Science.gov

Sample records for primed vesicle state

  1. Variable priming of a docked synaptic vesicle

    PubMed Central

    Jung, Jae Hoon; Szule, Joseph A.; Marshall, Robert M.; McMahan, Uel J.

    2016-01-01

    The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM–PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM–PM contact area is dynamic and in equilibrium. The extent of VM–PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca2+ channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium. PMID:26858418

  2. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  3. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis*

    PubMed Central

    Petrie, Matt; Esquibel, Joseph; Maciuba, Stephanie; Takahashi, Hirohide

    2016-01-01

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. PMID:27528604

  4. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming

    PubMed Central

    Snellman, Josefin; Mehta, Bhupesh; Babai, Norbert; Bartoletti, Theodore M.; Akmentin, Wendy; Francis, Adam; Matthews, Gary; Thoreson, Wallace; Zenisek, David

    2011-01-01

    In vision, balance, and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli, while also transmitting graded information covering a wide range of stimulus intensity and sustained for long time periods. To meet these demands, specialized machinery for transmitter release—the synaptic ribbon—has evolved at the synaptic outputs of these neurons. Here we show that acute disruption of synaptic ribbons by photodamage to the ribbon dramatically reduces both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones, without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate slow as well as fast signaling at sensory synapses, and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones. PMID:21785435

  5. UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons.

    PubMed

    Lin, Xian-Guang; Ming, Min; Chen, Mao-Rong; Niu, Wei-Pin; Zhang, Yong-Deng; Liu, Bei; Jiu, Ya-Ming; Yu, Jun-Wei; Xu, Tao; Wu, Zheng-Xing

    2010-07-01

    UNC-31 or its mammalian homologue, Ca(2+)-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca(2+)-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca(2+) level (pre-flash Ca(2+) was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca(2+) evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex. PMID:20515653

  6. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering.

    PubMed

    Mohrmann, Ralf; de Wit, Heidi; Connell, Emma; Pinheiro, Paulo S; Leese, Charlotte; Bruns, Dieter; Davletov, Bazbek; Verhage, Matthijs; Sørensen, Jakob B

    2013-09-01

    SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca(2+)-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1 interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool.

  7. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  8. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth.

    PubMed

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  9. Chaperone-mediated cross-priming: a hitchhiker's guide to vesicle transport (review).

    PubMed

    Reed, R C; Nicchitta, C V

    2000-09-01

    The resident endoplasmic reticulum (ER) chaperone proteins GRP94 (gp96) and calreticulin can activate the immune system to slow or stop the progression of tumors by escorting tumor-derived peptides into the endogenous antigen presentation pathway of antigen presenting cells (APC). Although the phenomenology of cross-priming is well worked out, the mechanism(s) remains unclear. Continuing insights into cellular protein trafficking pathways suggest several means by which chaperones could travel from the extracellular space into the endosome, lysosome or ER of APC. In particular, proteins that cycle between two or more compartments and those that undergo and mediate retrograde flow offer models of how exogenous chaperones might travel in the APC. New insights into how non-chaperone proteins access the APC antigen presentation pathway also suggest several ways this process could occur.

  10. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  11. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    NASA Astrophysics Data System (ADS)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  12. [Changes in human biliary vesicle sizes in pathological states].

    PubMed

    Prigun, N P; Korolevich, A N

    2002-01-01

    Changes in the sizes of aggregates of bile vesicles at various nucleation factors were studied by the method of dynamic spectroscopy. It was found that the sizes of bile vesicles in chronic cholecystitis vary from 90 to 200 nm. It was shown that the presence of a large fraction of bile vesicles characterized by a higher cholesterol concentration can serve as a criterion of acuteness of cholecystitis and the intensity of lithogenesis.

  13. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles. PMID:25314533

  14. Role of lipopolysaccharide in the induction of type I interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles.

    PubMed

    Durand, Vanessa; Mackenzie, Joanne; de Leon, Joel; Mesa, Circe; Quesniaux, Valérie; Montoya, Maria; Le Bon, Agnes; Wong, Simon Y C

    2009-03-18

    We investigated the contribution of lipopolysaccharide (LPS) to adjuvant properties of native outer membrane vesicles (NOMV), a vaccine candidate for meningococcal B disease. NOMV induce the maturation of and cytokine production by murine bone marrow-derived dendritic cells through both toll-like receptors (TLR) 2 and 4 which are mostly dependent on the signalling adaptor MyD88. NOMV are also able to induce B cell proliferation in splenocytes from LPS-hyporesponsive mice. However, induction of IL-10 and type I interferon-dependent, antigen-specific and IFN(gamma)-secreting CD8(+) cytotoxic T lymphocyte responses in vivo by NOMV requires LPS. The importance of LPS in the induction of IL-10 and functional cross-priming has implications for NOMV-based vaccine and adjuvant development. PMID:19368771

  15. The Munc18-1 domain 3a hinge-loop controls syntaxin-1A nanodomain assembly and engagement with the SNARE complex during secretory vesicle priming.

    PubMed

    Kasula, Ravikiran; Chai, Ye Jin; Bademosi, Adekunle T; Harper, Callista B; Gormal, Rachel S; Morrow, Isabel C; Hosy, Eric; Collins, Brett M; Choquet, Daniel; Papadopulos, Andreas; Meunier, Frédéric A

    2016-09-26

    Munc18-1 and syntaxin-1A control SNARE-dependent neuroexocytosis and are organized in nanodomains on the plasma membrane of neurons and neurosecretory cells. Deciphering the intra- and intermolecular steps via which they prepare secretory vesicles (SVs) for fusion is key to understanding neuronal and hormonal communication. Here, we demonstrate that expression of a priming-deficient mutant lacking 17 residues of the domain 3a hinge-loop (Munc18-1(Δ317-333)) in PC12 cells engineered to knockdown Munc18-1/2 markedly prolonged SV docking. Single-molecule analysis revealed nonhomogeneous diffusion of Munc18-1 and syntaxin-1A in and out of partially overlapping nanodomains. Whereas Munc18-1(WT) mobility increased in response to stimulation, syntaxin-1A became less mobile. These Munc18-1 and syntaxin-1A diffusional switches were blocked by the expression of Munc18-1(Δ317-333), suggesting that a conformational change in the Munc18-1 hinge-loop controls syntaxin-1A and subsequent SNARE complex assembly. Accordingly, syntaxin-1A confinement was prevented by expression of botulinum neurotoxin type E. The Munc18-1 domain 3a hinge-loop therefore controls syntaxin-1A engagement into SNARE complex formation during priming. PMID:27646276

  16. Seed priming: state of the art and new perspectives.

    PubMed

    Paparella, S; Araújo, S S; Rossi, G; Wijayasinghe, M; Carbonera, D; Balestrazzi, Alma

    2015-08-01

    Priming applied to commercial seed lots is widely used by seed technologists to enhance seed vigour in terms of germination potential and increased stress tolerance. Priming can be also valuable to seed bank operators who need improved protocols of ex situ conservation of germplasm collections (crop and native species). Depending on plant species, seed morphology and physiology, different priming treatments can be applied, all of them triggering the so-called 'pre-germinative metabolism'. This physiological process takes place during early seed imbibition and includes the seed repair response (activation of DNA repair pathways and antioxidant mechanisms), essential to preserve genome integrity, ensuring proper germination and seedling development. The review provides an overview of priming technology, describing the range of physical-chemical and biological treatments currently available. Optimised priming protocols can be designed using the 'hydrotime concept' analysis which provides the theoretical bases for assessing the relationship between water potential and germination rate. Despite the efforts so far reported to further improve seed priming, novel ideas and cutting-edge investigations need to be brought into this technological sector of agri-seed industry. Multidisciplinary translational research combining digital, bioinformatic and molecular tools will significantly contribute to expand the range of priming applications to other relevant commercial sectors, e.g. the native seed market.

  17. Seeing emotions in the eyes – inverse priming effects induced by eyes expressing mental states

    PubMed Central

    Wagenbreth, Caroline; Rieger, Julia; Heinze, Hans-Jochen; Zaehle, Tino

    2014-01-01

    Objective: Automatic emotional processing of faces and facial expressions gain more and more of relevance in terms of social communication. Among a variety of different primes, targets and tasks, whole face images and facial expressions have been used to affectively prime emotional responses. This study investigates whether emotional information provided solely in eye regions that display mental states can also trigger affective priming. Methods: Sixteen subjects answered a lexical decision task (LDT) coupled with an affective priming paradigm. Emotion-associated eye regions were extracted from photographs of faces and acted as primes, whereas targets were either words or pseudo-words. Participants had to decide whether the targets were real German words or generated pseudo-words. Primes and targets belonged to the emotional categories “fear,” “disgust,” “happiness,” and “neutral.” Results: A general valence effect for positive words was observed: responses in the LDT were faster for target words of the emotional category happiness when compared to other categories. Importantly, pictures of emotional eye regions preceding the target words affected their subsequent classification. While we show a classical priming effect for neutral target words – with shorter RT for congruent compared to incongruent prime-target pairs- , we observed an inverse priming effect for fearful and happy target words – with shorter RT for incongruent compared to congruent prime-target pairs. These inverse priming effects were driven exclusively by specific prime-target pairs. Conclusion: Reduced facial emotional information is sufficient to induce automatic implicit emotional processing. The emotional-associated eye regions were processed with respect to their emotional valence and affected the performance on the LDT. PMID:25278925

  18. Translation-priming effects on tip-of-the-tongue states

    PubMed Central

    Gollan, Tamar H.; Ferreira, Victor S.; Cera, Cynthia; Flett, Susanna

    2013-01-01

    Bilinguals experience more tip-of-the-tongue (TOT) states than monolinguals, but it is not known if this is caused in part by access of representations from both of bilinguals’ languages, or dual-language activation. In two translation priming experiments, bilinguals were given three Spanish primes and produced either semantically (Experiment 1) or phonologically related Spanish words (Experiment 2) to each. They then named a picture in English. On critical trials, one of the primes was the Spanish translation of the English picture name. Translation primes significantly increased TOTs regardless of task, and also speeded correct retrievals but only with the semantic task. In both experiments translation-primed TOTs were significantly more likely to resolve spontaneously. These results illustrate an effect of non-dominant language activation on dominant-language retrieval, as well as imply that TOTs can arise during (not after) lexical retrieval, at a level of processing where translation equivalent lexical representations normally interact (possibly competing for selection, or mutually activating each other, or both depending on the locus of retrieval failure). PMID:24644375

  19. Prime Knowledge about Primes

    ERIC Educational Resources Information Center

    Eisenberg, Theodore

    2007-01-01

    Several proofs demonstrating that there are infinitely many primes, different types of primes, tests of primality, pseudo primes, prime number generators and open questions about primes are discussed in Section 1. Some of these notions are elaborated upon in Section 2, with discussions of the Riemann zeta function and how algorithmic complexity…

  20. The Cumulative Effects of Indiana PRIME TIME: A State Sponsored Reduced Class Size Program, on Basic Skills Achievement.

    ERIC Educational Resources Information Center

    Malloy, Leanne; Gilman, David

    The purpose of this paper was to analyze the initial results of statewide implementation of the PRIME TIME program in Indiana. PRIME TIME is a state-wide program to reduce class size in the primary grades. Mean scores from 65,911 third graders who had completed the Indiana Competency Test in the spring of 1987 after completing 3 years of the…

  1. Information on State versus Local Administration of CETA Prime Sponsors in Michigan. Report to the Chairman, Committee on Education and Labor, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    State administration of the Comprehensive Employment and Training Act (CETA) Balance of State (BOS) programs was compared with administration of CETA programs by local (regular) prime sponsors in Michigan to gain insight on the potential impact of increased state control. BOS prime sponsors spent less than regular prime sponsors for administration…

  2. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  3. Graph states of prime-power dimension from generalized CNOT quantum circuit

    PubMed Central

    Chen, Lin; Zhou, D. L.

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  4. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-06-07

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.

  5. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    PubMed Central

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID

  6. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  7. What's the use of being happy? Mood states, useful objects, and repetition priming effects.

    PubMed

    Goetz, Mark C; Goetz, Paul W; Robinson, Michael D

    2007-08-01

    Two experiments involving 99 undergraduate participants sought to examine the influence of mood states on encoding speed within lexical decision and pronunciation tasks. Mood states were measured naturalistically in Experiment 1 and manipulated in Experiment 2. Stimuli consisted of nouns representing useful (e.g., food) and nonuseful (e.g., lint) objects. Mood states had no implications for initial encoding speed. However, when the same words were presented a 2nd time (i.e., repeated), happy individuals displayed a tendency to encode useful words faster than nonuseful ones. Thus, mood states influenced repetition priming on the basis of stimulus valence. The authors propose that happiness sensitizes individuals to useful or rewarding objects, which in turn creates a stronger memory trace for such stimuli in the future.

  8. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes

    NASA Astrophysics Data System (ADS)

    Campbell, Earl T.; Anwar, Hussain; Browne, Dan E.

    2012-10-01

    We propose families of protocols for magic-state distillation—important components of fault-tolerance schemes—for systems of odd prime dimension. Our protocols utilize quantum Reed-Muller codes with transversal non-Clifford gates. We find that, in higher dimensions, small and effective codes can be used that have no direct analogue in qubit (two-dimensional) systems. We present several concrete protocols, including schemes for three-dimensional (qutrit) and five-dimensional (ququint) systems. The five-dimensional protocol is, by many measures, the best magic-state-distillation scheme yet discovered. It excels both in terms of error threshold with respect to depolarizing noise (36.3%) and the efficiency measure known as yield, where, for a large region of parameters, it outperforms its qubit counterpart by many orders of magnitude.

  9. Maximal voluntary force strengthened by the enhancement of motor system state through barely visible priming words with reward.

    PubMed

    Takarada, Yudai; Nozaki, Daichi

    2014-01-01

    The topic of unconscious influences on behaviour has long been explored as a means of understanding human performance and the neurobiological correlates of intention, motivation, and action. However, what is relatively unknown is whether subconsciously delivered priming stimuli, with or without rewards, can affect individuals' maximum level of force produced with their best effort. We demonstrated using transcranial magnetic stimulation that barely visible priming of an action concept, when combined with a reward in the form of a consciously visible positive stimulus, could alter the state of the motor system. In accordance with this neurophysiological alteration, the prime-plus-reward stimuli significantly increased the hand-grip force level of maximum voluntary contraction with little conscious awareness. This is the first objective evidence that the barely conscious presence of a behavioral goal can influence the state of the motor system and arouse latent ability for human force exertion. PMID:25275612

  10. Ground- and excited-state tautomerism in 2-(3{prime}-hydroxy-2{prime}-pyridyl)benzimidazole

    SciTech Connect

    Prieto, F.R.; Rodriguez, M.C.R.; Gonzalez, M.M.; Fernandez, M.A.R.

    1994-09-01

    Ground-state HPyBI is determined to have keto-enol equilibrium in water, and the enol form predominates in nonaqueous solutions. The keto form is the only excited form in all the solvents considered. Ultrafast intramolecular proton transfer creates the enol form from the keto form. 47 refs., 6 figs., 3 tabs.

  11. State-to-state rates for the D + H2(v = 1, j = 1) yield HD(v-prime, j-prime) + H reaction - Predictions and measurements

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Judson, Richard S.; Kouri, Donald J.; Adelman, David E.; Shafer, Neil E.; Kliner, Dahv A. V.; Zare, Richard N.

    1992-01-01

    A fully quantal wavepacket approach to reactive scattering in which the best available H3 potential energy surface was used enabled a comparison with experimentally determined rates for the D + H2(v = 1, j = 1) yield HD(v-prime = 0, 1, 2; j-prime) + H reaction at significantly higher total energies (1.4 to 2.25 electron volts) than previously possible. The theoretical results are obtained over a sufficient range of conditions that a detailed simulation of the experiment was possible, thus making this a definitive comparison of experiment and theory. Good to excellent agreement is found for the vibrational branching ratios and for the rotational distributions within each product vibrational level. However, the calculated rotational distributions are slightly hotter than the experimentally measured ones.

  12. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis

    PubMed Central

    Kumar, Atul; Aguirre, Jacob D; Condos, Tara EC; Martinez-Torres, R Julio; Chaugule, Viduth K; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Mercier, Pascal; Knebel, Axel; Spratt, Donald E; Barber, Kathryn R; Shaw, Gary S; Walden, Helen

    2015-01-01

    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin–parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2∼Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2∼Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin. PMID:26254304

  13. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers.

    PubMed

    Kong, Weixin; Li, Baohui; Jin, Qinghua; Ding, Datong; Shi, An-Chang

    2009-06-24

    Multicompartment micelles, especially nanostructured vesicles, offer tremendous potential as delivery vehicles of therapeutic agents and nanoreactors. Solution-state self-assembly of miktoarm star terpolymers provides a versatile and powerful route to obtain multicompartment micelles. Here we report simulations of solution-state self-assembly of ABC star terpolymers composed of a solvophilic A arm and two solvophobic B and C arms. A variety of multicompartment micelles are predicted from the simulations. Phase diagrams for typical star terpolymers are constructed. It is discovered that the overall micelle morphology is largely controlled by the volume fraction of the solvophilic A arms, whereas the internal compartmented and/or segregated structures depend on the ratio between the volume fractions of the two solvophobic arms. The polymer-solvent and polymer-polymer interactions can be used to tune the effective volume fraction of the A-arm and, thereby, induce morphological transitions. For terpolymers with equal or nearly equal length of B and C arms, several previously unknown structures, including vesicles with novel lateral structures (helices or stacked donuts), segmented semivesicles, and elliptic or triangular bilayer sheets, are discovered. When the lengths of B and C arms are not equal, novel micelles such as multicompartment disks and onions are observed. PMID:19476352

  14. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  15. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming

    PubMed Central

    Ruch, Simon; Koenig, Thomas; Mathis, Johannes; Roth, Corinne; Henke, Katharina

    2014-01-01

    To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability. PMID:25452740

  16. Studying calcium triggered vesicle fusion in a single vesicle-vesicle content/lipid mixing system

    PubMed Central

    Kyoung, Minjoung; Zhang, Yunxiang; Diao, Jiajie; Chu, Steven; Brunger, Axel T.

    2013-01-01

    This Protocol describes a single vesicle-vesicle microscopy system to study Ca2+-triggered vesicle fusion. Donor vesicles contain reconstituted synaptobrevin and synaptotagmin-1. Acceptor vesicles contain reconstituted syntaxin and SNAP-25, and are tethered to a PEG-coated glass surface. Donor vesicles are mixed with the tethered acceptor vesicles and incubated for several minutes at zero Ca2+-concentration, resulting in a collection of single interacting vesicle pairs. The donor vesicles also contain two spectrally distinct fluorophores that allow simultaneous monitoring of temporal changes of the content and membrane. Upon Ca2+-injection into the sample chamber, our system therefore differentiates between hemifusion and complete fusion of interacting vesicle pairs and determines the temporal sequence of these events on a sub-hundred millisecond timescale. Other factors, such as complexin, can be easily added. Our system is unique by monitoring both content and lipid mixing, and by starting from a metastable state of interacting vesicle pairs prior to Ca2+-injection. PMID:23222454

  17. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  18. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane.

  19. Double resonance spectroscopy of the D {}^1 \\Pi _u^+ and B^{\\prime \\prime }\\barB^1\\Sigma ^+_u states near the third dissociation threshold of H2

    NASA Astrophysics Data System (ADS)

    Ekey, R. C.; Cordova, A. E.; Duan, W.; Chartrand, A. M.; McCormack, E. F.

    2013-12-01

    Double-resonance laser spectroscopy via the E,F {}^1 \\Sigma _g^+, v^{\\prime }=6, J^{\\prime } state was used to probe the energy region below the third dissociation limit of molecular hydrogen. Resonantly enhanced multi-photon ionization spectra were recorded by detecting ion production as a function of energy using a time-of-flight mass spectrometer. Energies and line widths for the v = 14-17 levels of the D{}^1 \\Pi _u^+ state of H2 are reported and compared to experimental data obtained by using VUV synchrotron light excitation (Dickenson et al 2010 J. Chem. Phys. 133 144317) and fully ab initio non-adiabatic calculations of D {}^1 \\Pi _u^+ state energies and line widths (Glass-Maujean et al 2012 Phys. Rev. A 86 052507). Several high vibrational levels of the B^{\\prime \\prime }\\bar{B}^1\\Sigma ^+_u state were also observed in this region. Term energies and rotational constants for the v = 67-69 vibrational levels are reported and compared to highly accurate ro-vibrational energy level predictions from fully ab initio non-adiabatic calculations of the first six {}^1 \\Sigma _u^+ levels of H2 (Wolniewicz et al 2006 J. Mol. Spectrosc. 238 118). While additional observed transitions can be assigned to other states, several unassigned features in the spectra highlight the need for a fully integrated theoretical treatment of dissociation and ionization to understand the complex pattern of highly vibrationally excited states expected in this region.

  20. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3–CA1 synapses in adult hippocampus

    PubMed Central

    Shinoda, Yo; Ishii, Chiaki; Fukazawa, Yugo; Sadakata, Tetsushi; Ishii, Yuki; Sano, Yoshitake; Iwasato, Takuji; Itohara, Shigeyoshi; Furuichi, Teiichi

    2016-01-01

    Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses. PMID:27545744

  1. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t{sup {prime}} Hubbard model

    SciTech Connect

    Bajdich, M.; Hlubina, R.

    2001-06-15

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t{sup {prime}} Hubbard model for t{sup {prime}}/t{similar_to}0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation.

  2. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  3. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells.

    PubMed

    Murtha, Matthew; Strino, Francesco; Tokcaer-Keskin, Zeynep; Sumru Bayin, N; Shalabi, Doaa; Xi, Xiangmei; Kluger, Yuval; Dailey, Lisa

    2015-02-01

    Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.

  4. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells.

    PubMed

    Murtha, Matthew; Strino, Francesco; Tokcaer-Keskin, Zeynep; Sumru Bayin, N; Shalabi, Doaa; Xi, Xiangmei; Kluger, Yuval; Dailey, Lisa

    2015-02-01

    Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states. PMID:25335464

  5. Modeling of decomposition activity and priming effect in soil using the versatile index of microbial physiological state

    NASA Astrophysics Data System (ADS)

    Blagodatskiy, Sergey

    2015-04-01

    The implementation of microbial biomass in soil organic matter (SOM) models is still unresolved issue. The approaches using explicit description of microbial biomass (decomposer) interaction with SOM usually cannot be easily verified by means of experimental estimating of total microbial biomass dynamics. Standard experimental methods, such as fumigation extraction or direct microscopic count, does not represent microbial activity (Blagodatskaya and Kuzyakov, 2013), which is essential for the control of decomposition rate. More advanced approaches, explicitly simulating intracellular metabolic activity (Resat et al., 2012) and e.g. production and turnover of extracellular enzymes (Lawrence et al., 2009) are prohibitively complex for the field and larger scales, which are most often under demand for SOM modelling. One possible parsimonious solution is an application of index of microbial physiological state (r), which describes the adaptive variation of the cell composition and metabolic activity by one variable (Panikov, 1995). This variable (r) can reflect the microbial response to the availability of carbon and nitrogen and shift of microbial biomass between active and dormant state (Blagodatsky and Richter, 1998), but also can be used for the description of the effect of external factors, such as temperature and moisture, on microbial activity. This approach is extremely useful for the description of priming effect (Blagodatsky et al., 2010) and the influence of substrate availability and external factors on the size and dynamics of priming. Distinguishing of these two types of driving forces for priming is crucial for modelling of SOM dynamics and steady-state stocks of different SOM pools. I will present the analysis of model response on combination of limiting factors presented as functions controlling the change of microbial physiological state and size of priming effect. Alternatively, the direct effect of the same factors on decomposition rate and priming

  6. Trans-4,4{prime}-dichloro-1,1{prime},2,2{prime},3,3{prime}-tetrathiadiazafulvalene (DC-TAF) and its 1:1 radical cation salts [DC-TAF][X]: Preparation and solid-state properties of BF{sub 4{minus}}, ClO{sub 4{minus}}, and FSO{sub 3{minus}} derivatives

    SciTech Connect

    Barclay, T.J.; Beer, L.; Cordes, A.W.; Haddon, R.C.; Itkis, M.I.; Oakley, R.T.; Preuss, K.E.; Reed, R.W.

    1999-07-21

    Reductive coupling of 4,5-dichloro-1,2,3-dithiazolylium chloride yields trans-4,4{prime}-dichloro-1,1{prime},2,2{prime},3,3{prime}-tetrathiadiazafulvalene (DC-TAF), the first example of this heterofulvalene system. Ab initio molecular orbital (B3LYP/6-31G**) calculations on prototypal TAF confirm that the closed shell {sup 1}A{sub g} state lies 22 kcal mol{sup {minus}1} below the {sup 3}B{sub u} diradical triplet. Cyclic voltammetry on DC-TAF reveals two reversible oxidation waves at 0.80and 1.25 V (in CH{sub 3}CN, reference SCE). The EST signal (g = 2.0117) of the radical cation [DC-TAF]{sup +} (in SO{sub 2}(1)) exhibits a five=line hyperfine coupling pattern with a{sub n} = 0.096 mT. DC-TAF forms a series of 1:1 radical ion salts [DC-TAF][X] by electrooxidation in the presence of tetrahedral counterions (X{sup {minus}} = BF{sub 4}{sup {minus}}, ClO{sub 4}{sup {minus}}, FSO{sub 3}{sup {minus}}). The crystal structures of these salts are isomorphous, monoclinic space group P2{sub 1}/n. and consist of one-dimensional ladder-like arrays of [DC-TAF]{sup +} radical cations bridged by S---S contacts ranging from 3.5 to 3.7 {angstrom}. Variable-temperature conductivity and magnetic measurements on [DC-TAF][ClO{sub 4}] indicate Mott insulator behavior, with a measured band gap of 0.30 eV.

  7. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  8. Medium-resolution studies of extreme ultraviolet emission from N2 by electron impact - Vibrational perturbations and cross sections of the c4-prime 1Sigma(+)u and b-prime 1Sigma(+)u states

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; James, Geoffrey K.; Franklin, Brian O.; Shemansky, Donald E.

    1989-01-01

    In a crossed-beam experiment the electron-impact-induced fluorescence spectrum of N2 in the extreme ultraviolet is studied at a spectral resolution of up to 0.03 nm. The optically thin experiment obtained the highest-resolution electron-impact emission spectrum of the Rydberg and valence states of N2. The spectral measurements provide the emission cross sections of each of the vibrational transitions of the Carroll-Yoshino and the Birge-Hopfield-II band systems. Laboratory vibrational-excitation cross sections arising from the mutual perturbation of the c4-prime 1Sigma(+)u and b-prime 1Sigma(+)u states by homogeneous configuration interactions are measured from 10 to 400 eV, and a modified Born approximation analytic model is given for them. The analysis leads to accurate band-system oscillator strengths. The relative emission and excitation cross sections each of the vibrational levels are compared. In addition, low-resolution measurements of the cross section of the atomic dissociation fragments (NI, NII, NIII) from 40 to 102 nm are made, and medium-resolution measurements are made of the emission cross section of the c4 1Pi(u), c5-prime 1Sigma(+)u, c5 1Pi(u), and c6-prime 1Sigma(+)u to X 1Sigma(+)g (0,0) transitions.

  9. Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2015-12-01

    This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.

  10. Synaptic Vesicle Proteins and Active Zone Plasticity.

    PubMed

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  11. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  12. Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports.

    PubMed

    Jackman, Joshua A; Kim, Min Chul; Zhdanov, Vladimir P; Cho, Nam-Joon

    2016-01-28

    Phospholipid assemblies on solid supports mimic the cell membrane, and provide a platform to study membrane biology. Among the different types of model membranes, the planar bilayer is a two-dimensional lipid bilayer sheet that can be formed by the adsorption and spontaneous rupture of vesicles. The formation process is influenced by the interactions between vesicles and the solid support as well as between vesicles. On silicon oxide, which is a commonly used solid support, vesicles typically adsorb until reaching a critical coverage and then spontaneous rupture begins. Although it is generally understood that spontaneous rupture leads to planar bilayer formation, oversaturation of vesicles at the critical coverage can hinder the whole process due to a steric factor. To date, the role of this factor has been scrutinized only in relation to temperature, and the influence of additional parameters remains to be elucidated. In this work, we have investigated how vesicle size and corresponding steric constraints influence the kinetics of vesicle adsorption and rupture and, more specifically, how the state of adsorbed vesicles after fusion depends on the vesicle size. Using quartz crystal microbalance-dissipation (QCM-D) and fluorescence recovery after photobleaching (FRAP), we characterized the adsorption kinetics of vesicles onto silicon oxide and the lateral mobility of solid-supported lipid assemblies. While the vesicle adsorption kinetics were diffusion-limited up to the onset of vesicle rupture, the extent of rupture depended on vesicle size and it was observed that larger vesicles are more prone to steric effects than smaller vesicles. We discuss this finding in terms of the structural transformation from adsorbed vesicles to a planar bilayer, including how the interplay of thermodynamic, kinetic and steric factors can affect vesicle rupture on solid supports. PMID:26739602

  13. Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports.

    PubMed

    Jackman, Joshua A; Kim, Min Chul; Zhdanov, Vladimir P; Cho, Nam-Joon

    2016-01-28

    Phospholipid assemblies on solid supports mimic the cell membrane, and provide a platform to study membrane biology. Among the different types of model membranes, the planar bilayer is a two-dimensional lipid bilayer sheet that can be formed by the adsorption and spontaneous rupture of vesicles. The formation process is influenced by the interactions between vesicles and the solid support as well as between vesicles. On silicon oxide, which is a commonly used solid support, vesicles typically adsorb until reaching a critical coverage and then spontaneous rupture begins. Although it is generally understood that spontaneous rupture leads to planar bilayer formation, oversaturation of vesicles at the critical coverage can hinder the whole process due to a steric factor. To date, the role of this factor has been scrutinized only in relation to temperature, and the influence of additional parameters remains to be elucidated. In this work, we have investigated how vesicle size and corresponding steric constraints influence the kinetics of vesicle adsorption and rupture and, more specifically, how the state of adsorbed vesicles after fusion depends on the vesicle size. Using quartz crystal microbalance-dissipation (QCM-D) and fluorescence recovery after photobleaching (FRAP), we characterized the adsorption kinetics of vesicles onto silicon oxide and the lateral mobility of solid-supported lipid assemblies. While the vesicle adsorption kinetics were diffusion-limited up to the onset of vesicle rupture, the extent of rupture depended on vesicle size and it was observed that larger vesicles are more prone to steric effects than smaller vesicles. We discuss this finding in terms of the structural transformation from adsorbed vesicles to a planar bilayer, including how the interplay of thermodynamic, kinetic and steric factors can affect vesicle rupture on solid supports.

  14. Theoretical description of the 2A/double prime/ and 2A/prime/ states of the peroxyformyl radical. [for air pollution and Mars atmospheric studies

    NASA Technical Reports Server (NTRS)

    Winter, N. W.; Goddard, W. A., III; Bender, C. F.

    1975-01-01

    Simple orbital ideas are used to describe the lowest two states of the peroxyformyl radical, and ab initio Hartree-Fock calculations in these states are reported. It is found that both states may be formed exothermically by association of O2 and HCO in their ground states; however, the excited state may decompose readily to OH and CO2. The possible role of such processes in oxidation of aldelydes is discussed.

  15. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martínez-Aguilar, Keren; Ramírez-Carrasco, Gabriela; Hernández-Chávez, José Luis; Barraza, Aarón; Alvarez-Venegas, Raúl

    2016-01-01

    To survive in adverse conditions, plants have evolved complex mechanisms that "prime" their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms.

  16. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martínez-Aguilar, Keren; Ramírez-Carrasco, Gabriela; Hernández-Chávez, José Luis; Barraza, Aarón; Alvarez-Venegas, Raúl

    2016-01-01

    To survive in adverse conditions, plants have evolved complex mechanisms that "prime" their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms. PMID:27242854

  17. Radiative decays of the psi prime to all-photon final states

    SciTech Connect

    Lee, R.A.

    1985-06-01

    Results of studies of selected radiative decays of the psi' to charmonium and non-charmonium states which decay into photons are presented. These studies were performed using a sample of 1.8 x 10/sup 6/ produced psi''s collected by the Crystal Ball detector at the SPEAR electron-positron storage ring. The branching ratios of the chi/sub 0/, chi/sub 2/, and eta'/sub c/ to two photons have been measured to be (4.5 +- 2.2 +- 2.0) x 10/sup -4/, (9.5 +- 2.9 +- 4.5) x 10/sup -4/ (first errors statistical, second systematic), and <1 x 10/sup -2/ (90% C.L.). The signal from the decay chain psi' ..-->.. ..gamma..chi/sub 0/, chi/sub 0/ ..-->.. ..pi../sup 0/..pi../sup 0/ has been observed with essentially no background. Using the observed line shape of the radiative photon in this reaction, the full width of the psi/sub 0/ has been found to be 8.8 +- 1.3 +- 1.5 MeV/c/sup 2/. In addition, the branching ratios of the chi/sub 0/ and chi/sub 2/ to ..pi../sup 0/..pi../sup 0/ have been measured to be (3.5 +- 0.3 +- 1.2) x 10/sup -3/ and (1.2 +- 0.2 +- 0.4) x 10/sup -3/; the branching ratios of the chi/sub 0/ and chi/sub 2/ to eta eta have been measured to be (2.8 +- 0.9 +- 1.3) x 10/sup -3/ and (8.4 +- 4.2 +- 4.0) x 10/sup -4/. The decays of the psi' to four non-charmonium states have been investigated. The branching ratios and upper limits of these decays have been normalized to the branching ratios of the corresponding decays from the J/psi which have been measured using a sample of 2.2 x 10/sup 6/ produced J/psi's collected by the Crystal Ball detector. The ratios of the psi' branching ratios to the J/psi branching ratios for the final states ..gamma..eta, ..gamma..eta', ..gamma..theta, and ..gamma..f have been measured to be <1.8%, <2.6%, <10 to 15%, and 9 +- 3%. These results are compared with the theoretical expectations of lowest-order quantum chromodynamics potential models. Substantial disagreement is found between theory and experiment.

  18. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Martínez-Aguilar, Keren; Ramírez-Carrasco, Gabriela; Hernández-Chávez, José Luis; Barraza, Aarón; Alvarez-Venegas, Raúl

    2016-01-01

    To survive in adverse conditions, plants have evolved complex mechanisms that “prime” their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms. PMID:27242854

  19. An ab initio calculation of the zero-field splitting parameters of the 3A-double prime state of formaldehyde

    NASA Technical Reports Server (NTRS)

    Davidson, E. R.; Ellenbogen, J. C.; Langhoff, S. R.

    1980-01-01

    The spin dipole-dipole and spin-orbit contributions to the zero-field splitting of the 3A-double prime state of formaldehyde have been evaluated at the excited state experimental geometry. Ab initio CI wave functions were generated from a Dunning double zeta plus polarization bases set using 3A-double prime rhf orbitals. Twelve states of each symmetry were used to evaluate the second-order spin-orbit effect. The resulting values of D and E were 0.19 and 0.03 kayser with the principal magnetic axes rotated 36 deg from the CO bond. The values of alpha and beta relative to the inertial axes were calculated to be 0.03 and 0.01 kayser compared to the experimental values of 0.05 plus or minus 0.01 and 0.02 plus or minus 0.02 kayser.

  20. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    PubMed

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments. PMID:23944502

  1. The Affective Regulation of Cognitive Priming

    PubMed Central

    Storbeck, Justin; Clore, Gerald L.

    2008-01-01

    Semantic and affective priming are classic effects observed in cognitive and social psychology, respectively. We discovered that affect regulates such priming effects. In Experiment 1, positive and negative moods were induced prior to one of three priming tasks; evaluation, categorization, or lexical decision. As predicted, positive affect led to both affective priming (evaluation task) and semantic priming (category and lexical decision tasks). However, negative affect inhibited such effects. In Experiment 2, participants in their natural affective state completed the same priming tasks as in Experiment 1. As expected, affective priming (evaluation task) and category priming (categorization and lexical decision tasks) were observed in such resting affective states. Hence, we conclude that negative affect inhibits semantic and affective priming. These results support recent theoretical models, which suggest that positive affect promotes associations among strong and weak concepts, and that negative affect impairs such associations (Kuhl, 2000; Clore & Storbeck, 2006). PMID:18410195

  2. Granulosa cell-oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells

    SciTech Connect

    Cecconi, S.; Tatone, C.; Buccione, R.; Mangia, F.; Colonna, R. )

    1991-05-01

    The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: (a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and (b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.

  3. The State's Prime Numbers

    ERIC Educational Resources Information Center

    Colorado Department of Education, 2005

    2005-01-01

    This standards review is the first in a series of annual reviews of the Colorado Model Content Standards. Its purpose is to identify student performance over time on measures of exiting mathematics standards, identify ways to affirm and strengthen standards and more clearly articulate the practices used by Colorado schools to promote student…

  4. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  5. Morphological docking of secretory vesicles

    PubMed Central

    2010-01-01

    Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses. PMID:20577884

  6. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  7. Nanotubes from gelly vesicles

    NASA Astrophysics Data System (ADS)

    Kremer, S.; Campillo, C.; Pepin-Donat, B.; Viallat, A.; Brochard-Wyart, F.

    2008-05-01

    Hydrodynamic extrusions of tethers from giant unilamellar vesicles (GUV) enclosing a poly-N-isopropylacrylamide (polyNIPAM) gel are studied. The collapse of the gel upon heating induces a deswelling of the GUV, showing that the membrane is linked to the polymer network. The gelly vesicle is attached to a micro-rod and submitted to a flow (velocity U). Above a threshold velocity (U>Uc) a tether is extruded and reaches a stationary length L∞simeτ0U in a characteristic time τ0. The vesicle behaves like an entropic spring with a tether length L∞ proportional to the Stokes friction force. Compared to viscous "sol" vesicles, gelly vesicle are much stiffer: L∞ and τ0 being hundred times smaller. We conclude that the mobility of lipids is reduced, only a small portion of the vesicle area being free to flow into the tube.

  8. Role of final state interactions in quasielastic [sup 56]Fe([ital e],[ital e][prime]) reactions at large [vert bar][ital [rvec q

    SciTech Connect

    Chinn, C.R. )

    1995-04-01

    A relativistic finite nucleus calculation using a Dirac optical potential is used to investigate the importance of final state interactions (FSI) at large momentum transfers in inclusive quasielastic electronuclear reactions. The optical potential is derived from first-order multiple scattering theory and then is used to calculate the FSI in a nonspectral Green's function doorway approach. At intermediate momentum transfers excellent predictions of the quasielastic [sup 56]Fe([ital e],[ital e][prime]) experimental data for the longitudinal response function are obtained. In comparisons with recent measurements at [vert bar][ital [rvec q

  9. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    SciTech Connect

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  10. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    PubMed

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses. PMID:26539890

  11. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    PubMed

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses.

  12. Synaptic vesicle endocytosis.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  13. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  14. CAPS and Munc13: CATCHRs that SNARE Vesicles

    PubMed Central

    James, Declan J.; Martin, Thomas F. J.

    2013-01-01

    CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca2+-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles. PMID:24363652

  15. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  16. On the Computing Potential of Intracellular Vesicles.

    PubMed

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  17. Temporal separation of vesicle release from vesicle fusion during exocytosis.

    PubMed

    Troyer, Kevin P; Wightman, R Mark

    2002-08-01

    During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation. PMID:12034731

  18. Problems with Primes

    ERIC Educational Resources Information Center

    Melrose, Tim; Scott, Paul

    2005-01-01

    This article discusses prime numbers, defined as integers greater than 1 that are divisible only by only themselves and the number 1. A positive integer greater than 1 that is not a prime is called composite. The number 1 itself is considered neither prime nor composite. As the name suggests, prime numbers are one of the most basic but important…

  19. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  20. Monte Carlo simulations of fluid vesicles.

    PubMed

    Sreeja, K K; Ipsen, John H; Sunil Kumar, P B

    2015-07-15

    Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations. PMID:26087479

  1. Monte Carlo simulations of fluid vesicles

    NASA Astrophysics Data System (ADS)

    Sreeja, K. K.; Ipsen, John H.; Kumar, P. B. Sunil

    2015-07-01

    Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations.

  2. Pulling on adhered vesicles

    NASA Astrophysics Data System (ADS)

    Smith, Ana-Suncana; Goennenwein, Stefanie; Lorz, Barbara; Seifert, Udo; Sackmann, Erich

    2004-03-01

    A theoretical model describing pulling of vesicles adhered in a contact potential has been developed. Two different regimes have been recognized. For weak to middle-strength adhesive potentials, locally stable shapes are found in a range of applied forces, separated from the free shape by an energy barrier. The phase diagram contains regions with either a unique bound shape or an additional meta-stable shape. Upon pulling, these shapes unbind discontinuously since the vesicle disengage from the surface while still possessing a finite adhesion area (Smith 2003a). In a strong adhesion regime, a competition between adhesion and tether formation is observed. A critical onset force is identified where a tether spontaneously appears as a part of a second order shape transition. Further growth of a tether is followed by a detachment process which terminates at a finite force when a vesicle continuously unbinds from the substrate (Smith 2003b). Both critical forces, as well as all shape parameters, are calculated as a function of the reduced volume and the strength of adhesive potential. Analogous experimental study has been performed where a vertical magnetic tweezers are used in combination with micro-interferometric and confocal techniques to reproduce the same symmetry as in the theoretical investigation. Giant vesicles are bound to the substrate by numerous specific bonds formed between ligands and receptors incorporated into the vesicle and the substrate, respectively. Application of a constant force is inducing a new thermodynamic equilibrium of the system where the vesicle is partially unbound from the substrate (Goennenwein 2003). The shapes of vesicles are compared prior and during application of the force. Very good agreement is obtained, particularly in the middle-strength adhesion regime (Smith 2003c). References: 1. A.-S. Smith, E. Sackmann, U. Seifert: Effects of a pulling force on the shape of a bound vesicle, Europhys. Lett., 64, 2 (2003). 2. A.-S. Smith

  3. A Flt3 and Ras-dependent Pathway Primes B Cell Development by Inducing A State of IL7-responsiveness

    PubMed Central

    Li, Lin-Xi; Goetz, Christine A.; Katerndahl, Casey D.S.; Sakaguchi, Nobuo; Farrar, Michael A.

    2009-01-01

    Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors (CLP). This developmental block parallels that found in flt3−/− mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of CLP and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL7Rα levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation. PMID:20065110

  4. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  5. Repetition Priming in Music

    ERIC Educational Resources Information Center

    Hutchins, Sean; Palmer, Caroline

    2008-01-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance…

  6. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  7. Topology and Dynamics of Active Nematic Vesicles

    PubMed Central

    Keber, Felix C.; Loiseau, Etienne; Sanchez, Tim; DeCamp, Stephen J.; Giomi, Luca; Bowick, Mark J.; Marchetti, M. Cristina; Dogic, Zvonimir; Bausch, Andreas R.

    2015-01-01

    Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We study the spatiotemporal patterns that emerge when an active nematic film of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects are largely static structures, in active nematics defects move spontaneously and can be described as self-propelled particles. The combination of activity, topological constraints and vesicle deformability produces a myriad of dynamical states. We highlight two dynamical modes: a tunable periodic state that oscillates between two defect configurations, and shape-changing vesicles with streaming filopodia-like protrusions. These results demonstrate how biomimetic materials can be obtained when topological constraints are used to control the non-equilibrium dynamics of active matter. PMID:25190790

  8. Measurement of extracellular vesicles as biomarkers of consequences or cause complications of pathological states, and prognosis of both evolution and therapeutic safety/efficacy.

    PubMed

    Amiral, Jean; Seghatchian, Jerard

    2016-08-01

    Utility of EVs, as biomarkers of cause or consequence of various pathological complications, and prognosis of blood components' therapy in terms of safety/efficacy and their potential associated hazards, primed by EVs involvements in pro-inflammatory, immunomodulatory and activations of both pro/anti-coagulatory and others associated pathways, as well as various cellular cross talks, are highlighted as the fundamental. Today EVs are becoming the "buzz" words of the current diagnosis, development and research [DDR] strategies, with the aim of ensuring safer therapeutic approaches in the current clinical practices, also incorporating their potential in long term cost effectiveness in health care systems. The main focus of this manuscript is to review the current opinions in some fundamental areas of EVs involvements in health and diseases. Firstly, our goal is highlighting what are EVs/MVs/MPs and how are they generated in physiology, pathology or blood products; classification and significance of EVs generated in vivo; followed by consequences and physiological/pathological induced effects of EVs generation in vivo. Secondly, specific cell origin EVs and association with malignancy; focus on EVs carrying TF and annexin V as a protective protein for harmful effects of EVs, and associations with LA; and incidence of anti-annexin V antibodies are also discussed. Thirdly, utility of EVs is presented: as diagnostic tools of disease markers; prognosis and follow-up of clinical states; evaluation of therapy efficacy; quality and risk assessment of blood products; followed by the laboratory tools for exploring, characterizing and measuring EVs, and/or their associated activity, using our own experiences of capture based assays. Finally, in perspective, the upcoming low volume sampling, fast, reliable and reproducibility and friendly use laboratory tools and the standardization of measurement methods are highlighted with the beneficial effects that we are witnessing in both

  9. Electrohydrodynamics Of Multicomponent Vesicles

    NASA Astrophysics Data System (ADS)

    Gera, Prerna; Salac, David

    2015-11-01

    The addition of cholesterol into a lipid membrane induces the formation of distinct domains. These domains try to minimize the overall energy of the system by coalescence and migration. The application of electric fields will induce flow of these membrane domains and influence the rate at which they coarsen. In this work the electrohydrodynamics of multicomponent vesicles is numerically modelled. The method uses a Cahn-Hilliard-Cook model of the lipid domains restricted to a deforming three-dimensional vesicle and will be briefly discussed. Sample results will be presented and compared to experimental observations. This work supported by NSF Grant #1253739.

  10. Repetition priming in music.

    PubMed

    Hutchins, Sean; Palmer, Caroline

    2008-06-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance (measured in events). Experiment 1 used variable-length melodies, whereas Experiments 2 and 3 used fixed-length melodies. Experiment 3 changed the timbre of the target tone. In all experiments, fast-responding participants produced repeated tones faster than nonrepeated tones, and this repetition benefit decreased as prime-target distances increased. All participants produced expected tonic endings faster than less expected nontonic endings. Repetition and tonal priming effects are compared with harmonic priming effects in music and with repetition priming effects in language. PMID:18505332

  11. Repetition priming in music.

    PubMed

    Hutchins, Sean; Palmer, Caroline

    2008-06-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance (measured in events). Experiment 1 used variable-length melodies, whereas Experiments 2 and 3 used fixed-length melodies. Experiment 3 changed the timbre of the target tone. In all experiments, fast-responding participants produced repeated tones faster than nonrepeated tones, and this repetition benefit decreased as prime-target distances increased. All participants produced expected tonic endings faster than less expected nontonic endings. Repetition and tonal priming effects are compared with harmonic priming effects in music and with repetition priming effects in language.

  12. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.

    PubMed

    Cohen, D E; Angelico, M; Carey, M C

    1990-01-01

    Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch

  13. Astrocytic vesicle mobility in health and disease.

    PubMed

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  14. Astrocytic Vesicle Mobility in Health and Disease

    PubMed Central

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5′-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions. PMID:23712361

  15. Priming effects on the perceived grouping of ambiguous dot patterns.

    PubMed

    Kurylo, Daniel D; Bukhari, Farhan

    2015-09-01

    For ambiguous stimuli, complex dynamics guide processes of perceptual grouping. Previous studies have suggested two opposing effects on grouping that are produced by the preliminary stimulus state: one that enhances grouping towards the existing structure, and another that opposes this structure. To examine effects of the preliminary state on grouping directly, measurements were made of perceived grouping of dot patterns that followed a visual prime. Three stimuli were presented in sequence: prime, target, and mask. Targets were composed of an evenly spaced dot grid in which grouping was established by similarity in luminance. Subjects indicated the dominant perceived grouping. The prime either corresponded to or opposed the prevailing organization of the target. Contrary to the hypothesis, solid-line primes biased grouping away from the structure of the prime, even when the prevailing organization of dot patterns strongly favored the primes' structure. This effect occurred, although to a lesser extent, when primes did not occupy the same location of targets, but were presented in a marginal area surrounding the grid. Priming effects did not occur for primes constructed of dot patterns. Effects found here may be attributed to a forward masking effect by primes, which more effectively disrupts grouping of patterns matched to the prime. Effects may also be attributed to a type of pattern contrast, in which a grouped pattern dissimilar to primes gains salience. For the pattern contrast model, the partial activation of multiple grouped configurations is compared to the pattern of the solid-line primes. PMID:25281427

  16. Priming effects on the perceived grouping of ambiguous dot patterns.

    PubMed

    Kurylo, Daniel D; Bukhari, Farhan

    2015-09-01

    For ambiguous stimuli, complex dynamics guide processes of perceptual grouping. Previous studies have suggested two opposing effects on grouping that are produced by the preliminary stimulus state: one that enhances grouping towards the existing structure, and another that opposes this structure. To examine effects of the preliminary state on grouping directly, measurements were made of perceived grouping of dot patterns that followed a visual prime. Three stimuli were presented in sequence: prime, target, and mask. Targets were composed of an evenly spaced dot grid in which grouping was established by similarity in luminance. Subjects indicated the dominant perceived grouping. The prime either corresponded to or opposed the prevailing organization of the target. Contrary to the hypothesis, solid-line primes biased grouping away from the structure of the prime, even when the prevailing organization of dot patterns strongly favored the primes' structure. This effect occurred, although to a lesser extent, when primes did not occupy the same location of targets, but were presented in a marginal area surrounding the grid. Priming effects did not occur for primes constructed of dot patterns. Effects found here may be attributed to a forward masking effect by primes, which more effectively disrupts grouping of patterns matched to the prime. Effects may also be attributed to a type of pattern contrast, in which a grouped pattern dissimilar to primes gains salience. For the pattern contrast model, the partial activation of multiple grouped configurations is compared to the pattern of the solid-line primes.

  17. Bacterial vesicles in marine ecosystems.

    PubMed

    Biller, Steven J; Schubotz, Florence; Roggensack, Sara E; Thompson, Anne W; Summons, Roger E; Chisholm, Sallie W

    2014-01-10

    Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a numerically dominant marine cyanobacterium, continuously release lipid vesicles containing proteins, DNA, and RNA. We also show that vesicles carrying DNA from diverse bacteria are abundant in coastal and open-ocean seawater samples. Prochlorococcus vesicles can support the growth of heterotrophic bacterial cultures, which implicates these structures in marine carbon flux. The ability of vesicles to deliver diverse compounds in discrete packages adds another layer of complexity to the flow of information, energy, and biomolecules in marine microbial communities.

  18. Potential of yeast secretory vesicles in biodelivery systems.

    PubMed

    Kutralam-Muniasamy, Gurusamy; Flores-Cotera, Luis B; Perez-Guevara, Fermin

    2015-06-01

    Membranous vesicular organelles (MVOs), such as secretory vesicles and exosomes, perform a variety of biological functions ranging from secretion to cellular communication in eukaryotic cells. Exosomes, particularly those of mammalian cells, have been widely studied as potential carriers in human therapeutic applications. However, no study has yet demonstrated the use of yeast secretory vesicles for such applications. Therefore, we explore here the current state of knowledge on yeast secretory vesicles and their potential use in therapeutic delivery systems. We focus on the characteristics shared by exosomes and yeast secretory vesicles to provide insights into the use of the latter as delivery vehicles. From this perspective, we speculate on the potential application of post-Golgi vesicles (PGVs) in the biomedical field. PMID:25843637

  19. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  20. Priming Ability Emotional Intelligence

    ERIC Educational Resources Information Center

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  1. Priming Gestures with Sounds

    PubMed Central

    Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas

    2015-01-01

    We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884

  2. Discovery: Prime Numbers

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  3. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  4. The semantic priming project.

    PubMed

    Hutchison, Keith A; Balota, David A; Neely, James H; Cortese, Michael J; Cohen-Shikora, Emily R; Tse, Chi-Shing; Yap, Melvin J; Bengson, Jesse J; Niemeyer, Dale; Buchanan, Erin

    2013-12-01

    Speeded naming and lexical decision data for 1,661 target words following related and unrelated primes were collected from 768 subjects across four different universities. These behavioral measures have been integrated with demographic information for each subject and descriptive characteristics for every item. Subjects also completed portions of the Woodcock-Johnson reading battery, three attentional control tasks, and a circadian rhythm measure. These data are available at a user-friendly Internet-based repository ( http://spp.montana.edu ). This Web site includes a search engine designed to generate lists of prime-target pairs with specific characteristics (e.g., length, frequency, associative strength, latent semantic similarity, priming effect in standardized and raw reaction times). We illustrate the types of questions that can be addressed via the Semantic Priming Project. These data represent the largest behavioral database on semantic priming and are available to researchers to aid in selecting stimuli, testing theories, and reducing potential confounds in their studies.

  5. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    SciTech Connect

    Ashley, G.W.; Harris, G.; Stubbe, J. )

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its label at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.

  6. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held

    PubMed Central

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F.

    2016-01-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. PMID:27035349

  7. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held.

    PubMed

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F

    2016-04-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites.

  8. Evolution of chloroplast vesicle transport.

    PubMed

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  9. Shapes of Mixed Phospholipid Vesicles

    PubMed Central

    Aranda-Espinoza, Helim; Maldonado, Amir

    2006-01-01

    We studied the shape of phospholipid vesicles prepared by hydration of a mixture of phosphatidylcholine (SOPC) and phosphatidylserine (SOPS) in different proportions. The aim of the work is to obtain some insight into the influence of the chemical composition of a biomembrane on its shape. The optical microscopy results show that the shape of the vesicles depend on the SOPC:SOPS composition. For low SOPS contents, coiled cylindrical vesicles are observed. The results suggest that specific compositions of the SOPC:SOPS vesicles produce some spontaneous curvature on the membrane and then a coiling instability. PMID:19669461

  10. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    PubMed

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-01

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. PMID:27444383

  11. Largest known twin primes and Sophie Germain primes

    NASA Astrophysics Data System (ADS)

    Indlekofer, Karl-Heinz; Járai, Antal

    The numbers 242206083* 2^38880+-1 are twin primes. The number p=2375063906985* 2^19380-1 is a Sophie Germain prime, i.e. p and 2p+1 are both primes. For p=4610194180515* 2^ 5056-1, the numbers p, p+2 and 2p+1 are all primes.

  12. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis

    PubMed Central

    Man, Kwun Nok M; Imig, Cordelia; Walter, Alexander M; Pinheiro, Paulo S; Stevens, David R; Rettig, Jens; Sørensen, Jakob B; Cooper, Benjamin H; Brose, Nils; Wojcik, Sonja M

    2015-01-01

    It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca2+-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct. DOI: http://dx.doi.org/10.7554/eLife.10635.001 PMID:26575293

  13. Giant vesicles: preparations and applications.

    PubMed

    Walde, Peter; Cosentino, Katia; Engel, Helen; Stano, Pasquale

    2010-05-01

    There is considerable interest in preparing cell-sized giant unilamellar vesicles from natural or nonnatural amphiphiles because a giant vesicle membrane resembles the self-closed lipid matrix of the plasma membrane of all biological cells. Currently, giant vesicles are applied to investigate certain aspects of biomembranes. Examples include lateral lipid heterogeneities, membrane budding and fission, activities of reconstituted membrane proteins, or membrane permeabilization caused by added chemical compounds. One of the challenging applications of giant vesicles include gene expressions inside the vesicles with the ultimate goal of constructing a dynamic artificial cell-like system that is endowed with all those essential features of living cells that distinguish them from the nonliving form of matter. Although this goal still seems to be far away and currently difficult to reach, it is expected that progress in this and other fields of giant vesicle research strongly depend on whether reliable methods for the reproducible preparation of giant vesicles are available. The key concepts of currently known methods for preparing giant unilamellar vesicles are summarized, and advantages and disadvantages of the main methods are compared and critically discussed. PMID:20336703

  14. Spectroscopic and photophysical properties of complexes of 4{prime}-ferrocenyl-2,2{prime}:6{prime},2{double_prime}-terpyridine and related ligands

    SciTech Connect

    Hutchinson, K.; Morris, J.C.; Nile, T.A.; Walsh, J.L.; Thompson, D.W.; Petersen, J.D.; Schoonover, J.R.

    1999-05-17

    4{prime}-(Ferrocenyl)-2,2{prime}:6{prime}2{double_prime}-terpyridine (Fctpy) and 4{prime}-(4-pyridyl)-2,2{prime}:6{prime},2{double_prime}-terpyridine (pytpy) were prepared from the corresponding ferrocene- and pyridinecarboxaldehyle and 2-acetylpyridine using the Krohnke synthetic methodology. Metal complexes, [M(Fctpy){sub 2}](PF{sub 6}){sub 2} (M = Ru, Fe, Zn), [Ru(tpy)(Fctpy)](PF{sub 6}){sub 2} (tpy = 2,2{prime}:6{prime},6{double_prime}-terpyridine), and [Ru(pytpy){sub 2}](PF{sub 6}){sub 2} were prepared and characterized. Cyclic voltammetric analysis indicated Ru(III/II) and ferrocenium/ferrocene redox couples near expected potentials (Ru{sup III/II} {approximately}1.3 V and ferrocenium/ferrocene {approximately}0.6 V vs Ag/AgCl). In addition to dominant {pi}{sub tpy} {r_arrow} {pi}{sub tpy}{sup *} UV absorptions near 240 and 280 nm and d{sub {pi}}{sup Ru} {r_arrow} {pi}{sub tpy}{sup *} MLCT absorptions around 480 nm, the complexes [Ru(Fctpy){sub 2}](PF{sub 6}){sub 2} and [Ru(tpy)(Fctpy)](PF{sub 6}){sub 2} exhibit an unusual absorption band around 530 nm. Resonance Raman measurements indicate that this band is due to a {sup 1}[(d({pi}){sub Fc}){sup 6}] {r_arrow} {sup 1}[(d({pi}){sub Fc}){sup 5}({pi}{sup *}{sub tpy}{sup Ru}){sup 1}] transition. For [Ru(Fctpy){sub 2}](PF{sub 6}){sub 2} and [Ru(tpy)(Fctpy)](PF{sub 6}){sub 2}, excited-state emission and lifetime measurements indicated an upper-limit emission quantum yield of 0.003 and an upper-limit emission lifetime of 0.025 {micro}s. The influence of the ferrocenyl site on excited-state decay is discussed, and an excited-state energy level diagram is proposed.

  15. Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content.

    PubMed

    Wang, Xueyong; Pinter, Martin J; Rich, Mark M

    2016-01-20

    priming/docking of a small homeostatic reserve pool of vesicles that normally have slow-release kinetics. Following priming, the reserve pool of vesicles is released synchronously with the normal readily releasable pool of synaptic vesicles. This is the first description of this unique pool of synaptic vesicles.

  16. Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content

    PubMed Central

    Pinter, Martin J.; Rich, Mark M.

    2016-01-01

    priming/docking of a small homeostatic reserve pool of vesicles that normally have slow-release kinetics. Following priming, the reserve pool of vesicles is released synchronously with the normal readily releasable pool of synaptic vesicles. This is the first description of this unique pool of synaptic vesicles. PMID:26791213

  17. Construction of monomers and chains assembled by 3d/4f metals and 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine

    SciTech Connect

    Yang, Juan; Hu, Rui-Xiang; Zhang, Man-Bo

    2012-12-15

    A series of transition metal and lanthanide complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine (HL, 1), namely [M(L){sub 2}]{center_dot}5H{sub 2}O (M=Ni, 2; Co, 3), [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O (4) and [Ln(L){sub 3}]{sub n} (Ln=Nd, 5; Gd, 6; Er, 7) were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Isomorphic compounds 2 and 3 are mononuclear molecules with two ligand chelating to the metal centers via tridentate terpyridyl, while compound 4 adopts 1D chain-like structure, in which five-coordinate zinc centers are surrounded by three ligands. Compounds 5-7 also display 1D chain-like structure, but the nine-coordinate lanthanide centers bonded by four ligands. Luminescent property indicates that compound 4 exhibits photoluminescence in the solid state at room temperature. - Graphical abstract: Six complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized via assembly with transition metal and lanthanide ions, respectively. Among them, [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers, while [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures. Highlights: Black-Right-Pointing-Pointer Compounds of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized. Black-Right-Pointing-Pointer [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers. Black-Right-Pointing-Pointer [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures.

  18. Trafficking vesicles: pro or contra pathogens?

    PubMed

    Frei dit Frey, Nicolas; Robatzek, Silke

    2009-08-01

    Membrane compartmentalization and trafficking are pivotal for eukaryotic life and demand a higher order of coordination. Even in their resting state, most plant cells exhibit a polarized localization of membrane compartments, which is redirected when plant cells are attacked by microbes. Repositioning of organelles at pathogen penetration sites has been reported since more than a decade; however, only recently has targeted vesicle trafficking upon biotic stress emerged. It has become evident that vesicle secretion and endocytic pathways are engaged in the plant's immune system to actively defend against potential pathogens. By contrast, invasive pathogens have evolved means to utilize these trafficking pathways for the suppression of plant defenses and to the benefit of microbial proliferation. This review summarizes recent findings of host intracellular endomembrane adaptations in response to pathogens and how pathogens exploit them. PMID:19608452

  19. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.

    PubMed

    Zhang, Liuyang; Wang, Xianqiao

    2015-07-01

    Cell-to-cell communications via the tunneling nanotubes or gap junction channels are vital for the development and maintenance of multicellular organisms. Instead of these intrinsic communication pathways, how to design artificial communication channels between cells remains a challenging but interesting problem. Here, we perform dissipative particle dynamics (DPD) simulations to analyze the interaction between rotational nanotubes (RNTs) and vesicles so as to provide a novel design mechanism for cell-to-cell communication. Simulation results have demonstrated that the RNTs are capable of generating local disturbance and promote vesicle translocation toward the RNTs. Through ligand pattern designing on the RNTs, we can find a suitable nanotube candidate with a specific ligand coating pattern for forming the RNT-vesicle network. The results also show that a RNT can act as a bridged channel between vesicles, which facilitates substance transfer. Our findings provide useful guidelines for the molecular design of patterned RNTs for creating a synthetic channel between cells. PMID:26266730

  20. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.

    PubMed

    Zhang, Liuyang; Wang, Xianqiao

    2015-07-01

    Cell-to-cell communications via the tunneling nanotubes or gap junction channels are vital for the development and maintenance of multicellular organisms. Instead of these intrinsic communication pathways, how to design artificial communication channels between cells remains a challenging but interesting problem. Here, we perform dissipative particle dynamics (DPD) simulations to analyze the interaction between rotational nanotubes (RNTs) and vesicles so as to provide a novel design mechanism for cell-to-cell communication. Simulation results have demonstrated that the RNTs are capable of generating local disturbance and promote vesicle translocation toward the RNTs. Through ligand pattern designing on the RNTs, we can find a suitable nanotube candidate with a specific ligand coating pattern for forming the RNT-vesicle network. The results also show that a RNT can act as a bridged channel between vesicles, which facilitates substance transfer. Our findings provide useful guidelines for the molecular design of patterned RNTs for creating a synthetic channel between cells.

  1. Benzaldehyde-functionalized Polymer Vesicles

    PubMed Central

    Sun, Guorong; Fang, Huafeng; Cheng, Chong; Lu, Peng; Zhang, Ke; Walker, Amy V.; Taylor, John-Stephen A.; Wooley, Karen L.

    2009-01-01

    Polymer vesicles with diameters of ca. 100-600 nm and bearing benzaldehyde functionalities within the vesicular walls were constructed through self assembly of an amphiphilic block copolymer PEO45-b-PVBA26 in water. The reactivity of the benzaldehyde functionalities was verified by crosslinking the polymersomes, and also by a one-pot crosslinking and functionalization approach to further render the vesicles fluorescent, each via reductive amination. In vitro studies found these labelled nanostructures to undergo cell association. PMID:19309173

  2. Synaptic vesicle pools: an update.

    PubMed

    Denker, Annette; Rizzoli, Silvio O

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or "pools". We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are "fixed". Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  3. "Fell" Primes "Fall", but Does "Bell" Prime "Ball"? Masked Priming with Irregularly-Inflected Primes

    ERIC Educational Resources Information Center

    Crepaldi, Davide; Rastle, Kathleen; Coltheart, Max; Nickels, Lyndsey

    2010-01-01

    Recent masked priming experiments have brought to light a morphological level of analysis that is exclusively based on the orthographic appearance of words, so that it breaks down corner into corn- and -er, as well as dealer into deal- and -er (Rastle, Davis, & New, 2004). Being insensitive to semantic factors, this morpho-orthographic…

  4. Asymmetric Vesicle Instability in Extensional Flow

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Zhao, Hong; Shaqfeh, Eric

    2012-11-01

    Previous researchers have chronicled the breakup of drops in an extensional flow as they stretch into a dumbbell shape with a long thin neck. Motivated by recent experimental observations, we study an apparently similar problem with vesicles, which are deformable but incompressible membranes that conserve area and volume. First, we simulate vesicles in an unbounded uniaxial extensional flow which are given general radial perturbations from an initially stable symmetric equilibrium state. For sufficiently low reduced volume (< 0.74 at matched inner/outer viscosity) there exists a capillary number at which an asymmetric perturbation mode will grow, resulting in the formation of an asymmetric dumbbell shape with a thin connecting cylindrical bridge analogous to the shapes associated with drop breakup. Our simulations help elucidate a mechanism for this instability based on a competition between internal pressure differentials in the vesicle resulting from the membrane bending force and ambient flow. We compare and contrast this transition to the ``standard'' drop breakup transition. Funded by NSF GRFP and Stanford Graduate Fellowship.

  5. Vesicles in a shear and Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Misbah, Chaouqi

    2010-11-01

    Vesicles, capsules and Red Blood Cells (RBCs) under flow are subject to considerable attention from theoretical, numerical and experimental point of views. Understanding their motions and dynamics is essential both at the fundamental level as a branch of biocomplex fluids, and at the technological level, such as the lab-on-chip technologies, targeted drug delivery, and blood flow diseases. First, we describe the dynamics of individual biomimetic (vesicles and capsules) and biological entities (RBCs) under a simple shear flow, and overview the current state of the knowledge. Comparison with available experiments will be provided. We then discuss the non-trivial rheology of dilute vesicle suspensions and results from experiments involving oscillatory shear with non-zero mean shear rate. Finally, we address a longstanding puzzle in the blood microcirculatory research: why do red blood cells adopt a non-symmetrical shape (called slipper shape) even in a symmetric flow? Our work shows that the symmetric shape is unstable in flow conditions encountered in microvasculature. Moreover, by adopting a slipper shape, the RBC acquires higher flow efficiency than the symmetric (parachute) shape. The extension of this study to a collection of cells will be outlined.

  6. Prime Retrieval of Motor Responses in Negative Priming

    ERIC Educational Resources Information Center

    Mayr, Susanne; Buchner, Axel; Dentale, Sandra

    2009-01-01

    Three auditory identification experiments were designed to specify the prime-response retrieval model of negative priming (S. Mayr & A. Buchner, 2006), which assumes that the prime response is retrieved in ignored repetition trials and interferes with probe responding. In Experiment 1, shortly before (in Experiment 1A) or after (in Experiment 1B)…

  7. Thermodynamically stable vesicle formation and vesicle-to-micelle transition of single-tailed anionic surfactant in water.

    PubMed

    Sakai, Takaya; Ikoshi, Risa; Toshida, Natsuko; Kagaya, Mariko

    2013-05-01

    The aggregation behavior of sodium 3,6,9,12,15-pentaoxa-heptacosanoate (AEC4-Na) in aqueous solution with increase of the concentration at 25 °C was investigated using differential scanning calorimetry, equilibrium surface tension, solubilization of an oil-soluble dye, steady-state fluorescence, dynamic light scattering, and freeze-fractured transmission electron microscopy. Vesicle formation of AEC4-Na preceded micelle formation below the critical micelle concentration (cmc). The vesicle-to-micelle transition was observed through a narrow concentration region above the cmc. The mean diameters of the vesicles and micelles were not affected by the concentration. All solutions over a wide range of concentrations were homogeneously transparent with a low Krafft point below 0 °C. These results indicate that the AEC4-Na vesicles have a thermodynamically stable structure. Vesicle formation may be caused by a pseudobinary mixed surfactant system composed of monomeric AEC4-Na and an acid soap that consists of a dimer complex formed between AEC4-Na and unneutralized AEC4-Na. The thermodynamic stability would then result from the inhibition of close intermolecular aggregation and flexibility of the molecular shape in the vesicles due to the oxyethylene units in AEC4-Na.

  8. Masked Repetition Priming Using Magnetoencephalography

    ERIC Educational Resources Information Center

    Monahan, Philip J.; Fiorentino, Robert; Poeppel, David

    2008-01-01

    Masked priming is used in psycholinguistic studies to assess questions about lexical access and representation. We present two masked priming experiments using MEG. If the MEG signal elicited by words reflects specific aspects of lexical retrieval, then one expects to identify specific neural correlates of retrieval that are sensitive to priming.…

  9. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  10. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. PMID:27564854

  11. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  12. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  13. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire.

    PubMed

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-01-01

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals. PMID:27048572

  14. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    PubMed

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  15. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    PubMed

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  16. Priming sentence planning.

    PubMed

    Konopka, Agnieszka E; Meyer, Antje S

    2014-09-01

    Sentence production requires mapping preverbal messages onto linguistic structures. Because sentences are normally built incrementally, the information encoded in a sentence-initial increment is critical for explaining how the mapping process starts and for predicting its timecourse. Two experiments tested whether and when speakers prioritize encoding of different types of information at the outset of formulation by comparing production of descriptions of transitive events (e.g., A dog is chasing the mailman) that differed on two dimensions: the ease of naming individual characters and the ease of apprehending the event gist (i.e., encoding the relational structure of the event). To additionally manipulate ease of encoding, speakers described the target events after receiving lexical primes (facilitating naming; Experiment 1) or structural primes (facilitating generation of a linguistic structure; Experiment 2). Both properties of the pictured events and both types of primes influenced the form of target descriptions and the timecourse of formulation: character-specific variables increased the probability of speakers encoding one character with priority at the outset of formulation, while the ease of encoding event gist and of generating a syntactic structure increased the likelihood of early encoding of information about both characters. The results show that formulation is flexible and highlight some of the conditions under which speakers might employ different planning strategies.

  17. Studies on seeds. II. Origin and degradation of lipid vesicles in pea and bean cotyledons.

    PubMed

    Mollenhauer, H H; Totten, C

    1971-02-01

    At least two kinds of lipid vesicles are present in pea and bean cotyledons which can be recognized at seed maturity on the basis of whether they do or do not interassociate into lipid vesicle sheets. Those that do interassociate into sheets are also characterized by (a) their association with plastids or plasma membranes during dormancy, and (b) the unique transformation into flattened saccules that they undergo during the first few days of seed germination. These interassociated (or composite) lipid vesicles have been found in only a few seeds and may be restricted to certain classes of plants and/or certain states of cellular development. Lipid vesicle-to-saccule transformation is predominantly confined to the germinating seed. However, some lipid vesicle-derived saccules are already present in some cells even before the seed reaches maturity. These partially transformed vesicles and saccules remain unchanged over dormancy, and then resume their transformation when the seed is germinated. This suggests that some stages of seed germination are already underway before the seed reaches maturity and are only resumed at seed germination. The lipid vesicles that do not interassociate into sheets (i.e., the simple lipid vesicles) are present in all tissues at all states of cellular development. These vesicles do not undergo any conspicuous structural changes during development.

  18. Semantic priming of familiar songs.

    PubMed

    Johnson, Sarah K; Halpern, Andrea R

    2012-05-01

    We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.

  19. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  20. PI(4,5)P2-binding effector proteins for vesicle exocytosis

    PubMed Central

    Martin, Thomas F. J.

    2014-01-01

    PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637

  1. Small GTPases in vesicle trafficking.

    PubMed

    Molendijk, Arthur J; Ruperti, Benedetto; Palme, Klaus

    2004-12-01

    Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.

  2. Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of

  3. Transfer of oleic acid between albumin and phospholipid vesicles.

    PubMed Central

    Hamilton, J A; Cistola, D P

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with greater than or equal to 80% of the oleic acid associated with albumin at pH 7.4; association was greater than or equal to 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, less than or equal to 10% of the oleic acid was bound to albumin and greater than 90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data. PMID:3455761

  4. Transfer of Oleic Acid between Albumin and Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Hamilton, James A.; Cistola, David P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with >= 80% of the oleic acid associated with albumin at pH 7.4; association was >= 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, <= 10% of the oleic acid was bound to albumin and >90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  5. Pearling of lipid vesicles induced by nanoparticles.

    PubMed

    Yu, Yan; Granick, Steve

    2009-10-14

    We show that cationic nanoparticles encapsulated within vesicles of phosphocholine lipid can induce pearling. The dynamic process occurs as two stages: formation of tubular protrusions followed by pearling instability. The breakup into individual vesicles can be controlled by nanoparticle concentration.

  6. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    SciTech Connect

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming; Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  7. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  8. Physicochemical characterization and cytotoxic studies of nonionic surfactant vesicles using sucrose esters as oral delivery systems.

    PubMed

    Valdés, Karina; Morilla, María José; Romero, Eder; Chávez, Jorge

    2014-05-01

    Several nanotechnological solutions for mucosal immunization have been proposed, such as nanoparticles, liposomes, solid lipidic particles, micelles, and surfactant vesicles. In recent years, surfactant vesicles have gained increasing scientific attention as an alternative potential drug delivery system to the conventional liposome. This type of vesicle known as niosomes or nonionic surfactant vesicles (NSVs) has a structure and properties similar to those of liposomes. Both of them can transport hydrophilic drugs by encapsulation in the aqueous inner pool or hydrophobic drugs by intercalation into hydrophobic domains. The aim of this study was to prepare and characterize vesicles formed by sucrose esters as protective systems of bioactive molecules for oral administration. Vesicles were prepared using two commercial products formed by mixtures of mono and diesters S-570 and S-770, respectively. Determined parameters were size and zeta potential; the stability of formulations was tested in presence of increasing concentrations of a surfactant, and at several pH values observed in the gastrointestinal tract. Solubilization experiences showed an initial decrease in size for vesicles of both ester mixtures, samples showed detergent resistance at higher Triton X-100 concentrations. Vesicles showed stability at pH 5-7.4 up to 90 min; however, both formulations showed colloidal instability at pH=2, which corresponds to the isoelectric point of these vesicles. To evaluate the cytotoxicity of both vesicle formulations and separately each pure ester, Caco-2 cells were used. Cytotoxic evaluation indicated that both types of vesicles and free sucrose distearate were safe for Caco-2 viability; however, free sucrose monostearate was toxic for the cells. As a conclusion of these preliminary studies, it can be stated that vesicles formed with mixtures of sucrose esters showed a size in the range of 200 nm maintaining their size when exposed to the action of a surfactant, but

  9. Size-dependent properties of small unilamellar vesicles formed by model lipids.

    PubMed

    Lin, Chun-Min; Li, Chun-Shian; Sheng, Yu-Jane; Wu, David T; Tsao, Heng-Kwong

    2012-01-10

    The size-dependent behavior of small unilamellar vesicles is explored by dissipative particle dynamics, including the membrane characteristics and mechanical properties. The spontaneously formed vesicles are in the metastable state and the vesicle size is controlled by the concentration of model lipids. As the vesicle size decreases, the bilayer gets thinner and the area density of heads declines. Nonetheless, the area density in the inner leaflet is higher than that in the outer. The packing parameters are calculated for both leaflets. The result indicates that the shape of lipid in the outer leaflet is like a truncated cone but that in the inner leaflet resembles an inverted truncated cone. Based on a local order parameter, our simulations indication that the orientation order of lipid molecules decreases as the size of the vesicle reduces and this fact reveals that the bilayer becoming thinner for smaller vesicle is mainly attributed to the orientation disorder of the lipids. The membrane tension can be obtained through the Young-Laplace equation. The tension is found to grow with reducing vesicle size. Therefore, small vesicles are less stable against fusion. Using the inflation method, the area stretching and bending moduli can be determined and those moduli are found to grow with reducing size. Nonetheless, a general equation with a single numerical constant can relate bending modulus, area stretching modulus, and bilayer thickness irrespective of the vesicle size. Finally, a simple metastable model is proposed to explain the size-dependent behavior of bilayer thickness, orientation, and tension.

  10. Ciliary vesicle formation: a prelude to ciliogenesis.

    PubMed

    Yee, Laura E; Reiter, Jeremy F

    2015-03-23

    Reporting recently in Nature Cell Biology, Lu et al. (2015) identify two Eps15-homology-domain-containing proteins as critical effectors of ciliary vesicle formation, an early event in ciliogenesis. Functional dissection reveals that one of them works to convert small vesicles associated with mother centriole distal appendages into a larger ciliary vesicle. PMID:25805133

  11. Immediate priming and cognitive aftereffects.

    PubMed

    Huber, David E

    2008-05-01

    Three forced-choice perceptual word identification experiments tested the claim that transitions from positive to negative priming as a function of increasing prime duration are due to cognitive aftereffects. These aftereffects are similar in nature to perceptual aftereffects that produce a negative image due to overexposure and habituation to a stimulus. Each experiment tested critical predictions that come from including habituation in a dynamic neural network with multiple levels of processing. The success of this account in explaining the dynamics of repetition priming, associative-semantic priming, and forward masking effects suggests that habituation is a useful mechanism for reducing source confusion between successively presented stimuli. Implications are considered for visible persistence, repetition blindness, attention-based negative priming, attentional blink, inhibition of return, the negative compatibility effect, affect priming, and flanker preview effects. PMID:18473662

  12. On the fractal distribution of primes and prime-indexed primes by the binary image analysis

    NASA Astrophysics Data System (ADS)

    Cattani, Carlo; Ciancio, Armando

    2016-10-01

    In this paper, the distribution of primes and prime-indexed primes (PIPs) is studied by mapping primes into a binary image which visualizes the distribution of primes. These images show that the distribution of primes (and PIPs) is similar to a Cantor dust, moreover the self-similarity with respect to the order of PIPs (already proven in Batchko (2014)) can be seen as an invariance of the binary images. The index of primes plays the same role of the scale for fractals, so that with respect to the index the distribution of prime-indexed primes is characterized by the self-similarity alike any other fractal. In particular, in order to single out the scale dependence, the PIPs fractal distribution will be evaluated by limiting to two parameters, fractal dimension (δ) and lacunarity (λ), that are usually used to measure the fractal nature. Because of the invariance of the corresponding binary plots, the fractal dimension and lacunarity of primes distribution are invariant with respect to the index of PIPs.

  13. FUSION-COMPETENT STATE INDUCED BY A C-TERMINAL HIV-1 FUSION PEPTIDE IN CHOLESTEROL-RICH MEMBRANES

    PubMed Central

    Apellániz, Beatriz; Nieva, José L.

    2015-01-01

    The replicative cycle of the Human Immunodeficiency Virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane. PMID:25617671

  14. Prime time sexual harrassment.

    PubMed

    Grauerholz, E; King, A

    1997-04-01

    This study explores the explicit and implicit messages of sexual harassment that viewers receive when viewing prime-time television in the US. A content analysis of 48 hours of prime-time television reveals that sexual harassment on television is both highly visible and invisible. Sexual harassment is rendered visible simply by its prominence in these programs. Incidents involving quid-pro-quo harassment and environmental harassment occur with regularity on television. Furthermore, about 84% of the shows studied contained at least one incident of sexual harassment; yet these acts of sexual harassment remained largely invisible because none of the behaviors were labeled as sexual harassment. These incidents are presented in humorous ways, and victims are generally unharmed and very effective at ending the harassment. Although such programs may actually reflect the reality of many women's lives in terms of prevalence of sexual harassment, they perpetuate several myths about sexual harassment, such as that sexual harassment is not serious and that victims should be able to handle the situations themselves. PMID:12294811

  15. Past Tense Route Priming

    PubMed Central

    Cohen-Shikora, Emily R.; Balota, David A.

    2013-01-01

    The present research examined whether lexical (whole word) or more rule-based (morphological constituent) processes can be locally biased by experimental list context in past tense verb inflection. In Experiment 1, younger and older adults completed a past tense inflection task in which list context was manipulated across blocks containing regular past tense verbs (e.g. REACH-REACHED) or irregular past tense verbs (TEACH-TAUGHT). Critical targets, consisting of half regular and half irregular verbs, were embedded within blocks and participants' inflection response latency and accuracy were assessed. The results yielded a cross-over interaction in response latencies. In the regular context there was a robust regularity effect: regular target verbs were conjugated faster than irregular target verbs. In contrast, in the irregular context, irregular target verbs were conjugated faster than regular target verbs. Experiment 2 used the same targets but in the context of either standard nonwords or nonwords ending in “-ED” to test the possibility of a phonological basis for the effect. The effect of context was eliminated. The results support the notion that distinct processes in past tense verb production can be locally biased by list context and, as shown in Experiment 2, this route priming effect was not due to phonological priming. PMID:23291293

  16. A Study of Relative-Position Priming with Superset Primes

    ERIC Educational Resources Information Center

    Van Assche, Eva; Grainger, Jonathan

    2006-01-01

    Four lexical decision experiments are reported that use the masked priming paradigm to study the role of letter position information in orthographic processing. In Experiments 1 and 2, superset primes, formed by repetition of 1 or 2 letters of the target (e.g., jusstice-JUSTICE) or by insertion of 1 or 2 unrelated letters (e.g., juastice-JUSTICE),…

  17. Priming a new identity: self-monitoring moderates the effects of nonself primes on self-judgments and behavior.

    PubMed

    DeMarree, Kenneth G; Wheeler, S Christian; Petty, Richard E

    2005-11-01

    When a construct is primed, people often act in construct-consistent ways. Several accounts for this effect have been offered, including ideomotor theory and a social functional perspective. The authors tested an additional perspective, the Active-Self account, whereby primes can temporarily alter self-perceptions. In Study 1, non-African American participants reported feeling more aggressive on an implicit measure following an African American prime. In Study 2, participants reported feeling luckier on an implicit measure following a number 7 (vs. 13) prime. In both studies, these effects were obtained only for low self-monitors, who are more likely to change self-conceptions in response to diagnostic self-information and to use their internal states in guiding behavior. Study 3 showed that low self-monitors also show larger behavioral effects of primes.

  18. 5[prime] to 3[prime] nucleic acid synthesis using 3[prime]-photoremovable protecting group

    DOEpatents

    Pirrung, M.C.; Shuey, S.W.; Bradley, J.C.

    1999-06-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5[prime] to 3[prime] nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5[prime] end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  19. Colorimetry and prime colours--a theorem.

    PubMed

    Hornaes, Hans Petter; Wold, Jan Henrik; Farup, Ivar

    2005-08-01

    Human colour vision is the result of a complex process involving topics ranging from physics of light to perception. Whereas the diversity of light entering the eye in principle span an infinite-dimensional vector space in terms of the spectral power distributions, the space of human colour perceptions is three dimensional. One important consequence of this is that a variety of colours can be visually matched by a mixture of only three adequately chosen reference lights. It has been observed that there exists one particular set of monochromatic reference lights that, according to a certain definition, is optimal for producing colour matches. These reference lights are commonly denoted prime colours. In the present paper, we intend to rigorously show that the existence of prime colours is not particular to the human visual system as sometimes stated, but rather an algebraic consequence of the manner in which a kind of colorimetric functions called colour-matching functions are defined and transformed. The solution is based on maximisation of a determinant determining the gamut size of the colour space spanned by the prime colours. Cramer's rule for solving a set of linear equations is an essential part of the proof. By means of examples, it is shown that mathematically the optimal set of reference lights is not unique in general, and that the existence of a maximum determinant is not a necessary condition for the existence of prime colours.

  20. Self-priming dielectric elastomer generator design

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; O'Brien, Benjamin; Calius, Emilio; Anderson, Iain

    2012-04-01

    Dielectric elastomer generators (DEG) are variable capacitor power generators that are a highly promising technology for harvesting energy from environmental sources because they have the ability to work over a wide frequency range without sacrificing their high energy density or efficiency. DEG can also take on a wide range of configurations, so they are customizable to the energy source. A typical generation cycle requires electrical charge to be supplied and removed from the DEG at appropriate times as it is mechanically deformed. The manner in which the DEG charge state is controlled greatly influences energy production. The recently developed self-priming circuit can provide this functionality without any active electronics, but it is not configurable to match the generator and its energy source. In this paper a highly configurable self-priming circuit is introduced and an analysis of the self-priming DEG cycle is performed to obtain design rules to optimize the rate at which it can boost its operating voltage. In a case study we compare the performance of an initial prototype selfpriming circuit with one that has been intentionally optimized. The optimized generator voltage climbed from 30 V up to 1500 V in 27 cycles, whereas the same generator required 37 cycles when the suboptimal self-priming circuit was used.

  1. Reversed Priming Effects May Be Driven by Misperception Rather than Subliminal Processing

    PubMed Central

    Sand, Anders

    2016-01-01

    A new paradigm for investigating whether a cognitive process is independent of perception was recently suggested. In the paradigm, primes are shown at an intermediate signal strength that leads to trial-to-trial and inter-individual variability in prime perception. Here, I used this paradigm and an objective measure of perception to assess the influence of prime identification responses on Stroop priming. I found that sensory states producing correct and incorrect prime identification responses were also associated with qualitatively different priming effects. Incorrect prime identification responses were associated with reversed priming effects but in contrast to previous studies, I interpret this to result from the (mis-)perception of primes rather than from a subliminal process. Furthermore, the intermediate signal strength also produced inter-individual variability in prime perception that strongly influenced priming effects: only participants who on average perceived the primes were Stroop primed. I discuss how this new paradigm, with a wide range of d′ values, is more appropriate when regression analysis on inter-individual identification performance is used to investigate perception-dependent processing. The results of this study, in line with previous results, suggest that drawing conclusions about subliminal processes based on data averaged over individuals may be unwarranted. PMID:26925016

  2. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements

    PubMed Central

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  3. Attentional priming releases crowding.

    PubMed

    Kristjánsson, Arni; Heimisson, Pétur Rúnar; Róbertsson, Gunnar Freyr; Whitney, David

    2013-10-01

    Views of natural scenes unfold over time, and objects of interest that were present a moment ago tend to remain present. While visual crowding places a fundamental limit on object recognition in cluttered scenes, most studies of crowding have suffered from the limitation that they typically involved static scenes. The role of temporal continuity in crowding has therefore been unaddressed. We investigated intertrial effects upon crowding in visual scenes, showing that crowding is considerably diminished when objects remain constant on consecutive visual search trials. Repetition of both the target and distractors decreases the critical distance for crowding from flankers. More generally, our results show how object continuity through between-trial priming releases objects that would otherwise be unidentifiable due to crowding. Crowding, although it is a significant bottleneck on object recognition, can be mitigated by statistically likely temporal continuity of the objects. Crowding therefore depends not only on what is momentarily present, but also on what was previously attended.

  4. Exodus: Prime Mover

    NASA Technical Reports Server (NTRS)

    Bauer, Nikkol; Conwell, Pete; Johnson, Matt; Shields, Wendy; Thornton, Tim; Tokarz, Rob; Mcmanus, Rich

    1992-01-01

    The Exodus Prime Mover is an overnight package delivery aircraft designed to serve the Northern Hemisphere of Aeroworld. The preliminary design goals originated from the desire to produce a large profit. The two main driving forces throughout the design process were first to reduce the construction man-hours by simplifying the aircraft design, thereby decreasing the total production cost of the aircraft. The second influential factor affecting the design was minimizing the fuel cost during cruise. The lowest fuel consumption occurs at a cruise velocity of 30 ft/s. Overall, it was necessary to balance the economic benefits with the performance characteristics in order to create a profitable product that meets all specified requirements and objectives.

  5. Investigating Home Primes and Their Families

    ERIC Educational Resources Information Center

    Herman, Marlena; Schiffman, Jay

    2014-01-01

    The process of prime factor splicing to generate home primes raises opportunity for conjecture and exploration. The notion of "home primes" is relatively new in the chronicle of mathematics. Heleen (1996-97) first described a procedure called "prime factor splicing" (PFS). The exploration of home primes is interesting and…

  6. Transdermal delivery of flurbiprofen from surfactant-based vesicles: particle characterization and the effect of water on in vitro transport.

    PubMed

    Uchino, Tomonobu; Matsumoto, Yuiko; Murata, Akiko; Oka, Toshihiko; Miyazaki, Yasunori; Kagawa, Yoshiyuki

    2014-04-10

    Flurbiprofen loaded rigid and elastic vesicles comprising the bilayer-forming surfactant sucrose-ester laurate were prepared by the film rehydration and extrusion method. The charge-inducing agent sodium dodecyl sulfate, and the micelle-forming surfactants, sorbitan monolaurate, polyethylene glycol monolaurate, and polysorbate 20, were used to enhance elasticity. Vesicle formulations were evaluated for size, zeta potential, (1)H and (19)F nuclear magnetic resonance (NMR) spectra, and in vitro skin permeation across Yucatan micropig (YMP) skin. Vesicle formulations were stable for 2 weeks and their mean sizes were 95-135 nm. NMR spectroscopy showed that flurbiprofen molecular mobility was restricted by interaction with vesicle components because of entrapment in vesicle bilayers. Moreover, sorbitan monolaurate-containing vesicles strongly retained flurbiprofen molecules. After non-occlusive application to YMP skin, flurbiprofen transport from all vesicle formulations was superior to that of flurbiprofen alone and remarkably decreased after water vaporization. Polarization microscopy and small-angle X-ray diffraction analysis showed that the vesicle formulation was transferred to liquid crystalline state. Suppression of vesicle transition to the liquid crystalline state was observed with applications of both large quantities and diluted samples. The presence of water in the formulations was associated with maintenance of the vesicle structure and greater flurbiprofen transport across YMP skin.

  7. Priming Macho Attitudes and Emotions.

    ERIC Educational Resources Information Center

    Beaver, Erik D.; And Others

    1992-01-01

    Investigated the effects of reading one of four priming stimuli stories (control, consenting sex, rape, or family) on males' evaluations of, and emotional reactions to, two videotaped date-rape scenarios. Results supported the concepts of a macho personality and revealed interactive effects for both the rape and family prime. (RJM)

  8. Rhizosphere priming: a nutrient perspective.

    PubMed

    Dijkstra, Feike A; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  9. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  10. Hydrostatic pressures developed by osmotically swelling vesicles bound to planar membranes

    PubMed Central

    1989-01-01

    When phospholipid vesicles bound to a planar membrane are osmotically swollen, they develop a hydrostatic pressure (delta P) and fuse with the membrane. We have calculated the steady-state delta P, from the equations of irreversible thermodynamics governing water and solute flows, for two general methods of osmotic swelling. In the first method, vesicles are swollen by adding a solute to the vesicle- containing compartment to make it hyperosmotic. delta P is determined by the vesicle membrane's permeabilities to solute and water. If the vesicle membrane is devoid of open channels, then delta P is zero. When the vesicle membrane contains open channels, then delta P peaks at a channel density unique to the solute permeability properties of both the channel and the membrane. The solute enters the vesicle through the channels but leaks out through the region of vesicle-planar membrane contact. delta P is largest for channels having high permeabilities to the solute and for solutes with low membrane permeabilities in the contact region. The model predicts the following order of solutes producing pressures of decreasing magnitude: KCl greater than urea greater than formamide greater than or equal to ethylene glycol. Differences between osmoticants quantitatively depend on the solute permeability of the channel and the density of channels in the vesicle membrane. The order of effectiveness is the same as that experimentally observed for solutes promoting fusion. Therefore, delta P drives fusion. When channels with small permeabilities are used, coupling between solute and water flows within the channel has a significant effect on delta P. In the second method, an impermeant solute bathing the vesicles is isosmotically replaced by a solute which permeates the channels in the vesicle membrane. delta P resulting from this method is much less sensitive to the permeabilities of the channel and membrane to the solute. delta P approaches the theoretical limit set by the

  11. Semantic priming from crowded words.

    PubMed

    Yeh, Su-Ling; He, Sheng; Cavanagh, Patrick

    2012-06-01

    Vision in a cluttered scene is extremely inefficient. This damaging effect of clutter, known as crowding, affects many aspects of visual processing (e.g., reading speed). We examined observers' processing of crowded targets in a lexical decision task, using single-character Chinese words that are compact but carry semantic meaning. Despite being unrecognizable and indistinguishable from matched nonwords, crowded prime words still generated robust semantic-priming effects on lexical decisions for test words presented in isolation. Indeed, the semantic-priming effect of crowded primes was similar to that of uncrowded primes. These findings show that the meanings of words survive crowding even when the identities of the words do not, suggesting that crowding does not prevent semantic activation, a process that may have evolved in the context of a cluttered visual environment.

  12. Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells.

    PubMed

    Hugo, Sandra; Dembla, Ekta; Halimani, Mahantappa; Matti, Ulf; Rettig, Jens; Becherer, Ute

    2013-10-23

    Large dense core vesicle (LDCV) exocytosis in chromaffin cells follows a well characterized process consisting of docking, priming, and fusion. Total internal reflection fluorescence microscopy (TIRFM) studies suggest that some LDCVs, although being able to dock, are resistant to calcium-triggered release. This phenomenon termed dead-end docking has not been investigated until now. We characterized dead-end vesicles using a combination of membrane capacitance measurement and visualization of LDCVs with TIRFM. Stimulation of bovine chromaffin cells for 5 min with 6 μm free intracellular Ca2+ induced strong secretion and a large reduction of the LDCV density at the plasma membrane. Approximately 15% of the LDCVs were visible at the plasma membrane throughout experiments, indicating they were permanently docked dead-end vesicles. Overexpression of Munc18-2 or SNAP-25 reduced the fraction of dead-end vesicles. Conversely, expressing open-syntaxin increased the fraction of dead-end vesicles. These results indicate the existence of the unproductive target soluble N-ethylmaleimide-sensitive factor attachment protein receptor acceptor complex composed of 2:1 syntaxin-SNAP-25 in vivo. More importantly, they define a novel function for this acceptor complex in mediating dead-end docking.

  13. Phase transition in a stochastic prime-number generator.

    PubMed

    Luque, Bartolo; Lacasa, Lucas; Miramontes, Octavio

    2007-07-01

    We introduce a stochastic algorithm that acts as a prime-number generator. The dynamics of this algorithm gives rise to a continuous phase transition, which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing-down phenomenon is also outlined.

  14. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles.

    PubMed

    Bacaj, Taulant; Wu, Dick; Burré, Jacqueline; Malenka, Robert C; Liu, Xinran; Südhof, Thomas C

    2015-10-01

    In forebrain neurons, Ca(2+) triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca(2+)-independent, mutations in Ca(2+)-binding sequences of synaptotagmin-1 or synaptotagmin-7--which are contained in flexible top-loop sequences of their C2 domains--blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca(2+) triggering of different phases of release.

  15. Spontaneous vesicle recycling in the synaptic bouton.

    PubMed

    Truckenbrodt, Sven; Rizzoli, Silvio O

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca(2+), which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca(2+) levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca(2+) sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca(2+). The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca(2+) fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  16. Vesicles as tools for the modulation of skin permeability.

    PubMed

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Narendra K

    2007-11-01

    Human skin is a remarkably efficient barrier designed to keep our insides in and the outside out. The modulation of this efficient barrier's properties, including its permeability to chemicals, drugs and biologically active agents is the prime target for various dermal, transdermal, drug, antigen and gene delivery approaches. Therefore, several methods have been attempted to enhance the permeation rate of biologically active agents, temporarily and locally. One of the approaches is the application of drug-laden vesicular formulations. This review presents various mechanisms involved in increasing drug transport across the skin via different vesicular approaches, such as liposomes, elastic vesicles and ethosomes, along with compiling the research work conducted in this field. PMID:17970662

  17. Reduced release probability prevents vesicle depletion and transmission failure at dynamin mutant synapses.

    PubMed

    Lou, Xuelin; Fan, Fan; Messa, Mirko; Raimondi, Andrea; Wu, Yumei; Looger, Loren L; Ferguson, Shawn M; De Camilli, Pietro

    2012-02-21

    Endocytic recycling of synaptic vesicles after exocytosis is critical for nervous system function. At synapses of cultured neurons that lack the two "neuronal" dynamins, dynamin 1 and 3, smaller excitatory postsynaptic currents are observed due to an impairment of the fission reaction of endocytosis that results in an accumulation of arrested clathrin-coated pits and a greatly reduced synaptic vesicle number. Surprisingly, despite a smaller readily releasable vesicle pool and fewer docked vesicles, a strong facilitation, which correlated with lower vesicle release probability, was observed upon action potential stimulation at such synapses. Furthermore, although network activity in mutant cultures was lower, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity was unexpectedly increased, consistent with the previous report of an enhanced state of synapsin 1 phosphorylation at CaMKII-dependent sites in such neurons. These changes were partially reversed by overnight silencing of synaptic activity with tetrodotoxin, a treatment that allows progression of arrested endocytic pits to synaptic vesicles. Facilitation was also counteracted by CaMKII inhibition. These findings reveal a mechanism aimed at preventing synaptic transmission failure due to vesicle depletion when recycling vesicle traffic is backed up by a defect in dynamin-dependent endocytosis and provide new insight into the coupling between endocytosis and exocytosis.

  18. Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking.

    PubMed

    Harlow, Mark L; Szule, Joseph A; Xu, Jing; Jung, Jae Hoon; Marshall, Robert M; McMahan, Uel J

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron's axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle's luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly's chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly's shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking

  19. Gas Vesicle Nanoparticles for Antigen Display.

    PubMed

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications. PMID:26350601

  20. Gas Vesicle Nanoparticles for Antigen Display.

    PubMed

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  1. Gas Vesicle Nanoparticles for Antigen Display

    PubMed Central

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications. PMID:26350601

  2. Space Place Prime

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Austin J.; Novati, Alexander; Fisher, Diane K.; Leon, Nancy J.; Netting, Ruth

    2013-01-01

    Space Place Prime is public engagement and education software for use on iPad. It targets a multi-generational audience with news, images, videos, and educational articles from the Space Place Web site and other NASA sources. New content is downloaded daily (or whenever the user accesses the app) via the wireless connection. In addition to the Space Place Web site, several NASA RSS feeds are tapped to provide new content. Content is retained for the previous several days, or some number of editions of each feed. All content is controlled on the server side, so features about the latest news, or changes to any content, can be made without updating the app in the Apple Store. It gathers many popular NASA features into one app. The interface is a boundless, slidable- in-any-direction grid of images, unique for each feature, and iconized as image, video, or article. A tap opens the feature. An alternate list mode presents menus of images, videos, and articles separately. Favorites can be tagged for permanent archive. Face - book, Twitter, and e-mail connections make any feature shareable.

  3. An extracellular subtilase switch for immune priming in Arabidopsis.

    PubMed

    Ramírez, Vicente; López, Ana; Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  4. Priming healthy eating. You can't prime all the people all of the time☆

    PubMed Central

    Forwood, Suzanna E.; Ahern, Amy L.; Hollands, Gareth J.; Ng, Yin-Lam; Marteau, Theresa M.

    2015-01-01

    Objective In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. MethodsIn two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. ResultsIn Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26–0.56), p < 0.0001), an effect countered by the prime (OR (95% CI) = 2.29 (1.33–3.96), p = 0.003). In Study 2, the effect of the prime did not generalize to a representative population. More educated participants, as used in Study 1, chose more fruit when hungry and primed (OR (95% CI) = 1.42 (1.13–1.79), p = 0.003), while less educated participants' fruit choice was unaffected by hunger or the prime. ConclusionThis study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. PMID:25636234

  5. Trafficking of astrocytic vesicles in hippocampal slices

    SciTech Connect

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  6. Autonomous movement of a chemically powered vesicle

    NASA Astrophysics Data System (ADS)

    Gupta, Shivam; Sreeja, K. K.; Thakur, Snigdha

    2015-10-01

    We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.

  7. Autonomous movement of a chemically powered vesicle.

    PubMed

    Gupta, Shivam; Sreeja, K K; Thakur, Snigdha

    2015-10-01

    We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified. PMID:26565268

  8. Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions.

    PubMed

    Limozin, Laurent; Sengupta, Kheya

    2007-11-01

    The adhesion of giant unilamellar phospholipid vesicles to planar substrates coated with extracellular matrix mimetic cushions of hyaluronan is studied using quantitative reflection interference contrast microscopy. The absolute height of the vesicle membrane at the vicinity of the substrate is measured by considering, for the first time, the refractive indices of the reflecting media. The thickness of the cushion is varied in the range of approximately 50-100 nm, by designing various coupling strategies. On bare protein-coated substrates, the vesicles spread fast (0.5 s) and form a uniform adhesion disk, with the average membrane height approximately 4 nm. On thick hyaluronan cushions (>80 nm), the membrane height is approximately the same as the thickness of the cushion, implying that the vesicle lies on top of the cushion. On a thin and inhomogeneous hyaluronan cushion, the adhesion is modified but not prevented. The spreading is slow ( approximately 20 s) compared to the no-cushion case. The average membrane height is approximately 10 nm and the adhesion disk is studded with blisterlike structures. Observations with fluorescent hyaluronan indicate that the polymer is compressed under, rather than expelled from, the adhesion disk. The adhesion energy density is approximately threefold higher in the no-cushion case (1.2 microJ/m(2)) as compared to the thin-cushion case (0.54 microJ/m(2)). In the thin-cushion case, the presence of short ( approximately 4 nm) glyco-polymers on the vesicles results in a hitherto unreported stable partial adhesion state--the membrane height ranges from zero to approximately 250 nm. The minimal model system presented here mimics in vitro the hyaluronan-modulated early stages of cell adhesion, and demonstrates that the presence of a polymer cushion influences both the final equilibrium adhesion-state and the spreading kinetics. PMID:17631530

  9. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for

  10. Ant navigation: priming of visual route memories.

    PubMed

    Harris, Robert A; Hempel de Ibarra, Natalie; Graham, Paul; Collett, Thomas S

    2005-11-17

    Ants travelling to and fro between their nest and a foraging area may follow stereotyped foodward and homeward routes that are guided by different visual and directional memory sequences. Honeybees are known to fly a feeder-to-hive or hive-to-feeder vector according to whether or not they have recently fed--their feeding state controls which compass direction they select. We show here that the feeding state of the wood ant Formica rufa also determines the choice between an outward or inward journey, but by priming the selective retrieval of visual landmark memories.

  11. Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases?

    PubMed

    Vardjan, Nina; Verkhratsky, Alexei; Zorec, Robert

    2015-01-01

    Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.

  12. Loading capacity and interaction of DNA binding on catanionic vesicles with different cationic surfactants.

    PubMed

    Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2014-12-01

    Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.

  13. Construction of macroscopic cytomimetic vesicle aggregates based on click chemistry: controllable vesicle fusion and phase separation.

    PubMed

    Jin, Haibao; Huang, Wei; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2012-07-01

    Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.

  14. Prime Diagnosticity in Short-Term Repetition Priming: Is Primed Evidence Discounted, Even when It Reliably Indicates the Correct Answer?

    ERIC Educational Resources Information Center

    Weidemann, Christoph T.; Huber, David E.; Shiffrin, Richard M.

    2008-01-01

    The authors conducted 4 repetition priming experiments that manipulated prime duration and prime diagnosticity in a visual forced-choice perceptual identification task. The strength and direction of prime diagnosticity produced marked effects on identification accuracy, but those effects were resistant to subsequent changes of diagnosticity.…

  15. A force field analysis of the methyl radical X 2A(2)double-prime state stretching potential using the local mode-coupled Morse oscillator model

    NASA Astrophysics Data System (ADS)

    Westre, S. G.; Liu, X.; Getty, J. D.; Kelly, P. B.

    1991-12-01

    The local mode-coupled Morse oscillator model was utilized to determine the quadratic, cubic, and quartic force constants for the vibrational stretching potential energy functions of CH3, CD3, CH2D, and CHD2 using stretching fundamentals and overtones derived from resonance Raman studies. The Morse harmonic frequency and anharmonic constant of the methyl radical indicate that bonding in the methyl radical and a variety of ethylenic molecules is primarily a function of the sp(2) hybridization of the central atom and that the bonding is not extensively influenced by the methyl radical's unpaired electron or the pi bonding in the ethylenic molecules. The vibrational states of the methyl radical are best described by wave functions containing significant amounts of normal mode character. The stretching frequencies for the tritiated methyl radical isotopomers are calculated.

  16. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  17. Proteomics of extracellular vesicles: Exosomes and ectosomes.

    PubMed

    Choi, Dong-Sic; Kim, Dae-Kyum; Kim, Yoon-Keun; Gho, Yong Song

    2015-01-01

    Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles.

  18. Subliminal primes for global or local processing influence judgments of vehicular traffic.

    PubMed

    Hüttermann, Stefanie; Bock, Otmar; Memmert, Daniel

    2014-10-01

    Previous studies on semantic priming show that briefly presented words can unconsciously manipulate subjects' mental states, behaviors, and attitudes. Here we evaluated whether semantic primes can also manipulate the breadth of subjects' visual attention. We primed participants with briefly presented words that indicate either broadness or narrowness; each prime was followed by either a large or a small picture of a street intersection with vehicles, and participants had to indicate in which order the vehicles were legally allowed to pass the intersection. Participants responded to large pictures faster when primed with words denoting broadness, and to small pictures faster when primed with words denoting narrowness. From this we concluded that semantic priming can be effectively applied to manipulate the breadth of attention, which could be exploited in real-world scenarios. PMID:25286131

  19. Rheological properties of a vesicle suspension.

    PubMed

    Guedda, M; Benlahsen, M; Misbah, C

    2014-11-01

    The rheological behavior of a dilute suspension of vesicles in linear shear flow at a finite concentration is analytically examined. In the quasispherical limit, two coupled nonlinear equations that describe the vesicle orientation in the flow and its shape evolution were derived [Phys. Rev. Lett. 96, 028104 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.028104] and serve here as a starting point. Of special interest is to provide, for the first time, an exact analytical prediction of the time-dependent effective viscosity η_{eff} and normal stress differences N_{1} and N_{2}. Our results shed light on the effect of the viscosity ratio λ (defined as the inner over the outer fluid viscosities) as the main controlling parameter. It is shown that η_{eff},N_{1}, and N_{2} either tend to a steady state or describe a periodic time-dependent rheological response, previously reported numerically and experimentally. In particular, the shear viscosity minimum and the cusp singularities of η_{eff},N_{1}, and N_{2} at the tumbling threshold are brought to light. We also report on rheology properties for an arbitrary linear flow. We were able to obtain a constitutive law in a closed form relating the stress tensor to the strain rate tensor. It is found that the resulting constitutive markedly contrasts with classical laws known for other complex fluids, such as emulsions, capsule suspensions, and dilute polymer solutions (Oldroyd B model). We highlight the main differences between our law and classical laws. PMID:25493791

  20. Test Sequence Priming in Recognition Memory

    ERIC Educational Resources Information Center

    Johns, Elizabeth E.; Mewhort, D. J. K.

    2009-01-01

    The authors examined priming within the test sequence in 3 recognition memory experiments. A probe primed its successor whenever both probes shared a feature with the same studied item ("interjacent priming"), indicating that the study item like the probe is central to the decision. Interjacent priming occurred even when the 2 probes did not…

  1. No priming for global motion in crowding.

    PubMed

    Pavan, Andrea; Gall, Martin G; Manassi, Mauro; Greenlee, Mark W

    2015-01-01

    There is psychophysical evidence that low-level priming, e.g., from oriented gratings, as well as high-level semantic priming, survives crowding. We investigated priming for global translational motion in crowded and noncrowded conditions. The results indicated that reliable motion priming occurs in the noncrowded condition, but motion priming does not survive crowding. Crowding persisted despite variations in the direction of the flankers with respect to the prime's direction. Motion priming was still absent under crowding when 85% of the flankers moved in the same direction as the prime. Crowding also persisted despite variations in the speed of the flankers relative to the prime even when the flankers' speed was four times slower than the speed of the prime. However, a priming effect was evident when the prime's spatial location was precued and its distance to the flankers increased, suggesting a release from crowding. These results suggest that transient attention induced by precueing the spatial location of the prime may improve subjects' ability to discriminate its direction. Spatial cueing could act to decrease the integration field, thereby diminishing the influence of nearby distracters. In an additional experiment in which we used fewer flankers, we found a priming effect under conditions in which the interelement distance varied between flankers and prime. Overall, the results suggest that motion priming is strongly affected by crowding, but transient attention can partially retrieve such facilitation.

  2. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  3. An accrual model for primed digit classification.

    PubMed

    Izquierdo, E; Saal, A; Page, R

    2010-03-01

    This article describes a chronometric experiment of digit classification with masked primes. EEG experiments have shown that the subliminal prime activates the cortex prior to the target signal, thusly modifying the response: Congruent primes lead to faster correct answers, while incongruent primes result in slower response. It is noticed that incorrect answers show an inverted effect: A congruent prime inhibits incorrect answers, and the reverse for incongruent primes. Within the evidence accrual paradigm, it is suggested that the prime activity in the motor cortex effectively behaves as a shift in the decision threshold. This model assumption is consistent with our experimental findings. The correct and incorrect answers and the error percentage are discussed.

  4. Leiomyoma of the seminal vesicles: laparoscopic excision.

    PubMed

    Casado Varela, Javier; Hermida Gutiérrez, Juan Francisco; Castillón Vela, Ignacio T; León Rueda, Maria Eugenia; Ortega Medina, Luis; Moreno Sierra, Jesús

    2014-01-01

    Leiomyoma of the seminal vesicles is an extremely rare type of benign tumor of the genitourinary system and can cause lower urinary tract symptoms. Despite their low incidence, these tumors can be identified with transrectal ultrasound of the seminal vesicles during prostate examination. The removal of these tumors is facilitated by a laparoscopic approach.

  5. Dynamical simulations of vesicle growth and division

    NASA Astrophysics Data System (ADS)

    Ruiz-Herrero, Teresa; Mahadevan, L.

    2015-03-01

    Prebiotic cells constitute a beautiful and intriguing example of self-replicating vesicles. How these cells managed to grow and divide without sophisticated machinery is still an open question. The properties of these primitive vesicles can shed light on the ways modern cells have evolved by exploiting those characteristics to develop their replication mechanisms. The equilibrium configurations of elastic shells are well understood, however the dynamical behavior during growth still lacks of a deep theoretical understanding. To study vesicle growth from a general perspective, we have developed a minimal generic model where vesicles are represented by a 2D spring network and characterized by a minimum set of magnitudes: growth rate, permeability, bending stiffness, viscosity and temperature. We have performed hybrid molecuar dynamic simulations as a function of a reduced set of dimensionless parameters. Three main outcomes were observed: vesicles that grow without division, vesicles that divide symmetrically, and vesicles that act as generators of daughter vesicles. The type of outcome depends on the system parameters and specifically on its dynamics via two timescales. Furthermore, we found sets of parameters where the system shows size homeostasis. TRH was supported by Ramon Areces Foundation.

  6. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-01

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. PMID:22385955

  7. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.

  8. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation.

  9. Priming mortality salience: supraliminal, subliminal and "double-death" priming techniques.

    PubMed

    Mahoney, Melissa B; Saunders, Benjamin A; Cain, Nicole M

    2014-01-01

    The study examined whether successively presented subliminal and supraliminal morality salience primes ("double death" prime) would have a stronger influence on death thought accessibility than subliminal or supraliminal primes alone. A between-subjects 2 (subliminal prime/control) × 2 (supraliminal prime/control) design was used. The supraliminal prime prompted participants to answer questions about death. For the subliminal prime, the word death was presented outside of awareness. Both priming techniques differed significantly from a control in ability to elicit mortality salience. There was an interactive influence of both primes. Implications for unconscious neutral networks relating to death are discussed. PMID:24592974

  10. Priming mortality salience: supraliminal, subliminal and "double-death" priming techniques.

    PubMed

    Mahoney, Melissa B; Saunders, Benjamin A; Cain, Nicole M

    2014-01-01

    The study examined whether successively presented subliminal and supraliminal morality salience primes ("double death" prime) would have a stronger influence on death thought accessibility than subliminal or supraliminal primes alone. A between-subjects 2 (subliminal prime/control) × 2 (supraliminal prime/control) design was used. The supraliminal prime prompted participants to answer questions about death. For the subliminal prime, the word death was presented outside of awareness. Both priming techniques differed significantly from a control in ability to elicit mortality salience. There was an interactive influence of both primes. Implications for unconscious neutral networks relating to death are discussed.

  11. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    PubMed

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  12. Repeated Masked Category Primes Interfere With Related Exemplars: New Evidence for Negative Semantic Priming

    ERIC Educational Resources Information Center

    Wentura, Dirk; Frings, Christian

    2005-01-01

    In 4 experiments, the authors found evidence for negatively signed masked semantic priming effects (with category names as primes and exemplars as targets) using a new technique of presenting the masked primes. By rapidly interchanging prime and mask during the stimulus onset asynchrony, they increased the total prime exposure to a level…

  13. The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?

    ERIC Educational Resources Information Center

    Forster, Kenneth I.

    2009-01-01

    Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…

  14. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains.

    PubMed

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-06-02

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.

  15. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

    PubMed Central

    Mitchell, Kathryn J.; Pinton, Paolo; Varadi, Aniko; Tacchetti, Carlo; Ainscow, Edward K.; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A.

    2001-01-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis. PMID:11571310

  16. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera.

    PubMed

    Mitchell, K J; Pinton, P; Varadi, A; Tacchetti, C; Ainscow, E K; Pozzan, T; Rizzuto, R; Rutter, G A

    2001-10-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.

  17. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering. PMID:27665559

  18. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering.

  19. Development and characterization of nanopore system for nano-vesicle analysis

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system

  20. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse.

    PubMed

    Soares, Helena; Henriques, Ricardo; Sachse, Martin; Ventimiglia, Leandro; Alonso, Miguel A; Zimmer, Christophe; Thoulouze, Maria-Isabel; Alcover, Andrés

    2013-10-21

    How the vesicular traffic of signaling molecules contributes to T cell receptor (TCR) signal transduction at the immunological synapse remains poorly understood. In this study, we show that the protein tyrosine kinase Lck, the TCRζ subunit, and the adapter LAT traffic through distinct exocytic compartments, which are released at the immunological synapse in a differentially regulated manner. Lck vesicular release depends on MAL protein. Synaptic Lck, in turn, conditions the calcium- and synaptotagmin-7-dependent fusion of LAT and TCRζ containing vesicles. Fusion of vesicles containing TCRζ and LAT at the synaptic membrane determines not only the nanoscale organization of phosphorylated TCRζ, ZAP70, LAT, and SLP76 clusters but also the presence of phosphorylated LAT and SLP76 in interacting signaling nanoterritories. This mechanism is required for priming IL-2 and IFN-γ production and may contribute to fine-tuning T cell activation breadth in response to different stimulatory conditions.

  1. Structural Priming: A Critical Review

    PubMed Central

    Pickering, Martin J.; Ferreira, Victor S.

    2009-01-01

    Repetition is a central phenomenon of behavior, and researchers make extensive use of it to illuminate psychological functioning. In the language sciences, a ubiquitous form of such repetition is structural priming, a tendency to repeat or better process a current sentence because of its structural similarity to a previously experienced (“prime”) sentence (Bock, 1986). The recent explosion of research in structural priming has made it the dominant means of investigating the processes involved in the production (and increasingly, comprehension) of complex expressions such as sentences. This review considers its implications for the representation of syntax and the mechanisms of production, comprehension, and their relationship. It then addresses the potential functions of structural priming, before turning to its implications for first language acquisition, bilingualism, and aphasia We close with theoretical and empirical recommendations for future investigations. PMID:18444704

  2. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  3. Repetition Priming and Cortical Arousal in Healthy Aging and Alzheimer’s Disease

    PubMed Central

    Kane, Amy E.; Festa, Elena K.; Salmon, David P.; Heindel, William C.

    2015-01-01

    Repetition priming refers to a form of implicit memory in which prior exposure to a stimulus facilitates the subsequent processing of the same or a related stimulus. One frequently used repetition priming task is word-stem completion priming. In this task, participants complete a series of beginning word stems with the first word that comes to mind after having viewed, in an unrelated context, words that can complete some of the stems. Patients with Alzheimer’s disease (AD) exhibit a significant deficit in word-stem completion priming, but the neural mechanisms underlying this deficit have yet to be identified. The present study examined the possibility that the word-stem completion priming deficit in AD is due to disruption of ascending neuromodulatory systems that mediate cortical arousal by comparing word-stem completion priming and behavioral measures of spatial orienting and phasic alerting. Results showed that in healthy elderly controls higher levels of phasic alerting were associated with a sharpening of the temporal dynamics of priming across two delay intervals: those with higher levels of alerting showed more immediate priming but less delayed priming than those with lesser levels of alerting. In patients with AD, priming was impaired despite intact levels of phasic alerting and spatial orienting, and group status rather than individual levels of alerting or orienting predicted the magnitude of their stem-completion priming. Furthermore, the change in priming across delays they displayed was not related to level of alerting or orienting. These findings support the role of the noradrenergic projection system in modulating the level of steady-state cortical activation (or “cortical tonus”) underlying both phasic alerting and the temporal dynamics of repetition priming. However, impaired priming in patients with AD does not appear to be due to disruption of this neuromodulatory system. PMID:25701794

  4. Vesicles Are Persistent Features of Different Plastids.

    PubMed

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.

  5. Optical Manipulation of Vesicles for Optofluidic Applications

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; O'Neil, C. P.; Psaltis, D.; Hubbell, J. A.

    2013-09-12

    In this report, we review our recent results in the optical micromanipulation of vesicles. Traditionally, vesicle manipulation has been possible by employing photon momentum and optical trapping, giving rise to unique observations of vesicle shape changes and soft matter mechanics. Contrary to these attempts, we employ photon energy rather than momentum, by sensitizing vesicles with an oxidizing moiety. The later converts incident photons to reactive oxygen species, which in turn attack and compromise the stability of the vesicle membrane. Both coherent and incoherent radiation was employed. Polymersome re-organization into smaller diameter vesicles was possible by focusing the excitation beam in the vicinity of the polymersomes. Extended vesicle illumination with a collimated beam lead to their complete destabilization and micelle formation. Single particle analysis revealed that payload release takes place within seconds of illumination in an explosive burst. We will discuss the destabilization and payload release kinetics, as revealed by high resolution microscopy at the single particle level, as well as potential applications in single cell biomodulation.

  6. Optical manipulation of vesicles for optofluidic applications

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Scott, E. A.; O'Neil, C. P.; Psaltis, D.; Hubbell, J. A.

    2013-09-01

    In this report, we review our recent results in the optical micromanipulation of vesicles. Traditionally, vesicle manipulation has been possible by employing photon momentum and optical trapping, giving rise to unique observations of vesicle shape changes and soft matter mechanics. Contrary to these attempts, we employ photon energy rather than momentum, by sensitizing vesicles with an oxidizing moiety. The later converts incident photons to reactive oxygen species, which in turn attack and compromise the stability of the vesicle membrane. Both coherent and incoherent radiation was employed. Polymersome re-organization into smaller diameter vesicles was possible by focusing the excitation beam in the vicinity of the polymersomes. Extended vesicle illumination with a collimated beam lead to their complete destabilization and micelle formation. Single particle analysis revealed that payload release takes place within seconds of illumination in an explosive burst. We will discuss the destabilization and payload release kinetics, as revealed by high resolution microscopy at the single particle level, as well as potential applications in single cell biomodulation.

  7. Vesicles Are Persistent Features of Different Plastids.

    PubMed

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. PMID:27405297

  8. Oligomerizations of deoxyadenosine bis-phosphates and of their 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers - Effects of a pyrophosphate-linked, poly(T) analog

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Bakker, C. G.; Schwartz, Alan W.

    1990-01-01

    The effect of a 3-prime-5-prime pyrophosphate-linked oligomer of pTp on oligomerizations of pdAp and of its 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers was investigated, using HPLC to separate the reaction mixtures; peak detection was by absorbance monitoring at 254 nm. It was expected that the dimers would form stable complexes with the template, with the degree of stability depending upon the internal linkage of each dimer. It was found that, although the isomers differ substantially in their oligomerization behavior in the absence of template, the analog-template catalyzes the oligomerization to about the same extent in all three cases.

  9. A phase of liposomes with entangled tubular vesicles

    SciTech Connect

    Chiruvolu, S.; Naranjo, E.; Warriner, H.E.; Idziak, S.H.J.; Raedler, J.O.; Zasadzinski, J.A.; Safinya, C.R.; Plano, R.J.

    1994-11-18

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled L{sub tv}, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the L{sub tv} phase coexists with the well-known L{sub 4} phase of spherical vesicles and a bulk L{sub {alpha}} phase. However, the defining characteristic of the L{sub tv} phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure. 26 refs., 5 figs.

  10. Extracellular vesicles: Exosomes, microvesicles, and friends

    PubMed Central

    Stoorvogel, Willem

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function. PMID:23420871

  11. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells.

    PubMed

    Burton, Matthew G; Huang, Qi M; Hossain, Mohammed A; Wade, John D; Palombo, Enzo A; Gee, Michelle L; Clayton, Andrew H A

    2016-06-28

    Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes. PMID:27281288

  12. What happens to negatively charged lipid vesicles upon interacting with polycation species?

    PubMed

    Kabanov, V A; Yaroslavov, A A

    2002-01-17

    Complexation of synthetic polycations with negative lipid vesicles as cell-mimetic species was studied. It was found that such interaction could be accompanied by lateral lipid segregation, highly accelerated transmembrane migration of lipid molecules (polycation-induced flip-flop), incorporation of adsorbed polycations into vesicular membrane as well as aggregation and disruption of vesicles. A polycation adsorbed on the surface of liquid vesicles due to electrostatic attraction could be completely removed from the membrane by increase in simple salt concentration or by recomplexation with polyanions. In contrast, adsorption of a polycation carrying pendant hydrophobic groups was irreversible apparently due to incorporation of these groups into the hydrophobic part of the vesicular membrane. The above mentioned phenomena were examined depending on the polycation structure, fraction of charged lipids in the membrane, vesicle phase state and ionic strength of solution. PMID:11772467

  13. Enzyme modification of platinum microelectrodes for detection of cholesterol in vesicle lipid bilayer membranes.

    PubMed

    Devadoss, Anando; Palencsár, M Simona; Jiang, Dechen; Honkonen, Michael L; Burgess, James D

    2005-11-15

    Platinum microelectrodes are modified with a lipid bilayer membrane incorporating cholesterol oxidase. Details for electrode surface modification are presented along with characterization studies of electrode response to cholesterol solution and to cholesterol contained in the lipid bilayer membrane of vesicles. Ferrocyanide voltammetric experiments are used to track deposition of a submonolayer of a thiol-functionalized lipid on the platinum electrode surface, vesicle fusion for bilayer formation on the thiolipid-modified surface, and incorporation of cholesterol oxidase in the electrode-supported thiolipid/lipid bilayer membrane. The data are consistent with formation of a lipid bilayer structure on the electrode surface that contains defects. Experiments for detection of cholesterol solubilized in cyclodextrin solution show steady-state current responses that correlate with cholesterol concentration. Direct contact between the electrode and a vesicle lipid bilayer membrane shows a response that correlates with vesicle membrane cholesterol content. PMID:16285691

  14. Single cell dissection of early kidney development: multilineage priming.

    PubMed

    Brunskill, Eric W; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S Steven

    2014-08-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  15. Single cell dissection of early kidney development: multilineage priming

    PubMed Central

    Brunskill, Eric W.; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S. Steven

    2014-01-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  16. Apollo 13 prime crew portrait

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 13 prime crew portrait. From left to right are Astronauts James A. Lovell, Thomas K. Mattingly, and Fred W. Haise in their space suits. On the table in front of them are (l-r) a model of a sextant, the Apollo 13 insignia, and a model of an astrolabe. The sextant and astrolabe are two ancient forms of navigation.

  17. Prime Suspect, Second Row Center

    ERIC Educational Resources Information Center

    Laird, Ellen A.

    2011-01-01

    His father had been hacked to death in his own bed with an ax the previous November. His mother was similarly brutalized and left for dead with her husband but survived. On the last Monday of that August, after several months and many investigative twists, turns, and fumbles, there sat the son--the prime suspect--in Ellen Laird's literature class,…

  18. The activation of semantic memory: effects of prime exposure, prime-target relationship, and task demands.

    PubMed

    Bueno, Steve; Frenck-Mestre, Cheryl

    2008-06-01

    Priming facilitation was examined under conditions of brief incremental prime exposures (28, 43, 71, and 199 msec) under masked conditions for two types of lexical relationships (associative-semantic pairs, such as "wolf-fox," and semantic-feature pairs, such as "whale-dolphin") and in two tasks (primed lexical decision and semantic categorization). The results of eight experiments revealed, first, that priming elicits faster response times for semantic-feature pairs. The associative-semantic pairs produced priming only at the longer prime exposures. Second, priming was observed earlier for semantic categorization than for the lexical decision task, in which priming was observed only at the longer stimulus onset asynchronies. Finally, our results allowed us to discredit the congruency hypothesis, according to which priming is due to a common categorical response for the prime and target words. The implications of these results for current theories of semantic priming are discussed.

  19. Kinetics of particle wrapping by a vesicle

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Muthukumar, Murugappan

    2013-07-01

    We present theoretical results on kinetics for the passive wrapping of a single, rigid particle by a flexible membrane. Using a simple geometric ansatz for the shape of the membrane/particle complex we first compute free energy profiles as a function of the particle size, attraction strength between the particle and vesicle, and material properties of the vesicle—bending stiffness and stretching modulus. The free energy profiles thus computed are taken as input to a stochastic model of the wrapping process, described by a Fokker-Planck equation. We compute average uptake rates of the particle into the vesicle. We find that the rate of particle uptake falls to zero outside of a thermodynamically allowed range of particle sizes. Within the thermodynamically allowed range of particle size, the rate of uptake is variable and we compute the optimal particle size and maximal uptake rate as a function of the attraction strength, the vesicle size, and vesicle material properties.

  20. Physiopathologic dynamics of vesicle traffic in astrocytes.

    PubMed

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  1. Transformation of oil droplets into giant vesicles.

    PubMed

    Sheng, Li; Kurihara, Kensuke

    2016-06-14

    We propose a protocell model in which compartments are constructed via a new process involving the formation of robust vesicles using an autocatalytic, self-reproducing oil droplet system as a 'scaffold'. PMID:27152371

  2. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  3. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  4. Lipid vesicle aggregation induced by cooling.

    PubMed

    Howard, Frank B; Levin, Ira W

    2010-01-01

    Lipid bilayer fusion is a complex process requiring several intermediate steps. Initially, the two bilayers are brought into close contact following removal of intervening water layers and overcoming electrostatic repulsions between opposing bilayer head groups. In this study we monitor by light scattering the reversible aggregation of phosphatidylcholine single shell vesicles during which adhesion occurs but stops prior to a fusion process. Light scattering measurements of dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in water show that lowering the temperature of about 0.14 micron single shell vesicles of DPPC (from 20 degrees C to 5 degrees C) and about 2 micron vesicles of DSPC (from 20 degrees C to 15 degrees C), but not of 1 micron vesicles of DMPC, results in extensive aggregation within 24 hours that is reversible by an increase in temperature. Aggregation of DSPC vesicles was confirmed by direct visual observation. Orientation of lipid head groups parallel to the plane of the bilayer and consequent reduction of the negative surface charge can account for the ability of DPPC and DSPC vesicles to aggregate. Retention of negatively charged phosphates on the surface and the burial of positively charged cholines within the bilayer offer an explanation for the failure of DMPC vesicles to aggregate. Lowering the temperature of 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) vesicles from 20 degrees C to 5 degrees C failed to increase aggregation within 24 hours at Mg(++)/DPPS ratios that begin to initiate aggregation and fusion.

  5. Towards traceable size determination of extracellular vesicles

    PubMed Central

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Background Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS) and size exclusion chromatography coupled with dynamic light scattering detection. Results The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required. PMID:24511372

  6. Differential detergent sensitivity of extracellular vesicle subpopulations.

    PubMed

    Osteikoetxea, Xabier; Sódar, Barbara; Németh, Andrea; Szabó-Taylor, Katalin; Pálóczi, Krisztina; Vukman, Krisztina V; Tamási, Viola; Balogh, Andrea; Kittel, Ágnes; Pállinger, Éva; Buzás, Edit Irén

    2015-10-14

    Extracellular vesicles (including exosomes, microvesicles and apoptotic bodies) are currently attracting rapidly increasing attention from various fields of biology due to their ability to carry complex information and act as autocrine, paracrine and even endocrine intercellular messengers. In the present study we investigated the sensitivity of size-based subpopulations of extracellular vesicles to different concentrations of detergents including sodium dodecyl sulphate, Triton X-100, Tween 20 and deoxycholate. We determined the required detergent concentration that lysed each of the vesicle subpopulations secreted by Jurkat, THP-1, MiaPaCa and U937 human cell lines. We characterized the vesicles by tunable resistive pulse sensing, flow cytometry and transmission electron microscopy. Microvesicles and apoptotic bodies were found to be more sensitive to detergent lysis than exosomes. Furthermore, we found evidence that sodium dodecyl sulphate and Triton X-100 were more effective in vesicle lysis at low concentrations than deoxycholate or Tween 20. Taken together, our data suggest that a combination of differential detergent lysis with tunable resistive pulse sensing or flow cytometry may prove useful for simple and fast differentiation between exosomes and other extracellular vesicle subpopulations as well as between vesicular and non-vesicular structures.

  7. Sucrose induces vesicle accumulation and autophagy.

    PubMed

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  8. Vesicle-associated melanization in Cryptococcus neoformans.

    PubMed

    Eisenman, Helene C; Frases, Susana; Nicola, André M; Rodrigues, Marcio L; Casadevall, Arturo

    2009-12-01

    Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimensions that are comparable to those of extracellular vesicles, and that metazoan organisms produce melanin in vesicular structures known as melanosomes, we investigated the role of vesicles in cryptococcal melanization. Extracellular vesicles melanized when incubated with the melanin precursor L-3,4-dihydroxyphenylalanine (L-DOPA). The kinetics of substrate incorporation into cells and vesicles was analysed using radiolabelled L-DOPA. The results indicated that substrate incorporation was different for cells and isolated vesicles. Acid-generated melanin ghosts stained with lipophilic dyes, implying the presence of associated lipid. A model for C. neoformans melanization is proposed that accounts for these observations and provides a mechanism for the assembly of melanin into relatively uniform spherical particles stacked in an orderly arrangement in the cell wall.

  9. Vesicle-associated melanization in Cryptococcus neoformans

    PubMed Central

    Eisenman, Helene C.; Frases, Susana; Nicola, André M.; Rodrigues, Marcio L.; Casadevall, Arturo

    2009-01-01

    Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimensions that are comparable to those of extracellular vesicles, and that metazoan organisms produce melanin in vesicular structures known as melanosomes, we investigated the role of vesicles in cryptococcal melanization. Extracellular vesicles melanized when incubated with the melanin precursor l-3,4-dihydroxyphenylalanine (l-DOPA). The kinetics of substrate incorporation into cells and vesicles was analysed using radiolabelled l-DOPA. The results indicated that substrate incorporation was different for cells and isolated vesicles. Acid-generated melanin ghosts stained with lipophilic dyes, implying the presence of associated lipid. A model for C. neoformans melanization is proposed that accounts for these observations and provides a mechanism for the assembly of melanin into relatively uniform spherical particles stacked in an orderly arrangement in the cell wall. PMID:19729402

  10. Spontaneous unilamellar polymer vesicles in aqueous solution.

    PubMed

    Kim, Tae-Hwan; Song, Chaeyeon; Han, Young-Soo; Jang, Jong-Dae; Choi, Myung Chul

    2014-01-21

    A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential applications as nanosized carriers for catalysts, drugs, and enzymes. For fabrication of a unilamellar vesicle, however, preparative procedures with a few steps are inherently required. Herein, without complicated preparative procedures, we report spontaneous unilamellar polymeric vesicles with nanometer sizes (<100 nm), which are prepared by simply mixing a triblock copolymer, Pluronic P85 (PEO26PPO40PEO26), and an organic derivative, 5-methyl salicylic acid (5mS), in aqueous solution. Depending on the 5mS concentration and the temperature, the P85-5mS mixtures presented various self-assembled nanostructures such as spherical and cylindrical micelles or vesicles, which were characterized by small angle neutron scattering and cryo-TEM, resulting in a phase diagram drawn as a function of temperature and the 5mS concentration. Interestingly the critical temperature for the micelle-to-vesicle phase transition was easily controlled by varying the 5mS concentration, i.e. it was decreased with increasing the 5mS concentration. PMID:24652418

  11. Sucrose induces vesicle accumulation and autophagy.

    PubMed

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes. PMID:25389129

  12. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  13. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    PubMed Central

    Liu, Shu; Hossinger, André; Hofmann, Julia P.; Denner, Philip

    2016-01-01

    ABSTRACT Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. PMID:27406566

  14. Depletion of membrane skeleton in red blood cell vesicles.

    PubMed Central

    Iglic, A; Svetina, S; Zeks, B

    1995-01-01

    A possible physical interpretation of the partial detachment of the membrane skeleton in the budding region of the cell membrane and consequent depletion of the membrane skeleton in red blood cell vesicles is given. The red blood cell membrane is considered to consist of the bilayer part and the membrane skeleton. The skeleton is, under normal conditions, bound to the bilayer over its whole area. It is shown that, when in such conditions it is in the expanded state, some cell shape changes can induce its partial detachment. The partial detachment of the skeleton from the bilayer is energetically favorable if the consequent decrease of the skeleton expansion energy is larger than the corresponding increase of the bilayer-skeleton binding energy. The effect of shape on the skeleton detachment is analyzed theoretically for a series of the pear class shapes, having decreasing neck diameter and ending with a parent-daughter pair of spheres. The partial detachment of the skeleton is promoted by narrowing of the cell neck, by increasing the lateral tension in the skeleton and its area expansivity modulus, and by diminishing the attraction forces between the skeleton and the bilayer. If the radius of the daughter vesicle is sufficiently small relative to the radius of the parent cell, the daughter vesicle can exist either completely underlaid with the skeleton or completely depleted of the skeleton. PMID:7669905

  15. Transfer of oleic acid between albumin and phospholipid vesicles

    SciTech Connect

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by TC NMR spectroscopy and 90% isotopically substituted (1- TC)oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with greater than or equal to80% of the oleic acid associated with albumin at pH 7.4; association was greater than or equal to90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The TC NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  16. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  17. Affective Priming with Auditory Speech Stimuli

    ERIC Educational Resources Information Center

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  18. Priming Lexical Stress in Reading Italian Aloud

    ERIC Educational Resources Information Center

    Sulpizio, Simone; Job, Remo; Burani, Cristina

    2012-01-01

    Two experiments using a lexical priming paradigm investigated how stress information is processed in reading Italian words. In both experiments, prime and target words either shared the stress pattern or they had different stress patterns. We expected that lexical activation of the prime would favour the assignment of congruent stress to the…

  19. The Impact of Emotional Priming on MMPI-2 Scale Scores

    ERIC Educational Resources Information Center

    Lee, Tayla T. C.; Forbey, Johnathan D.; Ritchey, Kristin A.

    2011-01-01

    The current study investigated potential emotional priming effects on Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scale scores. Participants included 98 college students who completed a personal narrative intended to induce temporary mood states, the MMPI-2, and a mood rating inventory. Results of the mood manipulation indicated that…

  20. Sandwich Priming: A Method for Overcoming the Limitations of Masked Priming by Reducing Lexical Competitor Effects

    ERIC Educational Resources Information Center

    Lupker, Stephen J.; Davis, Colin J.

    2009-01-01

    An orthographically similar masked nonword prime facilitates responding in a lexical decision task (Forster & Davis, 1984). Recently, this masked priming paradigm has been used to evaluate models of orthographic coding--models that attempt to quantify prime-target similarity. One general finding is that priming effects often do not occur when…

  1. Semantic priming with product verification but not production.

    PubMed

    Campbell, Jamie I D

    2011-12-01

    Campbell and Reynvoet (2009) found that time to name a single-digit target was about 8 ms faster if preceded by a near prime (±1) compared to a far prime (at least ±3) when prime-digit pairs were interleaved with number comparisons (9↑3; name larger) and not when they were interleaved with multiplication problems (9×3; state product). This is consistent with the claim by previous researchers that magnitude comparison can enable a semantic pathway for digit naming whereas number-fact retrieval can inhibit it. To pursue this, the current study compared priming in the context of multiplication production (9×3=?) versus multiplication verification (e.g., 9×3=24, true or false). Multiplication production, but not verification, may inhibit semantic digit naming to reduce naming-related interference with verbal number production. Indeed, semantic priming of digit naming occurred only in verification and not production blocks. This supports the conclusion that multiplication production can inhibit semantic mediation of digit naming, which is enabled in other number processing tasks (e.g., comparison, verification) that do not compete with naming for verbal number production processes.

  2. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  3. Maglev ready for prime time.

    SciTech Connect

    Rote, D. M.; Johnson, L. R.; Energy Systems

    2003-01-01

    Putting Maglev on Track' (Issues, Spring 1990) observed that growing airline traffic and associated delays were already significant and predicted that they would worsen. The article argued that a 300-mile-per-hour (mph) magnetic levitation (maglev) system integrated into airport and airline operations could be a part of the solution. Maglev was not ready for prime time in 1990, but it is now.

  4. Secretory vesicle swelling by atomic force microscopy.

    PubMed

    Cho, Sang-Joon; Jena, Bhanu P

    2006-01-01

    The swelling of secretory vesicles has been implicated in exocytosis, but the underlying mechanism of vesicle swelling remained unknown. Earlier studies from our laboratory demonstrated the association of the alpha-subunit of heterotrimeric GTP-binding protein G(alphai3) with zymogen granule membrane and implicated its involvement in vesicle swelling. Mas7, an active mastoparan analog known to stimulate Gi proteins, was found to stimulate the GTPase activity of isolated zymogen granules and cause swelling. Increase in vesicle size in the presence of GTP, NaF, and Mas7 were irreversible and found to be KCl sensitive. However, Ca2+ had no effect on zymogen granule size. Taken together, these results indicated that zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, swell in response to GTP mediated by a G(alphai3) protein. Subsequently, our studies demonstrated that the water channel aquaporin-1 (AQP1) is also present at the zymogen granule membrane and participates in rapid GTP-induced and G(alphai3)-mediated vesicular water gating and swelling. Isolated zymogen granules exhibit low basal water permeability. However, exposure of granules to GTP results in a marked potentiation of water entry. Treatment of zymogen granules with the known water channel inhibitor Hg2+ is accompanied by a reversible loss in both the basal and GTP-stimulable water entry and vesicle swelling. Introduction of AQP1-specific antibody raised against the carboxy-terminal domain of AQP1 blocked GTP-stimulable swelling of vesicles. Our results demonstrate that AQPI associated at the zymogen granule membrane is involved in basal GTP-induced and G(alphai3)-mediated rapid gating of water into zymogen granules of the exocrine pancreas.

  5. How did bacterial ancestors reproduce? Lessons from L-form cells and giant lipid vesicles: multiplication similarities between lipid vesicles and L-form bacteria.

    PubMed

    Briers, Yves; Walde, Peter; Schuppler, Markus; Loessner, Martin J

    2012-12-01

    In possible scenarios on the origin of life, protocells represent the precursors of the first living cells. To study such hypothetical protocells, giant vesicles are being widely used as a simple model. Lipid vesicles can undergo complex morphological changes enabling self-reproduction such as growth, fission, and extra- and intravesicular budding. These properties of vesicular systems may in some way reflect the mechanism of reproduction used by protocells. Moreover, remarkable similarities exist between the morphological changes observed in giant vesicles and bacterial L-form cells, which represent bacteria that have lost their rigid cell wall, but retain the ability to reproduce. L-forms feature a dismantled cellular structure and are unable to carry out classical binary fission. We propose that the striking similarities in morphological transitions of L-forms and giant lipid vesicles may provide insights into primitive reproductive mechanisms and contribute to a better understanding of the origin and evolution of mechanisms of cell reproduction. Editor's suggested further reading in BioEssays Synthesizing artificial cells from giant unilamellar vesicles: State-of-the art in the development of microfluidic technology Abstract. PMID:23108858

  6. Vacuum Fluctuations, Cosmogenesis and Prime Number Gaps

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2002-10-01

    Starting from E.Tryon (1973), idea of cosmogenesis through quantum tunnelling "from nothing" became popular. Both complimentary streams of it, inflationary models (Guth, Linde) and quantum parallelism (Everett, Deutsch), require some starting point as, e.g., concretisation of Leibnitz Principle (Omnibus ex nihil decendis sufficit unum). This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers and Cantor "alephs" becomes an engine for self-generation of physical universe directly out of mathematics: inexhaustibility of Number Theory (NT) drives cosmogenesis. While physics in other quantum branches of inflating universe (Megaverse) can be (arbitrary) different from ours, NT is not (it is unique, absolute, immutable and infinitely resourceful). Energy-time uncertainty principle (UP) allows indefinite lifetime provided we start from total zero energy. Analogue of UP in NT is theorem by H.Maier (1981) stating the existence of arbitrary long trails of isolated primes such that each next gap is arbitrary greater than average gap (logN). On physical level these arbitrary large deviations from Prime Number Theorem translate into permissiveness of (arbitrary) large quantum fluctuations.

  7. KAPAO Prime: Design and Simulation

    NASA Astrophysics Data System (ADS)

    McGonigle, Lorcan; Choi, P. I.; Severson, S. A.; Spjut, E.

    2013-01-01

    KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration over UV-NIR wavelengths from Pomona College’s telescope atop Table Mountain. We present here, the final optical system, KAPAO Prime, designed in Zemax Optical Design Software that uses custom off-axis paraboloid mirrors (OAPs) to manipulate light appropriately for a Shack-Hartman wavefront sensor, deformable mirror, and science cameras. KAPAO Prime is characterized by diffraction limited imaging over the full 81” field of view of our optical camera at f/33 as well as over the smaller field of view of our NIR camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of our optical camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to λ/10 surface irregularity (632.8nm). Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75°F when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of KAPAO Prime in Q1 2013.

  8. KAPAO Prime: Design and Simulation

    NASA Astrophysics Data System (ADS)

    McGonigle, Lorcan

    2012-11-01

    KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration from Pomona College's telescope atop Table Mountain. We present here, the final optical system, referred to as Prime, designed in Zemax Optical Design Software. Prime is characterized by diffraction limited imaging over the full 73'' field of view of our Andor Camera at f/33 as well as for our NIR Xenics camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of the Andor camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to l/10 surface irregularity. Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75 F; when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of ``Prime'' in Q1 2013.

  9. Coarse-grained simulation of lipid vesicles with ``n-atic'' orientational order

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Selinger, Jonathan; Selinger, Robin

    2012-02-01

    We perform coarse-grained simulation studies of fluid lipid vesicles with in-plane ``n-atic'' orientational order associated with the shape of lipid head group, to test the theoretical predictions of Park, Lubensky and MacKintosh [1] for resulting vesicle shape and defect structures. Our simulation model uses a single layer coarse-grained implicit-solvent approach proposed by Yuan et al [2], with addition of an extra vector degree of freedom representing in-plane orientational order. We carry out simulation studies for n=1 to 6, examining in each case the spatial distribution of defects and resulting deformation of the vesicle. An initially spherical vesicle (genus zero) with n-atic order has a ground state with 2n vortices of strength 1/n, as expected, but the observed equilibrium shapes are sometimes quite different from those predicted theoretically. For the n=1 case, we find that the vesicle may become trapped in a disordered, long-lived metastable state with extra +/- defects whose pair-annihilation is inhibited by local changes in membrane curvature, and thus may never reach its predicted ground state. [4pt] [1] J. Park, T. C. Lubensky, and F. C. MacKintosh, Europhys. Lett. 20, 279 (1992)[0pt] [2] H. Yuan, C. Huang, Ju Li, G. Lykotrafitis, and S. Zhang, Phys. Rev. E 82, 011905 (2010)

  10. Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis

    PubMed Central

    1984-01-01

    We demonstrate that there are two experimentally distinguishable steps in the fusion of phospholipid vesicles with planar bilayer membranes. In the first step, the vesicles form a stable, tightly bound pre-fusion state with the planar membrane; divalent cations (Ca++) are required for the formation of this state if the vesicular and/or planar membrane contain negatively charged lipids. In the second step, the actual fusion of vesicular and planar membranes occurs. The driving force for this step is the osmotic swelling of vesicles attached (in the pre- fusion state) to the planar membrane. We suggest that osmotic swelling of vesicles may also be crucial for biological fusion and exocytosis. PMID:6699082

  11. Subliminal affective priming in clinical depression and comorbid anxiety: a longitudinal investigation.

    PubMed

    Dannlowski, Udo; Kersting, Anette; Lalee-Mentzel, Judith; Donges, Uta-Susan; Arolt, Volker; Suslow, Thomas

    2006-06-30

    In the present study, the sequential affective priming paradigm developed by Fazio et al. [Fazio, R.H., Sanbonmatsu, D.M., Powell, M.C., Kardes, F.R., 1986. On the automatic activation of attitudes. Journal of Personality and Social Psychology 50, 229-238.] was applied for the first time to investigate automatic cognitive bias in depressed patients. Unipolar depressed patients (n=22) were tested on admission and after about 7 weeks of inpatient psychotherapy. Half of the patients (n=11) were suffering from a comorbid anxiety disorder. Twenty-two healthy subjects served as controls. Affectively polarized prime words were presented subliminally followed by positive or negative target words, which had to be evaluated. Subjects' affective state was assessed by self-report measures. In the course of psychotherapy, patients recovered significantly. Study groups exhibited qualitatively different affective priming effects: In non-comorbid depressed patients, no affective priming was found. Instead, a highly significant main effect of prime valence emerged, indicating a Stroop-like interference of negative prime words at time 1. This negative bias was associated with depression level at time 1 and could not be found after recovery. Affective priming was observed in controls and comorbid patients, but in opposite directions. Direction and strength of affective priming was directly associated with anxiety level at both times. The affective priming paradigm provides evidence for differential group effects regarding unconscious emotional information processing. PMID:16725208

  12. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    SciTech Connect

    Theiss, T.J.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should

  13. Activation of calcineurin by phosphotidylserine containing vesicles

    SciTech Connect

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PS but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.

  14. Intramembrane electrostatic interactions destabilize lipid vesicles.

    PubMed Central

    Shoemaker, Scott D; Vanderlick, T Kyle

    2002-01-01

    Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding) and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound) anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions in membrane stability. PMID:12324419

  15. Polypeptide vesicles with densely packed multilayer membranes.

    PubMed

    Song, Ziyuan; Kim, Hojun; Ba, Xiaochu; Baumgartner, Ryan; Lee, Jung Seok; Tang, Haoyu; Leal, Cecilia; Cheng, Jianjun

    2015-05-28

    Multilamellar membranes are important building blocks for constructing self-assembled structures with improved barrier properties, such as multilamellar lipid vesicles. Polymeric vesicles (polymersomes) have attracted growing interest, but multilamellar polymersomes are much less explored. Here, we report the formation of polypeptide vesicles with unprecedented densely packed multilayer membrane structures with poly(ethylene glycol)-block-poly(γ-(4,5-dimethoxy-2-nitrobenzyl)-l-glutamate) (PEG-b-PL), an amphiphilic diblock rod-coil copolymer containing a short PEG block and a short hydrophobic rod-like polypeptide segment. The polypeptide rods undergo smectic ordering with PEG buried between the hydrophobic polypeptide layers. The size of both blocks and the rigidity of the hydrophobic polypeptide block are critical in determining the membrane structures. Increase of the PEG length in PEG-b-PL results in the formation of bilayer sheets, while using random-coil polypeptide block leads to the formation of large compound micelles. UV treatment causes ester bond cleavage of the polypeptide side chain, which induces helix-to-coil transition, change of copolymer amphiphilicity, and eventual disassembly of vesicles. These polypeptide vesicles with unique membrane structures provide a new insight into self-assembly structure control by precisely tuning the composition and conformation of polymeric amphiphiles.

  16. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  17. Getting to know the extracellular vesicle glycome.

    PubMed

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-01

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences.

  18. Analysis of Extracellular Vesicles in the Tumor Microenvironment.

    PubMed

    Al-Nedawi, Khalid; Read, Jolene

    2016-01-01

    Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure. PMID:27581023

  19. Coated vesicles: characterization, selective dissociation, and reassembly.

    PubMed

    Woodward, M P; Roth, T F

    1978-09-01

    Sodium dodecyl sulfate/polyacrylamide gels of coated vesicles from porcine brain (mean 76% coated vesicles) show three major proteins (180,000, 125,000, and 55,000 daltons) that account for 73% of the total protein. Preparations consisting predominantly of coats (65%) have less of the 55,000-dalton protein. Clathrin (180,000 daltons) comprises 40% of the protein of a coated vesicle. Conditions of 2 M urea, 0.25 M MgCl2, or pH 7.5 disrupt the coat and solubilize clathrin. Solubilized clathrin reforms coat structures after dilution of urea or MgCl2. High-pH-solubilized clathrin reassembles after dialysis against buffer at pH 6.5 containing dithiothreitol (5 mM). Reassembled coats are predominantly clathrin. PMID:30086

  20. Directed vesicle transport by diffusio-osmosis

    NASA Astrophysics Data System (ADS)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  1. Rapid preparation of giant unilamellar vesicles.

    PubMed Central

    Moscho, A; Orwar, O; Chiu, D T; Modi, B P; Zare, R N

    1996-01-01

    We report here a rapid evaporation method that produces in high yield giant unilamellar vesicles up to 50 microns in diameter. The vesicles are obtained after only 2 min and can be prepared from different phospholipids, including L-alpha-phosphatidylcholine (lecithin), dipalmitoleoyl L-alpha-phosphatidylcholine, and beta-arachidonoyl gamma-palmitoyl L-alpha-phosphatidylcholine. Vesicles can be produced in distilled water and in Hepes, phosphate, and borate buffers in the pH range of 7.0 to 11.5 with ionic strengths up to 50 mM. The short preparation time allows encapsulation of labile molecular targets or enzymes with high catalytic activities. Cell-sized proteoliposomes have been prepared in which gamma-glutamyltransferase (EC 2.3.2.2) was functionally incorporated into the membrane wall. Images Fig. 1 PMID:8876154

  2. Dynamics of fibers growing inside soft vesicles

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Orlandini, E.

    2007-11-01

    We present 3D stochastic dynamic simulations of the growth of a semiflexible polymer inside a soft vesicle. We find that very stiff fibers stall soon and lock the membrane into a strongly deformed prolate shape. Fibers of intermediate stiffness buckle and form a toroidal configuration which distorts the membrane into an oblate shape. Finally, more flexible polymers form massive spool-like condensates with ordered domains, while the vesicle inflates isotropically. We discuss our results with respect to observations on cell shape in sickle red blood cells, developing erythrocytes, and genome packing inside bacteriophages. We quantify how the force felt by the fiber tip, and the vesicle aspect ratio, change during growth, and we discuss possible "synthetic biology" experiments to validate our results.

  3. Structure of a micropipette-aspirated vesicle determined from the bending-energy model

    NASA Astrophysics Data System (ADS)

    Chen, Jeff Z. Y.

    2012-10-01

    The structure of the system consisting of an aspirating pipette and an aspirated vesicle is investigated with fixed total vesicle volume, total vesicle surface area, and aspirated volume fraction, based on the bending-energy model. Through an energetic consideration, the usage of an aspirated volume fraction can be converted to the aspirating pressure for the determination of a phase diagram; the procedure identifies a first-order transition, between a weakly aspirated state and the strongly aspirated state, as the pressure increases. The physical properties of the system are obtained from minimization of the bending energy by an implementation of the simulated annealing Monte Carlo procedure, which searches for a minimum in a multivariable space. An analysis of the hysteresis effects indicates that the experimentally observed aspirating and releasing critical pressures are related to the location of the spinodal points.

  4. Ciliary Extracellular Vesicles: Txt Msg Organelles.

    PubMed

    Wang, Juan; Barr, Maureen M

    2016-04-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  5. Ciliary extracellular vesicles: Txt msg orgnlls

    PubMed Central

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  6. Wrath of God: religious primes and punishment.

    PubMed

    McKay, Ryan; Efferson, Charles; Whitehouse, Harvey; Fehr, Ernst

    2011-06-22

    Recent evidence indicates that priming participants with religious concepts promotes prosocial sharing behaviour. In the present study, we investigated whether religious priming also promotes the costly punishment of unfair behaviour. A total of 304 participants played a punishment game. Before the punishment stage began, participants were subliminally primed with religion primes, secular punishment primes or control primes. We found that religious primes strongly increased the costly punishment of unfair behaviours for a subset of our participants--those who had previously donated to a religious organization. We discuss two proximate mechanisms potentially underpinning this effect. The first is a 'supernatural watcher' mechanism, whereby religious participants punish unfair behaviours when primed because they sense that not doing so will enrage or disappoint an observing supernatural agent. The second is a 'behavioural priming' mechanism, whereby religious primes activate cultural norms pertaining to fairness and its enforcement and occasion behaviour consistent with those norms. We conclude that our results are consistent with dual inheritance proposals about religion and cooperation, whereby religions harness the byproducts of genetically inherited cognitive mechanisms in ways that enhance the survival prospects of their adherents.

  7. Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles

    PubMed Central

    Comellas, Gemma; Lemkau, Luisel R.; Zhou, Donghua H.; George, Julia M.

    2012-01-01

    α-Synuclein (AS) fibrils are the main protein component of Lewy Bodies, the pathological hallmark of Parkinson’s disease and other related disorders. AS forms helices that bind phospholipid membranes with high affinity, but no atomic level data for AS aggregation in the presence of lipids is yet available. Here, we present direct evidence of a conversion from α-helical conformation to β-sheet fibrils in the presence of anionic phospholipid vesicles and direct conversion to β-sheet fibrils in their absence. We have trapped intermediate states throughout the fibril formation pathways to examine the structural changes using solid-state NMR spectroscopy and electron microscopy. The comparison between mature AS fibrils formed in aqueous buffer and those derived in the presence of anionic phospholipids demonstrates no major changes in the overall fibril fold. However, a site-specific comparison of these fibrillar states demonstrates major perturbations in the N-terminal domain with a partial disruption of the long β-strand located in the 40’s and small perturbations in residues located in the “non-β amyloid component” (NAC) domain. Combining all these results, we propose a model for AS fibrillogenesis in the presence of phospholipid vesicles. PMID:22352310

  8. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  9. Biogenesis of extracellular vesicles in yeast

    PubMed Central

    Oliveira, Débora L; Nakayasu, Ernesto S; Joffe, Luna S; Guimarães, Allan J; Sobreira, Tiago JP; Nosanchuk, Joshua D; Cordero, Radames JB; Frases, Susana; Casadevall, Arturo; Almeida, Igor C; Nimrichter, Leonardo

    2010-01-01

    The cellular events required for unconventional protein secretion in eukaryotic pathogens are beginning to be revealed. In fungi, extracellular release of proteins involves passage through the cell wall by mechanisms that are poorly understood. In recent years, several studies demonstrated that yeast cells produce vesicles that traverse the cell wall to release a wide range of cellular components into the extracellular space. These studies suggested that extracellular vesicle release involves components of both conventional and unconventional secretory pathways, although the precise mechanisms required for this process are still unknown. We discuss here cellular events that are candidates for regulating this interesting but elusive event in the biology of yeast cells. PMID:21331232

  10. Toroidal membrane vesicles in spherical confinement

    NASA Astrophysics Data System (ADS)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  11. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    PubMed Central

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  12. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    PubMed

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  13. 76 FR 26751 - Prime Hook National Wildlife Refuge, Sussex County, DE; Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... the planting of genetically modified organisms until the refuge completed compatibility determinations... 17, 2005 (70 FR 60365) stating we intended to prepare a CCP and EA for Prime Hook NWR. We held...

  14. Priming of antiherbivore defensive responses in plants.

    PubMed

    Kim, Jinwon; Felton, Gary W

    2013-06-01

    Defense priming is defined as increased readiness of defense induction. A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses, both biotic and abiotic, and upon the following stimulus, induce defenses more quickly and strongly. For instance, some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding. Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently, but significant advances were made in the past three years, including non-HIPV-mediated defense priming, epigenetic modifications as the molecular mechanism of priming, and others. It is timely to consider the advances in research on defense priming in the plant-insect interactions.

  15. Synaptosomes as a Platform for Loading Nanoparticles into Synaptic Vesicles

    PubMed Central

    2011-01-01

    Synaptosomes are intact, isolated nerve terminals that contain the necessary machinery to recycle synaptic vesicles via endocytosis and exocytosis upon stimulation. Here we use this property of synaptosomes to load quantum dots into synaptic vesicles. Vesicles are then isolated from the synaptosomes, providing a method to probe isolated, individual synaptic vesicles where each vesicle contains a single, encapsulated nanoparticle. This technique provided an encapsulation efficiency of ∼16%; that is, ∼16% of the vesicles contained a single quantum dot while the remaining vesicles were empty. The ability to load single nanoparticles into synaptic vesicles opens new opportunity for employing various nanoparticle-based sensors to study the dynamics of vesicular transporters. PMID:21666849

  16. Can Faces Prime a Language?

    PubMed

    Woumans, Evy; Martin, Clara D; Vanden Bulcke, Charlotte; Van Assche, Eva; Costa, Albert; Hartsuiker, Robert J; Duyck, Wouter

    2015-09-01

    Bilinguals have two languages that are activated in parallel. During speech production, one of these languages must be selected on the basis of some cue. The present study investigated whether the face of an interlocutor can serve as such a cue. Spanish-Catalan and Dutch-French bilinguals were first familiarized with certain faces, each of which was associated with only one language, during simulated Skype conversations. Afterward, these participants performed a language production task in which they generated words associated with the words produced by familiar and unfamiliar faces displayed on-screen. When responding to familiar faces, participants produced words faster if the faces were speaking the same language as in the previous Skype simulation than if the same faces were speaking a different language. Furthermore, this language priming effect disappeared when it became clear that the interlocutors were actually bilingual. These findings suggest that faces can prime a language, but their cuing effect disappears when it turns out that they are unreliable as language cues. PMID:26209531

  17. Degradation of 4,4{prime}-Dichlorobiphenyl, 3,3{prime}, 4,4{prime}-Tetrachlorobiphenyl, and 2,2{prime},4,4{prime},5,5{prime}-Hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium

    SciTech Connect

    Dietrich, D.; Lamar, R.; Hickey, W.J.

    1995-11-01

    The white rot fungus Phanerochaete chrysosporium has demonstrated abilities to degrade many xenobiotic chemicals. In this study, the degradation of three model polychlorinated biphenyl (PCB) congeners (4,4{prime}- dichlorobiphenyl [DCB], 3,3{prime},4,4{prime}-tetrachlorobiphenyl, and 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl) by P. chrysosporium in liquid culture was examined. After 28 days of incubation, {sup 14}C partitioning analysis indicated extensive degradation of DCB, including 11% mineralization. In contrast, there was negligible mineralization of the tetrachloro- or hexachlorobiphenyl and little evidence for any significant metabolism. With all of the model PCBs, a large fraction of the {sup 14}C was determined to be biomass bound. Results from a time course study done with 4,4{prime}-[{sup 14}C]DCB to examine {sup 14}C partitioning dynamics indicated that the biomass-bound {sup 14}C was likely attributable to nonspecific adsorption of the PCBs to the fungal hyphae. In a subsequent isotope trapping experiment, 4-chlorobenzoic acid and 4-chlorobenzyl alcohol were identified as metabolites produced from 4,4{prime}-[{sup 14}C]DCB. To the best of our knowledge, this the first report describing intermediates formed by P. chrysosporium during PCB degradation. Results from these experiments suggested similarities between P. chrysosporium and bacterial systems in terms of effects of congener chlorination degree and pattern on PCB metabolism and intermediates characteristic of the PCB degradation process. 23 refs., 4 figs., 2 tabs.

  18. Impact of transgenerational immune priming on the defence of insect eggs against parasitism.

    PubMed

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-07-01

    Insects are known to prime the immune state of their offspring. However, although the beginning of insect life, the egg stage, is often greatly endangered by parasitism, no knowledge is available regarding whether transgenerational immune priming improves the immune responses of insect eggs to actual parasitoid attacks. Our study revealed suppression of the development of parasitoids in transgenerationally immune-primed Manduca sexta eggs and reduced emergence rates of parasitoids from these eggs. The higher defence efficiency of immune-primed M. sexta eggs against parasitoids was in agreement with the increased antibacterial activity and phenoloxidase activity of these eggs in response to parasitism compared to the eggs of control parents. Our study showed that immunochallenged insect parents could enable their offspring already in the egg stage to defend more efficiently against parasitic invaders. We discuss whether M. sexta benefits from transgenerational immune priming of eggs by limiting the population growth of egg parasitoids. PMID:25790896

  19. The influence of alcohol expectancy priming and mood manipulation on subsequent alcohol consumption.

    PubMed

    Stein, K D; Goldman, M S; Del Boca, F K

    2000-02-01

    Studies showing that verbal priming can implicitly affect alcohol consumption have been used to support cognitive models of expectancies. However, because expectancy words reflect affective states as well as drinking outcomes, mediation through an affective pathway remains theoretically plausible (i.e., such words inadvertently may affect mood, which in turn influences drinking). The primary pathway was identified (and expectancy theory was tested) by comparing memory priming (using alcohol expectancy or neutral words) with mood induction (using positive or neutral music); an unrelated experiment paradigm allowed the priming manipulation to implicitly affect drinking. Men in the alcohol priming group drank significantly more than men in each of the other conditions, and, consistent with theory, men with histories of heavier drinking drank the most when primed with alcohol expectancies, indicating that expectancies can function as automatic memory processes.

  20. Complex architecture of primes and natural numbers.

    PubMed

    García-Pérez, Guillermo; Serrano, M Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.

  1. Compartmentalization and Transport in Synthetic Vesicles

    PubMed Central

    Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  2. Vesicle dynamics in shear and capillary flows

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-11-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape.

  3. Preparation of vesicles entrapped lycopene extract.

    PubMed

    Luxsuwong, Dhitaree; Indranupakorn, Ratana; Wongtrakul, Paveena

    2014-01-01

    Lycopene, a lipophilic carotenoid, has been known as an effective antioxidant in supporting the cutaneous defensive system. However, it is unstable when exposed to light and water. In this study, lycopene was isolated from tomatoes and a vesicular delivery system was developed to entrap and stabilize the lycopene in the aqueous system. A simple process, maceration in ethyl acetate, was used to extract lycopene from the tomatoes. The extract was then chromatographed on the Sephadex LH20 column using acetone as a solvent system to yield 995 μg of lycopene per gram of dried tomato weight. The vesicular delivery system was prepared from a combination of ascorbic acid-6-palmitate (AP), cholesterol and dicetyl phosphate using a thin film hydration method. The formulation was composed of AP, cholesterol and dicetyl phosphate at a 44:44:12 molar ratio and with 2.12 μmol/ml of the isolated lycopene. Both blank vesicles and lycopene loaded vesicles were kept for a period of 3 months at 4±2°C and at the room temperature (28±2°C) to evaluate the effect of the encapsulation on the characteristic of the vesicles and on the antioxidant activity of the encapsulated lycopene. The result implied that lycopene could be stabilized in the vesicles and its scavenging activity against DPPH free radicals was superior to that of the free lycopene solution. PMID:24829133

  4. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    PubMed

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  5. Merits and Limitations of Vesicle Pool Models in View of Heterogeneous Populations of Synaptic Vesicles.

    PubMed

    Neher, Erwin

    2015-09-23

    The concept of a readily releasable pool (RRP) of synaptic vesicles has been used extensively for the analysis of neurotransmitter release. Traditionally the properties of vesicles in such a pool have been assumed to be homogeneous, and techniques have been developed to determine pool parameters, such as the size of the pool and the probability with which a vesicle is released during an action potential. Increasing evidence, however, indicates that vesicles may be quite heterogeneous with respect to their release probability. The question, therefore, arises: what do the estimates of pool parameters mean in view of such heterogeneity? Here, four methods for obtaining pool estimates are reviewed, together with their underlying assumptions. The consequences of violation of these assumptions are discussed, and how apparent pool sizes are influenced by stimulation strength is explored by simulations.

  6. Formation of polyhedral vesicles and polygonal membrane tubes induced by banana-shaped proteins

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2015-12-01

    The shape transformations of fluid membranes induced by curved protein rods are studied using meshless membrane simulations. The rod assembly at low rod density induces a flat membrane tube and oblate vesicle. It is found that the polyhedral shapes are stabilized at high rod densities. The discrete shape transition between triangular and buckled discoidal tubes is obtained and their curvature energies are analyzed by a simple geometric model. For vesicles, triangular hosohedron and elliptic-disk shapes are formed in equilibrium, whereas tetrahedral and triangular prism shapes are obtained as metastable states.

  7. Effect of thermal noise on vesicles and capsules in shear flow.

    PubMed

    Abreu, David; Seifert, Udo

    2012-07-01

    We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic models predict only pure tank treading or tumbling. PMID:23005361

  8. Extracellular Vesicles in Molecular Diagnostics: An Overview with a Focus on CNS Diseases.

    PubMed

    Hirshman, B R; Kras, R T; Akers, J C; Carter, B S; Chen, C C

    2016-01-01

    All known cells continuously release nanoscale lipid membrane-enclosed packets. These packets, termed extracellular vesicles (EVs), bear the signature of their cells of origin. These vesicles can be detected in just about every type of biofluid tested, including blood, urine, and cerebrospinal fluid. The majority comes from normal cells, but disease cells also release them. There is a great interest in collecting and analyzing EVs in biofluids as diagnostics for a wide spectrum of central nervous system diseases. Here, we will review the state of central nervous system EV research in terms of molecular diagnostics and biomarkers. PMID:27645815

  9. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    PubMed

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers. PMID:26700689

  10. Thermodynamic Study on Vesicle Formation and Adsorption of Decyltrimethylammonium Decyl Sulfate.

    PubMed

    Villeneuve, Masumi; Kaneshina, Shoji; Aratono, Makoto

    2001-07-01

    The surface tension of an aqueous solution of decyltrimethylammonium decyl sulfate (DeTADeS) was measured as a function of temperature T at various molalities &mcirc; under atmospheric pressure. DeTADeS has been found to form equilibrium multilamellar vesicles (MLV) spontaneously. The surface density, the entropies of adsorption, and the entropy of vesicle formation are evaluated. The mechanism of formation of equilibrium vesicles is investigated from the standpoint of thermodynamics and from the comparison of the results with those of the micelle-forming systems. From the relatively small change of the surface density Gamma;(H) on T at a given &mcirc;, the adsorbed film is implied to be tightly packed due to the strong electrostatic attraction between the polar headgroups. The energy change associated with adsorption from the vesicular state per mole of surfactant Delta(V)(H)u is positive in the entire temperature range; thus, the curved bilayer in MLV is energetically more favorable than the planar adsorbed film. From the negative values of the entropy of vesicle formation Delta(W)(V)s, it is concluded that vesicle formation is driven by enthalpy whereas micelle formation is mostly entropy driven. Copyright 2001 Academic Press.

  11. The effect of spontaneous curvature on a two-phase vesicle

    PubMed Central

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287

  12. Calcium regulates vesicle replenishment at the cone ribbon synapse.

    PubMed

    Babai, Norbert; Bartoletti, Theodore M; Thoreson, Wallace B

    2010-11-24

    Cones release glutamate-filled vesicles continuously in darkness, and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording postsynaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady state between vesicle release and replenishment using trains of test pulses. Increasing Ca(2+) currents (I(Ca)) by changing the test step from -30 to -10 mV increased replenishment. Lengthening -30 mV test pulses to match the Ca(2+) influx during 25 ms test pulses to -10 mV produced similar replenishment rates. Reducing Ca(2+) driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of I(Ca) by nifedipine accelerated replenishment. Increasing [Ca(2+)](i) by flash photolysis of caged Ca(2+) also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca(2+) buffer of 0.5 mm EGTA rather than 5 mm EGTA, and diminished by 1 mm BAPTA. This suggests that although release and replenishment exhibited similar Ca(2+) dependencies, release sites are <200 nm from Ca(2+) channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca(2+) influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825

  13. Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles

    PubMed Central

    Jin, Takashi; Fujii, Fumihiko; Ooi, Yasuhiro

    2008-01-01

    Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC) vesicles, and their binding abilities for acetylcholine (ACh) were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS). For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G) was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100), the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×105 M-1 for Rh6G-3 complex and 1.1×102 M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, l-aspartic acid,l-glutamic acid, l-arginine, l-lysine, l-histamine and ammonium chloride was also evaluated using FCS.

  14. Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies

    PubMed Central

    Karlsson, Mattias; Sott, Kristin; Davidson, Maximillian; Cans, Ann-Sofie; Linderholm, Pontus; Chiu, Daniel; Orwar, Owe

    2002-01-01

    We present a microelectrofusion method for construction of fluid-state lipid bilayer networks of high geometrical complexity up to fully connected networks with genus = 3 topology. Within networks, self-organizing branching nanotube architectures could be produced where intersections spontaneously arrange themselves into three-way junctions with an angle of 120° between each nanotube. Formation of branching nanotube networks appears to follow a minimum-bending energy algorithm that solves for pathway minimization. It is also demonstrated that materials can be injected into specific containers within a network by nanotube-mediated transport of satellite vesicles having defined contents. Using a combination of microelectrofusion, spontaneous nanotube pattern formation, and satellite-vesicle injection, complex networks of containers and nanotubes can be produced for a range of applications in, for example, nanofluidics and artificial cell design. In addition, this electrofusion method allows integration of biological cells into lipid nanotube-vesicle networks. PMID:12185244

  15. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  16. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress.

    PubMed

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.

  17. Unconscious Congruency Priming from Unpracticed Words Is Modulated by Prime-Target Semantic Relatedness

    ERIC Educational Resources Information Center

    Ortells, Juan J.; Mari-Beffa, Paloma; Plaza-Ayllon, Vanesa

    2013-01-01

    Participants performed a 2-choice categorization task on visible word targets that were preceded by novel (unpracticed) prime words. The prime words were presented for 33 ms and followed either immediately (Experiments 1-3) or after a variable delay (Experiments 1 and 4) by a pattern mask. Both subjective and objective measures of prime visibility…

  18. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress.

    PubMed

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  19. The Effect of Prime Duration in Masked Orthographic Priming Depends on Neighborhood Distribution

    ERIC Educational Resources Information Center

    Robert, Christelle; Mathey, Stephanie

    2012-01-01

    A lexical decision task was used with a masked priming procedure to investigate whether and to what extent neighborhood distribution influences the effect of prime duration in masked orthographic priming. French word targets had two higher frequency neighbors that were either distributed over two letter positions (e.g., "LOBE/robe-loge") or…

  20. The Apollo 11 Prime Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of the prime crew of the Apollo 11 lunar landing mission. From left to right they are: Commander, Neil A. Armstrong, Command Module Pilot, Michael Collins, and Lunar Module Pilot, Edwin E. Aldrin Jr. On July 20th 1969 at 4:18 PM, EDT the Lunar Module 'Eagle' landed in a region of the Moon called the Mare Tranquillitatis, also known as the Sea of Tranquillity. After securing his spacecraft, Armstrong radioed back to earth: 'Houston, Tranquility Base here, the Eagle has landed'. At 10:56 p.m. that same evening and witnessed by a worldwide television audience, Neil Armstrong stepped off the 'Eagle's landing pad onto the lunar surface and said: 'That's one small step for a man, one giant leap for mankind.' He became the first human to set foot upon the Moon.

  1. Pure Mediated Priming: A Retrospective Semantic Matching Model

    ERIC Educational Resources Information Center

    Jones, Lara L.

    2010-01-01

    Mediated priming refers to the activation of a target (e.g., "stripes") by a prime (e.g., "lion") that is related indirectly via a connecting mediator (e.g., tiger). In previous mediated priming studies (e.g., McNamara & Altarriba, 1988), the mediator was associatively related to the prime. In contrast, pure mediated priming (e.g., "spoon" [right…

  2. Amount of Priming in the Difference of Mental Transformation

    ERIC Educational Resources Information Center

    Kanamori, Nobuhiro; Yagi, Akihiro

    2005-01-01

    We examined in detail effects of priming in 2 mental rotation strategies: spinning (rotating in a picture plane) and flipping (rotating in depth around a horizontal axis) by using a priming paradigm of Kanamori and Yagi (2002). The priming paradigm included prime and probe tasks within 1 trial. In the prime task, 16 participants were asked to…

  3. Probing the interior of synaptic vesicles with internalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Gadd, Jennifer C.; Budzinski, Kristi L.; Chan, Yang-Hsiang; Ye, Fangmao; Chiu, Daniel T.

    2012-03-01

    Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles. To probe the intravesicular region of synaptic vesicles, we have developed a highly sensitive pH-sensing polymer dot. We feel the robust nature of the pH-sensing polymer dot will provide insight into the dynamics of proton loading into synaptic vesicles.

  4. Does Verb Bias Modulate Syntactic Priming?

    ERIC Educational Resources Information Center

    Bernolet, Sarah; Hartsuiker, Robert J.

    2010-01-01

    In a corpus analysis of spontaneous speech Jaeger and Snider (2007) found that the strength of structural priming is correlated with verb alternation bias. This finding is consistent with an implicit learning account of syntactic priming: because the implicit learning model implemented by Chang (2002), Chang, Dell, and Bock (2006), and Chang,…

  5. Phonological Priming in Children's Picture Naming.

    ERIC Educational Resources Information Center

    Brooks, Patricia J.; MacWhinney, Brian

    2000-01-01

    Two experiments examined phonological priming in children and adults using a cross-modal picture-word interference task. Pictures of familiar objects were presented on a computer screen, while interfering words were presented over headphones. Results indicate that priming effects reach a peak during a time when articulatory information is being…

  6. 7 CFR 29.2290 - Premature primings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Premature primings. 29.2290 Section 29.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... 21) § 29.2290 Premature primings. Ground leaves harvested before reaching complete growth...

  7. Phasic Affective Modulation of Semantic Priming

    ERIC Educational Resources Information Center

    Topolinski, Sascha; Deutsch, Roland

    2013-01-01

    The present research demonstrates that very brief variations in affect, being around 1 s in length and changing from trial to trial independently from semantic relatedness of primes and targets, modulate the amount of semantic priming. Implementing consonant and dissonant chords (Experiments 1 and 5), naturalistic sounds (Experiment 2), and visual…

  8. Can False Memories Prime Problem Solutions?

    ERIC Educational Resources Information Center

    Howe, Mark L.; Garner, Sarah R.; Dewhurst, Stephen A.; Ball, Linden J.

    2010-01-01

    Previous research has suggested that false memories can prime performance on related implicit and explicit memory tasks. The present research examined whether false memories can also be used to prime higher order cognitive processes, namely, insight-based problem solving. Participants were asked to solve a number of compound remote associate task…

  9. Negative Priming in Free Recall Reconsidered

    ERIC Educational Resources Information Center

    Hanczakowski, Maciej; Beaman, C. Philip; Jones, Dylan M.

    2016-01-01

    Negative priming in free recall is the finding of impaired memory performance when previously ignored auditory distracters become targets of encoding and retrieval. This negative priming has been attributed to an aftereffect of deploying inhibitory mechanisms that serve to suppress auditory distraction and minimize interference with learning and…

  10. Morphological Priming Survives a Language Switch

    ERIC Educational Resources Information Center

    Verdonschot, Rinus G.; Middelburg, Renee; Lensink, Saskia E.; Schiller, Niels O.

    2012-01-01

    In a long-lag morphological priming experiment, Dutch (L1)-English (L2) bilinguals were asked to name pictures and read aloud words. A design using non-switch blocks, consisting solely of Dutch stimuli, and switch-blocks, consisting of Dutch primes and targets with intervening English trials, was administered. Target picture naming was facilitated…

  11. Syntactic Priming in American Sign Language

    PubMed Central

    Hall, Matthew L.; Ferreira, Victor S.; Mayberry, Rachel I.

    2015-01-01

    Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL). Experiment 1 shows that second language (L2) signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect). Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming) operates similarly in sign and speech. PMID:25786230

  12. Priming Addition Facts with Semantic Relations

    ERIC Educational Resources Information Center

    Bassok, Miriam; Pedigo, Samuel F.; Oskarsson, An T.

    2008-01-01

    Results from 2 relational-priming experiments suggest the existence of an automatic analogical coordination between semantic and arithmetic relations. Word pairs denoting object sets served as primes in a task that elicits "obligatory" activation of addition facts (5 + 3 activates 8; J. LeFevre, J. Bisanz, & L. Mrkonjic, 1988). Semantic relations…

  13. Visual Priming of Inverted and Rotated Objects

    ERIC Educational Resources Information Center

    Knowlton, Barbara J.; McAuliffe, Sean P.; Coelho, Chase J.; Hummel, John E.

    2009-01-01

    Object images are identified more efficiently after prior exposure. Here, the authors investigated shape representations supporting object priming. The dependent measure in all experiments was the minimum exposure duration required to correctly identify an object image in a rapid serial visual presentation stream. Priming was defined as the change…

  14. Mobility and Turnover of Vesicles at the Synaptic Ribbon

    PubMed Central

    LoGiudice, Lisamarie; Sterling, Peter; Matthews, Gary

    2008-01-01

    Ribbon synapses release neurotransmitter continuously at high rates, and the ribbons tether a large pool of synaptic vesicles. To determine if the tethered vesicles are actually released, we tracked vesicles labeled with FM4-64 dye in mouse retinal bipolar cell terminals whose ribbons had been labeled with a fluorescent peptide. We photobleached vesicles in regions with ribbons and without them and then followed recovery of fluorescence as bleached regions were repopulated by labeled vesicles. In the resting terminal, fluorescence recovered by ~50% in non-ribbon regions, but by only ~20% at ribbons. Thus, at rest, vesicles associated with ribbons cannot exchange freely with cytoplasmic vesicles. Depolarization stimulated vesicle turnover at ribbons as bleached, immobile vesicles were released by exocytosis and were then replaced by fluorescent vesicles from the cytoplasm, producing a further increase in fluorescence specifically at the ribbon location. We conclude that vesicles immobilized at synaptic ribbons participate in the readily releasable pool that is tapped rapidly during depolarization. PMID:18354018

  15. Effect of Lysophosphatidylcholine on the Surface Hydration of Phospholipid Vesicles

    PubMed Central

    Alves, Marilene; Bales, Barney L.; Peric, Miroslav

    2009-01-01

    The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mole percent of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes, from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer PMID:18070590

  16. Priming intelligent behavior: an elusive phenomenon.

    PubMed

    Shanks, David R; Newell, Ben R; Lee, Eun Hee; Balakrishnan, Divya; Ekelund, Lisa; Cenac, Zarus; Kavvadia, Fragkiski; Moore, Christopher

    2013-01-01

    Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal) influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained.

  17. Migration of phospholipid vesicles in response to OH(-) stimuli.

    PubMed

    Kodama, Atsuji; Sakuma, Yuka; Imai, Masayuki; Oya, Yutaka; Kawakatsu, Toshihiro; Puff, Nicolas; Angelova, Miglena I

    2016-03-21

    We demonstrate migration of phospholipid vesicles in response to a pH gradient. Upon simple micro-injection of a NaOH solution, the vesicles linearly moved to the tip of the micro-pipette and the migration velocity was proportional to the gradient of OH(-) concentration. Vesicle migration was characteristic of OH(-) ions and no migration was observed for monovalent salts or nonionic sucrose solutions. The migration of vesicles is quantitatively described by the surface tension gradient model where the hydrolysis of the phospholipids by NaOH solution decreases the surface tension of the vesicle. The vesicles move toward a direction where the surface energy decreases. Thus the chemical modification of lipids produces a mechanical force to drive vesicles. PMID:26883729

  18. Complex Dynamics of Compound Vesicles in Linear Flow

    NASA Astrophysics Data System (ADS)

    Levant, Michael; Steinberg, Victor

    2014-04-01

    We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.

  19. Complex dynamics of compound vesicles in linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2014-04-01

    We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.

  20. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses.

    PubMed

    Rey, Stephanie A; Smith, Catherine A; Fowler, Milena W; Crawford, Freya; Burden, Jemima J; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.

  1. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing.

    PubMed

    Kalra, Hina; Drummen, Gregor P C; Mathivanan, Suresh

    2016-02-06

    Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.

  2. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing.

    PubMed

    Kalra, Hina; Drummen, Gregor P C; Mathivanan, Suresh

    2016-01-01

    Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition. PMID:26861301

  3. Individual Differences in Working Memory Capacity Modulates Semantic Negative Priming from Single Prime Words

    PubMed Central

    Ortells, Juan J.; Noguera, Carmen; Álvarez, Dolores; Carmona, Encarna; Houghton, George

    2016-01-01

    The present study investigated whether semantic negative priming from single prime words depends on the availability of cognitive control resources. Participants with high vs. low working memory capacity (as assessed by their performance in complex span and attentional control tasks) were instructed to either attend to or ignore a briefly presented single prime word that was followed by either a semantically related or unrelated target word on which participants made a lexical decision. Individual differences in working memory capacity (WMC) mainly affected the processing of the ignored primes, but not the processing of the attended primes: While the latter produced reliable positive semantic priming for both high- and low-WMC participants, the former gave rise to reliable semantic negative priming only for high WMC participants, with low WMC participants showing the opposite positive priming effect. The present results extend previous findings in demonstrating that (a) single negative priming can reliably generalize to semantic associates of the prime words, and (b) a differential availability of cognitive control resources can reliably modulate the negative priming effect at a semantic level of representation.

  4. Individual Differences in Working Memory Capacity Modulates Semantic Negative Priming from Single Prime Words

    PubMed Central

    Ortells, Juan J.; Noguera, Carmen; Álvarez, Dolores; Carmona, Encarna; Houghton, George

    2016-01-01

    The present study investigated whether semantic negative priming from single prime words depends on the availability of cognitive control resources. Participants with high vs. low working memory capacity (as assessed by their performance in complex span and attentional control tasks) were instructed to either attend to or ignore a briefly presented single prime word that was followed by either a semantically related or unrelated target word on which participants made a lexical decision. Individual differences in working memory capacity (WMC) mainly affected the processing of the ignored primes, but not the processing of the attended primes: While the latter produced reliable positive semantic priming for both high- and low-WMC participants, the former gave rise to reliable semantic negative priming only for high WMC participants, with low WMC participants showing the opposite positive priming effect. The present results extend previous findings in demonstrating that (a) single negative priming can reliably generalize to semantic associates of the prime words, and (b) a differential availability of cognitive control resources can reliably modulate the negative priming effect at a semantic level of representation. PMID:27621716

  5. Individual Differences in Working Memory Capacity Modulates Semantic Negative Priming from Single Prime Words.

    PubMed

    Ortells, Juan J; Noguera, Carmen; Álvarez, Dolores; Carmona, Encarna; Houghton, George

    2016-01-01

    The present study investigated whether semantic negative priming from single prime words depends on the availability of cognitive control resources. Participants with high vs. low working memory capacity (as assessed by their performance in complex span and attentional control tasks) were instructed to either attend to or ignore a briefly presented single prime word that was followed by either a semantically related or unrelated target word on which participants made a lexical decision. Individual differences in working memory capacity (WMC) mainly affected the processing of the ignored primes, but not the processing of the attended primes: While the latter produced reliable positive semantic priming for both high- and low-WMC participants, the former gave rise to reliable semantic negative priming only for high WMC participants, with low WMC participants showing the opposite positive priming effect. The present results extend previous findings in demonstrating that (a) single negative priming can reliably generalize to semantic associates of the prime words, and (b) a differential availability of cognitive control resources can reliably modulate the negative priming effect at a semantic level of representation. PMID:27621716

  6. Mouse primed embryonic stem cells could be maintained and reprogrammed on human amnion epithelial cells.

    PubMed

    Chen, Yi-Fei; Dong, Zhangli; Jiang, Lizheng; Lai, Dongmei; Guo, Lihe

    2013-01-15

    Naïve and primed embryonic stem cells (ESCs) represent 2 pluripotent states of mouse embryonic stem cells (mESCs), corresponding to the pre- and postimplantation cells, respectively, in vivo. Primed ESCs are distinct from naïve cells in biological characteristics, genetic features, developing potentials, and antagonistic signal pathway dependences to support undifferentiated growth. In vitro, naïve mESCs are readily converted to primed cells upon transferring to primed pluripotency signaling. ESC-derived epiblast stem cells (ESD-EpiSCs) are stabilized primed cells derived from naïve mESCs in vitro, and cannot be maintained with leukemia inhibitory factor (LIF) signaling with or without mouse embryonic fibroblasts as the feeder layer. Here, we show that the undifferentiated growth of ESD-EpiSCs could be maintained with the basic fibroblast growth factor employing human amnion epithelial cells (hAECs) as the feeder layer. Upon exposure to LIF, ESD-EpiSCs could undergo a reprogramming process on hAECs and be converted to naïve-like cells converted ESCs (cESCs), in which naïve pluripotency markers were activated, and primed markers were suppressed. DNA methylation analysis also validated the epigenetic conversion from primed to naïve-like pluripotent status. The bone morphogenetic protein 4 (BMP4) is an important signaling factor in pluripotency controlling, germ cell development, and neural commitment. It showed that ESD-EpiSCs and cESCs exhibited different features toward BMP4. Our results prove that hAECs are ideal feeder cells for both naïve and primed ESCs. More importantly, the primed ESCs are allowed to be reprogrammed to naïve-like pluripotent cells on hAECs. These findings suggest that under suitable conditions primed ESCs have the potency of converting to naïve-like ESCs.

  7. Masked priming by misspellings: Word frequency moderates the effects of SOA and prime-target similarity.

    PubMed

    Burt, Jennifer S

    2016-02-01

    University students made lexical decisions to eight- or nine-letter words preceded by masked primes that were the target, an unrelated word, or a typical misspelling of the target. At a stimulus onset asynchrony (SOA) of 47 ms, primes that were misspellings of the target produced a priming benefit for low-, medium-, and high-frequency words, even when the misspelled primes were changed to differ phonologically from their targets. At a longer SOA of 80 ms, misspelled primes facilitated lexical decisions only to medium- and low-frequency targets, and a phonological change attenuated the benefit for medium-frequency targets. The results indicate that orthographic similarity can be preserved over changes in letter position and word length, and that the priming effect of misspelled words at the shorter SOA is orthographically based. Orthographic-priming effects depend on the quality of the orthographic learning of the target word. PMID:26530310

  8. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  9. Docking of Secretory Vesicles Is Syntaxin Dependent

    PubMed Central

    de Wit, Heidi; Cornelisse, L. Niels; Toonen, Ruud F.G.; Verhage, Matthijs

    2006-01-01

    Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones. PMID:17205130

  10. Micromanaging of tumor metastasis by extracellular vesicles.

    PubMed

    Tominaga, Naoomi; Katsuda, Takeshi; Ochiya, Takahiro

    2015-04-01

    Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field. PMID:25746922

  11. ATP: The crucial component of secretory vesicles.

    PubMed

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  12. Routes and mechanisms of extracellular vesicle uptake

    PubMed Central

    Mulcahy, Laura Ann; Pink, Ryan Charles; Carter, David Raul Francisco

    2014-01-01

    Extracellular vesicles (EVs) are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells. PMID:25143819

  13. Viscoelastic deformation of lipid bilayer vesicles.

    PubMed

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  14. Lipid bilayer vesicle generation using microfluidic jetting.

    PubMed

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  15. Lipid Bilayer Vesicle Generation Using Microfluidic Jetting

    PubMed Central

    Coyne, Christopher W.; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A.; Liu, Allen P.

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies1,2. Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation3. The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  16. Lipid bilayer vesicle generation using microfluidic jetting.

    PubMed

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-02-21

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting.

  17. Proton pump of clathrin-coated vesicles

    SciTech Connect

    Xie, X.

    1985-01-01

    Clathrin-coated vesicles were prepared from bovine brain catalyze ATP-driven proton translocation and a /sup 32/Pi-ATP exchange reaction. N-ethylmaleimide (NEM) at 1 mM and dicyclohexylcarbodiimide (DCCD) at 0.5 mM inhibit the pump completely, whereas neither vanadate, efrapeptin, NaN/sub 3/, nor mitochondrial ATPase inhibitor has an effect. The coated vesicle proton pump is characterized by ATP specificity. dATP, but no other nucleotide, can replace ATP as a substrate. The pump is electrogenic and the electrogenicity is neutralized by chloride or bromide serving as co-ions. ATP-driven proton translocation can be observed in the absence of chloride, provided that the membrane potential is collapsed by K/sup +/ moving out in the presence of valinomycin. Chloride transport can be observed independent of proton movements in the absence of ATP, provided that an inside positive membrane potential is generated by K/sup +/ influx in the presence of valinomycin. The proton-translocating ATPase of coated vesicles was solubilized with a nonionic detergent polyoxyethylene 9 lauryl ether, and purified about 700 fold to near homogeneity. During purification the enzymatic activity was lost. A purified brain phospholipid fraction restored the activity and was subsequently identified as phosphatidylserine.

  18. Electroformation of Giant Unilamellar Vesicles: Investigating Vesicle Fusion versus Bulge Merging.

    PubMed

    Micheletto, Yasmine Miguel Serafini; Marques, Carlos M; Silveira, Nádya Pesce da; Schroder, André P

    2016-08-16

    Partially ordered stacks of phospholipid bilayers on a flat substrate can be obtained by the evaporation of a spread droplet of phospholipid-in-chloroform solution. When exposed to an aqueous buffer, numerous micrometric buds populate the bilayers, grow in size over minutes, and eventually detach, forming the so-called liposomes or vesicles. While observation of vesicle growth from a hydrated lipid film under an optical microscope suggests numerous events of vesicle fusion, there is little experimental evidence for discriminating between merging of connected buds, i.e., a shape transformation that does not imply bilayer fusion and real membrane fusion. Here, we use electroformation to grow giant unilamellar vesicles (GUVs) from a stack of lipids in a buffer containing either (i) nanometric liposomes or (ii) previously prepared GUVs. By combining different fluorescent labels of the lipids in the substrate and in the solution, and by performing a fluorescence analysis of the resulting GUVs, we clearly demonstrate that merging of bulges is the essential pathway for vesicle growth in electroformation. PMID:27409245

  19. Searching for Contracting Patterns over Time: Do Prime Contractor and Subcontractor Relations Follow Similar Patterns for Professional Services Provision?

    ERIC Educational Resources Information Center

    Ponomariov, Branco; Kingsley, Gordon; Boardman, Craig

    2011-01-01

    This paper compares over a 12-year period (1) patterns of contracting between a state transportation agency and its prime contractors providing engineering design services with (2) patterns between these prime contractors and their subcontractors. We find evidence of different contracting patterns at each level that emerge over time and coexist in…

  20. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile.

    PubMed

    Cohen, D E; Leighton, L S; Carey, M C

    1992-09-01

    After drainage of the bile salt pool, we infused unanesthetized bile fistula prairie dogs (Cynomys ludovicianus) intravenously with taurine-conjugated chenodeoxycholate (TCDC), cholate (TC), ursodeoxycholate (TUDC), and ursocholate (TUC) in concentrations that attained greater than 94% enrichment of biliary bile salts. With decreases in bile salt hydrophobicity, maximum steady state lecithin and to a lesser extent cholesterol secretion rates decreased in the rank order, TCDC greater than TC greater than TUDC greater than TUC. By phase analysis, TCDC-rich and TC-rich biles plotted inside their respective micellar zones, whereas TUDC-rich and TUC-rich biles plotted outside and were so-called "supersaturated" with cholesterol. Quasi-elastic light scattering and electron microscopy, when performed within 30 min of collection, revealed unilamellar vesicles in all biles. By 24 h, vesicles in TCDC-rich and TC-rich biles had dissolved into mixed micelles, whereas vesicles in TUDC-rich biles formed mixed micelles plus multilamellar liquid crystals, and vesicles in TUC-rich biles formed multilamellar liquid crystals exclusively. Because cholesterol/phospholipid molar ratios of multilamellar liquid crystals were less than or equal to 1, cholesterol monohydrate crystals did not form in these biles. We conclude that, despite drastic alterations in bile salt detergency, unilamellar vesicles are the final common pathway for lecithin and cholesterol secretion into bile. During equilibration of bile, the fate of unilamellar vesicles may be micellar, micellar plus liquid crystalline, or liquid crystalline only depending on the detergency (i.e., hydrophobic-hydrophilic balance) of the secreted bile salt.

  1. Priming effects in a subtropical forest soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Xu, Xingliang

    2015-04-01

    Priming effects can accelerate decomposition of soil organic carbon (SOC) and thus have great potential to change SOC dynamics. Although temperature and addition of fresh substrates could affect the intensity and direction of priming, it remains unclear how their interactions affect priming. Therefore we conducted an incubation experiment using a subtropical forest soil. We incubated the soil for 10 days at two temperatures: 15oC and 25oC, with four treatments: CK (only adding water), G (13C-glucose addition), NT (13C-glucose and nitrate additions) and AM (13C-glucose and ammonium additions). The results showed that glucose addition significantly accelerated the decomposition of SOC in both temperatures, indicates that positive priming occurs in this subtropical soil. While negative priming was observed in soils with simultaneous additions of glucose and nitrogen addition, especially at 25oC. The effect of temperature on PE was not significant. This indicates that mining of nitrogen is a major mechanism responsible for priming in this subtropical soil and there is no strong interaction between temperature and substrate additions to induce priming.

  2. Automatic Semantic Priming Abnormalities in Schizophrenia

    PubMed Central

    Mathalon, Daniel H.; Roach, Brian J.; Ford, Judith M.

    2014-01-01

    Abnormal activation of semantic networks characterizes schizophrenia and can be studied using the N400 event-related potential (ERP). N400 is elicited by words that are not primed by the preceding context and provides a direct measure of the neural mechanisms underlying semantic priming. Semantic priming refers to facilitated semantic processing gained through pre-exposure to semantic context, which can happen automatically if the interval between the prime and target is very short. We predicted that (1) schizophrenia patients have overly inclusive semantic networks, reflected in a less negative than expected N400 to relatively unprimed words, and (2) schizophrenia patients are deficient in their use of semantic context, responding to primed words as if they were unprimed, reflected in a more negative than expected N400 to primed words. N400s were acquired from patients with DSM-IV schizophrenia (n=26) and age-matched healthy comparison subjects (n=29) performing a picture-word verification (match vs. non-match) task. Word targets were presented 325ms after a picture prime, which either matched (CAMEL→”camel”), or did not match (In Category: CAMEL→”cow; Out Category: CAMEL→”candle”) the prime. N400 data suggest that both patients and controls are sensitive to the difference between primed and unprimed words, but patients are less sensitive than controls. Similarly, N400 data suggest that both groups were sensitive to the subtler difference between classes of unprimed words (In Category versus Out Category picture-word non-matches), but patients are less sensitive, especially those with prominent negative symptoms. PMID:19995582

  3. Release of canine parvovirus from endocytic vesicles.

    PubMed

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-11-25

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A(2) like domain in N-terminus of VP1. In this study we characterized the role of PLA(2) activity on CPV entry process. PLA(2) activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA(2) inhibitors inhibited the viral proliferation suggesting that PLA(2) activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA(2) activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A(1), brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A(1), brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA(2) activity of the virus. These results suggest that parvoviral PLA(2) activity is essential for productive

  4. Cherry Pit Primes Brad Pitt

    PubMed Central

    Burke, Deborah M.; Locantore, Jill Kester; Austin, Ayda A.; Chae, Bryan

    2008-01-01

    This study investigated why proper names are difficult to retrieve, especially for older adults. On intermixed trials, young and older adults produced a word for a definition or a proper name for a picture of a famous person. Prior production of a homophone (e.g., pit) as the response on a definition trial increased correct naming and reduced tip-of-the-tongue experiences for a proper name (e.g., Pitt) on a picture-naming trial. Among participants with no awareness of the homophone manipulation, older but not young adults showed these homophone priming effects. With a procedure that reduced awareness effects (Experiment 2), prior production of a homophone improved correct naming only for older adults, but speeded naming latency for both age groups. We suggest that representations of proper names are susceptible to weak connections that cause deficits in the transmission of excitation, impairing retrieval especially in older adults. We conclude that homophone production strengthens phonological connections, increasing the transmission of excitation. PMID:15016287

  5. Phonological and Orthographic Overlap Effects in Fast and Masked Priming

    PubMed Central

    Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  6. Controlled deformation of vesicles by flexible structured media

    PubMed Central

    Zhang, Rui; Zhou, Ye; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-01-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau–de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  7. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  8. Controlled deformation of vesicles by flexible structured media.

    PubMed

    Zhang, Rui; Zhou, Ye; Martínez-González, José A; Hernández-Ortiz, Juan P; Abbott, Nicholas L; de Pablo, Juan J

    2016-08-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  9. Formation and structural characteristics of thermosensitive multiblock copolymer vesicles.

    PubMed

    Ma, Shiying; Xiao, Mengying; Wang, Rong

    2013-12-23

    The spontaneous vesicle formation of ABABA-type amphiphilic multiblock copolymers bearing thermosensitive hydrophilic A-block in a selective solvent is studied using dissipative particle dynamics (DPD) approach. The formation process of vesicle through nucleation and growth pathway is observed by varying the temperature. The simulation results show that spherical micelle takes shape at high temperature. As temperature decreases, vesicles with small aqueous cavity appear and the cavity expands as well as the membrane thickness decreases with the temperature further decreasing. This finding is in agreement with the experimental observation. Furthermore, by continuously varying the temperature and the length of the hydrophobic block, a phase diagram is constructed, which can indicate the thermodynamically stable region for vesicles. The morphological phase diagram shows that vesicles can form in a larger parameter scope. The relationship between the hydrophilic and hydrophobic block length versus the aqueous cavity size and vesicle size are revealed. Simulation results demonstrate that the copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in A-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. PMID:24304193

  10. Abnormal Synaptic Vesicle Biogenesis in Drosophila Synaptogyrin Mutants

    PubMed Central

    Stevens, Robin J.; Akbergenova, Yulia; Jorquera, Ramon A.; Littleton, J. Troy

    2012-01-01

    Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr) null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals. PMID:23238721

  11. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides.

    PubMed

    Geyer, Tihamér; Helms, Volkhard

    2006-08-01

    We present a molecular model of a chromatophore vesicle from Rhodobacter sphaeroides. These vesicles are ideal benchmark systems for molecular and systemic simulations, because they have been well studied, they are small, and they are naturally separated from their cellular environment. To set up a photosynthetic chain working under steady-state conditions, we compiled from the experimental literature the specific activities and geometries that have been determined for their constituents. This data then allowed defining the stoichiometries for all membrane proteins. This article contains the kinetic part of the reconstructed model, while the spatial reconstruction is presented in a companion article. By considering the transport properties of the Cytochrome c(2) and ubiquinone pools, we show that their size and oxidation states allow for an efficient buffering of the statistical fluctuations that arise from the small size of the vesicles. Stoichiometric and kinetic considerations indicate that a typical chromatophore vesicle of Rb. sphaeroides with a diameter of 45 nm should contain approximately five bc(1) monomers. PMID:16714340

  12. Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance

    NASA Astrophysics Data System (ADS)

    Heuvingh, J.; Pincet, F.; Cribier, S.

    2004-07-01

    Proteins involved in membrane fusion, such as SNARE or influenza virus hemagglutinin, share the common function of pulling together opposing membranes in closer contact. The reduction of inter-membrane distance can be sufficient to induce a lipid transition phase and thus fusion. We have used functionalized lipids bearing DNA bases as head groups incorporated into giant unilamellar vesicles in order to reproduce the reduction of distance between membranes and to trigger fusion in a model system. In our experiments, two vesicles were isolated and brought into adhesion by the mean of micromanipulation; their evolution was monitored by fluorescence microscopy. Actual fusion only occurred in about 5% of the experiments. In most cases, a state of “hemifusion” is observed and quantified. In this state, the outer leaflets of both vesicles' bilayers merged whereas the inner leaflets and the aqueous inner contents remained independent. The kinetics of the lipid probes redistribution is in good agreement with a diffusion model in which lipids freely diffuse at the circumference of the contact zone between the two vesicles. The minimal density of bridging structures, such as stalks, necessary to explain this redistribution kinetics can be estimated.

  13. Electrophysiology reveals semantic priming at a short SOA irrespective of depth of prime processing.

    PubMed

    Küper, Kristina; Heil, Martin

    2009-04-01

    The otherwise robust behavioral semantic priming effect is reduced to the point of being absent when a letter search has to be performed on the prime word. As a result the automaticity of semantic activation has been called into question. It is unclear, however, in how far automatic processes are even measurable in the letter search priming paradigm as the prime task necessitates a long prime-probe stimulus-onset asynchrony (SOA). In a modified procedure, a short SOA can be realized by delaying the prime task response until after participants have made a lexical decision on the probe. While the absence of lexical decision priming has already been demonstrated in this design it seems premature to draw any definite conclusions from this purely behavioral result since event related potential (ERP) measures have been shown to be a more sensitive index of semantic activation. Using the modified paradigm we thus recorded ERP in addition to lexical decision times. Stimuli were presented at two different SOAs (240 ms vs. 840 ms) and participants performed either a grammatical discrimination (Experiment 1) or a letter search (Experiment 2) on the prime. Irrespective of prime task, the modulation of the N400, the ERP correlate of semantic activation, provided clear-cut evidence of semantic processing at the short SOA. Implications for theories of semantic activation as well as the constraints of the delayed prime task procedure are discussed.

  14. Epigenetic Control of Defense Signaling and Priming in Plants.

    PubMed

    Espinas, Nino A; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens. PMID:27563304

  15. Epigenetic Control of Defense Signaling and Priming in Plants

    PubMed Central

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  16. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant. PMID:26514294

  17. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant.

  18. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles.

    PubMed

    Fonseca, P; Vardaki, I; Occhionero, A; Panaretakis, T

    2016-01-01

    Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells. PMID:27572129

  19. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    PubMed Central

    Ohno, Shin-ichiro; Drummen, Gregor P. C.; Kuroda, Masahiko

    2016-01-01

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems. PMID:26861303

  20. Adhesive interactions between vesicles in the strong adhesion limit

    PubMed Central

    Ramachandran, Arun; Anderson, Travers H.; Leal, L. Gary; Israelachvili, Jacob N.

    2010-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force-distance or energy distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g. mica sheet) and cannot be deformed. However, it is known that in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus kb, the area expansion modulus Ka, and the adhesive minimum WP(0) and separation DP(0) in the energy of interaction between two flat bilayers, which can be obtained from the force-distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between non-deforming bilayers such as ∣WP(0)∣∼5×10−4mJ/m2, which are ordinarily considered weak in colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active

  1. Adhesive interactions between vesicles in the strong adhesion limit.

    PubMed

    Ramachandran, Arun; Anderson, Travers H; Leal, L Gary; Israelachvili, Jacob N

    2011-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force−distance or energy−distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope, and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g., mica sheet) and cannot be deformed. However, it is known that, in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus, k(b), the area expansion modulus, k(a), and the adhesive minimum, W(P)(0), and separation, D(P)(0), in the energy of interaction between two flat bilayers, which can be obtained from the force−distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between nondeforming bilayers such as |W(P)(0)| 5 × 10(−4) mJ/m2, which are ordinarily considered weak in the colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence

  2. Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis

    PubMed Central

    Joffe, Luna S.; Guimarães, Allan J.; Sobreira, Tiago J. P.; Nosanchuk, Joshua D.; Cordero, Radames J. B.; Frases, Susana; Casadevall, Arturo; Almeida, Igor C.; Nimrichter, Leonardo; Rodrigues, Marcio L.

    2010-01-01

    Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for

  3. Competitor rule priming: evidence for priming of task rules in task switching.

    PubMed

    Katzir, Maayan; Ori, Bnaya; Hsieh, Shulan; Meiran, Nachshon

    2015-05-01

    In task-switching experiments, participants switch between task rules, and each task rule describes how responses are mapped to stimulus information. Importantly, task rules do not pertain to any specific response but to all possible responses. This work examined the hypothesis that task rules, as wholes, rather than (just) specific responses are primed by their execution, such that, in the following trial, response conflicts are exacerbated when the competing responses are generated by these recently primed rules, and performance becomes relatively poor. This hypothesis was supported in two task-switching experiments and re-analyses of additional three published experiments, thus indicating Competitor Rule Priming. Importantly, the Competitor Rule-Priming effect was independent of response repetition vs. switch, suggesting that it reflects the priming of the entire task rule rather than the priming (or suppression) of specific responses. Moreover, this effect was obtained regardless of Backward Inhibition, suggesting these effects are unrelated.

  4. Large vesicles record pathways of degassing at basalic volcanoes

    SciTech Connect

    Polacci, M.; Baker, D.R.; Bai, L.; Mancini, L.

    2008-10-08

    Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.

  5. Gram-negative and Gram-positive bacterial extracellular vesicles.

    PubMed

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria.

  6. Conceptual priming with pictures and environmental sounds.

    PubMed

    Kim, Yongju; Porter, Anne Marie; Goolkasian, Paula

    2014-02-01

    A series of experiments was conducted to examine conceptual priming within and across modalities with pictures and environmental sounds. In Experiment 1, we developed a new multimodal stimulus set consisting of two picture and sound exemplars that represented 80 object items. In Experiments 2, we investigated whether categorization of the stimulus items would be facilitated by picture and environmental sound primes that were derived from different exemplars of the target items; and in Experiments 3 and 4, we tested the additional influence on priming when trials were consolidated within a target modality and the inter stimulus interval was lengthened. The results demonstrated that target categorization was facilitated by the advanced presentation of conceptually related exemplars, but there were differences in effectiveness when pictures and sounds appeared as primes.

  7. Russian Prime Minister Calls the Station Crew

    NASA Video Gallery

    Russian Prime Minister Vladimir Putin called the International Space Station from the Russian Mission Control Center in Korolev, Russia, on Jan. 11, 2011. Putin also offered his condolences to ISS ...

  8. Preserved conceptual priming in Alzheimer's disease.

    PubMed

    Martins, Carla A R; Lloyd-Jones, Toby J

    2006-10-01

    We assessed Alzheimer's disease (AD) and healthy older adult control (HC) group performance on: (1) a conceptual priming task, in which participants had to make a semantic decision as to whether a degraded picture of an object encountered previously belonged to the category of living or non-living things; and (2) a recognition memory task. The AD group showed a dissociation between impaired performance on the recognition task and preserved priming for semantic decisions to degraded pictures. We argue that it is not whether priming is conceptual or perceptual that is important for the observation of priming in AD, rather it is the nature of the response that is required (c.f., Gabrieli et al., 1999). PMID:17172179

  9. Preserved verb generation priming in global amnesia.

    PubMed

    Seger, C A; Rabin, L A; Zarella, M; Gabrieli, J D

    1997-08-01

    In the verb generation task, participants are presented with nouns and generate for each one an appropriate verb. Raichle et al. (Cerebral Cortex, 1994, 4, 8-26) found that when participants generated verbs to repeated nouns, generation latencies were reduced and different patterns of brain activation were present. In order to examine whether verb generation priming is dependent or independent of declarative memory, verb generation priming was compared between 13 amnesic (seven with alcoholic Korsakoff's syndrome, six with other etiologies) and 19 control participants (10 with a history of alcoholism). Both amnesic and control participants became faster across blocks on repeated nouns and slowed when novel nouns were introduced. Priming was verb specific for both groups: it was equivalent whether generated to a repeated or a novel noun. Verb generation priming, therefore, can occur independently of declarative memory.

  10. Suggestibility and negative priming: two replication studies.

    PubMed

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  11. OVATION Prime Model and "Aurorasaurus" Auroral Observations

    NASA Video Gallery

    This video shows the auroral oval, as modeled using OVATION Prime (2013), along with citizen science reports collected by the Aurorasaurus project for the St. Patrick’s Day storm over March 17-19, ...

  12. NASA and OPTIMUS PRIME Team Up

    NASA Video Gallery

    NASA and OPTIMUS PRIME have teamed up to educate! Kids everywhere created videos showing how NASA technology is truly more than meets the eye, and now you can vote on your favorite! Visit http://ip...

  13. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Yamawaki, Ruth; Thind, Khushdev

    2016-01-01

    Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca2+ entry, or Ca2+ coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported

  14. An analysis of the kinetics for the N{sub 2}(A {sup 3}{Sigma}{sub u}{sup +}, v{sup {prime}}) + CO(X {sup 1}{Sigma}{sup +}, v{sup {prime}{prime}}=O) energy-transfer reaction and an upper limit for the rate constants of the reactions CO({alpha} {sup 3}II, v{sup {prime}}=O and 1) + CF{sub 4}

    SciTech Connect

    Thomas, J.M.; Stark, G.; Katayama, D.H.

    1992-10-15

    The vibrational level distribution of the CO(a {sup 3}II) produced in the title reaction was measured in a rapidly pumped discharge-flow reactor at a total pressure of {approximately}2 Torr and {approximately}297 K. The emission from the CO(a {sup 3}II,v{sup {prime}}{r_arrow}X {sup 1}{Sigma}{sup +}, v{sup {prime}{prime}}) Cameron bands, observed from the product CO(a) formed in the title reaction, was collected with a 2.2-m vacuum-ultraviolet spectrograph-monochromator utilizing both photographic and photoelectric techniques. For N{sub 2}(A,v{sup {prime}}{le}4) + CO(X,v{sup {prime}{prime}}=O) the authors obtain a CO(a,v{sup {prime}}) population ratio of 1.00:0.85 for v{sup {prime}} = 0 and 1, respectively. This branching ratio differs from previous results for N{sub 2}(A,v{sup {prime}}{ge}0) which did not correct for competing removal processes of the CO(a) state. In order to obtain these results it was necessary to measure the room temperature biomolecular rate constants, k{sub v}{sup {prime}}`s, for the CO(a,v{sup {prime}}=0 and 1) + CF{sub 4} reactions which were determined to be {le}5 x 10{sup {minus}14} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. 31 refs., 1 tab.

  15. Is the rhizosphere priming effect an important mechanism for nitrogen mineralisation in soil?

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Baggs, Elizabeth; Morley, Nicholas; Wall, David; Paterson, Eric

    2015-04-01

    In soil, nitrogen is mobilised from soil organic matter (SOM) to pools more readily available to plants (mineralisation), mediated by the microbial biomass. Multiple mechanisms underpin this process, including the priming effect (PE) which is increasingly recognised as an important driver of N mineralisation. The PE is where microbes utilize labile carbon from roots (root exudates or senescing plant material) for energy and subsequently mineralise SOM for nutrients, inevitably mobilising nutrients from SOM to plant available pools. However, the mechanism and regulators underpinning PE's are virtually unknown. This work investigates the importance of priming for N mineralisation. We hypothesized that 1) addition of labile C would increase gross N mineralisation and plant N uptake, and that this is soil-specific; 2) the stoichiometry of primed and basal mineralisation fluxes would be different, indicative of these processes being functionally distinct; and 3) the presence of fertilizer nitrogen and grazing would reduce primed and basal mineralisation and reduce plant uptake of SOM derived N. To do this we coupled continuous steady-state 13C labelling and 15N isotope dilution to measure specific gross C and N fluxes from two contrasting soils. Addition of carbon increased gross C and N fluxes from SOM, but the effect was soil-specific. The C-to-N ratio of the flux from 'primed' SOM was much lower than that of the basal flux indicating that the release of labile carbon from plant roots functions as a nutrient acquisition response, increasing mineralisation of SOM. Addition of N fertiliser resulted in negative priming of SOM, but overall and in both soils, the plant accessed more SOM-derived N. Grazing and priming were closely coupled, with grazing increasing SOM priming. Our results demonstrate that priming effects are an integral component of N mineralisation and should be incorporated into nitrogen cycling models.

  16. Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells

    PubMed Central

    1994-01-01

    Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed. PMID:7798314

  17. The dimensions and symmetry of the seminal vesicles.

    PubMed

    Gofrit, O N; Zorn, K C; Taxy, J B; Zagaja, G P; Steinberg, G D; Shalhav, A L

    2009-03-01

    The traditional anatomical description of the seminal vesicles is based on autopsy and imaging studies. Trans-peritoneal robotic-assisted laproscopic surgery, with its three-dimensional magnified view and miniature articulated working instruments, provides an opportunity to perform accurate dissections of the seminal vesicles even when extremely long and tortuous. We used specimens obtained by robotic-assisted laparoscopic radical prostatectomy (RLRP) for accurate anatomic assessment of the dimensions of the seminal vesicles. Digital photos of 78 specimens from men (mean age 59 ± 6.1 years) who underwent RLRP were analyzed using the Image Pro Plus software. Seminal vesicle dimensions were correlated with patients' age, weight, height, prostate weight, sexual function profile (SHIM) and symptom severity score of the lower urinary tract symptoms (IPSS). We found that the length of the seminal vesicles is highly variable (range of 8.5-94.6 mm). The average seminal vesicle length was 31 ± 10.3 mm and its average volume 7.1 ± 5.2 ml. The right seminal vesicle was significantly larger than the left in length, width and volume (P < 0.003). The seminal vesicles were found to be highly asymmetric with a mean difference of 17.8% in length and 24.9% in width between the sides. No correlation between seminal vesicle dimensions and any of the parameters tested was found. We concluded that the normal human seminal vesicles are characterized by marked (11-fold) variation in length and are asymmetric in most patients. The right seminal vesicle is significantly larger than the left. Seminal vesicle dimensions cannot be predicted from other morphometric or physiologic parameters. PMID:27628450

  18. Explicit representation of microbes, enzymes, mineral surfaces, and isotopic tracers helps explain soil organic carbon decomposition and priming

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Tang, J.; Riley, W. J.; Wallenstein, M. D.; Cotrufo, M. F.

    2015-12-01

    Increased plant carbon inputs from CO2 fertilization could accelerate native soil organic carbon (SOC) decomposition through the priming effect. Although this increase in SOC turnover rate due to priming might have important consequences for SOC dynamics, there are large uncertainties in the sign and magnitude of priming, as well as large challenges in identifying underlying mechanisms. Current SOC models, mostly based on first-order decomposition representations, do no represent many important biotic and abiotic processes, including the priming effect. The incorporation of explicit biotic and abiotic interactions in modeling SOC decomposition may improve our ability to accurately predict SOC dynamics. In this study, we (1) develop a microbe-explicit SOC decomposition model to simulate SOC turnovers and priming and (2) test the model with a soil incubation experiment with 14C-labeled glucose addition. We report (1) the evolutions of modeled carbon pools, (2) the fate of 14C labeled glucose addition, (3) the model performance compared to observations, (4) the transient behavior of priming components, and (5) an analysis of the effects of carbon input magnitudes and frequencies on the priming effect. Here are some findings from our model-experiment analyses: (1) the inclusion of an extracellular oxidative metabolism (EXOMET) in addition to intracellular microbial respiration helps improve the model performance; (2) priming is dominated by intracellular microbial respiration at the beginning of incubation (~ first 5 days) but later on dominated by EXOMET, which explains observed long-term sustaining priming; (3) the varying magnitudes of glucose addition do not change the magnitude of priming per unit addition; (4) the varying frequencies of glucose addition change the magnitude of priming per unit addition, but with contrast changing patterns for non-steady-state and steady state simulations; (5) constant annual total glucose addition shift the system to another

  19. Priming addition facts with semantic relations.

    PubMed

    Bassok, Miriam; Pedigo, Samuel F; Oskarsson, An T

    2008-03-01

    Results from 2 relational-priming experiments suggest the existence of an automatic analogical coordination between semantic and arithmetic relations. Word pairs denoting object sets served as primes in a task that elicits "obligatory" activation of addition facts (5 + 3 activates 8; J. LeFevre, J. Bisanz, & L. Mrkonjic, 1988). Semantic relations between the priming words were either aligned or misaligned with the structure of addition (M. Bassok, V. M. Chase, & S. A. Martin, 1998). Obligatory activation of addition facts occurred when the digits were primed by categorically related words (tulips-daisies), which are aligned with addition, but did not occur when the digits were primed by unrelated words (hens-radios, Experiment 1) or by functionally related words (records-songs, Experiment 2), which are misaligned with addition. These findings lend support to the viability of automatic analogical priming (B. A. Spellman, K. J. Holyoak, & R. G. Morrison, 2001) and highlight the relevance of arithmetic applications to theoretical accounts of mental arithmetic. PMID:18315410

  20. An ERP Investigation of Orthographic Priming with Relative-Position and Absolute-Position Primes

    PubMed Central

    Grainger, Jonathan; Holcomb, Phillip J.

    2009-01-01

    The present study used event-related potentials to examine the time-course of relative-position and absolute-position orthographic priming. Relative-position priming was examined using primes formed by a concatenated subset of the target word’s letters (e.g., cllet/COLLECT vs. dlema/COLLECT), and absolute-position priming was investigated using hyphenated versions of these primes (c-lle-t/COLLECT vs. d-lem-a/COLLECT). Both manipulations modulated the ERP waveform starting at around 100 ms post-target onset and extending into the N400 component. The first clear manifestation of priming was found in the N250 component, where hyphenated primes were found to have an earlier, more robust and more widely distributed effect than the concatenated primes. On the other hand, both prime types had similar effects on N400 amplitude. These results provide important information about the time-course of activation of location-specific and location-invariant (word-centered) orthographic representations during visual word recognition. PMID:19285966

  1. Relational integrativity of prime-target pairs moderates congruity effects in evaluative priming.

    PubMed

    Ihmels, Max; Freytag, Peter; Fiedler, Klaus; Alexopoulos, Theodore

    2016-05-01

    In evaluative priming, positive or negative primes facilitate reactions to targets that share the same valence. While this effect is commonly explained as reflecting invariant structures in semantic long-term memory or in the sensorimotor system, the present research highlights the role of integrativity in evaluative priming. Integrativity refers to the ease of integrating two concepts into a new meaningful compound representation. In extended material tests using paired comparisons from two pools of positive and negative words, we show that evaluative congruity is highly correlated with integrativity. Therefore, in most priming studies, congruity and integrativity are strongly confounded. When both aspects are disentangled by manipulating congruity and integrativity orthogonally, three priming experiments show that evaluative-priming effects were confined to integrative prime-target pairs. No facilitation of prime-congruent targets was obtained for non-integrative stimuli. These findings are discussed from a broader perspective on priming conceived as flexible, context-dependent, and serving a generative adaptation function. PMID:26689705

  2. Sugar uptake by intestinal basolateral membrane vesicles.

    PubMed

    Wright, E M; van Os, C H; Mircheff, A K

    1980-03-27

    A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells. PMID:6245688

  3. Sugar uptake by intestinal basolateral membrane vesicles.

    PubMed

    Wright, E M; van Os, C H; Mircheff, A K

    1980-03-27

    A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells.

  4. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  5. Induced movements of giant vesicles by millimeter wave radiation.

    PubMed

    Albini, Martina; Dinarelli, Simone; Pennella, Francesco; Romeo, Stefania; Zampetti, Emiliano; Girasole, Marco; Morbiducci, Umberto; Massa, Rita; Ramundo-Orlando, Alfonsina

    2014-07-01

    Our previous study of interaction between low intensity radiation at 53.37GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating. PMID:24704354

  6. Coated vesicles: a diversity of form and function.

    PubMed

    Schmid, S L; Damke, H

    1995-11-01

    In every well-characterized example, the small transport vesicles that mediate membrane trafficking between intracellular organelles are encased in a protein coat. In general, the coat proteins assemble from cytosolic pools onto the membrane and play a critical role in vesicle formation. Recent reviews have emphasized the clear similarities in the mechanisms that drive vesicle budding at distinct cellular locations. Here we focus on the diversity of solutions to an apparently related biological task. These mechanistic differences are likely to be physiologically important determinants of the diversity in form, and function of coated transport vesicles. PMID:7589986

  7. Dynamics of multicomponent vesicles in a viscous fluid

    SciTech Connect

    Sohn, Jin Sun Tseng, Y-H Li Shuwang Voigt, Axel Lowengrub, John S.

    2010-01-01

    We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibility of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small.

  8. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  9. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  10. Association of Endophilin B1 with Cytoplasmic Vesicles.

    PubMed

    Li, Jinhui; Barylko, Barbara; Eichorst, John P; Mueller, Joachim D; Albanesi, Joseph P; Chen, Yan

    2016-08-01

    Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins. PMID:27508440

  11. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  12. Fluctuation Dynamics of Block Copolymer Vesicles

    SciTech Connect

    Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.

    2010-07-13

    X-ray photon correlation spectroscopy was used to characterize the wave-vector- and temperature-dependent dynamics of spontaneous thermal fluctuations in a vesicle (L4) phase that occurs in a blend of a symmetric poly(styrene-ethylene/butylene-styrene) triblock copolymer with a polystyrene homopolymer. Measurements of the intermediate scattering function reveal stretched-exponential behavior versus time, with a stretching exponent slightly larger than 2/3. The corresponding relaxation rates show an approximate q{sup 3} dependence versus wave vector. Overall, the experimental measurements are well described by theories that treat the dynamics of independent membrane plaquettes.

  13. Characterization of Flavonoid 3[prime],5[prime]-Hydroxylase in Microsomal Membrane Fraction of Petunia hybrida Flowers.

    PubMed Central

    Menting, JGT.; Scopes, R. K.; Stevenson, T. W.

    1994-01-01

    We have detected a flavonoid 3[prime],5[prime]-hydroxylase (F3[prime],5[prime]H) in the microsomal fraction of Petunia hybrida flowers. Activity varied with the development of flowers, peaking immediately prior to and during anthesis, but was absent in mature flowers. F3[prime],5[prime]H activity in flower extracts from genetically defined floral color mutants correlated strictly with the genotypes Hf1 and Hf2. No activity was detected in flowers from mutants homozygous recessive for both alleles. F3[prime],5[prime]H activity was dependent on NADPH and molecular oxygen; there was only slight activity with NADH. The enzyme catalyzes the hydroxylation of 5,7,4[prime]-trihydroxyflavonone at the 3[prime] and 5[prime] positions, and of 5,7,3[prime],4[prime]-tetrahydroxyflavonone and dihydroquercetin at the 5[prime] position. Hydroxylase activity was inhibited by plant growth regulators (1-aminobenzotriazole and tetcyclacis) and by CO, N-ethylmaleimide, diethyldithiocarbamate, and cytochrome (Cyt) c. Activity was not affected by diethylpyrocarbonate or phenylmethylsulfonyl fluoride, but was enhanced by 2-mercaptoethanol. A polyclonal antibody that inhibits higher plant NADPH-Cyt P450 reductase inhibited the F3[prime],5[prime]H. The data are consistent with the suggestion that the P. hybrida F3[prime],5[prime]H is a monooxygenase consisting of a Cyt P450 and a NADPH-Cyt P-450 reductase. Cyts P450 were detected in microsomal membranes and in solubilized detergent extracts of these membranes. F3[prime],5[prime]H activity was sensitive to low concentrations of all detergents tested, and therefore solubilization of the active enzyme was not achieved. Reaction products other than flavanones were observed in F3[prime],5[prime]H assays and these may be formed by enzymic oxidation of flavanones. The possibility of a microsomal flavone synthase of a type that has not been described in P. hybrida is discussed. PMID:12232356

  14. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  15. Resonance multiphoton ionization and dissociation of dimethyl ether via the {\\skew1\\tilde{\\rm C}^{\\prime}}, {\\skew1\\tilde{\\rm C}} and \\tilde{\\rm B} states

    NASA Astrophysics Data System (ADS)

    Mejia-Ospino, E.; García, G.; Guerrero, A.; Alvarez, I.; Cisneros, C.

    2005-01-01

    The three-photon resonance four-photon ionization and dissociation spectra of dimethyl ether (DME) are presented in the wavelength range 450-550 nm at 1 nm intervals. The (3+1) REMPI spectra show three prominent bands corresponding to the \\tildeB \\leftarrow \\skew1\\tildeX, {\\skew1\\tildeC} \\leftarrow \\skew1\\tildeX and {\\skew1\\tildeC^{\\prime}} \\leftarrow \\skew1\\tildeX transitions with origins at 61 457 cm-1 (7.615 eV), 59 055 cm-1 (7.322 eV) and 58 010 cm-1 (7.194 eV), respectively. Several ionized species, CH3+, CHnO+ (n = 1-3) and CH3OCH3+, are observed in the region of wavelengths studied here. In order to compare the results, a shorter wavelength multiphoton dissociation and ionization of DME at 355 nm is also presented. At this wavelength, DME undergoes neutral dissociation to CH3 and CH3O and each fragment is then ionized by multiphoton absorption. The fragmentation at 355 nm is very intense and only small fragments such as CH3+, CHO+, CH2+, CH+ and C+ ions are observed. The measurement of photoelectron energy allows us to establish that the DME ionization potential is at least 9.55 ± 0.15 eV. The experiments were performed using a Nd:YAG-OPO (optical parametric oscillator) tunable laser system coupled to a time-of-flight mass spectrometer and a hemispherical electron energy analyser.

  16. An Electrophysiological Investigation of Early Effects of Masked Morphological Priming

    ERIC Educational Resources Information Center

    Morris, Joanna; Grainger, Jonathan; Holcomb, Phillip J.

    2008-01-01

    This experiment examined event-related responses to targets preceded by semantically transparent morphologically related primes (e.g., farmer-farm), semantically opaque primes with an apparent morphological relation (corner-corn), and orthographically, but not morphologically, related primes (scandal-scan) using the masked priming technique…

  17. Processing Speaker Variability in Repetition and Semantic/Associative Priming

    ERIC Educational Resources Information Center

    Lee, Chao-Yang; Zhang, Yu

    2015-01-01

    The effect of speaker variability on accessing the form and meaning of spoken words was evaluated in two short-term priming experiments. In the repetition priming experiment, participants listened to repeated or unrelated prime-target pairs, in which the prime and target were produced by the same speaker or different speakers. The results showed…

  18. Decomposition of Repetition Priming Components in Picture Naming

    ERIC Educational Resources Information Center

    Francis, Wendy S.; Corral, Nuvia I.; Jones, Mary L.; Saenz, Silvia P.

    2008-01-01

    Cognitive mechanisms underlying repetition priming in picture naming were decomposed in several experiments. Sets of encoding manipulations meant to selectively prime or reduce priming in object identification or word production components of picture naming were combined factorially to dissociate processes underlying priming in picture naming.…

  19. Masked Inhibitory Priming in English: Evidence for Lexical Inhibition

    ERIC Educational Resources Information Center

    Davis, Colin J.; Lupker, Stephen J.

    2006-01-01

    Predictions derived from the interactive activation (IA) model were tested in 3 experiments using the masked priming technique in the lexical decision task. Experiment 1 showed a strong effect of prime lexicality: Classifications of target words were facilitated by orthographically related nonword primes (relative to unrelated nonword primes) but…

  20. Semantic Priming for Coordinate Distant Concepts in Alzheimer's Disease Patients

    ERIC Educational Resources Information Center

    Perri, R.; Zannino, G. D.; Caltagirone, C.; Carlesimo, G. A.

    2011-01-01

    Semantic priming paradigms have been used to investigate semantic knowledge in patients with Alzheimer's disease (AD). While priming effects produced by prime-target pairs with associative relatedness reflect processes at both lexical and semantic levels, priming effects produced by words that are semantically related but not associated should…

  1. Priming Ability-Relevant Social Categories Improves Intellectual Test Performance

    ERIC Educational Resources Information Center

    Lin, Phoebe S.; Kennette, Lynne N.; Van Havermaet, Lisa R.; Frank, Nichole M.; McIntyre, Rusty B.

    2012-01-01

    Research shows that priming affects behavioral tasks; fewer studies, however, have been conducted on how social category primes affect cognitive tasks. The present study aimed to examine the effects of social category primes on math performance and word recall. It was hypothesized that Asian prime words would improve math performance and word…

  2. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains

    PubMed Central

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-01-01

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.001 PMID:27253063

  3. The priming effect of military service on creativity performance.

    PubMed

    Chiu, Fa-Chung; Tu, Priscilla L P

    2014-04-01

    This study investigated the service priming effect on creativity performance. In three experiments, the service priming was manipulated in three ways (Army priming, Air Force priming, and a Neutral condition). Participants' performances on the Chinese Remote Associates Test (CRAT), insight problems, and critical thinking problems were accordingly measured in each experiment. Results showed that the Air Force priming improved creativity and the Army priming enhanced critical thinking. The results suggest that the constructions and processes of these two manipulations are different. In addition, results also suggested that the branch of military service moderates the relationship between the service priming and the performance of creativity. PMID:24897904

  4. Vesicle trafficking in plant immune responses.

    PubMed

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  5. PTEN functions by recruitment to cytoplasmic vesicles.

    PubMed

    Naguib, Adam; Bencze, Gyula; Cho, Hyejin; Zheng, Wu; Tocilj, Ante; Elkayam, Elad; Faehnle, Christopher R; Jaber, Nadia; Pratt, Christopher P; Chen, Muhan; Zong, Wei-Xing; Marks, Michael S; Joshua-Tor, Leemor; Pappin, Darryl J; Trotman, Lloyd C

    2015-04-16

    PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles. PMID:25866245

  6. Designing synthetic vesicles that engulf nanoscopic particles

    NASA Astrophysics Data System (ADS)

    Smith, Kurt A.; Jasnow, David; Balazs, Anna C.

    2007-08-01

    We examine the interaction of a lipid bilayer membrane with a spherical particle in solution using dissipative particle dynamics, with the aim of controlling the passage of foreign objects into and out of vesicles. Parameters are chosen such that there is a favorable adhesive interaction between the membrane and the particle. Under these conditions, the membrane wraps the particle in a process resembling phagocytosis in biological cells. We find that, for a homogeneous membrane with a uniform attraction to the particle, the membrane is unable to fully wrap the particle when the adhesion strength is below a certain value. This is observed even in the limit of zero membrane tension. When the adhesion strength is increased above the threshold value, the membrane fully wraps the particle. However, the wrapped particle remains tethered to the larger membrane. We next consider an adhesive domain, or raft, in an otherwise nonadhesive membrane. We find that, when the particle is wrapped by the raft, the line tension at the raft interface promotes fission, allowing the wrapped particle to detach from the larger membrane. This mechanism could be used to allow particles to cross a vesicle membrane.

  7. Coated vesicles contain a phosphatidylinositol kinase.

    PubMed

    Campbell, C R; Fishman, J B; Fine, R E

    1985-09-15

    When coated vesicles (CVs) are incubated with [gamma-32P]ATP, radioactivity is rapidly incorporated into a compound identified by thin layer chromatography as phosphatidylinositol 4-phosphate. This activity has been identified in CVs isolated from bovine brain as well as from rat liver and chick embryo skeletal muscle. Phosphatidylinositol (PI) kinase is not separated from CVs during agarose electrophoresis, which produces CVs of greater than 95% purity, indicating that the activity present does not derive from contamination. The specific activity of these highly purified CVs was demonstrated to be approximately twice that of synaptic plasma membranes, further ruling out contamination from this source. The PI kinase remains associated with the vesicle upon removal of clathrin and its associated proteins and is solubilized by nonionic detergents, suggesting it is an integral membrane protein. We have been unable to demonstrate the formation of significant amounts of phosphatidylinositol 4,5-bisphosphate in any of our CV preparations. In the presence of exogenous PI, activity is stimulated, with maximal phosphorylation occurring at 0.1 mM. The enzyme appears to be maximally stimulated by 200 mM MgCl2 and 1 mM ATP and is most active at pH 7.25. Calculations indicate that, under optimal conditions, approximately 25 molecules of PIP are produced per CV within 60 s, suggesting that these structures may play an important role in cellular PI metabolism. PMID:2863269

  8. Microfluidic fabrication of asymmetric giant lipid vesicles

    PubMed Central

    Hu, Peichi C.; Li, Su; Malmstadt, Noah

    2011-01-01

    We have developed a microfluidic technology for the fabrication of compositionally asymmetric giant unilamellar vesicles (GUVs). The vesicles are assembled in two independent steps. In each step, a lipid monolayer is formed at a water-oil interface. The first monolayer is formed inside of a microfluidic device with a multiphase droplet flow configuration consisting of a continuous oil stream in which water droplets are formed. These droplets are dispensed into a vessel containing a layer of oil over a layer of water. The second lipid monolayer is formed by transferring the droplets through this second oil-water interface by centrifugation. By dissolving different lipid compositions in the different oil phases, the composition of each leaflet of the resulting lipid bilayer can be controlled. We have demonstrated membrane asymmetry by showing differential fluorescence quenching of labeled lipids in each leaflet and by demonstrating that asymmetric GUVs will bind an avidin-coated surface only when biotinylated lipids are targeted to the outer leaflet. In addition, we have demonstrated the successful asymmetric targeting of phosphatidylserine lipids to each leaflet, producing membranes with a biomimetic and physiologically relevant compositional asymmetry. PMID:21449588

  9. Bacterial Outer Membrane Vesicles and Vaccine Applications

    PubMed Central

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A.; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  10. Modulation of 2{prime}-5{prime} oligoadenylate synthetase by environmental stress in the marine sponge Geodia cydonium

    SciTech Connect

    Schroeder, H.C.; Wiens, M.; Mueller, W.E.G.; Kuusksalu, A.; Kelve, M.

    1997-07-01

    Recently the authors established the presence of relatively high amounts of 2{prime}-5{prime} oligoadenylates (2{prime}-5{prime} A) and 2{prime}-5{prime} oligoadenylate synthetase (2{prime}-5{prime} A synthetase) in the marine sponge Geodia cydonium. Here they determined by applying radioimmunoassay and high-performance liquid chromatographical methods that the concentration of 2{prime}-5{prime} A synthetase change following exposure of G. cydonium tissue to environmental stress. The 2{prime}-5{prime} A content and the activity of 2{prime}-5{prime} A synthetase, present in crude sponge extract, increase by up to three-fold after treating sponge cubes for 2 h with natural stressors including heat shock (26 C), cold shock (6 C), pH shock (pH 6), and hypertonic shock and subsequent incubation for 18 h under ambient conditions (16 C). No response was observed after exposure of sponges to an alkaline (pH 10) or hypotonic environment. Similar changes have been found for the expression of heat shock protein HSP70 in G. cydonium. These results show that 2{prime}-5{prime} A in sponges may be useful as a novel biomarker for environmental monitoring.

  11. Smelly primes – when olfactory primes do or do not work

    PubMed Central

    Smeets, M. A. M.; Dijksterhuis, G. B.

    2014-01-01

    In applied olfactory cognition the effects that olfactory stimulation can have on (human) behavior are investigated. To enable an efficient application of olfactory stimuli a model of how they may lead to a change in behavior is proposed. To this end we use the concept of olfactory priming. Olfactory priming may prompt a special view on priming as the olfactory sense has some unique properties which make odors special types of primes. Examples of such properties are the ability of odors to influence our behavior outside of awareness, to lead to strong affective evaluations, to evoke specific memories, and to associate easily and quickly to other environmental stimuli. Opportunities and limitations for using odors as primes are related to these properties, and alternative explanations for reported findings are offered. Implications for olfactory semantic, construal, behavior and goal priming are given based on a brief overview of the priming literature from social psychology and from olfactory perception science. We end by formulating recommendations and ideas for a future research agenda and applications for olfactory priming. PMID:24575071

  12. Priming tool actions: Are real objects more effective primes than pictures?

    PubMed

    Squires, Scott D; Macdonald, Scott N; Culham, Jody C; Snow, Jacqueline C

    2016-04-01

    Humans are faster to grasp an object such as a tool if they have previewed the same object beforehand. This priming effect is strongest when actors gesture the use of the tool rather than simply move it, possibly because the previewed tool activates action-specific routines in dorsal-stream motor networks. Here, we examined whether real tools, which observers could physically act upon, serve as more potent primes than two-dimensional images of tools, which do not afford physical action. Participants were presented with a prime stimulus that could be either a real tool or a visually matched photograph of a tool. After a brief delay, participants interacted with a real tool target, either by 'grasping to move,' or 'grasping to use' it. The identities of the prime and target tools were either the same (congruent trials; e.g., spatula-spatula) or different (incongruent trials; e.g., whisk-spatula). As expected, participants were faster to initiate grasps during trials when they had to move the tool rather than gesture its use. Priming effects were observed for grasp-to-use, but not grasp-to-move, responses. Surprisingly, however, both pictures of tools and real tools primed action responses equally. Our results indicate that tool priming effects are driven by pictorial cues and their implied actions, even in the absence of volumetric cues that reflect the tangibility and affordances of the prime.

  13. Prime and prejudice: co-occurrence in the culture as a source of automatic stereotype priming.

    PubMed

    Verhaeghen, Paul; Aikman, Shelley N; Van Gulick, Ana E

    2011-09-01

    It has been argued that stereotype priming (response times are faster for stereotypical word pairs, such as black-poor, than for non-stereotypical word pairs, such as black-balmy) is partially a function of biases in the belief system inherent in the culture. In three priming experiments, we provide direct evidence for this position, showing that stereotype priming effects associated with race, gender, and age can be very well explained through objectively measured associative co-occurrence of prime and target in the culture: (a) once objective associative strength between word pairs is taken into account, stereotype priming effects disappear; (b) the relationship between response time and associative strength is identical for social primes and non-social primes. The correlation between associative-value-controlled stereotype priming and self-report measures of racism, sexism, and ageism is near zero. The racist/sexist/ageist in all of us appears to be (at least partially) a reflection of the surrounding culture.

  14. Early Morphological Decomposition of Suffixed Words: Masked Priming Evidence with Transposed-Letter Nonword Primes

    ERIC Educational Resources Information Center

    Beyersmann, Elisabeth; Dunabeitia, Jon Andoni; Carreiras, Manuel; Coltheart, Max; Castles, Anne

    2013-01-01

    Many studies have previously reported that the recognition of a stem target (e.g., "teach") is facilitated by the prior masked presentation of a prime consisting of a derived form of it (e.g., "teacher"). We conducted two lexical decision experiments to investigate masked morphological priming in Spanish. Experiment 1 showed…

  15. An ERP investigation of masked cross-script translation priming.

    PubMed

    Hoshino, Noriko; Midgley, Katherine J; Holcomb, Phillip J; Grainger, Jonathan

    2010-07-16

    The time course of cross-script translation priming and repetition priming was examined in two different scripts using a combination of the masked priming paradigm with the recording of event-related potentials (ERPs). Japanese-English bilinguals performed a semantic categorization task in their second language (L2) English and in their first language (L1) Japanese. Targets were preceded by a visually presented related (translation equivalent/repeated) or unrelated prime. The results showed that the amplitudes of the N250 and N400 ERP components were significantly modulated for L2-L2 repetition priming, L1-L2 translation priming, and L1-L1 repetition priming, but not for L2-L1 translation priming. There was also evidence for priming effects in an earlier 100-200 ms time window for L1-L1 repetition priming and L1-L2 translation priming. We argue that a change in script across primes and targets provides optimal conditions for prime word processing, hence generating very fast-acting translation priming effects when primes are in L1.

  16. Variability in thermal response of primed and non-primed seeds of squirreltail [Elymus elymoides (Raf.) Swezey and Elymus multisetus (J. G. Smith) M. E. Jones].

    PubMed

    Hardegree, Stuart P; Jones, Thomas A; Van Vactor, Steven S

    2002-03-01

    Bottlebrush squirreltail [Elymus elymoides (Raf.) Swezey = Sitanion hystrix (Nutt.) J. G. Smith] and big squirrel-tail [Elymus multisetus (J. G. Smith) M. E. Jones = Sitanion jubatum (J. G. Smith)] have a broad geographical distribution and have been identified as high priority species for restoration of degraded rangelands in the western United States. These rangelands exhibit high annual and seasonal variability in seedbed microclimate. The objective of this study was to examine variability in thermal response of both primed and non-primed seeds of these species in the context of field-variable temperature regimes. Seed priming treatments were selected to optimize germination rate in a low-temperature test environment. Primed and non-primed seeds were evaluated for laboratory germination response under 12 constant temperature treatments between 3 and 36 degrees C. Thermal time and base temperature were estimated by regression analysis of germination rate as a function of temperature in the sub-optimal temperature range. The thermal germination model and 6 years of field temperature data were used to simulate the potential germination response under different field planting scenarios. Seed priming reduced the total germination percentage of some seedlots, especially at higher germination temperatures. Seed priming increased the germination rate (reduced the number of days to 50 % germination) by 3.8-8.4 d at 6 degrees C with a mean germination advancement of 6.9 +/- 0.6 d. Maximum germination advancement in the model simulations was 5-10 d for planting dates between I March and 15 May. Model simulations can be used to expand germination analysis beyond simple treatment comparisons, to include a probabilistic description of potential germination response under historical or potential future conditions of seedbed microclimate.

  17. Prime time advertisements: repetition priming from faces seen on subject recruitment posters.

    PubMed

    Bruce, V; Carson, D; Burton, A M; Kelly, S

    1998-05-01

    Repetition priming is defined as a gain in item recognition after previous exposure. Repetition priming of face recognition has been shown to last for several months, despite contamination by everyday exposure to both experimental and control faces in the interval. Here we show that gains in face recognition in the laboratory are found from faces initially seen in a rather different context--on subject recruitment posters, even when the advertisements make no specific mention of experiments involving face recognition. The priming was greatest when identical pictures were shown in the posters and in the test phase, although different views of faces did give significant priming in one study. Follow-up studies revealed poor explicit memory for the faces shown on the posters. The results of these experiments are used to develop a model in which repetition priming reflects the process of updating representations of familiar faces. PMID:9610121

  18. A computational approach to negative priming

    NASA Astrophysics Data System (ADS)

    Schrobsdorff, H.; Ihrke, M.; Kabisch, B.; Behrendt, J.; Hasselhorn, M.; Herrmann, J. Michael

    2007-09-01

    Priming is characterized by a sensitivity of reaction times to the sequence of stimuli in psychophysical experiments. The reduction of the reaction time observed in positive priming is well-known and experimentally understood (Scarborough et al., J. Exp. Psycholol: Hum. Percept. Perform., 3, pp. 1-17, 1977). Negative priming—the opposite effect—is experimentally less tangible (Fox, Psychonom. Bull. Rev., 2, pp. 145-173, 1995). The dependence on subtle parameter changes (such as response-stimulus interval) usually varies. The sensitivity of the negative priming effect bears great potential for applications in research in fields such as memory, selective attention, and ageing effects. We develop and analyse a computational realization, CISAM, of a recent psychological model for action decision making, the ISAM (Kabisch, PhD thesis, Friedrich-Schiller-Universitat, 2003), which is sensitive to priming conditions. With the dynamical systems approach of the CISAM, we show that a single adaptive threshold mechanism is sufficient to explain both positive and negative priming effects. This is achieved by comparing results obtained by the computational modelling with experimental data from our laboratory. The implementation provides a rich base from which testable predictions can be derived, e.g. with respect to hitherto untested stimulus combinations (e.g. single-object trials).

  19. Avoid self-priming centrifugal pump

    SciTech Connect

    Reeves, G.G.

    1987-01-01

    The self-priming horizontal centrifugal pump becomes known to its operator either as a good pump or a bad pump. The latter is usually replaced by another type of pump, even though a properly specified self-priming centrifugal pump might have been a good choice. Use of the guidelines described in this article are intended to help in the purchase and installation of a good pump. Self-priming centrifugal pumps are used for removing liquids from below grade sumps or pits that may also contain solids, fibers and/or muck. Alternate pumps for this service include submersible pumps, vertical turbine pumps and positive displacement pumps. These alternate pumps do not pass solid particles as large as self-priming pumps do without damage. Positive displacement pumps are not normally cost-effective when pumping liquid at rates in excess of 500 gallons per minute in low-head applications. Vertical and submersible pumps must be removed when cleaning of the pump is required. Self-priming pumps are easily cleaned by opening the access plates without moving the pump; and they cost less than the other types.

  20. Priming Intelligent Behavior: An Elusive Phenomenon

    PubMed Central

    Shanks, David R.; Newell, Ben R.; Lee, Eun Hee; Balakrishnan, Divya; Ekelund, Lisa; Cenac, Zarus; Kavvadia, Fragkiski; Moore, Christopher

    2013-01-01

    Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal) influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained. PMID:23637732

  1. Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling.

    PubMed

    Chamberland, Simon; Tóth, Katalin

    2016-02-15

    Synaptic communication between neurons is a highly dynamic process involving specialized structures. At the level of the presynaptic terminal, neurotransmission is ensured by fusion of vesicles to the membrane, which releases neurotransmitter in the synaptic cleft. Depending on the level of activity experienced by the terminal, the spatiotemporal properties of calcium invasion will dictate the timing and the number of vesicles that need to be released. Diverse presynaptic firing patterns are translated to neurotransmitter release with a distinct temporal feature. Complex patterns of neurotransmitter release can be achieved when different vesicles respond to distinct calcium dynamics in the presynaptic terminal. Specific vesicles from different pools are recruited during various modes of release as the particular molecular composition of their membrane proteins define their functional properties. Such diversity endows the presynaptic terminal with the ability to respond to distinct physiological signals via the mobilization of specific subpopulation of vesicles. There are several mechanisms by which a diverse vesicle population could be generated in single presynaptic terminals, including distinct recycling pathways that utilize various adaptor proteins. Several additional factors could potentially contribute to the development of a heterogeneous vesicle pool such as specialized release sites, spatial segregation within the terminal and specialized delivery pathways. Among these factors molecular heterogeneity plays a central role in defining the functional properties of different subpopulations of vesicles. PMID:26614712

  2. Aqueous dispersions of DMPG in low salt contain leaky vesicles.

    PubMed

    Barroso, Rafael P; Perez, Katia Regina; Cuccovia, Iolanda M; Teresa Lamy, M

    2012-02-01

    Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [(14)C]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [(14)C]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains ((14)C atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosity of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. PMID:22209922

  3. Vesicle-to-Micelle Oscillations and Spatial Patterns

    SciTech Connect

    Lagzi, Istvan; Wang, Dawei; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.

    2010-09-07

    A pH oscillator is coupled to and controls rhythmic interconversion of nanoscopic vesicles and micelles made of fatty acids. When changes in pH are combined with diffusion, self-assembly produces spatially extended patterns of vesicle/micelle “stripes” or concentric “shells”.

  4. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  5. A New Role for Myosin II in Vesicle Fission

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

  6. Selective breakup of lipid vesicles under acoustic microstreaming flow

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Garbin, Valeria

    2014-11-01

    The dynamics of lipid vesicles under small deformation in simple shear flow is well characterized: complex behaviors such as tumbling, breathing, and tank-treading are observed depending on the viscosity contrast between inner and outer fluid, vesicle excess area, membrane viscosity, and bending modulus. In contrast, phenomena upon large deformation are still poorly understood, in particular vesicle breakup. Simple shear flow geometries do not allow to reach the large stresses necessary to cause vesicle breakup. We use the acoustic microstreaming flow generated by an oscillating microbubble to study the large deformation and breakup of giant unilamellar vesicles. The deformation is governed by a capillary number based on the membrane elasticity K : Ca = ηγ˙a / K where η is the viscosity of the outer fluid, a the vesicle radius, and γ˙ the shear rate. We explore the effect of the mechanical properties of the membrane, and demonstrated selective breakup of vesicles based on the difference in membrane elasticity. The results reveal the influence of membrane mechanical properties in shear-induced vesicle breakup and the possibility to control in a quantitative way the selectivity of the process, with potential applications in biomedical technologies. The authors acknowledge funding from EU/FP7 Grant Number 618333.

  7. Biochemical and functional characterization of Helicobacter pylori vesicles

    PubMed Central

    Olofsson, Annelie; Vallström, Anna; Petzold, Katja; Tegtmeyer, Nicole; Schleucher, Jürgen; Carlsson, Sven; Haas, Rainer; Backert, Steffen; Wai, Sun Nyunt; Gröbner, Gerhard; Arnqvist, Anna

    2010-01-01

    Helicobacter pylori can cause peptic ulcer disease and/or gastric cancer. Adhesion of bacteria to the stomach mucosa is an important contributor to the vigour of infection and resulting virulence. H. pylori adheres primarily via binding of BabA adhesins to ABO/Lewis b (Leb) blood group antigens and the binding of SabA adhesins to sialyl-Lewis x/a (sLex/a) antigens. Similar to most Gram-negative bacteria, H. pylori continuously buds off vesicles and vesicles derived from pathogenic bacteria often include virulence-associated factors. Here we biochemically characterized highly purified H. pylori vesicles. Major protein and phospholipid components associated with the vesicles were identified with mass spectroscopy and nuclear magnetic resonance. A subset of virulence factors present was confirmed by immunoblots. Additional functional and biochemical analysis focused on the vesicle BabA and SabA adhesins and their respective interactions to human gastric epithelium. Vesicles exhibit heterogeneity in their protein composition, which were specifically studied in respect to the BabA adhesin. We also demonstrate that the oncoprotein, CagA, is associated with the surface of H. pylori vesicles. Thus, we have explored mechanisms for intimate H. pylori vesicle–host interactions and found that the vesicles carry effector-promoting properties that are important to disease development. PMID:20659286

  8. Slow sedimentation and deformability of charged lipid vesicles.

    PubMed

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  9. Schwannoma, a rare tumor of the seminal vesicle

    PubMed Central

    Carrasquinho, Eduardo; Ferreira, Marco; Afonso, Ana; Ferrito, Fernando

    2011-01-01

    We present a rare case of a schwannoma of the seminal vesicle that occurred in a 43-year-old male with symptoms of the lower urinary tract. Ultrasonography and magnetic resonance imaging documented a solid mass in the patient's left seminal vesicle. A transvesical approach with a transtrigonal midline incision was successfully performed. The microscopic aspect was compatible with schwannoma. PMID:24578861

  10. Membrane trafficking: decoding vesicle identity with contrasting chemistries.

    PubMed

    Frost, Adam

    2011-10-11

    Proteins involved in membrane traffic must distinguish between different classes of vesicles. New work now shows that α-synuclein and ALPS motifs represent two extreme types of amphipathic helix that are tuned to detect both the curvature of transport vesicles as well as their bulk lipid content.

  11. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.

    PubMed

    Samanta, Avik; Ravoo, Bart Jan

    2014-04-22

    Chemical, photochemical and electrical stimuli are versatile possibilities to exert external control on self-assembled materials. Here, a trifunctional molecule that switches between an "adhesive" and a "non-adhesive" state in response to metal ions, or light, or oxidation is presented. To this end, an azobenzene-ferrocene conjugate with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was designed as a multistimuli-responsive guest molecule that can form inclusion complexes with β-cyclodextrin. In the absence of any stimulus the guest molecule induces reversible aggregation of host vesicles composed of amphiphilic β-cyclodextrin due to the formation of intervesicular inclusion complexes. In this case, the guest molecule operates as a noncovalent cross-linker for the host vesicles. In response to any of three external stimuli (metal ions, UV irradiation, or oxidation), the conformation of the guest molecule changes and its affinity for the host vesicles is strongly reduced, which results in the dissociation of intervesicular complexes. Upon elimination or reversal of the stimuli (sequestration of metal ion, visible irradiation, or reduction) the affinity of the guest molecules for the host vesicles is restored. The reversible cross-linking and aggregation of the cyclodextrin vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600 ), dynamic light scattering (DLS), ζ-potential measurements and cyclic voltammetry (CV). To the best of our knowledge, a dynamic supramolecular system based on a molecular switch that responds orthogonally to three different stimuli is unprecedented.

  12. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.

    PubMed

    Samanta, Avik; Ravoo, Bart Jan

    2014-04-22

    Chemical, photochemical and electrical stimuli are versatile possibilities to exert external control on self-assembled materials. Here, a trifunctional molecule that switches between an "adhesive" and a "non-adhesive" state in response to metal ions, or light, or oxidation is presented. To this end, an azobenzene-ferrocene conjugate with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was designed as a multistimuli-responsive guest molecule that can form inclusion complexes with β-cyclodextrin. In the absence of any stimulus the guest molecule induces reversible aggregation of host vesicles composed of amphiphilic β-cyclodextrin due to the formation of intervesicular inclusion complexes. In this case, the guest molecule operates as a noncovalent cross-linker for the host vesicles. In response to any of three external stimuli (metal ions, UV irradiation, or oxidation), the conformation of the guest molecule changes and its affinity for the host vesicles is strongly reduced, which results in the dissociation of intervesicular complexes. Upon elimination or reversal of the stimuli (sequestration of metal ion, visible irradiation, or reduction) the affinity of the guest molecules for the host vesicles is restored. The reversible cross-linking and aggregation of the cyclodextrin vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600 ), dynamic light scattering (DLS), ζ-potential measurements and cyclic voltammetry (CV). To the best of our knowledge, a dynamic supramolecular system based on a molecular switch that responds orthogonally to three different stimuli is unprecedented. PMID:24643990

  13. Extracellular vesicles released from cells exposed to reactive oxygen species increase annexin A2 expression and survival of target cells exposed to the same conditions.

    PubMed

    Grindheim, Ann Kari; Vedeler, Anni

    2016-01-01

    Annexin A2 (AnxA2) is present in multiple cellular compartments and interacts with numerous ligands including calcium, proteins, cholesterol, negatively charged phospholipids and RNA. These interactions are tightly regulated by its post-translational modifications. The levels of AnxA2 and its Tyr23 phosphorylated form (pTyr23AnxA2) are increased in many cancers and the protein is involved in malignant cell transformation, metastasis and angiogenesis. Our previous studies of rat pheochromocytoma (PC12) cells showed that reactive oxygen species (ROS) induce rapid, simultaneous and transient dephosphorylation of nuclear AnxA2, most likely associating with PML bodies, while AnxA2 associated with F-actin at the cell cortex undergoes Tyr23 phosphorylation. The pTyr23AnxA2 in the periphery of the cells is incorporated into intraluminal vesicles of multivesicular endosomes and subsequently released to the extracellular space. We show here that extracellular vesicles (EVs) from cells exposed to ROS prime untreated PC12 cells to better tolerate subsequent oxidative stress, thus enhancing their survival. There is an increase in the levels of pTyr23AnxA2 and AnxA2 in the primed cells, suggesting that AnxA2 is involved in their survival. This increase is due to an upregulation of AnxA2 expression both at the transcriptional and translational levels after relatively short term (2 h) exposure to primed EVs. PMID:27574537

  14. Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition.

    PubMed

    Gomes, Carlos Alexandre; Figueiredo, Patrícia; Mayes, Andrew

    2016-04-01

    The neural substrates of associative and item priming and recognition were investigated in a functional magnetic resonance imaging study over two separate sessions. In the priming session, participants decided which object of a pair was bigger during both study and test phases. In the recognition session, participants saw different object pairs and performed the same size-judgement task followed by an associative recognition memory task. Associative priming was accompanied by reduced activity in the right middle occipital gyrus as well as in bilateral hippocampus. Object item priming was accompanied by reduced activity in extensive priming-related areas in the bilateral occipitotemporofrontal cortex, as well as in the perirhinal cortex, but not in the hippocampus. Associative recognition was characterized by activity increases in regions linked to recollection, such as the hippocampus, posterior cingulate cortex, anterior medial frontal gyrus and posterior parahippocampal cortex. Item object priming and recognition recruited broadly overlapping regions (e.g., bilateral middle occipital and prefrontal cortices, left fusiform gyrus), even though the BOLD response was in opposite directions. These regions along with the precuneus, where both item priming and recognition were accompanied by activation, have been found to respond to object familiarity. The minimal structural overlap between object associative priming and recollection-based associative recognition suggests that they depend on largely different stimulus-related information and that the different directions of the effects indicate distinct retrieval mechanisms. In contrast, item priming and familiarity-based recognition seemed mainly based on common memory information, although the extent of common processing between priming and familiarity remains unclear. Further implications of these findings are discussed. PMID:26418396

  15. A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology

    NASA Astrophysics Data System (ADS)

    Arai, Noriyoshi; Yasuoka, Kenji; Zeng, Xiao Cheng

    2013-09-01

    We investigate translocation dynamics of a vesicle cell under collision with a Janus or a homogeneous hydrophobic/hydrophilic nanoparticle. To this end, we perform dissipative particle dynamics simulation by setting the nanoparticle with different initial velocities, different chemical patterns of the surface for the nanoparticle, and different orientations (for the Janus nanoparticle). Particular attention is given to translocation dynamics, in-cell water discharge, and the late-stage morphologies of the vesicle/nanoparticle system after the collision. We observe three late-stage states for the Janus nanoparticle, and four late-stage states for the homogeneous nanoparticles. We find that the late-stage state and the associated dynamical pathway not only depend on the relative velocity but also on the chemical pattern of the nanoparticle surface, as well as on the orientation of the incident Janus nanoparticle. We have examined the time-dependent mean radius of the vesicle, the number of in-cell water beads lost from the vesicle, as well as the collision-induced pore size on the lipid membrane during the course of collision. Our simulation provides microscopic insights into the resilience of the vesicle-cell membrane and dynamical behavior of the vesicle under the attack of a foreign nanoparticle. Knowledge and insights gained through the simulation will have implication to the drug delivery with different chemical coatings.We investigate translocation dynamics of a vesicle cell under collision with a Janus or a homogeneous hydrophobic/hydrophilic nanoparticle. To this end, we perform dissipative particle dynamics simulation by setting the nanoparticle with different initial velocities, different chemical patterns of the surface for the nanoparticle, and different orientations (for the Janus nanoparticle). Particular attention is given to translocation dynamics, in-cell water discharge, and the late-stage morphologies of the vesicle/nanoparticle system after the

  16. Interaction between silicon dioxide and dipalmitoylphosphatidylcholine (DPPC) vesicles

    SciTech Connect

    Mohd, Hur Munawar Kabir; Ahmad, Ainee Fatimah; Radiman, Shahidan; Mohamed, Faizal; Rosli, Nur Ratasha Alia Md; Ayob, Muhammad Taqiyuddin Mawardi; Rahman, Irman Abdul

    2014-09-03

    Many of the cellular process depend on the ability of the membrane to separate areas while allowing exchange and tightly regulated transport of material within and across the membrane to occur, which is the driving principle behind cell communication. The complexity of biological membranes has motivated the development of a wide variety of simpler model systems whose size, geometry and composition can be tailored with precision. This study was conducted to investigate the interactions between silica nanoparticles and Dipalmitoylphosphatidylcholine (DPPC) vesicles. The size range of DPPC vesicles formed was from 50 to 150 nm. Concentration of silica added to the vesicles was varied from 0.25 to 1.5 mg/ml. The change in vesicle size distribution, localization and positioning of silica nanoparticles in vesicles was studied via transmission electron microscopy (TEM) and differential scanning calorimetry (DSC)

  17. Human placental coated vesicles contain receptor-bound transferrin.

    PubMed Central

    Booth, A G; Wilson, M J

    1981-01-01

    Human placental coated vesicles have been purified by a method involving sucrose-density-gradient centrifugation and treatment with wheat-germ agglutinin. These preparations were free of contamination by placental microvillus fragments. Crossed immunoelectrophoresis demonstrated that the coated vesicles contained a single serum protein, which was identified as transferrin. This transferrin was only observed after the vesicles were treated with a non-ionic detergent, and its behaviour during crossed hydrophobic-interaction immunoelectrophoresis suggested that a large proportion of it was receptor-bound. No other serum proteins, including immunoglobulin G, could be detected in these preparations. Receptor-bound transferrin was the only antigen common to placental coated vesicles and microvilli, implying that other plasma-membrane proteins are excluded from the region of membrane involved in coated-vesicle formation. Images PLATE 2 PLATE 1 Fig. 1. Fig. 2. Fig. 3. PMID:6272755

  18. Translocation of an Incompressible Vesicle through a Pore

    PubMed Central

    Shojaei, Hamid R.; Muthukumar, Murugappan

    2016-01-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker–Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  19. Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster.

    PubMed

    Yamanaka, Naoki; Marqués, Guillermo; O'Connor, Michael B

    2015-11-01

    Steroid hormones are a large family of cholesterol derivatives regulating development and physiology in both the animal and plant kingdoms, but little is known concerning mechanisms of their secretion from steroidogenic tissues. Here, we present evidence that in Drosophila, endocrine release of the steroid hormone ecdysone is mediated through a regulated vesicular trafficking mechanism. Inhibition of calcium signaling in the steroidogenic prothoracic gland results in the accumulation of unreleased ecdysone, and the knockdown of calcium-mediated vesicle exocytosis components in the gland caused developmental defects due to deficiency of ecdysone. Accumulation of synaptotagmin-labeled vesicles in the gland is observed when calcium signaling is disrupted, and these vesicles contain an ABC transporter that functions as an ecdysone pump to fill vesicles. We propose that trafficking of steroid hormones out of endocrine cells is not always through a simple diffusion mechanism as presently thought, but instead can involve a regulated vesicle-mediated release process. PMID:26544939

  20. Interaction of a potyviral VPg with anionic phospholipid vesicles

    SciTech Connect

    Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders; Otzen, Daniel E.; Kalkkinen, Nisse; Maekinen, Kristiina

    2009-12-05

    The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of alpha-helical structures. Limited tryptic digestion showed that the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.

  1. Two Rab2 interactors regulate dense-core vesicle maturation.

    PubMed

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M

    2014-04-01

    Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  2. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    PubMed

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. PMID:26142082

  3. Search for W-prime Boson Resonances Decaying to a Top Quark and a Bottom Quark

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, Georgiy; /Dubna, JINR /St. Petersburg, INP /Northeastern U.

    2008-03-01

    We search for the production of a heavy W{prime} gauge boson that decays to third generation quarks in 0.9 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the D0 detector at the Fermilab Tevatron collider. We find no significant excess in the final-state invariant mass distribution and set upper limits on the production cross section times branching fraction. For a left-handed W{prime} boson with SM couplings, we set a lower mass limit of 731 GeV. For right-handed W{prime} bosons, we set lower mass limits of 739 GeV if the W{prime} boson decays to both leptons and quarks and 768 GeV if the W{prime} boson decays only to quarks. We also set limits on the coupling of the W{prime} boson to fermions as a function of its mass.

  4. Women's greater ability to perceive happy facial emotion automatically: gender differences in affective priming.

    PubMed

    Donges, Uta-Susan; Kersting, Anette; Suslow, Thomas

    2012-01-01

    There is evidence that women are better in recognizing their own and others' emotions. The female advantage in emotion recognition becomes even more apparent under conditions of rapid stimulus presentation. Affective priming paradigms have been developed to examine empirically whether facial emotion stimuli presented outside of conscious awareness color our impressions. It was observed that masked emotional facial expression has an affect congruent influence on subsequent judgments of neutral stimuli. The aim of the present study was to examine the effect of gender on affective priming based on negative and positive facial expression. In our priming experiment sad, happy, neutral, or no facial expression was briefly presented (for 33 ms) and masked by neutral faces which had to be evaluated. 81 young healthy volunteers (53 women) participated in the study. Subjects had no subjective awareness of emotional primes. Women did not differ from men with regard to age, education, intelligence, trait anxiety, or depressivity. In the whole sample, happy but not sad facial expression elicited valence congruent affective priming. Between-group analyses revealed that women manifested greater affective priming due to happy faces than men. Women seem to have a greater ability to perceive and respond to positive facial emotion at an automatic processing level compared to men. High perceptual sensitivity to minimal social-affective signals may contribute to women's advantage in understanding other persons' emotional states.

  5. Subliminal presentation of emotionally negative vs positive primes increases the perceived beauty of target stimuli.

    PubMed

    Era, Vanessa; Candidi, Matteo; Aglioti, Salvatore Maria

    2015-11-01

    Emotions have a profound influence on aesthetic experiences. Studies using affective priming procedures demonstrate, for example, that inducing a conscious negative emotional state biases the perception of abstract stimuli towards the sublime (Eskine et al. Emotion 12:1071-1074, 2012. doi: 10.1037/a0027200). Moreover, subliminal happy facial expressions have a positive impact on the aesthetic evaluation of abstract art (Flexas et al. PLoS ONE 8:e80154, 2013). Little is known about how emotion influences aesthetic perception of non-abstract, representational stimuli, especially those that are particularly relevant for social behaviour, like human bodies. Here, we explore whether the subliminal presentation of emotionally charged visual primes modulates the explicit subjective aesthetic judgment of body images. Using a forward/backward masking procedure, we presented subliminally positive and negative, arousal-matched, emotional or neutral primes and measured their effect on the explicit evaluation of perceived beauty (high vs low) and emotion (positive vs negative) evoked by abstract and body images. We found that negative primes increased subjective aesthetic evaluations of target bodies or abstract images in comparison with positive primes. No influence of primes on the emotional dimension of the targets was found, thus ruling out an unspecific arousal effect and strengthening the link between emotional valence and aesthetic appreciation. More specifically, that subliminal negative primes increase beauty ratings compared to subliminal positive primes indicates a clear link between negative emotions and positive aesthetic evaluations and vice versa, suggesting a possible link between negative emotion and the experience of sublime in art. The study expands previous research by showing the effect of subliminal negative emotions on the subjective aesthetic evaluation not only of abstract but also of body images. PMID:26238406

  6. Subliminal presentation of emotionally negative vs positive primes increases the perceived beauty of target stimuli.

    PubMed

    Era, Vanessa; Candidi, Matteo; Aglioti, Salvatore Maria

    2015-11-01

    Emotions have a profound influence on aesthetic experiences. Studies using affective priming procedures demonstrate, for example, that inducing a conscious negative emotional state biases the perception of abstract stimuli towards the sublime (Eskine et al. Emotion 12:1071-1074, 2012. doi: 10.1037/a0027200). Moreover, subliminal happy facial expressions have a positive impact on the aesthetic evaluation of abstract art (Flexas et al. PLoS ONE 8:e80154, 2013). Little is known about how emotion influences aesthetic perception of non-abstract, representational stimuli, especially those that are particularly relevant for social behaviour, like human bodies. Here, we explore whether the subliminal presentation of emotionally charged visual primes modulates the explicit subjective aesthetic judgment of body images. Using a forward/backward masking procedure, we presented subliminally positive and negative, arousal-matched, emotional or neutral primes and measured their effect on the explicit evaluation of perceived beauty (high vs low) and emotion (positive vs negative) evoked by abstract and body images. We found that negative primes increased subjective aesthetic evaluations of target bodies or abstract images in comparison with positive primes. No influence of primes on the emotional dimension of the targets was found, thus ruling out an unspecific arousal effect and strengthening the link between emotional valence and aesthetic appreciation. More specifically, that subliminal negative primes increase beauty ratings compared to subliminal positive primes indicates a clear link between negative emotions and positive aesthetic evaluations and vice versa, suggesting a possible link between negative emotion and the experience of sublime in art. The study expands previous research by showing the effect of subliminal negative emotions on the subjective aesthetic evaluation not only of abstract but also of body images.

  7. Semantic and subword priming during binocular suppression.

    PubMed

    Costello, Patricia; Jiang, Yi; Baartman, Brandon; McGlennen, Kristine; He, Sheng

    2009-06-01

    In general, stimuli that are familiar and recognizable have an advantage of predominance during binocular rivalry. Recent research has demonstrated that familiar and recognizable stimuli such as upright faces and words in a native language could break interocular suppression faster than their matched controls. In this study, a visible word prime was presented binocularly then replaced by a high-contrast dynamic noise pattern presented to one eye and either a semantically related or unrelated word was introduced to the other eye. We measured how long it took for target words to break from suppression. To investigate word-parts priming, a second experiment also included word pairs that had overlapping subword fragments. Results from both experiments consistently show that semantically related words and words that shared subword fragments were faster to gain dominance compared to unrelated words, suggesting that words, even when interocularly suppressed and invisible, can benefit from semantic and subword priming.

  8. Atg9 Vesicles Recruit Vesicle-tethering Proteins Trs85 and Ypt1 to the Autophagosome Formation Site*

    PubMed Central

    Kakuta, Soichiro; Yamamoto, Hayashi; Negishi, Lumi; Kondo-Kakuta, Chika; Hayashi, Nobuhiro; Ohsumi, Yoshinori

    2012-01-01

    Atg9 is a transmembrane protein that is essential for autophagy. In the budding yeast Saccharomyces cerevisiae, it has recently been revealed that Atg9 exists on cytoplasmic small vesicles termed Atg9 vesicles. To identify the components of Atg9 vesicles, we purified the Atg9 vesicles and subjected them to mass spectrometry. We found that their protein composition was distinct from other organellar membranes and that Atg9 and Atg27 in particular are major components of Atg9 vesicles. In addition to these two components, Trs85, a specific subunit of the transport protein particle III (TRAPPIII) complex, and the Rab GTPase Ypt1 were also identified. Trs85 directly interacts with Atg9, and the Trs85-containing TRAPPIII complex facilitates the association of Ypt1 onto Atg9 vesicles. We also showed that Trs85 and Ypt1 are localized to the preautophagosomal structure in an Atg9-dependent manner. Our data suggest that Atg9 vesicles recruit the TRAPPIII complex and Ypt1 to the preautophagosomal structure. The vesicle-tethering machinery consequently acts in the process of autophagosome formation. PMID:23129774

  9. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.

    PubMed

    Ying, Chong T; Wang, Juntian; Lamm, Robert J; Kamei, Daniel T

    2013-02-01

    Vesicles have been studied for several years in their ability to deliver drugs. Mathematical models have much potential in reducing time and resources required to engineer optimal vesicles, and this review article summarizes these models that aid in understanding the ability of targeted vesicles to bind and internalize into cancer cells, diffuse into tumors, and distribute in the body. With regard to binding and internalization, radiolabeling and surface plasmon resonance experiments can be performed to determine optimal vesicle size and the number and type of ligands conjugated. Binding and internalization properties are also inputs into a mathematical model of vesicle diffusion into tumor spheroids, which highlights the importance of the vesicle diffusion coefficient and the binding affinity of the targeting ligand. Biodistribution of vesicles in the body, along with their half-life, can be predicted with compartmental models for pharmacokinetics that include the effect of targeting ligands, and these predictions can be used in conjunction with in vivo models to aid in the design of drug carriers. Mathematical models can prove to be very useful in drug carrier design, and our hope is that this review will encourage more investigators to combine modeling with quantitative experimentation in the field of vesicle-based drug delivery.

  10. Prime factorization using magnonic holographic devices

    NASA Astrophysics Data System (ADS)

    Khivintsev, Yuri; Ranjbar, Mojtaba; Gutierrez, David; Chiang, Howard; Kozhevnikov, Alexander; Filimonov, Yuri; Khitun, Alexander

    2016-09-01

    Determining the prime factors of a given number N is a problem that requires super-polynomial time for conventional digital computers. A polynomial-time algorithm was invented by Shor for quantum computers. In this paper, we present experimental data that demonstrate prime factorization using spin-wave interference but without quantum entanglement. Prime factorization includes three major steps. First, a general-type computer calculates the sequence of numbers mkmod(N), where N is the number to be factorized, m is a randomly chosen positive integer, and k = 1, 2, 3, 4, 5, 6…. Next, the period of the calculated sequence r is determined by exploiting spin-wave interference. Finally, the general-type computer determines the primes based on the obtained r. The experiment for period finding was conducted on a six-terminal Y3Fe2(FeO4)3 device. We chose number 15 for testing and determined its primes using a sequence of measurements. The obtained experimental data for a micrometer-sized prototype aimed to demonstrate the benefits of using spin-wave devices to solve complex computational problems. Scalability is one of the major strengths inherent in this type of wave-based device, which may provide a route to nanometer-sized logic circuits. We discuss the physical and technological limitations of this approach, which define the maximum size of N and the computational speed. Although this classical approach cannot compete with the quantum algorithm in terms of efficiency, magnonic holographic devices can potentially be used as complementary logic units aimed at speeding up prime factorization for classical computers.

  11. The role of short-term memory in semantic priming.

    PubMed

    Beer, A L; Diehl, V A

    2001-07-01

    Two theories of priming were compared: spreading activation theories, in particular ACT, and compound-cue theories. Whereas ACT assumes that priming is a result of diffusing activation in long-term memory, compound-cue models suggest that priming results from a formation process of prime and target in short-term memory. Thirty-eight participants took part in a study that combined a digit span task with a double lexical decision task consisting of a prime and a target item. Digit span length (low, medium, and high) and prime type (related or unrelated word or nonword) were both within-subject variables. As expected, results showed significant priming effects. In favor of ACT, no interaction between digit span length and prime type was found. Additionally, a nonword inhibition effect (unrelated versus nonword prime) was found, which was predicted by compound-cue theories. This finding is discussed in terms of the process interference and response competition hypotheses.

  12. Schoolbook Texts: Behavioral Achievement Priming in Math and Language

    PubMed Central

    Engeser, Stefan; Baumann, Nicola; Baum, Ingrid

    2016-01-01

    Prior research found reliable and considerably strong effects of semantic achievement primes on subsequent performance. In order to simulate a more natural priming condition to better understand the practical relevance of semantic achievement priming effects, running texts of schoolbook excerpts with and without achievement primes were used as priming stimuli. Additionally, we manipulated the achievement context; some subjects received no feedback about their achievement and others received feedback according to a social or individual reference norm. As expected, we found a reliable (albeit small) positive behavioral priming effect of semantic achievement primes on achievement in math (Experiment 1) and language tasks (Experiment 2). Feedback moderated the behavioral priming effect less consistently than we expected. The implication that achievement primes in schoolbooks can foster performance is discussed along with general theoretical implications. PMID:26938446

  13. Schoolbook Texts: Behavioral Achievement Priming in Math and Language.

    PubMed

    Engeser, Stefan; Baumann, Nicola; Baum, Ingrid

    2016-01-01

    Prior research found reliable and considerably strong effects of semantic achievement primes on subsequent performance. In order to simulate a more natural priming condition to better understand the practical relevance of semantic achievement priming effects, running texts of schoolbook excerpts with and without achievement primes were used as priming stimuli. Additionally, we manipulated the achievement context; some subjects received no feedback about their achievement and others received feedback according to a social or individual reference norm. As expected, we found a reliable (albeit small) positive behavioral priming effect of semantic achievement primes on achievement in math (Experiment 1) and language tasks (Experiment 2). Feedback moderated the behavioral priming effect less consistently than we expected. The implication that achievement primes in schoolbooks can foster performance is discussed along with general theoretical implications.

  14. Does achievement motivation mediate the semantic achievement priming effect?

    PubMed

    Engeser, Stefan; Baumann, Nicola

    2014-10-01

    The aim of our research was to understand the processes of the prime-to-behavior effects with semantic achievement primes. We extended existing models with a perspective from achievement motivation theory and additionally used achievement primes embedded in the running text of excerpts of school textbooks to simulate a more natural priming condition. Specifically, we proposed that achievement primes affect implicit achievement motivation and conducted pilot experiments and 3 main experiments to explore this proposition. We found no reliable positive effect of achievement primes on implicit achievement motivation. In light of these findings, we tested whether explicit (instead of implicit) achievement motivation is affected by achievement primes and found this to be the case. In the final experiment, we found support for the assumption that higher explicit achievement motivation implies that achievement priming affects the outcome expectations. The implications of the results are discussed, and we conclude that primes affect achievement behavior by heightening explicit achievement motivation and outcome expectancies. PMID:24820250

  15. Affective priming using facial expressions modulates liking for abstract art.

    PubMed

    Flexas, Albert; Rosselló, Jaume; Christensen, Julia F; Nadal, Marcos; Olivera La Rosa, Antonio; Munar, Enric

    2013-01-01

    We examined the influence of affective priming on the appreciation of abstract artworks using an evaluative priming task. Facial primes (showing happiness, disgust or no emotion) were presented under brief (Stimulus Onset Asynchrony, SOA = 20 ms) and extended (SOA = 300 ms) conditions. Differences in aesthetic liking for abstract paintings depending on the emotion expressed in the preceding primes provided a measure of the priming effect. The results showed that, for the extended SOA, artworks were liked more when preceded by happiness primes and less when preceded by disgust primes. Facial expressions of happiness, though not of disgust, exerted similar effects in the brief SOA condition. Subjective measures and a forced-choice task revealed no evidence of prime awareness in the suboptimal condition. Our results are congruent with findings showing that the affective transfer elicited by priming biases evaluative judgments, extending previous research to the domain of aesthetic appreciation.

  16. Extracellular vesicles in lung microenvironment and pathogenesis.

    PubMed

    Fujita, Yu; Kosaka, Nobuyoshi; Araya, Jun; Kuwano, Kazuyoshi; Ochiya, Takahiro

    2015-09-01

    Increasing attention is being paid to the role of extracellular vesicles (EVs) in various lung diseases. EVs are released by a variety of cells, including respiratory cells and immune cells, and they encapsulate various molecules, such as proteins and microRNAs, as modulators of intercellular communication. Cancer cell-derived EVs play crucial roles in promoting tumor progression and modifying their microenvironment. By contrast, noncancerous cell-derived EVs demonstrate protective functions against injury, such as tissue recovery and repair, to maintain physiological homeostasis. Airway cells in contact with harmful substances may alter their EV composition and modify the balanced reciprocal interactions with surrounding mesenchymal cells. We summarize the novel findings of EV function in various lung diseases, primarily chronic obstructive pulmonary disease (COPD) and lung cancer.

  17. Biomimetic proteolipid vesicles for targeting inflamed tissues

    NASA Astrophysics Data System (ADS)

    Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B.; de Vita, A.; Toledano Furman, N. E.; Wang, X.; Parodi, A.; Tasciotti, E.

    2016-09-01

    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles--which we refer to as leukosomes--retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.

  18. Polymer-coated vesicles: development and characterization.

    PubMed

    Venkatesan, N; Vyas, S P

    1998-01-01

    Unilamellar polyacrylonitrile-coated niosomes were prepared using an interfacial pH induced polymerization technique. Polymer coated niosomes were then compared with plain niosomes for their physical characteristics, i.e., shape, size, lamellarity, and release profile. It was observed that polymer-coated niosomes could maintain their shape and size under osmotic stresses. The trapping efficiency of the polymer-coated system was slightly higher when compared to plain niosomes, and the release rate was slower. However, the release rate was also found to be anomolous and followed near zero-order kinetics. The effect of osmotic stress on the release rate was also investigated. It was observed that the polymer-coated vesicles did not show any significant change in release rate profile under osmotic variations. PMID:19569992

  19. Pulling long tubes from firmly adhered vesicles

    NASA Astrophysics Data System (ADS)

    Cuvelier, D.; Chiaruttini, N.; Bassereau, P.; Nassoy, P.

    2005-09-01

    We used optical tweezers to measure the force-extension curve for the elongation of nanotubes from adhered giant vesicles. We show that the force increases significantly with the length of the tube, which is drastically different from what is observed when the membrane tension is kept constant, e.g. by pipette aspiration. The absence of any force plateau is quantitatively analysed in the framework of the material model of membranes. In particular, we rationalize a counter-intuitive weaker force rise for long tubes and demonstrate that the measured force-length trace allows us to probe both the entropic regime (characterised by the bending rigidity) and the elastic regime (characterised by the area expansion modulus) of the lipid membrane.

  20. Biomimetic proteolipid vesicles for targeting inflamed tissues.

    PubMed

    Molinaro, R; Corbo, C; Martinez, J O; Taraballi, F; Evangelopoulos, M; Minardi, S; Yazdi, I K; Zhao, P; De Rosa, E; Sherman, M B; De Vita, A; Toledano Furman, N E; Wang, X; Parodi, A; Tasciotti, E

    2016-09-01

    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles-which we refer to as leukosomes-retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation. PMID:27213956

  1. Structure and mechanism of COPI vesicle biogenesis.

    PubMed

    Jackson, Lauren P

    2014-08-01

    Distinct trafficking pathways within the secretory and endocytic systems ensure prompt and precise delivery of specific cargo molecules to different cellular compartments via small vesicular (50-150nm) and tubular carriers. The COPI vesicular coat is required for retrograde trafficking from the cis-Golgi back to the ER and within the Golgi stack. Recent structural data have been obtained from X-ray crystallographic studies on COPI coat components alone and on COPI subunits in complex with either cargo motifs or Arf1, and from reconstructions of COPI coated vesicles by electron tomography. These studies provide important molecular information and indicate key differences in COPI coat assembly as compared with clathrin-based and COPII-based coats. PMID:24840894

  2. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    PubMed Central

    Redzic, Jasmina S; Ung, Timothy H; Graner, Michael W

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI]), and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs) are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review the features of GBM EVs, in terms of EV content and activities that may lead to the use of EVs as serially accessible biomarkers for diagnosis and treatment response in neuro-oncology. PMID:24634586

  3. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles

    PubMed Central

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  4. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    PubMed

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  5. A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins

    PubMed Central

    Diao, Jiajie; Ishitsuka, Yuji; Lee, Hanki; Joo, Chirlmin; Su, Zengliu; Syed, Salman; Shin, Yeon-Kyun; Yoon, Tae-Young; Ha, Taekjip

    2015-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are a highly regulated class of membrane proteins that drive the efficient merger of two distinct lipid bilayers into one interconnected structure. This protocol describes our fluorescence resonance energy transfer (FRET)-based single vesicle-vesicle fusion assays for SNAREs and accessory proteins. Both lipid-mixing (with FRET pairs acting as lipophilic dyes in the membranes) and content-mixing assays (with FRET pairs present on a DNA hairpin that becomes linear via hybridization to a complementary DNA) are described. These assays can be used to detect substages such as docking, hemifusion, and pore expansion and full fusion. The details of flow cell preparation, protein-reconstituted vesicle preparation, data acquisition and analysis are described. These assays can be used to study the roles of various SNARE proteins, accessory proteins and effects of different lipid compositions on specific fusion steps. The total time required to finish one round of this protocol is 3–6 d. PMID:22582418

  6. Influence of prime lexicality, frequency, and pronounceability on the masked onset priming effect.

    PubMed

    Dimitropoulou, Maria; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2010-09-01

    The present study investigates the origins of the masked onset priming effect (MOPE). There are two alternative interpretations that account for most of the evidence reported on the MOPE, so far. The speech planning account (SP) identifies the locus of the MOPE in the preparation of the speech response. In contrast, the dual-route theory proposes that the effect arises as a result of the processing of the prime by the nonlexical route. In a series of masked onset priming word naming experiments we test the validity of these accounts by manipulating the primes' frequency, their lexical status, and pronounceability. We found consistent MOPEs of similar magnitude with high- and low-frequency prime words as well as with pronounceable nonwords. Contrarily, when primes consisted of unpronounceable consonantal strings the effect disappeared, suggesting that pronounceability of the prime is a prerequisite for the emergence of the MOPE. These results are in accordance with the predictions of the SP account. The pattern of effects obtained in the present study further defines the origins of the MOPE. PMID:20221948

  7. Uptake of barbituric acid derivatives in small intestinal brush border membrane vesicles from retinyl palmitate-treated rats.

    PubMed

    Tanii, H; Horie, T

    2000-08-01

    Brush border membrane was prepared from the small intestinal (jejunum) cells along the crypt-villus axis. The fluorescence spectra of 1,8-anilinonaphthalene sulfonic acid and the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene were measured in the brush border membrane vesicle suspension. The hydrophobicity of brush border membrane was found to be in the order villus tip >mid villus >lower villus. The fluidity of brush border membrane was in the order villus tip vesicles was well correlated with their partition coefficients (isopentyl acetate/water). No significant difference was observed between the uptake of hexobarbital by brush border membrane vesicles from the villus tip and lower villus. When retinyl palmitate was administered to rats, the fluidity of brush border membrane was found to be higher in the retinyl palmitate-treated rats than in the control rats. However, no significant difference in the uptake of hexobarbital by brush border membrane vesicles was observed between the retinyl palmitate-administered rats and the control rats. Thus, the retinyl palmitate treatment seems unlikely to affect the passively transported ligands like barbituric acid derivatives in brush border membrane vesicles. PMID:10989945

  8. A Nonconventional Model of Protocell-like Vesicles: Anionic Clay Surface-Mediated Formation from a Single-Tailed Amphiphile.

    PubMed

    Du, Na; Song, Ruiying; Li, Haiping; Song, Shue; Zhang, Renjie; Hou, Wanguo

    2015-11-24

    We report a novel model system of precursor cellular membranes, self-assembled from micellar solution of a common anionic single-tailed amphiphile (STA), including sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). The self-assembly process was mediated with solid surfaces of Mg2Al-CO3 hydrotalcite-like compound (HTlc), an anionic clay, in the absence of cosurfactants or any additives. The resultant STA vesicles were characterized using negative-staining and cryogenic transmission electron microscopies, as well as dynamic light scattering and steady state fluorescence techniques. Interestingly, the obtained STA vesicles displayed good stability even after the removal of the anionic clay surface (ACS), and a self-reproduction phenomenon was observed for the "preformed" STA vesicles when mixing with corresponding STA micellar solutions. More importantly, the micelle-to-vesicle transition for SDS could be still arisen in high-salinity artificial seawater under the ACS mediation. Instead of conventional fatty acid scenario, our finding provides another novel possible model for protocell-like vesicles, which are easily formed under the plausible prebiotic conditions. PMID:26524569

  9. Retro-priming, priming, and double testing: psi and replication in a test–retest design

    PubMed Central

    Rabeyron, Thomas

    2014-01-01

    Numerous experiments have been conducted in recent years on anomalous retroactive influences on cognition and affect (Bem, 2010), yet more data are needed to understand these processes precisely. For this purpose, we carried out an initial retro-priming study in which the response times of 162 participants were measured (Rabeyron and Watt, 2010). In the current paper, we present the results of a second study in which we selected those participants who demonstrated the strongest retro-priming effect during the first study, in order to see if we could replicate this effect and therefore select high scoring participants. An additional objective was to try to find correlations between psychological characteristics (anomalous experiences, mental health, mental boundaries, trauma, negative life events) and retro-priming results for the high scoring participants. The retro-priming effect was also compared with performance on a classical priming task. Twenty-eight participants returned to the laboratory for this new study. The results, for the whole group, on the retro-priming task, were negative and non-significant (es = −0.25, ns) and the results were significant on the priming task (es = 0.63, p < 0.1). We obtained overall negative effects on retro-priming results for all the sub-groups (students, male, female). Ten participants were found to have positive results on the two retro-priming studies, but no specific psychological variables were found for these participants compared to the others. Several hypotheses are considered in explaining these results, and the author provide some final thoughts concerning psi and replicability. PMID:24672466

  10. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells.

    PubMed

    Narayanaswamy, Nagarjun; Nair, Raji R; Suseela, Y V; Saini, Deepak Kumar; Govindaraju, T

    2016-07-01

    In this Communication, a molecular beacon-based DNA switch (LMB) is developed as an efficient and reversible pH sensing probe. Remarkably, LMB exhibited reversible structural transition between the closed (molecular beacon) and open (A-motif) states very efficiently in synthetic vesicles and live cells without the need for any transfection agents. PMID:27338808

  11. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells.

    PubMed

    Narayanaswamy, Nagarjun; Nair, Raji R; Suseela, Y V; Saini, Deepak Kumar; Govindaraju, T

    2016-07-01

    In this Communication, a molecular beacon-based DNA switch (LMB) is developed as an efficient and reversible pH sensing probe. Remarkably, LMB exhibited reversible structural transition between the closed (molecular beacon) and open (A-motif) states very efficiently in synthetic vesicles and live cells without the need for any transfection agents.

  12. A simple model of the HNCO ({sup 1}{ital A}{prime}) excited state potential energy surface and a classical trajectory analysis of the vibrationally directed bond-selected photodissociation

    SciTech Connect

    Brown, S.S.; Cheatum, C.M.; Fitzwater, D.A.; Crim, F.F.

    1996-12-01

    Recent state-selected photodissociation experiments on isocyanic acid, HNCO, have provided a wealth of data on its photochemistry and dissociation dynamics. The excited state potential energy surface on which the dissociation occurs is central to these observations but is relatively uncharacterized. We construct a two-dimensional analytical model for the excited state potential that is consistent with experimental observations, including the ultraviolet absorption spectrum and the dynamics of the C{endash}N and N{endash}H bond dissociations. We then test this surface by running classical trajectories on it, using Morse oscillator vibrational wave functions from the ground electronic state to determine the probability distributions of initial conditions. The trajectory calculation reproduces the experimentally observed variation in the photochemical branching with photolysis wavelength. It also reproduces the bond selectivity in the photodissociation of HNCO molecules containing three quanta of N{endash}H stretching excitation (3{nu}{sub 1}) that we observed experimentally. Although the model for the surface is very simple and includes only two degrees of freedom, it captures the essential features that determine the photochemical branching in a direct dissociation. {copyright} {ital 1996 American Institute of Physics.}

  13. Membrane vesicle production by Chlamydia trachomatis as an adaptive response

    PubMed Central

    Frohlich, Kyla M.; Hua, Ziyu; Quayle, Alison J.; Wang, Jin; Lewis, Maria E.; Chou, Chau-wen; Luo, Miao; Buckner, Lyndsey R.; Shen, Li

    2014-01-01

    Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro. How C. trachomatis can adapt to a persistent growth state in host epithelial cells in vivo is not well understood, but is an important question, since it extends the host-bacterial relationship in vitro and has thus been indicated as a survival mechanism in chronic chlamydial infections. Here, we review recent findings on the mechanistic aspects of bacterial adaptation to stress with a focus on how C. trachomatis remodels its envelope, produces MVs, and the potential important consequences of MV production with respect to host-pathogen interactions. Emerging data suggest that the generation of MVs may be an important mechanism for C. trachomatis intracellular survival of stress, and thus may aid in the establishment of a chronic infection in human genital epithelial cells. PMID:24959424

  14. Characteristics of endoplasmic reticulum-derived transport vesicles

    PubMed Central

    1994-01-01

    We have isolated vesicles that mediate protein transport from the ER to Golgi membranes in perforated yeast. These vesicles, which form de novo during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins. Thus, lumenal and membrane proteins in the ER are sorted prior to transport vesicle scission. Inhibition of Ypt1p-function, which prevents newly formed vesicles from docking to cis-Golgi membranes, was used to block transport. Vesicles that accumulate are competent for fusion with cis-Golgi membranes, but not with ER membranes, and thus are functionally committed to vectorial transport. A 900-fold enrichment was developed using differential centrifugation and a series of velocity and equilibrium density gradients. Electron microscopic analysis shows a uniform population of 60 nm vesicles that lack peripheral protein coats. Quantitative Western blot analysis indicates that protein markers of cytosol and cellular membranes are depleted throughout the purification, whereas the synaptobrevin-like Bet1, Sec22, and Bos1 proteins are highly enriched. Uncoated ER-derived transport vesicles (ERV) contain twelve major proteins that associate tightly with the membrane. The ERV proteins may represent abundant cargo and additional targeting molecules. PMID:8063853

  15. Diffusion behavior of lipid vesicles in entangled polymer solutions.

    PubMed Central

    Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H

    1997-01-01

    Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189

  16. Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule.

    PubMed

    Nicola, André Moraes; Frases, Susana; Casadevall, Arturo

    2009-09-01

    Cryptococcus neoformans is an encapsulated yeast that causes systemic mycosis in immunosuppressed individuals. Recent studies have determined that this fungus produces vesicles that are released to the extracellular environment both in vivo and in vitro. These vesicles contain assorted cargo that includes several molecules associated with virulence and implicated in host-pathogen interactions, such as capsular polysaccharides, laccase, urease, and other proteins. To date, visualization of extracellular vesicles has relied on transmission electron microscopy, a time-consuming technique. In this work we report the use of fluorescent membrane tracers to stain lipophilic structures in cryptococcal culture supernatants and capsules. Two dialkylcarbocyanine probes with different spectral characteristics were used to visualize purified vesicles by fluorescence microscopy and flow cytometry. Dual staining of vesicles with dialkylcarbocyanine and RNA-selective nucleic acid dyes suggested that a fraction of the vesicle population carried RNA. Use of these dyes to stain whole cells, however, was hampered by their possible direct binding to capsular polysaccharide. A fluorescent phospholipid was used as additional membrane tracer to stain whole cells, revealing punctate structures on the edge of the capsule which are consistent with vesicular trafficking. Lipophilic dyes provide new tools for the study of fungal extracellular vesicles and their content. The finding of hydrophobic regions in the capsule of C. neoformans adds to the growing evidence for a structurally complex structure composed of polysaccharide and nonpolysaccharide components.

  17. Lipophilic Dye Staining of Cryptococcus neoformans Extracellular Vesicles and Capsule▿

    PubMed Central

    Nicola, André Moraes; Frases, Susana; Casadevall, Arturo

    2009-01-01

    Cryptococcus neoformans is an encapsulated yeast that causes systemic mycosis in immunosuppressed individuals. Recent studies have determined that this fungus produces vesicles that are released to the extracellular environment both in vivo and in vitro. These vesicles contain assorted cargo that includes several molecules associated with virulence and implicated in host-pathogen interactions, such as capsular polysaccharides, laccase, urease, and other proteins. To date, visualization of extracellular vesicles has relied on transmission electron microscopy, a time-consuming technique. In this work we report the use of fluorescent membrane tracers to stain lipophilic structures in cryptococcal culture supernatants and capsules. Two dialkylcarbocyanine probes with different spectral characteristics were used to visualize purified vesicles by fluorescence microscopy and flow cytometry. Dual staining of vesicles with dialkylcarbocyanine and RNA-selective nucleic acid dyes suggested that a fraction of the vesicle population carried RNA. Use of these dyes to stain whole cells, however, was hampered by their possible direct binding to capsular polysaccharide. A fluorescent phospholipid was used as additional membrane tracer to stain whole cells, revealing punctate structures on the edge of the capsule which are consistent with vesicular trafficking. Lipophilic dyes provide new tools for the study of fungal extracellular vesicles and their content. The finding of hydrophobic regions in the capsule of C. neoformans adds to the growing evidence for a structurally complex structure composed of polysaccharide and nonpolysaccharide components. PMID:19465562

  18. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses.

    PubMed

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  19. Controlled growth of filamentous fatty acid vesicles under flow.

    PubMed

    Hentrich, Christian; Szostak, Jack W

    2014-12-16

    The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids. PMID:25402759

  20. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559