres persisted in ≥ 94.7% IPV and ≥ 96.1% OPV recipients at 18-24 months (Study D). IPV had a clinically acceptable safety profile in all studies. Grade 3 local and systemic reactions were uncommon. No SAEs were related to IPV administration. Trivalent IPV is non-inferior to OPV in terms of seroprotection (in the Chinese vaccination schedule) in infant and toddlers, with a clinically acceptable safety profile. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.

  9. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma. PMID:28178658

  10. Limited Model Antigen Expression by Transgenic Fungi Induces Disparate Fates during Differentiation of Adoptively Transferred T Cell Receptor Transgenic CD4+ T Cells: Robust Activation and Proliferation with Weak Effector Function during Recall

    PubMed Central

    Ersland, Karen; Pick-Jacobs, John C.; Gern, Benjamin H.; Frye, Christopher A.; Sullivan, Thomas D.; Brennan, Meghan B.; Filutowicz, Hanna I.; O'Brien, Kevin; Korthauer, Keegan D.; Schultz-Cherry, Stacey; Klein, Bruce S.

    2012-01-01

    CD4+ T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4+ T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4+ T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4+ T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4+ T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells. PMID:22124658

  11. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  12. Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium.

    PubMed

    Fu, Xuejie; Yang, Huilin; Zhang, Hui; Wang, Guichao; Liu, Ke; Gu, Qiaoli; Tao, Yunxia; Chen, Guangcun; Jiang, Xiaohua; Li, Gang; Gu, Yanzheng; Shi, Qin

    2016-09-20

    Mesenchymal stem cells (MSCs) are widely used in cell-based therapy owing to their multilineage potential and low immunogenicity. However, low differentiation efficiency and unpredictable immunogenicity of allogeneic MSCs in vivo limit their success in therapeutic treatment. Herein, we evaluated the differentiation potential and immunogenicity of human placenta-derived MSCs manipulated with osteogenic priming and dedifferentiation process. MSCs from human placentas were subjected to osteogenic induction and then cultivated in osteogenic factor-free media; the obtained cell population was termed dedifferentiated mesenchymal stem cells (De-MSCs). De-MSCs were induced into osteo-, chondro- and adipo-differentiation in vitro. Cell proliferation was quantified by a Cell-Counting Kit-8 or tritiated thymidine ([(3)H]-TdR) incorporation. Meanwhile, the osteogenesis of De-MSCs in vivo was assayed by real-time PCR and histological staining. The expressions of stem cell markers and co-stimulatory molecules on De-MSCs and lymphocytes from primed BALB/c mouse with De-MSCs were determined by flow cytometry. De-MSCs exhibited some properties similar to MSCs including multiple differentiation potential and hypoimmunogenicity. Upon re-osteogenic induction, De-MSCs exhibited higher differentiation capability than MSCs both in vitro and in vivo. Of note, De-MSCs had upregulated immunogenicity in association with their osteogenesis, reflected by the alternated expressions of co-stimulatory molecules on the surface and decreased suppression on T cell activation. Functionally, De-MSC-derived osteoblasts could prime lymphocytes of peripheral blood and spleen in BALB/c mice in vivo. These data are of great significance for the potential application of De-MSCs as an alternative resource for regenerative medicine and tissue engineering. In order to avoid being rejected by the host during allogeneic De-MSC therapy, we suggest that immune intervention should be considered to boost the immune acceptance and integration because of the upregulated immunogenicity of De-MSCs with redifferentiation in clinical applications.

  13. Immunogenicity and safety of 23-valent pneumococcal polysaccharide vaccine as a booster dose in 12- to 18-month-old children primed with 3 doses of 7-valent pneumococcal conjugate vaccine

    PubMed Central

    Thisyakorn, Usa; Chokephaibulkit, Kulkanya; Kosalaraksa, Pope; Benjaponpitak, Suwat; Pancharoen, Chitsanu; Chuenkitmongkol, Sunate

    2014-01-01

    The current study examined the safety and immunogenicity of 23-valent pneumococcal capsular polysaccharide vaccine (Pneumo23® [PPV23], Sanofi Pasteur) as a booster dose in 12- to 18-month-old children primed with heptavalent pneumococcal vaccine (PCV7; Prevnar®, Pfizer). This was a randomized, observer-blinded, 2-arm, controlled, multicenter phase III study performed in Thailand to assess and describe the immunogenicity and safety of PPV23 as a booster dose in children who had received the 3 primary doses of PCV7, the pneumococcal vaccine available during the study period. Children primed with 3 doses of PCV7 were randomized 1:1 to receive a booster immunization with PPV23 or PCV7. Pneumococcal antibody concentrations were measured by enzyme-linked immunosorbent assay and functional antibody levels by multiplex opsonophagocytosis assay on day 30. A total of 339 children were enrolled. Geometric mean serum antibody concentrations against serotypes common to PCV7 and PPV23 (4, 6B, 9V, 14, 18C, 19F, and 23F) increased in both groups but they were higher for serotypes 4, 9V, 18C, and 19F in the PPV23 group. Opsonization indices increased in both groups for all measured serotypes (1, 6B, 14, 19A, and 23F) and were higher for serotypes 6B, 14, and 23F in the PCV7 group and for serotypes 1 and 19A in PPV23 group. Solicited reactions and unsolicited adverse events were similar in the 2 groups and generally mild and transient. No treatment-related serious adverse events were reported. These results confirm that boosting with PPV23 is immunogenic and well tolerated in healthy toddlers primed with PCV7. PMID:25424793

  14. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  15. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  16. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism

    PubMed Central

    Dirckx, Naomi; Tower, Robert J.; Mercken, Evi M.; Moreau-Triby, Caroline; Breugelmans, Tom; Nefyodova, Elena; Cardoen, Ruben; Mathieu, Chantal; Van der Schueren, Bart; Confavreux, Cyrille B.; Clemens, Thomas L.

    2018-01-01

    The skeleton has emerged as an important regulator of systemic glucose homeostasis, with osteocalcin and insulin representing prime mediators of the interplay between bone and energy metabolism. However, genetic evidence indicates that osteoblasts can influence global energy metabolism through additional, as yet unknown, mechanisms. Here, we report that constitutive or postnatally induced deletion of the hypoxia signaling pathway component von Hippel–Lindau (VHL) in skeletal osteolineage cells of mice led to high bone mass as well as hypoglycemia and increased glucose tolerance, not accounted for by osteocalcin or insulin. In vitro and in vivo data indicated that Vhl-deficient osteoblasts displayed massively increased glucose uptake and glycolysis associated with upregulated HIF-target gene expression, resembling the Warburg effect that typifies cancer cells. Overall, the glucose consumption by the skeleton was increased in the mutant mice, as revealed by 18F-FDG radioactive tracer experiments. Moreover, the glycemia levels correlated inversely with the level of skeletal glucose uptake, and pharmacological treatment with the glycolysis inhibitor dichloroacetate (DCA), which restored glucose metabolism in Vhl-deficient osteogenic cells in vitro, prevented the development of the systemic metabolic phenotype in the mutant mice. Altogether, these findings reveal a novel link between cellular glucose metabolism in osteoblasts and whole-body glucose homeostasis, controlled by local hypoxia signaling in the skeleton. PMID:29431735

  18. 48 CFR 32.110 - Payment of subcontractors under cost-reimbursement prime contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... under cost-reimbursement prime contracts. 32.110 Section 32.110 Federal Acquisition Regulations System... Purchase Financing 32.110 Payment of subcontractors under cost-reimbursement prime contracts. If the contractor makes financing payments to a subcontractor under a cost-reimbursement prime contract, the...

  19. Protective Effect of Immunization with Heat-Labile Enterotoxin in Gnotobiotic Rats Monocontaminated with Enterotoxigenic Escherichia coli

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.; Short, Helen B.

    1980-01-01

    The protective effect of active immunization with a purified preparation of the polymyxin-release form of Escherichia coli heat-labile enterotoxin (LT), administered using a parenteral prime and peroral boosts given after ablation of gastric secretion by means of cimetidine, was assessed in gnotobiotic rats which were challenged by monocontamination with enterotoxigenic strains of E. coli. Water transport was evaluated by the in vivo marker perfusion technique at weekly intervals over a 3-week period after contamination. Water transport in unimmunized control rats was consistently in absorption in those contaminated by a nontoxigenic strain, in secretion during only week 2 in those contaminated by an LT+/− strain, in secretion during weeks 2 and 3 in those contaminated by an LT+/ST+ (heat-stable enterotoxin) strain, and consistently in absorption in those contaminated by an −/ST+ strain. Rats immunized with a booster dosage of 250 μg had a significant increase (P < 0.001) in net water absorption as compared to unimmunized rats, with values in the borderline range of absorption, when challenged with either the LT+/− or LT+/ST+ strains. Rats immunized with a 10-fold-higher boosting dosage had a significant increase (P < 0.001) in net water absorption as compared to those boosted at the lower dosage; water absorption was within the normal range. There was no difference between the ileal bacterial counts of unimmunized and immunized rats challenged by the various strains. These observations indicate that this immunization program provides complete protection in an animal model against challenge by intestinal contamination with enterotoxigenic strains of E. coli which produce LT, either alone or in combination with ST. PMID:6991436

  20. Options and obstacles for designing a universal influenza vaccine.

    PubMed

    Jang, Yo Han; Seong, Baik Lin

    2014-08-18

    Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.

  1. Options and Obstacles for Designing a Universal Influenza Vaccine

    PubMed Central

    Jang, Yo Han; Seong, Baik Lin

    2014-01-01

    Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine. PMID:25196381

  2. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague.

    PubMed

    Amemiya, Kei; Meyers, Jennifer L; Rogers, Taralyn E; Fast, Randy L; Bassett, Anthony D; Worsham, Patricia L; Powell, Bradford S; Norris, Sarah L; Krieg, Arthur M; Adamovicz, Jeffrey J

    2009-04-06

    The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).

  3. Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice.

    PubMed

    Wahome, Newton; Sully, Erin; Singer, Christopher; Thomas, Justin C; Hu, Lei; Joshi, Sangeeta B; Volkin, David B; Fang, Jianwen; Karanicolas, John; Jacobs, Donald J; Mantis, Nicholas J; Middaugh, C Russell

    2016-05-01

    RiVax is a candidate ricin toxin subunit vaccine antigen that has proven to be safe in human phase I clinical trials. In this study, we introduced double and triple cavity-filling point mutations into the RiVax antigen with the expectation that stability-enhancing modifications would have a beneficial effect on overall immunogenicity of the recombinant proteins. We demonstrate that 2 RiVax triple mutant derivatives, RB (V81L/C171L/V204I) and RC (V81I/C171L/V204I), when adsorbed to aluminum salts adjuvant and tested in a mouse prime-boost-boost regimen were 5- to 10-fold more effective than RiVax at eliciting toxin-neutralizing serum IgG antibody titers. Increased toxin neutralizing antibody values and seroconversion rates were evident at different antigen dosages and within 7 days after the first booster. Quantitative stability/flexibility relationships analysis revealed that the RB and RC mutations affect rigidification of regions spanning residues 98-103, which constitutes a known immunodominant neutralizing B-cell epitope. A more detailed understanding of the immunogenic nature of RB and RC may provide insight into the fundamental relationship between local protein stability and antibody reactivity. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    PubMed

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  5. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    NASA Astrophysics Data System (ADS)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  6. 78 FR 79455 - Information Collection; System for Award Management Registration Requirements for Prime Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ...Under the provisions of the Paperwork Reduction Act of 1995 (44 U.S.C. Chapter 35), the Regulatory Secretariat Division will be submitting to the Office of Management and Budget (OMB) a request to review and approve a renewal of the currently approved information collection requirement regarding the pre-award registration requirements for Prime Grant Recipients. The title of the approved information collection is Central Contractor Registration Requirements for Prime Grant Recipients (OMB Control Number 3090-0290). The updated information collection title, based on the migration of the Central Contractor Registration system to the System for Award Management in late July 2012, is System for Award Management Registration Requirements for Prime Grant Recipients.

  7. Ultrasonic mixing of epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.

    1983-01-01

    A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.

  8. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.

    PubMed

    Clare, Andrew S; Cummings, Mary L; Repenning, Nelson P

    2015-11-01

    We examined the impact of priming on operator trust and system performance when supervising a decentralized network of heterogeneous unmanned vehicles (UVs). Advances in autonomy have enabled a future vision of single-operator control of multiple heterogeneous UVs. Real-time scheduling for multiple UVs in uncertain environments requires the computational ability of optimization algorithms combined with the judgment and adaptability of human supervisors. Because of system and environmental uncertainty, appropriate operator trust will be instrumental to maintain high system performance and prevent cognitive overload. Three groups of operators experienced different levels of trust priming prior to conducting simulated missions in an existing, multiple-UV simulation environment. Participants who play computer and video games frequently were found to have a higher propensity to overtrust automation. By priming gamers to lower their initial trust to a more appropriate level, system performance was improved by 10% as compared to gamers who were primed to have higher trust in the automation. Priming was successful at adjusting the operator's initial and dynamic trust in the automated scheduling algorithm, which had a substantial impact on system performance. These results have important implications for personnel selection and training for futuristic multi-UV systems under human supervision. Although gamers may bring valuable skills, they may also be potentially prone to automation bias. Priming during training and regular priming throughout missions may be one potential method for overcoming this propensity to overtrust automation. © 2015, Human Factors and Ergonomics Society.

  9. 46 CFR 111.12-1 - Prime movers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Prime movers. 111.12-1 Section 111.12-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-1 Prime movers. (a) Prime movers must meet section 58...

  10. 46 CFR 111.12-1 - Prime movers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Prime movers. 111.12-1 Section 111.12-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-1 Prime movers. (a) Prime movers must meet section 58...

  11. 46 CFR 111.12-1 - Prime movers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Prime movers. 111.12-1 Section 111.12-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-1 Prime movers. (a) Prime movers must meet section 58...

  12. 46 CFR 111.12-1 - Prime movers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Prime movers. 111.12-1 Section 111.12-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-1 Prime movers. (a) Prime movers must meet section 58...

  13. 46 CFR 111.12-1 - Prime movers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Prime movers. 111.12-1 Section 111.12-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-1 Prime movers. (a) Prime movers must meet section 58...

  14. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    PubMed

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  15. The neural correlates of priming emotion and reward systems for conflict processing in alcoholics.

    PubMed

    Schulte, T; Jung, Y-C; Sullivan, E V; Pfefferbaum, A; Serventi, M; Müller-Oehring, E M

    2017-12-01

    Emotional dysregulation in alcoholism (ALC) may result from disturbed inhibitory mechanisms. We therefore tested emotion and alcohol cue reactivity and inhibitory processes using negative priming. To test the neural correlates of cue reactivity and negative priming, 26 ALC and 26 age-matched controls underwent functional MRI performing a Stroop color match-to-sample task. In cue reactivity trials, task-irrelevant emotion and alcohol-related pictures were interspersed between color samples and color words. In negative priming trials, pictures primed the semantic content of an alcohol or emotion Stroop word. Behaviorally, both groups showed response facilitation to picture cue trials and response inhibition to primed trials. For cue reactivity to emotion and alcohol pictures, ALC showed midbrain-limbic activation. By contrast, controls activated frontoparietal executive control regions. Greater midbrain-hippocampal activation in ALC correlated with higher amounts of lifetime alcohol consumption and higher anxiety. With negative priming, ALC exhibited frontal cortical but not midbrain-hippocampal activation, similar to the pattern observed in controls. Higher frontal activation to alcohol-priming correlated with less craving and to emotion-priming with fewer depressive symptoms. The findings suggest that neurofunctional systems in ALC can be primed to deal with upcoming emotion- and alcohol-related conflict and can overcome the prepotent midbrain-limbic cue reactivity response.

  16. 76 FR 63229 - Airworthiness Directives; The Boeing Company Model 737-100, -200, -200C, -300, -400, and -500...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... automatic shutoff system for the center and auxiliary tank fuel boost pumps, as applicable, and installing a placard in the airplane flight deck if necessary; replacing the P5-2 fuel system module assembly; and installing the un-commanded on (UCO) protection system for the center and auxiliary tank fuel boost pumps, as...

  17. Centaur propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Aydelott, J. C.

    1975-01-01

    The desirability of replacing the hydrogen peroxide settling system of the Centaur D-1S with a capillary acquisition system was evaluated. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump to provide the necessary net positive suction head (NPSH). Design drawings were prepared for start basket and start tank concepts for both the liquid oxygen and liquid hydrogen tanks. System comparisons indicated that the start baskets using wicking flow for thermal conditioning, and thermal subcooling for providing boost pump NPSH, are the most desirable systems for future Centaur acquisition system development.

  18. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  19. Engineering report: Oxygen boost compressor study

    NASA Technical Reports Server (NTRS)

    Tera, L. S.

    1974-01-01

    An oxygen boost compressor is described which supports a self-contained life support system. A preliminary analysis of the compressor is presented along with performance test results, and recommendations for follow-on efforts.

  20. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    PubMed

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  1. Effect of pole zero location on system dynamics of boost converter for micro grid

    NASA Astrophysics Data System (ADS)

    Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.

    2018-04-01

    Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.

  2. Technological challenges for boosting coal production with environmental sustainability.

    PubMed

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  3. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  4. Indole is an essential herbivore-induced volatile priming signal in maize

    PubMed Central

    Erb, Matthias; Veyrat, Nathalie; Robert, Christelle A. M.; Xu, Hao; Frey, Monika; Ton, Jurriaan; Turlings, Ted C. J.

    2015-01-01

    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks. PMID:25683900

  5. Automatic response activation in sequential affective priming: an ERP study

    PubMed Central

    Leuthold, Hartmut; Rothermund, Klaus; Schweinberger, Stefan R.

    2012-01-01

    Affective priming effects denote faster responses when two successively presented affective stimuli match in valence than when they mismatch. Two mechanisms have been proposed for their explanation: (i) Priming of affective information within a semantic network or distributed memory system (semantic priming). (ii) Automatic activation of the evaluative response through the affective prime (response priming). In this experiment, we sought more direct evidence for prime-induced response activations with measurement of the lateralized readiness potential (LRP). Onset of the stimulus-locked LRP was earlier in affectively congruent trials than in incongruent trials. In addition, priming modulated the LRP-amplitude of slow responses, indicating greater activation of the incorrect response hand in affectively incongruent trials. Onset of the response-locked LRP and peak latency of the P300 component were not modulated by priming but the amplitude of the N400 component was. In combination, these results suggest that both, semantic priming and response priming constitute affective priming effects in the evaluative categorization task. PMID:21642351

  6. Online boosting for vehicle detection.

    PubMed

    Chang, Wen-Chung; Cho, Chih-Wei

    2010-06-01

    This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.

  7. An Advanced Photovoltaic Array Regulator Module

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1996-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  8. Models of Recognition, Repetition Priming, and Fluency : Exploring a New Framework

    ERIC Educational Resources Information Center

    Berry, Christopher J.; Shanks, David R.; Speekenbrink, Maarten; Henson, Richard N. A.

    2012-01-01

    We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely…

  9. Transition probabilities in OH A 2 sigma + - X 2 pi i: Bands with v prime = 0 and 1, v double prime = 0 to 4

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.; Jeffries, Jay B.; Crosley, David R.

    1986-01-01

    Experimental results for relative vibrational band transition probabilities for v prime = 0 and 1, and v double prime = 0 to 4 in the A-X electronic system of OH are presented. The measurements, part of a larger set involving v prime = 0 to 4 and v double prime = 0 to 6, were made using spectrally dispersed laser-induced fluorescence (LIF) in the burnt gases of a flame. These Einstein coefficients will be useful in dynamics experiments for quantitative LIF determinations of OH radical concentrations in high v double prime.

  10. Behavioral Priming 2.0: Enter a Dynamical Systems Perspective

    PubMed Central

    Krpan, Dario

    2017-01-01

    On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP). The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications. PMID:28769846

  11. Grid-connected wind and photovoltaic system

    NASA Astrophysics Data System (ADS)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  12. Centaur propellant acquisition system study

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Walter, M. D.

    1975-01-01

    A study was performed to determine the desirability of replacing the hydrogen peroxide settling system on the Centaur D-1S with a capillary acquisition system. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump in order to provide necessary net position suction head (NPSH). Design drawings were prepared for the start basket and start tank concepts for both LO2 and LH2 tanks. System comparisons indicated that the start baskets using wicking for thermal conditioning, and thermal subcooling for boost pump NPSH, are the most desirable systems for future development.

  13. Sharing the British National Health Service around the world: a self-interested perspective

    PubMed Central

    2013-01-01

    As the UK reiterates its commitment to protecting and growing its development aid budget amidst an adverse economic environment for the UK and Europe, we discuss the potential to use the country’s National Health Service (NHS) model as a vehicle for promoting the country’s economic as well as global health diplomacy and development priorities, through a coordinated cross-government plan of action. With the country’s Prime Minister serving as a co-chair of the UN post-2015 development agenda panel,a this is a unique opportunity for the UK to put forward its health system architecture as a highly applicable and well-tested model for providing access to efficient and cost-effective care, with minimal financial hardship. Arguably, such a model tailored to the needs of specific countries could consequently lead to commercial opportunities for UK plc. in areas such as consulting, training, education and healthcare products. Finally, this approach would be consistent with the current thinking on the evolving role of UK aid, especially in the case of emerging powers such as India, where the focus has shifted from aid to investment in technical assistance and cooperation as a means of boosting bilateral business and trade. PMID:24160168

  14. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  15. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    PubMed

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  16. A Nonproliferating Parvovirus Vaccine Vector Elicits Sustained, Protective Humoral Immunity following a Single Intravenous or Intranasal Inoculation

    PubMed Central

    Palmer, Gene A.; Brogdon, Jennifer L.; Constant, Stephanie L.; Tattersall, Peter

    2004-01-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th1 immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4+ T cells. PMID:14722265

  17. Sharing the British National Health Service around the world: a self-interested perspective.

    PubMed

    Chalkidou, Kalipso; Vega, Jeanette

    2013-10-25

    As the UK reiterates its commitment to protecting and growing its development aid budget amidst an adverse economic environment for the UK and Europe, we discuss the potential to use the country's National Health Service (NHS) model as a vehicle for promoting the country's economic as well as global health diplomacy and development priorities, through a coordinated cross-government plan of action. With the country's Prime Minister serving as a co-chair of the UN post-2015 development agenda panel,a this is a unique opportunity for the UK to put forward its health system architecture as a highly applicable and well-tested model for providing access to efficient and cost-effective care, with minimal financial hardship. Arguably, such a model tailored to the needs of specific countries could consequently lead to commercial opportunities for UK plc. in areas such as consulting, training, education and healthcare products. Finally, this approach would be consistent with the current thinking on the evolving role of UK aid, especially in the case of emerging powers such as India, where the focus has shifted from aid to investment in technical assistance and cooperation as a means of boosting bilateral business and trade.

  18. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  19. Early dynamics of the semantic priming shift

    PubMed Central

    Lavigne, Frédéric; Chanquoy, Lucile; Dumercy, Laurent; Vitu, Françoise

    2013-01-01

    Semantic processing of sequences of words requires the cognitive system to keep several word meanings simultaneously activated in working memory with limited capacity. The real- time updating of the sequence of word meanings relies on dynamic changes in the associates to the words that are activated. Protocols involving two sequential primes report a semantic priming shift from larger priming of associates to the first prime to larger priming of associates to the second prime, in a range of long SOAs (stimulus-onset asynchronies) between the second prime and the target. However, the possibility for an early semantic priming shift is still to be tested, and its dynamics as a function of association strength remain unknown. Three multiple priming experiments are proposed that cross-manipulate association strength between each of two successive primes and a target, for different values of short SOAs and prime durations. Results show an early priming shift ranging from priming of associates to the first prime only to priming of strong associates to the first prime and all of the associates to the second prime. We investigated the neural basis of the early priming shift by using a network model of spike frequency adaptive cortical neurons (e.g., Deco & Rolls, 2005), able to code different association strengths between the primes and the target. The cortical network model provides a description of the early dynamics of the priming shift in terms of pro-active and retro-active interferences within populations of excitatory neurons regulated by fast and unselective inhibitory feedback. PMID:23717346

  20. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Thornton, Daniel C. O.; Yvon-Lewis, Shari A.; King, Gary M.; Eglinton, Timothy I.; Shields, Michael R.; Ward, Nicholas D.; Curtis, Jason

    2015-07-01

    The role of priming processes in the remineralization of terrestrially derived dissolved organic carbon (TDOC) in aquatic systems has been overlooked. We provide evidence for TDOC priming using a lab-based microcosm experiment in which TDOC was primed by the addition of 13C-labeled algal dissolved organic carbon (ADOC) or a 13C-labeled disaccharide (trehalose). The rate of TDOC remineralization to carbon dioxide (CO2) occurred 4.1 ± 0.9 and 1.5 ± 0.3 times more rapidly with the addition of trehalose and ADOC, respectively, relative to experiments with TDOC as the sole carbon source over the course of a 301 h incubation period. Results from these controlled experiments provide fundamental evidence for the occurrence of priming of TDOC by ADOC and a simple disaccharide. We suggest that priming effects on TDOC should be considered in carbon budgets for large-river deltas, estuaries, lakes, hydroelectric reservoirs, and continental shelves.

  1. Neural priming in human frontal cortex: multiple forms of learning reduce demands on the prefrontal executive system.

    PubMed

    Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D

    2009-09-01

    Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.

  2. Development of Lexical-Semantic Language System: N400 Priming Effect for Spoken Words in 18- and 24-Month Old Children

    ERIC Educational Resources Information Center

    Rama, Pia; Sirri, Louah; Serres, Josette

    2013-01-01

    Our aim was to investigate whether developing language system, as measured by a priming task for spoken words, is organized by semantic categories. Event-related potentials (ERPs) were recorded during a priming task for spoken words in 18- and 24-month-old monolingual French learning children. Spoken word pairs were either semantically related…

  3. Relational integrativity of prime-target pairs moderates congruity effects in evaluative priming.

    PubMed

    Ihmels, Max; Freytag, Peter; Fiedler, Klaus; Alexopoulos, Theodore

    2016-05-01

    In evaluative priming, positive or negative primes facilitate reactions to targets that share the same valence. While this effect is commonly explained as reflecting invariant structures in semantic long-term memory or in the sensorimotor system, the present research highlights the role of integrativity in evaluative priming. Integrativity refers to the ease of integrating two concepts into a new meaningful compound representation. In extended material tests using paired comparisons from two pools of positive and negative words, we show that evaluative congruity is highly correlated with integrativity. Therefore, in most priming studies, congruity and integrativity are strongly confounded. When both aspects are disentangled by manipulating congruity and integrativity orthogonally, three priming experiments show that evaluative-priming effects were confined to integrative prime-target pairs. No facilitation of prime-congruent targets was obtained for non-integrative stimuli. These findings are discussed from a broader perspective on priming conceived as flexible, context-dependent, and serving a generative adaptation function.

  4. Boosted Schwarzschild metrics from a Kerr–Schild perspective

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Winicour, Jeffrey

    2018-02-01

    The Kerr–Schild version of the Schwarzschild metric contains a Minkowski background which provides a definition of a boosted black hole. There are two Kerr–Schild versions corresponding to ingoing or outgoing principle null directions. We show that the two corresponding Minkowski backgrounds and their associated boosts have an unexpected difference. We analyze this difference and discuss the implications in the nonlinear regime for the gravitational memory effect resulting from the ejection of massive particles from an isolated system. We show that the nonlinear effect agrees with the linearized result based upon the retarded Green function only if the velocity of the ejected particle corresponds to a boost symmetry of the ingoing Minkowski background. A boost with respect to the outgoing Minkowski background is inconsistent with the absence of ingoing radiation from past null infinity.

  5. A Bovine Hemoglobin-Based Oxygen Carrier as Pump Prime for Cardiopulmonary Bypass: Reduced Systemic Lactic Acidosis and Improved Cerebral Oxygen Metabolism During Low-flow in a Porcine Model

    DTIC Science & Technology

    2010-11-10

    1 A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral...2010 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) June 2007 - November 2010 4. TITLE AND SUBTITLE A bovine hemoglobin-based oxygen...carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low-flow in a

  6. Perception as Evidence Accumulation and Bayesian Inference: Insights from Masked Priming

    ERIC Educational Resources Information Center

    Norris, Dennis; Kinoshita, Sachiko

    2008-01-01

    The authors argue that perception is Bayesian inference based on accumulation of noisy evidence and that, in masked priming, the perceptual system is tricked into treating the prime and the target as a single object. Of the 2 algorithms considered for formalizing how the evidence sampled from a prime and target is combined, only 1 was shown to be…

  7. Learning Associations between Action and Perception: Effects of Incompatible Training on Body Part and Spatial Priming

    ERIC Educational Resources Information Center

    Wiggett, Alison J.; Hudson, Matt; Tipper, Steve P.; Downing, Paul E.

    2011-01-01

    Observation of another person executing an action primes the same action in the observer's motor system. Recent evidence has shown that these priming effects are flexible, where training of new associations, such as making a foot response when viewing a moving hand, can reduce standard action priming effects (Gillmeister, Catmur, Liepelt, Brass,…

  8. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.

    PubMed

    Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim

    2015-12-01

    Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.

  9. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes.

    PubMed

    Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam

    2007-02-15

    Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines.

  10. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  11. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  12. Dural stimulation in rats causes BDNF-dependent priming to subthreshold stimuli including a migraine trigger

    PubMed Central

    Burgos-Vega, Carolina C.; Quigley, Lilyana D.; Avona, Amanda; Price, Theodore; Dussor, Gregory

    2016-01-01

    Migraine is one of the most common and most disabling disorders. Between attacks, migraine patients are otherwise normal but are sensitized to non-noxious events known as triggers. The purpose of these studies was to investigate whether a headache-like event causes sensitization, or priming, to subsequent subthreshold events. Interleukin-6 (IL-6) was applied to the rat cranial dura mater which produced cutaneous facial and hindpaw allodynia that lasted 24 hours. At 72-hours, IL-6 treated rats developed allodynia in response to dural stimulation with either a pH 6.8 or pH 7.0 solution and to a systemic nitric oxide (NO) donor, a well-known migraine trigger. Vehicle-treated rats did not respond to either pH stimulus nor to the NO donor, demonstrating that IL-6 exposure primes rats to subthreshold stimuli. Inhibitors of brain-derived neurotrophic factor (BDNF) signaling given either systemically or intracisternally 24-hours after IL-6 eliminated responses to dural pH stimulation at 72 hours. Additionally, intracisternal administration of BDNF without prior dural stimulation produced allodynia and once resolved, animals were primed to dural pH 6.8/pH 7.0 and a systemic NO donor. Finally, hindpaw IL-6 produced paw allodynia but not priming to paw injection of pH 7.0 at 72 hours demonstrating differences in priming depending on location. These data indicate that afferent input from the meninges produces BDNF-dependent priming of the dural nociceptive system. This primed state mimics the interictal period of migraine where attacks can be triggered by normally non-noxious events and suggests that BDNF-dependent plasticity may contribute to migraine. PMID:27841839

  13. Exploring the functional architecture of person recognition system with event-related potentials in a within- and cross-domain self-priming of faces.

    PubMed

    Jemel, Boutheina; Pisani, Michèle; Rousselle, Laurence; Crommelinck, Marc; Bruyer, Raymond

    2005-01-01

    In this paper, we explored the functional properties of person recognition system by investigating the onset, magnitude, and scalp distribution of within- and cross-domain self-priming effects on event-related potentials (ERPs). Recognition of degraded pictures of famous people was enhanced by a prior exposure to the same person's face (within-domain self-priming) or name (cross-domain self-priming) as compared to those preceded by neutral or unrelated primes. The ERP results showed first that the amplitude of the N170 component to famous face targets was modulated by within- and cross-domain self-priming, suggesting not only that the N170 component can be affected by top-down influences but also that this top-down effect crosses domains. Second, similar to our behavioral data, later ERPs to famous faces showed larger ERP self-priming effects in the within-domain than in the cross-domain condition. In addition, the present data dissociated between two topographically and temporally overlapping priming-sensitive ERP components: the first one, with a strongly posterior distribution arising at an early onset, was modulated more by within-domain priming irrespective whether the repeated face was familiar or not. The second component, with a relatively uniform scalp distribution, was modulated by within- and cross-domain priming of familiar faces. Moreover, there was no evidence for ERP-induced modulations for unfamiliar face targets in the cross-domain condition. Together, our findings suggest that multiple neurocognitive events that are possibly mediated by distinct brain loci contribute to face priming effects.

  14. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  15. Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen.

    PubMed

    Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell

    2013-04-01

    There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.

  16. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations

    PubMed Central

    Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.

    2013-01-01

    Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242

  17. A machine learned classifier for RR Lyrae in the VVV survey

    NASA Astrophysics Data System (ADS)

    Elorrieta, Felipe; Eyheramendy, Susana; Jordán, Andrés; Dékány, István; Catelan, Márcio; Angeloni, Rodolfo; Alonso-García, Javier; Contreras-Ramos, Rodrigo; Gran, Felipe; Hajdu, Gergely; Espinoza, Néstor; Saito, Roberto K.; Minniti, Dante

    2016-11-01

    Variable stars of RR Lyrae type are a prime tool with which to obtain distances to old stellar populations in the Milky Way. One of the main aims of the Vista Variables in the Via Lactea (VVV) near-infrared survey is to use them to map the structure of the Galactic Bulge. Owing to the large number of expected sources, this requires an automated mechanism for selecting RR Lyrae, and particularly those of the more easily recognized type ab (I.e., fundamental-mode pulsators), from the 106-107 variables expected in the VVV survey area. In this work we describe a supervised machine-learned classifier constructed for assigning a score to a Ks-band VVV light curve that indicates its likelihood of being ab-type RR Lyrae. We describe the key steps in the construction of the classifier, which were the choice of features, training set, selection of aperture, and family of classifiers. We find that the AdaBoost family of classifiers give consistently the best performance for our problem, and obtain a classifier based on the AdaBoost algorithm that achieves a harmonic mean between false positives and false negatives of ≈7% for typical VVV light-curve sets. This performance is estimated using cross-validation and through the comparison to two independent datasets that were classified by human experts.

  18. More than a feeling: The bidirectional convergence of semantic visual object and somatosensory processing.

    PubMed

    Ekstrand, Chelsea; Neudorf, Josh; Lorentz, Eric; Gould, Layla; Mickleborough, Marla; Borowsky, Ron

    2017-11-01

    Prevalent theories of semantic processing assert that the sensorimotor system plays a functional role in the semantic processing of manipulable objects. While motor execution has been shown to impact object processing, involvement of the somatosensory system has remained relatively unexplored. Therefore, we developed two novel priming paradigms. In Experiment 1, participants received a vibratory hand prime (on half the trials) prior to viewing a picture of either an object interacted primarily with the hand (e.g., a cup) or the foot (e.g., a soccer ball) and reported how they would interact with it. In Experiment 2, the same objects became the prime and participants were required to identify whether the vibratory stimulation occurred to their hand or foot. In both experiments, somatosensory priming effects arose for the hand objects, while foot objects showed no priming benefits. These results suggest that object semantic knowledge bidirectionally converges with the somatosensory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egli, Martin; Pallan, Pradeep S.; Pattanayek, Rekha

    An experimental rationalization of the structure type encountered in DNA and RNA by systematically investigating the chemical and physical properties of alternative nucleic acids has identified systems with a variety of sugar-phosphate backbones that are capable of Watson-Crick base pairing and in some cases cross-pairing with the natural nucleic acids. The earliest among the model systems tested to date, (4{prime} {yields} 6{prime})-linked oligo(2{prime},3{prime}-dideoxy-{beta}-d-glucopyranosyl)nucleotides or homo-DNA, shows stable self-pairing, but the pairing rules for the four natural bases are not the same as those in DNA. However, a complete interpretation and understanding of the properties of the hexapyranosyl (4{prime} {yields} 6{prime})more » family of nucleic acids has been impeded until now by the lack of detailed 3D-structural data. We have determined the crystal structure of a homo-DNA octamer. It reveals a weakly twisted right-handed duplex with a strong inclination between the hexose-phosphate backbones and base-pair axes, and highly irregular values for helical rise and twist at individual base steps. The structure allows a rationalization of the inability of allo-, altro-, and glucopyranosyl-based oligonucleotides to form stable pairing systems.« less

  20. Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites: Part II. Short-range order parameter as a criterion of the distinction between relaxor and normal ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Jang, H.M.

    1997-08-01

    A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less

  1. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    PubMed

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Spectral statistics and scattering resonances of complex primes arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ren; Pinheiro, Felipe A.; Dal Negro, Luca

    2018-01-01

    We introduce a class of aperiodic arrays of electric dipoles generated from the distribution of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quaternion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances using the vectorial Green's matrix method. In these systems we demonstrate several distinctive spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical statistics of level spacings, and the existence of critical modes, which are extended fractal modes with long lifetimes not supported by either random or periodic systems. Moreover, we show that one can predict important physical properties, such as the existence spectral gaps, by analyzing the eigenvalue distribution of the Green's matrix of the arrays in the complex plane. Our results unveil the importance of aperiodic correlations in prime number arrays for the engineering of gapped photonic media that support far richer mode localization and spectral properties compared to usual periodic and random media.

  3. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    PubMed

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis. © 2013 John Wiley & Sons Ltd.

  4. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Priming the Secure Attachment Schema Affects the Emotional Face Processing Bias in Attachment Anxiety: An fMRI Research

    PubMed Central

    Tang, Qingting; Chen, Xu; Hu, Jia; Liu, Ying

    2017-01-01

    Our study explored how priming with a secure base schema affects the processing of emotional facial stimuli in individuals with attachment anxiety. We enrolled 42 undergraduate students between 18 and 27 years of age, and divided them into two groups: attachment anxiety and attachment secure. All participants were primed under two conditions, the secure priming using references to the partner, and neutral priming using neutral references. We performed repeated attachment security priming combined with a dual-task paradigm and functional magnetic resonance imaging. Participants’ reaction times in terms of responding to the facial stimuli were also measured. Attachment security priming can facilitate an individual’s processing of positive emotional faces; for instance, the presentation of the partner’s name was associated with stronger activities in a wide range of brain regions and faster reaction times for positive facial expressions in the subjects. The current finding of higher activity in the left-hemisphere regions for secure priming rather than neutral priming is consistent with the prediction that attachment security priming triggers the spread of the activation of a positive emotional state. However, the difference in brain activity during processing of both, positive and negative emotional facial stimuli between the two priming conditions appeared in the attachment anxiety group alone. This study indicates that the effect of attachment secure priming on the processing of emotional facial stimuli could be mediated by chronic attachment anxiety. In addition, it highlights the association between higher-order processes of the attachment system (secure attachment schema priming) and early-stage information processing system (attention), given the increased attention toward the effects of secure base schema on the processing of emotion- and attachment-related information among the insecure population. Thus, the following study has applications in providing directions for clinical treatment of mood disorders in attachment anxiety. PMID:28473796

  6. Priming the Secure Attachment Schema Affects the Emotional Face Processing Bias in Attachment Anxiety: An fMRI Research.

    PubMed

    Tang, Qingting; Chen, Xu; Hu, Jia; Liu, Ying

    2017-01-01

    Our study explored how priming with a secure base schema affects the processing of emotional facial stimuli in individuals with attachment anxiety. We enrolled 42 undergraduate students between 18 and 27 years of age, and divided them into two groups: attachment anxiety and attachment secure. All participants were primed under two conditions, the secure priming using references to the partner, and neutral priming using neutral references. We performed repeated attachment security priming combined with a dual-task paradigm and functional magnetic resonance imaging. Participants' reaction times in terms of responding to the facial stimuli were also measured. Attachment security priming can facilitate an individual's processing of positive emotional faces; for instance, the presentation of the partner's name was associated with stronger activities in a wide range of brain regions and faster reaction times for positive facial expressions in the subjects. The current finding of higher activity in the left-hemisphere regions for secure priming rather than neutral priming is consistent with the prediction that attachment security priming triggers the spread of the activation of a positive emotional state. However, the difference in brain activity during processing of both, positive and negative emotional facial stimuli between the two priming conditions appeared in the attachment anxiety group alone. This study indicates that the effect of attachment secure priming on the processing of emotional facial stimuli could be mediated by chronic attachment anxiety. In addition, it highlights the association between higher-order processes of the attachment system (secure attachment schema priming) and early-stage information processing system (attention), given the increased attention toward the effects of secure base schema on the processing of emotion- and attachment-related information among the insecure population. Thus, the following study has applications in providing directions for clinical treatment of mood disorders in attachment anxiety.

  7. Spacecraft boost and abort guidance and control systems requirement study, boost dynamics and control analysis study. Exhibit A: Boost dynamics and control anlaysis

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Price, J. B.; Lemon, R. S.

    1972-01-01

    The simulation developments for use in dynamics and control analysis during boost from liftoff to orbit insertion are reported. Also included are wind response studies of the NR-GD 161B/B9T delta wing booster/delta wing orbiter configuration, the MSC 036B/280 inch solid rocket motor configuration, the MSC 040A/L0X-propane liquid injection TVC configuration, the MSC 040C/dual solid rocket motor configuration, and the MSC 049/solid rocket motor configuration. All of the latest math models (rigid and flexible body) developed for the MSC/GD Space Shuttle Functional Simulator, are included.

  8. Liquid oxygen/liquid hydrogen boost/vane pump for the advanced orbit transfer vehicles auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Gluzek, F.; Mokadam, R. G.; To, I. H.; Stanitz, J. D.; Wollschlager, J.

    1979-01-01

    A rotating, positive displacement vane pump with an integral boost stage was designed to pump saturated liquid oxygen and liquid hydrogen for auxiliary propulsion system of orbit transfer vehicle. This unit is designed to ingest 10% vapor by volume, contamination free liquid oxygen and liquid hydrogen. The final pump configuration and the predicted performance are included.

  9. A methodology for boost-glide transport technology planning

    NASA Technical Reports Server (NTRS)

    Repic, E. M.; Olson, G. A.; Milliken, R. J.

    1974-01-01

    A systematic procedure is presented by which the relative economic value of technology factors affecting design, configuration, and operation of boost-glide transport can be evaluated. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific boost-glide system.

  10. Analysis and design of a high power, digitally-controlled spacecraft power system

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Cho, B. H.

    1990-01-01

    The progress to date on the analysis and design of a high power, digitally controlled spacecraft power system is described. Several battery discharger topologies were compared for use in the space platform application. Updated information has been provided on the battery voltage specification. Initially it was thought to be in the 30 to 40 V range. It is now specified to be 53 V to 84 V. This eliminated the tapped-boost and the current-fed auto-transformer converters from consideration. After consultations with NASA, it was decided to trade-off the following topologies: (1) boost converter; (2) multi-module, multi-phase boost converter; and (3) voltage-fed push-pull with auto-transformer. A non-linear design optimization software tool was employed to facilitate an objective comparison. Non-linear design optimization insures that the best design of each topology is compared. The results indicate that a four-module, boost converter with each module operating 90 degrees out of phase is the optimum converter for the space platform. Large-signal and small-signal models were generated for the shunt, charger, discharger, battery, and the mode controller. The models were first tested individually according to the space platform power system specifications supplied by NASA. The effect of battery voltage imbalance on parallel dischargers was investigated with respect to dc and small-signal responses. Similarly, the effects of paralleling dischargers and chargers were also investigated. A solar array and shunt model was included in these simulations. A model for the bus mode controller (power control unit) was also developed to interface the Orbital replacement Unit (ORU) model to the platform power system. Small signal models were used to generate the bus impedance plots in the various operating modes. The large signal models were integrated into a system model, and time domain simulations were performed to verify bus regulation during mode transitions. Some changes have subsequently been incorporated into the models. The changes include the use of a four module boost discharger, and a new model for the mode controller, which includes the effects of saturation. The new simulations for the boost discharger show the improvement in bus ripple that can be achieved by phase-shifted operation of each of the boost modules.

  11. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    PubMed

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  12. New technology increases perioperative haemoglobin levels for paediatric cardiopulmonary bypass: what is the benefit?

    PubMed

    Thuys, Clarke; Horton, Stephen; Bennett, Martin; Augustin, Simon

    2006-01-01

    Increasing perioperative haemoglobin level by reducing priming volume and maintaining a safe cardiopulmonary bypass (CPB) system is the aim of every perfusionist. In this study, we have compared the two membrane oxygenators and pump systems used for paediatric bypass at the Royal Children's Hospital on a regular basis since 1988. We looked at all patients who had the Cobe VPCML (Cobe Laboratories, Denver, CO, USA) and Terumo RX-05 (Terumo Corporation, Tokyo, Japan) oxygenators used for flows from 800 mL/min up to the maximum rated flow for the respective oxygenator from January 2002 until March 2004. The VPCML refers to using only the 0.4-m2 section of the oxygenator. The pump systems used were the Stöckert CAPS (Stöckert Instrumente GmbH, Munich, Germany) and Jostra HL 30 (Jostra AB, Lund, Sweden). Changing from the VPCML to the RX-05 resulted in a 37% reduction in priming volume. The introduction of the Jostra HL 30 with a custom-designed mast system reduced the priming volume by another 15%. This change in priming volume allowed a significant increase, from 6 to 34%, in the percentage of patients who received bloodless primes, and for those patients who received blood primes, an increase in haemoglobin (Hb) on bypass from 8.2 to 9.6 g/dL, on average.

  13. A comparison of transient vehicle performance using a fixed geometry, wastegated turbocharger and a variable geometry turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, R.R.; Gall, J.M.

    1986-01-01

    The use of an exhaust-driven boosting device can significantly improve the performance of a vehicle using a small displacement engine. One of the concerns relative to the performance of vehicles using these devices is ''turbo lag,'' or the period of time during which no boost is generated. This paper presents the results of designed experiments comparing the performance of a fixed geometry, wastegated turbocharger to a variable geometry turbocharger incorporating a low-loss bearing system. In addition, experimental tests are presented for the naturally aspirated engine in the same vehicle. The results of the experiments show improvements with the use ofmore » pressure boosting and that there are signifcant differences in the boosting devices tested; specifically, the use of a variable geometry turbocharger demonstrates significant reduction in the length of time required to reach boost and reduced acceleration times for the tests conducted.« less

  14. CRISPR interference and priming varies with individual spacer sequences

    PubMed Central

    Xue, Chaoyou; Seetharam, Arun S.; Musharova, Olga; Severinov, Konstantin; J. Brouns, Stan J.; Severin, Andrew J.; Sashital, Dipali G.

    2015-01-01

    CRISPR–Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems allow bacteria to adapt to infection by acquiring ‘spacer’ sequences from invader DNA into genomic CRISPR loci. Cas proteins use RNAs derived from these loci to target cognate sequences for destruction through CRISPR interference. Mutations in the protospacer adjacent motif (PAM) and seed regions block interference but promote rapid ‘primed’ adaptation. Here, we use multiple spacer sequences to reexamine the PAM and seed sequence requirements for interference and priming in the Escherichia coli Type I-E CRISPR–Cas system. Surprisingly, CRISPR interference is far more tolerant of mutations in the seed and the PAM than previously reported, and this mutational tolerance, as well as priming activity, is highly dependent on spacer sequence. We identify a large number of functional PAMs that can promote interference, priming or both activities, depending on the associated spacer sequence. Functional PAMs are preferentially acquired during unprimed ‘naïve’ adaptation, leading to a rapid priming response following infection. Our results provide numerous insights into the importance of both spacer and target sequences for interference and priming, and reveal that priming is a major pathway for adaptation during initial infection. PMID:26586800

  15. A human papillomavirus type 16 vaccine by oral delivery of L1 protein.

    PubMed

    Sasagawa, Toshiyuki; Tani, Mayuko; Basha, Walid; Rose, Robert C; Tohda, Hideki; Giga-Hama, Yuko; Azar, Khadijeh K; Yasuda, Hideyo; Sakai, Akemi; Inoue, Masaki

    2005-06-01

    To establish an edible HPV16 vaccine, we constructed a recombinant HPV16 L1-expressing Schizosaccharomyces pombe yeast strain (HPV16L1 yeast). A preliminary study revealed that freeze-dried yeast cells could be delivered safely, and were digested in the mouse intestine. The freeze-dried HPV16 L1 yeast was administered orally as an edible vaccine, with or without the mucosal adjuvant heat-labile toxin LT (R192G), to 18 female BALB/c mice. After the third immunization, none of the mice that received the edible HPV16 vaccine showed specific antibody responses, whereas all of the positive controls that were administered intranasally with 5 microg of HPV16-virus-like particles (VLP) had serum IgG, and genital IgA and IgG that reacted with HPV16-VLP in enzyme-linked immunosorbent assays (ELISAs). When a suboptimal dose (1 microg) of HPV16-VLP was administered to all the mice, including the negative control mice, 50% of the mice that were pre-immunized with the edible HPV16 vaccine showed positive serum IgG responses, while none of the negative controls showed any response. Vaginal IgG and IgA antibodies were also elicited in 33 and 39%, respectively, of the mice that were given with the edible HPV16 vaccine and the intranasal boost. All of the antibodies reacted more strongly to intact HPV16-VLP than to denatured HPV16-L1 protein suggesting that the edible vaccine primes for antibody responses against conformation-dependent epitopes. The inclusion of adjuvant in the vaccine formulation marginally increased the genital IgA response (P=0.06). HPV16-L1 protein in the yeast might induce tolerance in the vaccinated animals that could be recovered by intranasal boosting with a suboptimal dose of HPV-VLP. This freeze-dried yeast system may be useful as an oral delivery of HPV 16 L1 protein.

  16. Intravaginal immunization using the recombinant HIV-1 clade-C trimeric envelope glycoprotein CN54gp140 formulated within lyophilized solid dosage forms

    PubMed Central

    Donnelly, Louise; Curran, Rhonda M.; Tregoning, John S.; McKay, Paul F.; Cole, Tom; Morrow, Ryan J.; Kett, Vicky L.; Andrews, Gavin P.; Woolfson, A. David; Malcolm, R. Karl; Shattock, Robin J.

    2011-01-01

    Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract. PMID:21514349

  17. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l'Agence Nationale de Recherche sur le SIDA.

    PubMed

    Pialoux, G; Excler, J L; Rivière, Y; Gonzalez-Canali, G; Feuillie, V; Coulaud, P; Gluckman, J C; Matthews, T J; Meignier, B; Kieny, M P

    1995-03-01

    The safety and the immunogenicity of a recombinant canarypox live vector expressing the human immunodeficiency virus type 1 (HIV-1) gp160 gene from the MN isolate, ALVAC-HIV (vCP125), followed by booster injections of a soluble recombinant hybrid envelope glycoprotein MN/LAI (rgp160), were evaluated in vaccinia-immune, healthy adults at low risk for acquiring HIV-1 infection. Volunteers (n = 20) received vCP125 (10(6) TCID50) at 0 and 1 month, followed randomly by rgp160 formulated in alum or in Freund's incomplete adjuvant (FIA) at 3 and 6 months. Local and systemic reactions were mild or moderate and resolved within the first 72 hr after immunization. No significant biological changes in routine tests were observed in any volunteer. Two injections of vCP125 did not elicit antibodies. Neutralizing antibodies (NA) against the HIV-1 MN isolate were detected in 65 and 90% of the subjects after the first and the second rgp 160 booster injections, respectively. Six months after the last boost, only 55% were still positive. Seven of 14 sera with the highest NA titers against MN weakly cross-neutralized the HIV-1 SF2 isolate; none had NA against the HIV-1 LAI or against a North American primary isolate. Specific lymphocyte T cell proliferation to rgp 160 was detected in 25% of the subjects after vCP125 and in all subjects after the first booster injection and 12 months after the first injection. An envelope-specific cytotoxic lymphocyte activity was found in 39% of the volunteers and characterized for some of them as CD3+, CD8+, MHC class I restricted. The adjuvant formulation did not influence significantly the immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Translation priming between the native language and a second language: new evidence from Dutch-French bilinguals.

    PubMed

    Duyck, Wouter; Warlop, Nele

    2009-01-01

    During the last two decades, bilingual research has adopted the masked translation priming paradigm as a tool to investigate the architecture of the bilingual language system. Although there is now a consensus about the existence of forward translation priming (from native language primes (L1) to second language (L2) translation equivalent targets), the backward translation priming effect (from L2 to L1) has only been reported in studies with bilinguals living in an L2 dominant environment. In a lexical decision experiment, we obtained significant translation priming in both directions, with unbalanced Dutch-French bilinguals living in an L1 dominant environment. Also, we demonstrated that these priming effects do not interact with a low-level visual prime feature such as font size. The obtained backward translation priming effect is consistent with the model of bilingual lexicosemantic organization of Duyck and Brysbaert (2004), which assumes strong mappings between L2 word forms and underlying semantic representations.

  19. Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.

    PubMed

    Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping

    2016-07-01

    Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Face (and Nose) Priming for Book: The Malleability of Semantic Memory

    PubMed Central

    Coane, Jennifer H.; Balota, David A.

    2010-01-01

    There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866

Top