Sample records for primitive life forms

  1. How rare is complex life in the Milky Way?

    PubMed

    Bounama, Christine; von Bloh, Werner; Franck, Siegfried

    2007-10-01

    An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.

  2. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  3. A theory of circular organization and negative feedback: defining life in a cybernetic context.

    PubMed

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  4. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    NASA Astrophysics Data System (ADS)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  5. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  6. Formation of amino acids and nucleic acid constituents from simulated primitive planetary atmospheres by irradiation with high-energy protons

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.

    It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com poun ds could be formed directly in the atmosphere. A new scenario of chemical evolution via complex organics toward the origin of life will be prop o s e d. [1] J. Kasting, Origins Life Evol. Biosph ere, 20, 199 (1990). [2] K. Kobay ashi , et al., Origins Life Evol. Biosphere, 28, 155 (1998). * Present address: Rensselaer Polytechnic Ins titut e.

  7. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  8. Hydrazines and carbohydrazides produced from oxidized carbon in earth's primitive environment

    NASA Technical Reports Server (NTRS)

    Folsome, C. E.; Brittain, A.; Smith, A.; Chang, S.

    1981-01-01

    Whether abiological organic compounds can be formed from the interactions of energy sources with nitrogen, oxidized carbon and water is held to be of importance in geochemical models of the primordial earth atmosphere. It is reported that experiments using quenched spark discharges through molecular nitrogen on aqueous suspensions of CaCO3 and other reactants to simulate the hydrosphere/atmosphere interface yield hydrazine and carbohydrazine in significant but low yields. Such reactions in primitive aquatic environments may have supplied a pathway for chemical evolution and the origin of life, on a primitive earth in which fully oxidized states of carbon were available for the primary synthesis of organic matter.

  9. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  10. A Hypothesis: Life Initiated from Two Genes, as Deduced from the RNA World Hypothesis and the Characteristics of Life-Like Systems

    PubMed Central

    Kawamura, Kunio

    2016-01-01

    RNA played a central role in the emergence of the first life-like system on primitive Earth since RNA molecules contain both genetic information and catalytic activity. However, there are several drawbacks regarding the RNA world hypothesis. Here, I briefly discuss the feasibility of the RNA world hypothesis to deduce the RNA functions that are essential for forming a life-like system. At the same time, I have conducted a conceptual analysis of the characteristics of biosystems as a useful approach to deduce a realistic life-like system in relation to the definition of life. For instance, an RNA-based life-like system should possess enough stability to resist environmental perturbations, by developing a cell-like compartment, for instance. Here, a conceptual viewpoint is summarized to provide a realistic life-like system that is compatible with the primitive Earth environment and the capabilities of RNA molecules. According to the empirical and conceptual analysis, I propose the hypothesis that the first life-like system could have initiated from only two genes. PMID:27490571

  11. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

  12. Identification, Characterization, and Exploration of Environments for Life on Mars

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara E.

    2002-01-01

    A bibliography (18 references) listing the publications during the current grant period of The Center for the Study of Life in the Universe, part of the SETI (Search for Extraterrestrial Intelligence) Institute is presented. The publications, from the Period of Performance September 1, 2000 to February 28, 2002, primarily cover Mars and its potential for life, as well as extreme environments and primitive life forms on Earth. One of the publications covers Europa and the Galileo spacecraft.

  13. Models of glycolysis: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    All organisms require energy in a chemical form for maintenance and growth. In contemporary life this chemical energy is obtained by the synthesis of the phosphoanhydride bonds of ATP. Among the biological processes that yield ATP, fermentation is generally considered primitive, because it operates under anaerobic conditions by substrate-level phosphorylation which does not require compartmentation by membranes. Fermentation by the glycolytic pathway, which is found in almost every living cell, is an especially attractive energy source for primitive life. Glycolysis not only produces useful chemical energy (ATP), but intermediates of this pathway are also involved in amino acid synthesis and photosynthetic carbon-fixation. It is believed that energy and substrates needed for the origin of life were provided by nonenzymatic chemical reactions that resemble the enzyme-mediated reactions of glycolysis. These nonenzymatic reactions would have provided a starting point for the evolutionary development of glycolysis.

  14. Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Rasmussen, Steen; Cleaves, James; Chen, Liaohai

    2006-06-01

    Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.

  15. Prebiotic significance of extraterrestrial ice photochemistry: detection of hydantoin in organic residues.

    PubMed

    de Marcellus, Pierre; Bertrand, Marylène; Nuevo, Michel; Westall, Frances; Le Sergeant d'Hendecourt, Louis

    2011-11-01

    The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.

  16. Evolution, Entropy, & Biological Information

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  17. Humic First Theory: A New Theory on the Origin of Life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh; Daei, Bijan

    2017-04-01

    In 1953, Miller & Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions [1]. During the recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites which have bombarded the ancient earth repeatedly [2]. So simple organic molecules on early earth could be quite enough to start chemical evolution and steadily, proceeded to the very simple form of life. Many theories have tried to explain how life emerged from non life, but failed, largely due to the lack of a distinct methodology. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. It is unacceptable to fill this great distance, only by accidental reactions in a passive media (primitive soap) even, over a very long time. Obviously, manufacturing of a primitive cell required a natural factory with rather firm and resistant basement, plenty of organic and inorganic raw materials and qualified production line, plus some sources of energy. There were plenty of solar energy and water in the early Earth, but what about the other factors? Availability of essential minerals was not guaranteed at all, in primitive earth which covered with bare, dead rocks. While we are not able today, to multiply any microorganisms in ideal conditions of modern laboratory in the absence of only one of essential nutrients or elements, how can we expect primitive cells appear on early earth conditions without the support of soluble minerals and organic matters? Ideal production line must be active and protective, have catalyzing ability, could provide numerous opportunities for interaction between basic bio molecules (mainly RNA and proteins) and above all, have capability to react with different sources of energy. There are strong evidences that show only some form of stable, rich and active organic matter like modern "humic substances" could perform this great and complicated duty. A mass of warm, wet clay mixed with enough humic substances (HS) in suitable PH, could provide all above requirements, and promote biochemical evolution step by step toward a functional primitive cell. HS are fluorescent compounds and could transform UV radiation to usable light. In addition these protective materials could provide chemical energy plus balanced minerals and organic molecules. While everything in non living world is reducing energy, HS can collect more and more material and energy like a living organism. Fortunately, there are reliable evidences that HS could be accessible on ancient Earth. In fact Ziechman et al [7], in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generated on early Earth conditions by polymerizing simple organic molecules. Our investigations show elemental selection and also chairal selection for life are proportionately tailored to Humic materials. For example nearly all heavy metals make insoluble compounds with HS, hence omitted from life processes. In contrast all essential elements have appropriate affinity and workability with HS. There is reliable evidence that shows HS prefer left amino acids and right sugars. As you see many signs and symptoms are referring to "humic substances" as the mother of life, at least on this planet.

  18. Multiple origins of life

    NASA Technical Reports Server (NTRS)

    Raup, D. M.; Valentine, J. W.

    1983-01-01

    There is some indication that life may have originated readily under primitive earth conditions. If there were multiple origins of life, the result could have been a polyphyletic biota today. Using simple stochastic models for diversification and extinction, we conclude: (1) the probability of survival of life is low unless there are multiple origins, and (2) given survival of life and given as many as 10 independent origins of life, the odds are that all but one would have gone extinct, yielding the monophyletic biota we have now. The fact of the survival of our particular form of life does not imply that it was unique or superior.

  19. How many theories for the origin of /proto/life

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1980-01-01

    The sequence of primordial chemical events leading to contemporary metabolism is considered, taking into account primordial reactants, amino acids, proteinoid, protocells, ATP, polynucleotides, and protein. The right kind of matter, thermal copolyamino acids, can organize itself into cell-like structures, in the absence of discrete lipid, when triggered to do so by water. Another unpredicted result of examination of the microsystems formed was the step-by-step realization that the component processes of a primitive form of replication were latent in the proteinoid microsystems. At the present time, four modes of primitive replication of proteinoid microsystems have been identified, plus one that has the appearance of protosexual reproduction. Two main conceptual pathways have received attention. One is the proteinoid theory, derived from experiments. The other is the DNA-first theory, for which attempts at conceptual construction and experimental support continue to be sought.

  20. Life's origin: the cosmic, planetary and biological processes

    NASA Technical Reports Server (NTRS)

    Scattergood, T.; Des Marais, D.; Jahnke, L.

    1987-01-01

    From elements formed in interstellar furnaces to humans peering back at the stars, the evolution of life has been a long, intricate and perhaps inevitable process. Life as we know it requires a planet orbiting a star at just the right distance so that water can exist in liquid form. It needs a rich supply of chemicals and energy sources. On Earth, the combination of chemistry and energy generated molecules that evolved ways of replicating themselves and of passing information from one generation to the next. Thus, the thread of life began. This chart traces the thread, maintained by DNA molecules for much of its history, as it weaves its way through the primitive oceans, gaining strength and diversity along the way. Organisms eventually moved onto the land, where advanced forms, including humans, ultimately arose. Finally, assisted by a technology of its own making, life has reached back out into space to understand its own origins, to expand into new realms, and to seek other living threads in the cosmos.

  1. Water erosion on mars and its biologic implications

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    The Martian surface shows abundant evidence of water erosion. Liquid water is unstable under present climatic conditions but conditions may have been different in the past. The planet has been volcanically active throughout its history. The combination of water and volcanism must have commonly resulted in hydrothermal environments similar to those in which grow the most primitive terrestrial life-forms.

  2. Historical Development of Origins Research

    PubMed Central

    Lazcano, Antonio

    2010-01-01

    Following the publication of the Origin of Species in 1859, many naturalists adopted the idea that living organisms were the historical outcome of gradual transformation of lifeless matter. These views soon merged with the developments of biochemistry and cell biology and led to proposals in which the origin of protoplasm was equated with the origin of life. The heterotrophic origin of life proposed by Oparin and Haldane in the 1920s was part of this tradition, which Oparin enriched by transforming the discussion of the emergence of the first cells into a workable multidisciplinary research program. On the other hand, the scientific trend toward understanding biological phenomena at the molecular level led authors like Troland, Muller, and others to propose that single molecules or viruses represented primordial living systems. The contrast between these opposing views on the origin of life represents not only contrasting views of the nature of life itself, but also major ideological discussions that reached a surprising intensity in the years following Stanley Miller’s seminal result which showed the ease with which organic compounds of biochemical significance could be synthesized under putative primitive conditions. In fact, during the years following the Miller experiment, attempts to understand the origin of life were strongly influenced by research on DNA replication and protein biosynthesis, and, in socio-political terms, by the atmosphere created by Cold War tensions. The catalytic versatility of RNA molecules clearly merits a critical reappraisal of Muller’s viewpoint. However, the discovery of ribozymes does not imply that autocatalytic nucleic acid molecules ready to be used as primordial genes were floating in the primitive oceans, or that the RNA world emerged completely assembled from simple precursors present in the prebiotic soup. The evidence supporting the presence of a wide range of organic molecules on the primitive Earth, including membrane-forming compounds, suggests that the evolution of membrane-bounded molecular systems preceded cellular life on our planet, and that life is the evolutionary outcome of a process, not of a single, fortuitous event. PMID:20534710

  3. Cave men: stone tools, Victorian science, and the 'primitive mind' of deep time.

    PubMed

    Pettitt, Paul B; White, Mark J

    2011-03-20

    Palaeoanthropology, the study of the evolution of humanity, arose in the nineteenth century. Excavations in Europe uncovered a series of archaeological sediments which provided proof that the antiquity of human life on Earth was far longer than the biblical six thousand years, and by the 1880s authors had constructed a basic paradigm of what 'primitive' human life was like. Here we examine the development of Victorian palaeoanthropology for what it reveals of the development of notions of cognitive evolution. It seems that Victorian specialists rarely addressed cognitive evolution explicitly, although several assumptions were generally made that arose from preconceptions derived from contemporary 'primitive' peoples. We identify three main phases of development of notions of the primitive mind in the period.

  4. Effects of primitive photosynthesis on Earth's early climate system

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  5. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y., Marumo, K., Yabashi, S., Kaneko, T., and Kobayashi, K., (2004). Curie-Point Pyrolysis of Complex Organics Simulated by Cosmic Rays Irradiation of Simple Inorganic Gas Mixture. Appl Phys. Lett., 85, 1633.

  6. Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life

    PubMed Central

    Toppozini, Laura; Dies, Hannah; Deamer, David W.; Rheinstädter, Maikel C.

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers. PMID:23667523

  7. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    PubMed

    Toppozini, Laura; Dies, Hannah; Deamer, David W; Rheinstädter, Maikel C

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  8. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. Although this structure is not part of the research published in the Aug. 16 issue of the journal Science, it is located in a similar carbonate glob in the meteorite. This structure will be the subject of future investigations that could confirm whether or not it is fossil evidence of primitive life on Mars 3.6 billion years ago.

  9. Hypotheses on the appearance of life on Earth (review).

    PubMed

    Dose, K

    1986-01-01

    It is generally accepted within the natural sciences that life emerged on Earth by a kind of proto-Darwinian evolution from molecular assemblies that were predominantly formed from the various constituents of the primitive atmosphere and hydrosphere. Evolutionary stages under discussion are: the self-organization of spontaneously formed biomolecules into early precursors of life (protobionts), their stepwise evolution via (postulated) protocells to (postulated) progenotes and the Darwinian evolution from progenotes to the three kingdoms of contemporary organisms (archaebacteria, eubacteria and eukaryotes). Considerable discrepancies between scientists have arisen because all evolutionary stages from prebiotic molecules to progenotes are entirely hypothetical and so are the postulated environmental conditions. We can only theorize that all those environmental conditions that allow the existence of the various forms of contemporary life might have allowed also the development of their precursors. Because of all these difficulties the hypothesis that life came to our planet from a remote place of our universe (panspermia) has been revived. But experimental evidence only supports the view that spores can--under favorable circumstances--survive a relatively short journey within our solar system (interplanetary transfer of life). It is extremely unlikely that spores can survive a journey of hundreds or thousands of years through interstellar space.

  10. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention will be given to neutral-neutral reactions.

  11. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  12. On possible life on Jupiter's satellite Io

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  13. Origins of Life: Open Questions and Debates

    NASA Astrophysics Data System (ADS)

    Brack, André

    2017-10-01

    Stanley Miller demonstrated in 1953 that it was possible to form amino acids from methane, ammonia, and hydrogen in water, thus launching the ambitious hope that chemists would be able to shed light on the origins of life by recreating a simple life form in a test tube. However, it must be acknowledged that the dream has not yet been accomplished, despite the great volume of effort and innovation put forward by the scientific community. A minima, primitive life can be defined as an open chemical system, fed with matter and energy, capable of self-reproduction (i.e., making more of itself by itself), and also capable of evolving. The concept of evolution implies that chemical systems would transfer their information fairly faithfully but make some random errors. If we compared the components of primitive life to parts of a chemical automaton, we could conceive that, by chance, some parts self-assembled to generate an automaton capable of assembling other parts to produce a true copy. Sometimes, minor errors in the building generated a more efficient automaton, which then became the dominant species. Quite different scenarios and routes have been followed and tested in the laboratory to explain the origin of life. There are two schools of thought in proposing the prebiotic supply of organics. The proponents of a metabolism-first call for the spontaneous formation of simple molecules from carbon dioxide and water to rapidly generate life. In a second hypothesis, the primeval soup scenario, it is proposed that rather complex organic molecules accumulated in a warm little pond prior to the emergence of life. The proponents of the primeval soup or replication first approach are by far the more active. They succeeded in reconstructing small-scale versions of proteins, membranes, and RNA. Quite different scenarios have been proposed for the inception of life: the RNA world, an origin within droplets, self-organization counteracting entropy, or a stochastic approach merging chemistry and geology. Understanding the emergence of a critical feature of life, its one-handedness, is a shared preoccupation in all these approaches.

  14. Mars Life? - Orange-colored Carbonate Mineral Globules

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photograph shows orange-colored carbonate mineral globules found in a meteorite, called ALH84001, believed to have once been a part of Mars. These carbonate minerals in the meteorite are believed to have been formed on Mars more than 3.6 billion years ago. Their structure and chemistry suggest that they may have been formed with the assistance of primitive, bacteria-like living organisms. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils inside of carbonate minerals such as these in the meteorite.

  15. Why we need asteroid sample return mission?

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material will allow us to study in terrestrial laboratories some of the most primitive materials available to investigate early solar system formation processes, to explore initial stages of habitable planet formation, to identify and characterize the organics and volatiles in a primitive asteroid. The ideal easy target body for such mission is a D type NEA. D types are the most abundant asteroids beyond the outer edge of the main belt. It is likely that they formed much further out in the Solar System, possibly as far as the transneptunian objects, and were subsequently captured in their present locations following the migration of the gas giants. Spectral features indicate that these bodies are organic rich, contain fine anhydrous minerals but also may be volatile rich and appear to be the most primitive rocky material present in the solar system. In addition to addressing the major science goals, sample return mission from a NEA also involved innovative European technologies. The key sample return capabilities, i.e. asteroid navigation, touch and go, sampling mechanism and the re-entry capsule have reached at ESA a validation status to enter implementation phase. The development of sample return technology represents in Europe a crucial element for planetary science and for the space technology development.

  16. [Biological cycle of Cyrnea (Procyrnea) mansoni Seurat, 1914, a habronemid nematode parasite of birds of prey in Togo].

    PubMed

    Quentin, J C; Seureau, C; Railhac, C

    1983-01-01

    A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.

  17. The minimal autopoietic unit.

    PubMed

    Luisi, Pier Luigi

    2014-12-01

    It is argued that closed, cell-like compartments, may have existed in prebiotic time, showing a simplified metabolism which was bringing about a primitive form of stationary state- a kind of homeostasis. The autopoietic primitive cell can be taken as an example and there are preliminary experimental data supporting the possible existence of this primitive form of cell activity. The genetic code permits, among other things, the continuous self-reproduction of proteins; enzymic proteins permit the synthesis of nucleic acids, and in this way there is a perfect recycling between the two most important classes of biopolymers in our life. On the other hand, the genetic code is a complex machinery, which cannot be posed at the very early time of the origin of life. And the question then arises, whether some form of alternative beginning, prior to the genetic code, would have been possible: and this is the core of the question asked. Is something with the flavor of early life conceivable, prior to the genetic code? My answer is positive, although I am too well aware that the term "conceivable" does not mean that this something is easily to be performed experimentally. To illustrate my answer, I would first go back to the operational description of cellular life as given by the theory of autopoiesis. Accordingly, a living cell is an open system capable of self-maintenance, due to a process of internal self-regeneration of the components, all within a boundary which is itself product from within. This is a universal code, valid not only for a cell, but for any living macroscopic entity, as no living system exists on Earth which does not obey this principle. In this definition (or better operational description) there is no mention of DNA or genetic code. I added in that definition the term "open system"-which is not present in the primary literature (Varela, et al., 1974) to make clear that every living system is indeed an open system-without this addition, it may seem that with autopoiesis we are dealing with a perpetuum mobile, against the second principle of thermodynamics. Now consider the following figure (Fig. 1). It represents in a very schematic form a cell, as an open system, with a semipermeable membrane constituted by the chemical S, which permits the entrance of the nutrient A and the elimination of the decay product P. A is transformed inside the cell into S by a chemical reaction characterized by kgen, and S can be transformed into P by the reaction kdec. The two reactions actually may represent two entire families of reaction, in the sense that one can envisage several A and several S and several P.

  18. Evaluation of the 129I Half-Life Value Through Analyses of Primitive Meteorites

    NASA Astrophysics Data System (ADS)

    Pravdivtseva, Olga; Meshik, Alex; Hohenberg, Charles M.

    The preserved record of decay of now-extinct 129I into 129Xe forms the basis of the I-Xe chronometer. Comparison of the high precision I-Xe and Pb-Pb ages of chondrules and pure mineral phases separated from eight meteorites suggests the 17.5 ÷ 14.6 Ma range for the 129I half-life, assuming that the 235U and 238U half-lives are correct. The mean value of 16 Ma indicates that the 15.7 Ma half-life of 129I used here for the I-Xe age calculations is most probably correct. Since the 129I half-life value only affects the relative I-Xe ages, the few Ma relative to the Shallowater standard, the absolute I-Xe ages are almost immune to this uncertainty in the 129I half-life.

  19. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE PAGES

    Schoonen, Martin; Smirnov, Alexander

    2016-12-01

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  20. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonen, Martin; Smirnov, Alexander

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  1. Porphinogen Formation from the Co-Oligomerization of Formaldehyde and Pyrrole: Free Energy Pathways.

    PubMed

    Kua, Jeremy; Loli, Helen

    2017-10-26

    We have investigated the nonoxidative stepwise co-oligomerization of formaldehyde and pyrrole to form porphinogen using density functional theory calculations that include free energy corrections. While the addition of formaldehyde to the pyrrole nitrogen is kinetically favored, thermodynamics suggest that this reaction is reversible in aqueous solution. The more thermodynamically favorable addition of formaldehyde to the ortho-carbon of pyrrole begins a stepwise process, forming dipyrromethane via an azafulvene intermediate. Subsequent additions of formaldehyde and pyrrole lead to bilanes (linear tetrapyrroles), which favorably cyclize to form porphinogen. Porphinogen is a precursor to porphin, the simplest unsubstituted porphyrin that could have played a role in primitive metabolism at the origin of life.

  2. Cometary dust: the diversity of primitive refractory grains

    PubMed Central

    Ishii, H. A.

    2017-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979

  3. The primitive code and repeats of base oligomers as the primordial protein-encoding sequence.

    PubMed Central

    Ohno, S; Epplen, J T

    1983-01-01

    Even if the prebiotic self-replication of nucleic acids and the subsequent emergence of primitive, enzyme-independent tRNAs are accepted as plausible, the origin of life by spontaneous generation still appears improbable. This is because the just-emerged primitive translational machinery had to cope with base sequences that were not preselected for their coding potentials. Particularly if the primitive mitochondria-like code with four chain-terminating base triplets preceded the universal code, the translation of long, randomly generated, base sequences at this critical stage would have merely resulted in the production of short oligopeptides instead of long polypeptide chains. We present the base sequence of a mouse transcript containing tetranucleotide repeats conserved during evolution. Even if translated in accordance with the primitive mitochondria-like code, this transcript in its three reading frames can yield 245-, 246-, and 251-residue-long tetrapeptidic periodical polypeptides that are already acquiring longer periodicities. We contend that the first set of base sequences translated at the beginning of life were such oligonucleotide repeats. By quickly acquiring longer periodicities, their products must have soon gained characteristic secondary structures--alpha-helical or beta-sheet or both. PMID:6574491

  4. Abundant ammonia in primitive asteroids and the case for a possible exobiology

    PubMed Central

    Pizzarello, Sandra; Williams, Lynda B.; Lehman, Jennifer; Holland, Gregory P.; Yarger, Jeffery L.

    2011-01-01

    Carbonaceous chondrites are asteroidal meteorites that contain abundant organic materials. Given that meteorites and comets have reached the Earth since it formed, it has been proposed that the exogenous influx from these bodies provided the organic inventories necessary for the emergence of life. The carbonaceous meteorites of the Renazzo-type family (CR) have recently revealed a composition that is particularly enriched in small soluble organic molecules, such as the amino acids glycine and alanine, which could support this possibility. We have now analyzed the insoluble and the largest organic component of the CR2 Grave Nunataks (GRA) 95229 meteorite and found it to be of more primitive composition than in other meteorites and to release abundant free ammonia upon hydrothermal treatment. The findings appear to trace CR2 meteorites’ origin to cosmochemical regimes where ammonia was pervasive, and we speculate that their delivery to the early Earth could have fostered prebiotic molecular evolution. PMID:21368183

  5. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1986-01-01

    The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.

  6. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  7. "Soft-shelled" monothalamid foraminifers as a modern analogue of early life

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Ohkawara, Nina; Gooday, Andrew

    2017-04-01

    According to the fossil record, the earliest undoubted foraminifers are found in the Early Cambrian, where they are represented by tubular agglutinated forms, thought to be the most primitive foraminiferal morphotypes. The numerous foraminifers with single-chambered, organic-walled tests (i.e. 'soft-shelled' monothalamids) exist in the deep sea and are difficult to preserve as fossils. Molecular phylogenetic data tell us that these 'primitive' taxa include the deepest foraminiferal clades, originating around 600 - 900 Ma. We found many soft-shelled monothalamids in sediment samples from deep trenches, including the Challenger Deep (Marianas Trench) and the Horizon Deep (Tonga Trench). Both deeps exceed 10,000 m water depth, well below the carbonate compensation depth, which represents an environmental barrier for calcareous foraminifera. The foraminifera at these extreme hadal sites include tubular and globular forms with organic walls, among which species of the genera Nodellum and Resigella are particularly abundant. Some forms selectively agglutinate minute flakes of clay minerals on the surface of the organic test. Many soft-shelled monothalamids, including most of those in deep tranches, contain stercomata, the function of which is currently unknown. Gromiids (a rhizarian group related to foraminifera) also accumulate stercomata in their sack-shaped tests. This suggests the possibility that the function of these waste particles is to add bulk, like the filling of soft bags or pillows. We suggest that the monothalamid foraminifera that dominate small-sized eukaryotes in extreme hadal settings may provide clues to understanding the biology and ecology of early life in Neoproterozoic sedimented habitats.

  8. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using “touch and go” manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth’s atmosphere.

  9. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 2 Amino Acid Analyses

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Messenger, S.; Clemett, S. J.; Aponte, J. C.; Elsila, J. E.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble, unstructured kerogen-like components, as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding of spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Using macroscale extraction and analysis techniques in combination with in situ microscale observation, we have been studying both insoluble and soluble organic material in the primitive CR2 chondrite Miller Range (MIL) 090657. In accompanying abstracts (Cao et al. and Messenger et al.) we discuss insoluble organic material in the samples. By performing the consortium studies, we aim to improve our understanding of the relationship between the meteorite minerals and the soluble and insoluble organic phases and to delineate which species formed within the meteorite and those that formed in nebular or presolar environments. In this abstract, we present the results of amino acid analyses of MIL 090657 by ultra performance liquid chromatography with fluorescence detection and quadrupole-time of flight mass spectrometry. Amino acids are of interest because they are essential to life on Earth, and because they are present in sufficient structural, enantiomeric and isotopic diversity to allow insights into early solar system chemical processes. Furthermore, these are among the most isotopically anomalous species, yet at least some fraction are thought to have formed by aqueously-mediated processes during parent body alteration.

  10. Looking for the most "primitive" organism(s) on Earth today: the state of the art.

    PubMed

    Forterre, P

    1995-01-01

    Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.

  11. Stability of model membranes in extreme environments.

    PubMed

    Namani, Trishool; Deamer, David W

    2008-08-01

    The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.

  12. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  13. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  14. Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 10(5) slower than facilitated inward transport across biological membranes. This suggest that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 10(10) times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g. for certain signal sequences, toxins and thylakoid proteins) in vivo.

  15. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.

    PubMed Central

    Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H

    1997-01-01

    The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017

  16. Epistemological issues in the study of microbial life: alternative terran biospheres?

    PubMed

    Cleland, Carol E

    2007-12-01

    The assumption that all life on Earth today shares the same basic molecular architecture and biochemistry is part of the paradigm of modern biology. This paper argues that there is little theoretical or empirical support for this widely held assumption. Scientists know that life could have been at least modestly different at the molecular level and it is clear that alternative molecular building blocks for life were available on the early Earth. If the emergence of life is, like other natural phenomena, highly probable given the right chemical and physical conditions then it seems likely that the early Earth hosted multiple origins of life, some of which produced chemical variations on life as we know it. While these points are often conceded, it is nevertheless maintained that any primitive alternatives to familiar life would have been eliminated long ago, either amalgamated into a single form of life through lateral gene transfer (LGT) or alternatively out-competed by our putatively more evolutionarily robust form of life. Besides, the argument continues, if such life forms still existed, we surely would have encountered telling signs of them by now. These arguments do not hold up well under close scrutiny. They reflect a host of assumptions that are grounded in our experience with large multicellular organisms and, most importantly, do not apply to microbial forms of life, which cannot be easily studied without the aid of sophisticated technologies. Significantly, the most powerful molecular biology techniques available-polymerase chain reaction (PCR) amplification of rRNA genes augmented by metagenomic analysis-could not detect such microbes if they existed. Given the profound philosophical and scientific importance that such a discovery would represent, a dedicated search for 'shadow microbes' (heretofore unrecognized 'alien' forms of terran microbial life) seems in order. The best place to start such a search is with puzzling (anomalous) phenomena, such as desert varnish, that resist classification as 'biological' or 'nonbiological'.

  17. Microfossils in the Antarctic cold desert: Possible implications for Mars

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.; Ocampo-Friedmann, R.

    1986-01-01

    In the Ross Desert of Antarctica, the principal life form is the cryptoendolithic microbial community in the near-surface layers of porous sandstone rocks. Biological, geological, and climatic factors interact in a complex and precarious balance, making life possible in an otherwise hostile environment. Once this balance is tipped, fossilization sets in. In the reverse case, new colonization of the rock surface may be initiated. As a result, fossilization is contemporary with modern life and both may be simultaneously present in a mosaic pattern. Also, different stages of fossilization are present. The process of fossilization takes place in a nonaquatic environment. If primitive life ever appeared on Mars, it is possible that with increasing aridity, life withdrew into an endolithic niche similar to that in the Antarctic desert. Fossilization in a nonaquatic environment may have set in with the result that traces of past life could be preserved. If such was the case, the study of the fossilization process in Antarctica may hold useful information for the analysis of Martian samples for microfossils.

  18. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  19. A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp

    NASA Astrophysics Data System (ADS)

    Weiner, Susan A.; Galbraith, David A.; Adams, Dean C.; Valenzuela, Nicole; Noll, Fernando B.; Grozinger, Christina M.; Toth, Amy L.

    2013-08-01

    DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences.

  20. Darwin's warm little pond revisited: from molecules to the origin of life.

    PubMed

    Follmann, Hartmut; Brownson, Carol

    2009-11-01

    All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched "a warm little pond with all sorts of... (chemicals, in which) ...a protein was chemically formed." We try to trace the impact of his charming clear-sighted metaphor up to the present time.

  1. Darwin's warm little pond revisited: from molecules to the origin of life

    NASA Astrophysics Data System (ADS)

    Follmann, Hartmut; Brownson, Carol

    2009-11-01

    All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched “a warm little pond with all sorts of… (chemicals, in which) …a protein was chemically formed.” We try to trace the impact of his charming clear-sighted metaphor up to the present time.

  2. [Detection of organic compounds on Mars].

    PubMed

    Kobayashi, K

    1997-03-01

    McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.

  3. Basic primitives for molecular diagram sketching

    PubMed Central

    2010-01-01

    A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555

  4. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  5. Comet Dust: The Diversity of "Primitive" Particles and Implications

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  6. Comet Dust: The Diversity of Primitive Particles and Implications

    NASA Technical Reports Server (NTRS)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  7. Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A; Gasc, Sébastien; Gombosi, Tamas I; Hansen, Kenneth C; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter

    2016-05-01

    The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the (13)C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.

  8. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko

    PubMed Central

    Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hansen, Kenneth C.; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter

    2016-01-01

    The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth. PMID:27386550

  9. Anatomy and embryology of umbilicus in newborns: a review and clinical correlations.

    PubMed

    Hegazy, Abdelmonem A

    2016-09-01

    Umbilicus is considered a mirror of the abdomen in newborns. Despite its importance, the umbilicus has been stated in literature and textbooks as discrete subjects with many body systems, such as the urinary, digestive, and cardiovascular ones. This article aimed to address the basic knowledge of the umbilicus in relation to clinical disorders under one integrated topic to aid physicians and surgeons in assessing newborns and infants. The umbilicus appears as early as the fourth week of fetal life when the folding of the embryonic plate occurs. The umbilicus appears initially as a primitive umbilical ring on the ventral aspect of the body. The primitive umbilicus contains the connecting stalk, umbilical vessels, vitelline duct and vessels, allantois, and loop of the intestine. Changes occur to form the definitive cord, which contains three umbilical vessels, namely, "one vein and two arteries," embedded in Wharton's jelly. After birth, the umbilical vessels inside the body obliterate and gradually form ligaments. Congenital disorders at the umbilicus include herniation, bleeding, and discharge of mucous, urine, or feces. Some of these disorders necessitate emergent surgical interference, whereas others may be managed conservatively. The umbilicus has many embryological remnants. Thus, the umbilicus is prone to various clinical disorders. Detecting these disorders as early as possible is essential to prevent or minimize possible complications.

  10. Primitive macrophages control HSPC mobilization and definitive haematopoiesis.

    PubMed

    Travnickova, Jana; Tran Chau, Vanessa; Julien, Emmanuelle; Mateos-Langerak, Julio; Gonzalez, Catherine; Lelièvre, Etienne; Lutfalla, Georges; Tavian, Manuela; Kissa, Karima

    2015-02-17

    In vertebrates, haematopoietic stem/progenitor cells (HSPCs) first emerge in the aorta-gonad-mesonephros (AGM) before colonizing transitory and subsequently definitive haematopoietic organs allowing haematopoiesis throughout adult life. Here we identify an unexpected primitive macrophage population accumulated in the dorsal mesenteric mesoderm surrounding the dorsal aorta of the human embryo and study its function in the transparent zebrafish embryo. Our study reveals dynamic interactions occurring between the HSPCs and primitive macrophages in the AGM. Specific chemical and inducible genetic depletion of macrophages or inhibition of matrix metalloproteinases (Mmps) leads to an accumulation of HSPCs in the AGM and a decrease in the colonization of haematopoietic organs. Finally, in vivo zymography demonstrates the function of primitive macrophages in extracellular matrix degradation, which allows HSPC migration through the AGM stroma, their intravasation, leading to the colonization of haematopoietic organs and the establishment of definitive haematopoiesis.

  11. Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life

    PubMed Central

    Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong

    2016-01-01

    The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meijne, E.I.; van der Winden-van Groenewegen, R.J.; Ploemacher, R.E.

    The sensitivity for x-irradiation of a series of hematopoietic stem cell populations has been determined. The most primitive cells identified, cells with marrow-repopulating ability (MRA), showed the highest degree of radioresistance. These MRA cells which generate many secondary day-twelve spleen colony-forming units (MRA(CFU-S-12)) or colony-forming units in culture (MRA(CFU-C)) in the marrow of primary recipients had Do values equal to 1.18 and 1.13 Gy, respectively. The more mature CFU-S-12 had intermediate radiosensitivity (Do = 0.94 Gy), whereas the less primitive CFU-S-7 were the most radiosensitive (Do = 0.71 Gy). The in vitro colony-forming precursor cells (CFU-C) showed low radiosensitivity. Thesemore » data clearly show that the most primitive hematopoietic stem cell measured is less sensitive to ionizing radiation than generally has been assumed on the basis of measurements on CFU-S-7 or CFU-S-12.« less

  13. Primordial organic chemistry and the origin of life.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1971-01-01

    Aspects of Darwinian revolution are discussed together with spontaneous generation, the inorganic chemical evolution, the primitive atmosphere, and interstellar matter. The significance of the change of the earth's reducing atmosphere to an atmosphere with oxidizing characteristics is considered. Experiments regarding the abiogenic synthesis of nucleic acids and proteins are reported. It was found that micromolecules can be formed in simulation experiments. The condensation reaction taking place in the presence of water was studied together with the condensation reaction taking place in the relative absence of water or under hypohydrous conditions. Jupiter simulation studies were conducted, and lunar and meteorite material was analyzed.

  14. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  15. A sample return mission to a pristine NEO submitted to ESA CV 2015-2025

    NASA Astrophysics Data System (ADS)

    Michel, P.; Barucci, A.

    2007-08-01

    ESA Cosmic Vision 2015-2025 aims at furthering Europe's achievements in space science, for the benefit of all mankind. ESA' multinational Space Science Advisory Committee prepared the final plan, which contains a selection of themes and priorities. In the theme concerning how the Solar System works, a Near-Earth Object (NEO) sample return mission is indicated among the priorities. Indeed, small bodies, as primitive leftover building blocks of the Solar System formation process, offer clues to the chemical mixture from which the planets formed some 4.6 billion years ago. The Near Earth Objects (NEOs) are representative of the population of asteroids and dead comets and are thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets. NEOs are thus fundamentally interesting and highly accessible targets for scientific research and space missions. A sample return space mission to a pristine NEO has thus been proposed in partnership with the Japanese Space Agency JAXA, involving a large European community of scientists. The principal objectives are to obtained crucial information about 1) the properties of the building blocks of the terrestrial planets; 2) the major events (e.g. agglomeration, heating, ... .) which ruled the history of planetesimals; 3) the properties of primitive asteroids which may contain presolar material unknown in meteoritic samples; 4) the organics in primitive materials; 5) the initial conditions and evolution history of the solar nebula; and 6) on the potential origin of molecules necessary for life. This project appears clearly to have the potential to revolutionize our understanding of primitive materials. It involves a main spacescraft which will allow the determination of important physical properties of the target (shape, mass, crater distribution . . . ) and which will take samples by a touch-and-go procedure, a Lander for in-situ investigation of the sampling site, and sampling depending on technological development and resource allocations, a re-entry capsule, and scientific payloads. We will present the mission targets, scenarios and techniques that have been proposed.

  16. From the Big Bang to the life in the primitive seas. (Spanish Title: Desde la Gran Explosión hasta la vida en los mares primitivos)

    NASA Astrophysics Data System (ADS)

    Esteban, S. B.

    Man has always wondered about the origins of humanity, life, and the world around him. The Earth crust is a vast and natural archive, and its rocks represent the pages of the most documented events in the geological past. These rocks hold large amounts of information about the Earth history, whose age is estimated to be 4,600 million years. Historical Geology seeks to bring together the knowledge of the origin of the Universe as well as the origin of Earth as a member of the Solar System. The Big Bang theory supposes that the Universe began with a huge explosion. In the Earth's history it is possible to differentiate the biological events from the physical ones. The physical events are geographical and environmental transformations. The biological events are related to life on Earth. There are evidences of biological processes back to 3,500 million years ago. At the beginning, the conditions on Earth were catastrophic and unstable. At this stage, the first signs of life were the molecules that started to take energy from the sunlight and the chemical products. It was not a simple accumulation of gradual biological forms, but was accompanied by episodic innovations that allowed increasing complexity and greater use of ecospace. Some of these innovations are shown by certain groups of primitive arthropods adapted to live in oxygen-poor, deep marine environments. These arthropods have been found in 500 million-year-old rocks in northwestern Argentina (provinces of Jujuy and La Rioja), indicating the presence of oxygen-poor seas in that region.

  17. Arsenic in the evolution of earth and extraterrestrial ecosystems

    USGS Publications Warehouse

    Oremland, R.S.; Saltikov, C.W.; Wolfe-Simon, Felisa; Stolz, J.F.

    2009-01-01

    If you were asked to speculate about the form extra-terrestrial life on Mars might take, which geomicrobial phenomenon might you select as a model system, assuming that life on Mars would be 'primitive'? Give your reasons. At the end of my senior year at Rensselaer Polytechnic Institute in 1968, I took Professor Ehrlich's final for his Geomicrobiology course. The above question beckoned to me like the Sirens to Odysseus, for if I answered, it would take so much time and thought that I would never get around to the exam's other essay questions and consequently, would be "shipwrecked" by flunking the course. So, I passed it up. With this 41-year perspective in mind, this manuscript is now submitted to Professor Ehrlich for (belated) "extra-credit." R.S. Oremland ?? Taylor & Francis Group, LLC.

  18. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  19. Seeding life on the moons of the outer planets via lithopanspermia.

    PubMed

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  20. RIPE integrity primitives, part 2 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communications technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  1. RIPE integrity primitives, part 1 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communication technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  2. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  3. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  4. Psychotherapy with the boring patient.

    PubMed

    Taylor, G J

    1984-04-01

    Boredom is an unpleasant affective state which may be evoked by monotonous sensory input and reduction of an individual's internal instinctual and fantasy activity. Certain difficult patients have the capacity to evoke boredom in their psychotherapists and unless technical modifications are used, therapy quickly reaches an impasse and may be terminated on the grounds that the patient is 'not psychologically-minded.' Chronically boring patients have an impaired capacity for symbolization and can be identified by their non-symbolic communicative style. This reflects an inner struggle with primitive mental states due to fixation at, or regression to, the paranoid-schizoid developmental position. The patient may use projective identification to discharge unbearable psychic tension into the therapist whose boredom is partly a defense against this. Alternatively, the patient may create impenetrable barriers with language by making 'attacks on linking' which are tantamount to attacks on the therapist's peace of mind. The therapist should initially interpret the form and function of the patient's communications rather than the contents. In a manner comparable to a mother's interaction with her young child, the therapist can help the patient acquire a greater capacity for symbolization, including the ability to accurately label and verbalize different affective experiences. Careful analysis of the countertransference will identify the patient's projective identifications, provide valuable information about the patient's primitive mental life, and prevent anti-therapeutic projective counter-identifications. The patient will become less boring as he learns to use symbols and as his primitive anxieties are resolved.

  5. Viruses and mobile elements as drivers of evolutionary transitions

    PubMed Central

    2016-01-01

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520

  6. Viruses and mobile elements as drivers of evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-08-19

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.

  7. A morphological analysis of the transition between the embryonic primitive intestine and yolk sac in bovine embryos and fetuses.

    PubMed

    Mançanares, Celina A F; Leiser, Rudolf; Favaron, Phelipe O; Carvalho, Ana F; Oliveira, Vanessa C De; Santos, José M Dos; Ambrósio, Carlos E; Miglino, Maria A

    2013-07-01

    The yolk sac (YS) is the main source of embryonic nutrition during the period when the placenta has not yet formed. It is also responsible for hematopoiesis because the blood cells develop from it as part of the primitive embryonic circulation. The objective of this study was to characterize the transitional area between the YS and primitive gut using the techniques of light microscopy, transmission electron microscopy, and immunohistochemistry to detect populations of pluripotent cells by labeling with Oct4 antibody. In all investigated embryos, serial sections were made to permit the identification of this small, restricted area. We identified the YS connection with the primitive intestine and found that it is composed of many blood islands, which correspond to the vessels covered by vitelline and mesenchymal cells. We identified large numbers of hemangioblasts inside the vessels. The mesenchymal layer was thin and composed of elongated cells, and the vitelline endodermal membrane was composed of large, mono- or binucleated cells. The epithelium of the primitive intestine comprised stratified columnar cells and undifferentiated mesenchymal cells. The transitional area between the YS and the primitive intestine was very thin and composed of cells with irregular shapes, which formed a delicate lumen containing hemangioblasts. In the mesenchyme of the transitional area, there were a considerable number of small vessels containing hemangioblasts. Using Oct4 as a primary antibody, we identified positive cells in the metanephros, primordial gonad, and hepatic parenchyma as well as in YS cells, suggesting that these regions contain populations of pluripotent cells. Copyright © 2013 Wiley Periodicals, Inc.

  8. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  9. The principle of cooperation and life's origin and evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Armangue, G.; Mar, A.

    1986-01-01

    In simple terms a living entity is a negentropic system that replicates, mutates and evoluves. A number of suggestions have been made, such as directed panspermia, atmospheric photosynthesis, genetic overtaking from inorganic processes, etc., as alternative models to the accepted Oparin-Haldane-Urey model of the origin of life on Earth. This has probably occurred because in spite of tremendous advances in the prebiotic synthesis of biochemical compounds, the fundamental problem of the appearance of the first life--a primordial replicating cell-ancestral to all other forms of extant life, has remained elusive. This is indeed a reflection on the different fundamental nature of the problem involved. Regardless of which were the fundamental processes which occurred on the primitive Earth, it has to end up with the fundamental characteristics of an ancestral protocell. The problem of the emergence of the first ancestral cell was one of synergistic macromolecular cooperation, as it has been discussed by authors recently (COSPAR XXV Plenary Meeting). An analogous situation must have occurred at the time of the appearance of the first eucaryotic organism. Procaryotic life appeared probably during the first 600 million years of Earth history when the Earth was sufficiently cool and continually bombarded (in the late accretion period) by comets and minor bodies of the solar system, when the sea had not yet acquired its present form.

  10. Is there a single origin of life?

    NASA Astrophysics Data System (ADS)

    Soffen, Gerald A.

    The emergence of the first life on the earth is now established as an early event, and closely related to the evolving earth. Laboratory experiments examining possible chemical events have revealed a multitude of plausible pathways. Lack of knowledge of the primitive terrestrial conditions contemporary with the evolving prebolic organic chemistry limits reconstruction techniques. The primitive earth's aqueous history is essential to unraveling this problem. Based on our current knowledge of other planets of the solar system, we do not expect close analogues to the early earth. We still do not know if there was a second origin or if only earth has life. This may depend upon the question of the survival of information bearing chemical systems in a dynamic or chaotic environment and the chemical protection afforded within such a system. Water is the central molecule of controversy: the blessing and the curse of the chemist. New and novel chemical mechanisms and systems abound.

  11. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  12. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events.

    PubMed

    Schiller, Martin; Paton, Chad; Bizzarro, Martin

    2015-01-15

    The presence of isotope heterogeneity of nucleosynthetic origin amongst meteorites and their components provides a record of the diverse stars that contributed matter to the protosolar molecular cloud core. Understanding how and when the solar system's nucleosynthetic heterogeneity was established and preserved within the solar protoplanetary disk is critical for unraveling the earliest formative stages of the solar system. Here, we report calcium and magnesium isotope measurements of primitive and differentiated meteorites as well as various types of refractory inclusions, including refractory inclusions (CAIs) formed with the canonical 26 Al/ 27 Al of ~5 × 10 -5 ( 26 Al decays to 26 Mg with a half-life of ~0.73 Ma) and CAIs that show fractionated and unidentified nuclear effects (FUN-CAIs) to understand the origin of the solar system's nucleosynthetic heterogeneity. Bulk analyses of primitive and differentiated meteorites along with canonical and FUN-CAIs define correlated, mass-independent variations in 43 Ca, 46 Ca and 48 Ca. Moreover, sequential dissolution experiments of the Ivuna carbonaceous chondrite aimed at identifying the nature and number of presolar carriers of isotope anomalies within primitive meteorites have detected the presence of multiple carriers of the short-lived 26 Al nuclide as well as carriers of anomalous and uncorrelated 43 Ca, 46 Ca and 48 Ca compositions, which requires input from multiple and recent supernovae sources. We infer that the solar system's correlated nucleosynthetic variability reflects unmixing of old, galactically-inherited homogeneous dust from a new, supernovae-derived dust component formed shortly prior to or during the evolution of the giant molecular cloud parental to the protosolar molecular cloud core. This implies that similarly to 43 Ca, 46 Ca and 48 Ca, the short-lived 26 Al nuclide was heterogeneously distributed in the inner solar system at the time of CAI formation.

  13. Psychological Study on the Origin of Life, Death and Life after Death: Differences between Beliefs According to Age and Schooling

    ERIC Educational Resources Information Center

    Silva Bautista, Jesús; Herrera Escobar, Venazir; Corona Miranda, Rodolfo

    2018-01-01

    The present work proposes a psychological study via beliefs, about the origin of life, death, and life after death. Beliefs have played a decisive role in the development of humanity, from the primitive man who gave to the unknown divine forces, the judgments of the Holy Inquisition in the Medieval Age, the impact provoked by the conviction that…

  14. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  15. Seeding Life on the Moons of the Outer Planets via Lithopanspermia

    PubMed Central

    Sigurdsson, Steinn; House, Christopher H.

    2013-01-01

    Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459

  16. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  17. Dynamic primitives in the control of locomotion

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959

  18. Oparin's coacervates as an important milestone in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2015-09-01

    Although Oparin's coacervate model for the origin of life by chemical evolution is almost 100 years old, it is still valid. However, the structure of his originally proposed coacervate is not considered prebiotic, based on some recent developments in prebiotic chemistry. We have remedied this deficiency of the Oparin's model, by substituting his coacervate with a prebiotically feasible one. Oparin's coacervates are aqueous structures, but have a boundary with the rest of the aqueous medium. They exhibit properties of self-replication, and provide a path to a primitive metabolism, via chemical competition and thus a primitive selection. Thus, coacervates are good models for proto-cells. We review here some salient points of Oparin's model and address also some philosophical views on the beginning of natural selection in primitive chemical systems.

  19. Crystallization and diffraction analysis of [beta]-N-acetylhexosaminidase from Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanek, Ondrej; Brynd, Jirí; Hofbauerová, Katerina

    2012-05-08

    Fungal {beta}-N-acetylhexosaminidases are enzymes that are used in the chemoenzymatic synthesis of biologically interesting oligosaccharides. The enzyme from Aspergillus oryzae was produced and purified from its natural source and crystallized using the hanging-drop vapor-diffusion method. Diffraction data from two crystal forms (primitive monoclinic and primitive tetragonal) were collected to resolutions of 3.2 and 2.4 {angstrom}, respectively. Electrophoretic and quantitative N-terminal protein-sequencing analyses confirmed that the crystals are formed by a complete biologically active enzyme consisting of a glycosylated catalytic unit and a noncovalently attached propeptide.

  20. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  1. Secure Computer System: Unified Exposition and Multics Interpretation

    DTIC Science & Technology

    1976-03-01

    prearranged code to semaphore critical information to an undercleared subject/process. Neither of these topics is directly addressed by the mathematical...FURTHER CONSIDERATIONS. RULES OF OPERATION FOR A SECURE MULTICS Kernel primitives for a secure Multics will be derived from a higher level user...the Multics architecture as little as possible; this will account to a large extent for radical differences in form between actual kernel primitives

  2. The organic inventory of primitive meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    Carbonaceous meteorites are primitive samples that provide crucial information about the solar system genesis and evolution. This class of meteorites has also a rich organic inventory, which may have contributed the first prebiotic building blocks of life to the early Earth. We have studied the soluble organic inventory of several CR and CM meteorites, using high performance liquid chromatography with UV fluorescence detection (HPLC-FD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our target organic molecules include amino acids, nucleobases and polycyclic aromatic hydrocarbons (PAHs), among others. CR chondrites contain the highest amino acids concentration ever detected in a meteorite. The degree of aqueous alteration amongst this class of meteorites seems to be responsible for the amino acid distribution. Pioneering compound-specific carbon isotope measurements of nucleobases present in carbonaceous chondrites show that these compounds have a non-terrestrial origin. This suggests that components of the ge-netic code may have had a crucial role in life's origin. Investigating the abundances, distribution and isotopic composition of organic molecules in primitive meteorites significantly improves our knowledge of the chemistry of the early solar system, and the resources available for the first living organisms on Earth.

  3. The degree of biogenicity of micrites and terrestrial Mars analogues .

    NASA Astrophysics Data System (ADS)

    D'Elia, M.; Blanco, A.; Orofino, V.; Fonti, S.; Mastandrea, A.; Guido, A.; Tosti, F.; Russo, F.

    A number of indications, as the past presence of water, a denser atmosphere and a mild climate on early Mars, suggest that environmental conditions favorable to the emergence of life must have been present on that planet in the first hundred million years, or even more recently. If life actually existed on Mars, biomarkers could be still preserved with some degree of degradation. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of recent shells and fossils of different ages, whose biogenic origin is indisputable. The goal was to develop a method able to discriminate carbonate biogenic samples from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed among the oldest traces of biological activity known on Earth. This result is of valuable importance since such carbonates are linked to primitive living organisms which can be considered as good analogues for putative Martian life forms. In this work we show that, studying different parts of the same carbonate rock sample, we are able to distinguish, on the base of the degree of biogenicity, the various micrite types (i.e. detrital vs autochthonous).

  4. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  5. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.

    PubMed

    Sturgeon, Christopher M; Chicha, Laurie; Ditadi, Andrea; Zhou, Qinbo; McGrath, Kathleen E; Palis, James; Hammond, Scott M; Wang, Shusheng; Olson, Eric N; Keller, Gordon

    2012-07-17

    Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    NASA Technical Reports Server (NTRS)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  7. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  8. Significance of solvated electrons (e(aq)-) as promoters of life on earth.

    PubMed

    Getoff, Nikola

    2014-01-01

    Based on the present state of knowledge a new hypothesis concerning the origin of life on Earth is presented, and emphasizes the particular significance of solvated electrons (e(aq)(-)). Solvated electrons are produced in seawater, mainly by (40)K radiation and in atmospheric moisture by VUV light, electrical discharges and cosmic ray. Solvated electrons are involved in primary chemical processes and in biological processes. The conversion of aqueous CO2 and CO into simple organic substances, the generation of ammonia from N2 and water, the formation of amines, amino acids and simple proteins under the action of e(aq)(-) has been experimentally proven. Furthermore, it is supposed that the generation of the primitive cell and equilibria of primitive enzymes are also realized due to the strong reducing property of e(aq)(-). The presented hypothesis is mainly founded on recently obtained experimental results. The involvement of e(aq)(-) in such mechanisms, as well as their action as an initiator of life is also briefly discussed.

  9. The DISCUS Hardware System,

    DTIC Science & Technology

    1982-07-01

    blocks. DISCUS has no form of hardware synchronisation between the processors. The only synchronisation is at an operating system level. ;ach processor is... operations in global store so that semaphoring on global objects can be done correctly. Write Protect is used by the operating system for read-only...the appropriate operating system program. String Handling primitives . The Z8000 has a rich set of string primitives . However as we saw before if a

  10. New numerical determination of habitability in the Galaxy: the SETI connection

    NASA Astrophysics Data System (ADS)

    Ramirez, Rodrigo; Gómez-Muñoz, Marco A.; Vázquez, Roberto; Núñez, Patricia G.

    2018-01-01

    In this paper, we determine the habitability of Sun-like stars in the Galaxy using Monte Carlo simulations, which are guided by the factors of the Drake Equation for the considerations on the astrophysical and biological parameters needed to generate and maintain life on a planet's surface. We used a simple star distribution, initial mass function and star formation history to reproduce the properties and distribution of stars within the Galaxy. Using updated exoplanet data from the Kepler mission, we assign planets to some of the stars, and then follow the evolution of life on the planets that met the habitability criteria using two different civilization hypotheses. We predict that around 51% of Earth-like planets in the habitable zone (HZ) are inhabited by primitive life and 4% by technological life. We apply the results to the Kepler field of view, and predicted that there should be at least six Earth-like planets in the HZ, three of them inhabited by primitive life. According to our model, non-technological life is very common if there are the right conditions, but communicative civilizations are less likely to exist and detect. Nonetheless, we predict a considerable number of detectable civilizations within our Galaxy, making it worthwhile to keep searching.

  11. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  12. Origin of life. The role of experiments, basic beliefs, and social authorities in the controversies about the spontaneous generation of life and the subsequent debates about synthesizing life in the laboratory.

    PubMed

    Deichmann, Ute

    2012-01-01

    For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.

  13. Until the sun dies. [Book on origin of universe, life and intelligence on earth

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1977-01-01

    This book gives a popular account of the forces that have shaped human beings into their present form and created the power of human intelligence, and considers the prospects for intelligent life on other planets in the solar system and elsewhere in the universe. The chain of events leading from the big bang to the origin of life on earth is reviewed together with the observations that established the expansion of the universe. Philosophical difficulties with the concept of a universe that has both a beginning and an end are pondered, steady-state cosmology is briefly explained, and the discovery of the relict microwave background is discussed. The formation of the solar system is recounted along with the scientific view of the origin of terrestrial life. Attention is given to the origin of cells and the evolution of oxygen-breathing life, multicelled creatures, armored animals, fishes, amphibians, early reptiles, dinosaurs, and mammals. The development of mammalian intelligence is traced from the early tree dwellers through monkeys, apes, ape men, humanoid tool makers, and primitive members of the genus Homo, to Homo sapiens. Possible evidence for the existence of life on Mars is evaluated together with prospects for communication or other contact with extraterrestrial intelligence.

  14. Plant Reproduction. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Plants are vital to all other life on this planet - without them, there would be no food, shelter or oxygen. Luckily, over millions of years plants have developed many different features in order to survive and reproduce. In Plant Reproduction, students will discover that primitive mosses and algae are dependent upon water for their reproduction.…

  15. Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    PubMed Central

    Yamashita, Yuichi; Tani, Jun

    2008-01-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398

  16. Rheumatic manifestations of hepatitis C virus chronic infection: Indications for a correct diagnosis.

    PubMed

    Palazzi, Carlo; D'Amico, Emilio; D'Angelo, Salvatore; Gilio, Michele; Olivieri, Ignazio

    2016-01-28

    Hepatitis C virus (HCV) is a hepato- and lymphotropic agent that is able to induce several autoimmune rheumatic disorders: vasculitis, sicca syndrome, arthralgias/arthritis and fibromyalgia. The severity of clinical manifestations is variable and sometimes life-threatening. HCV infection can mimic many primitive rheumatic diseases, therefore, it is mandatory to distinguish HCV-related manifestations from primitive ones because the prognosis and therapeutic strategies can be fairly dissimilar. The new direct-acting antivirals drugs can help to avoid the well-known risks of worsening or new onset of autoimmune diseases during the traditional interferon-based therapies.

  17. A problematic early tetrapod from the Mississippian of Nevada

    USGS Publications Warehouse

    Thomson, K.S.; Shubin, N.S.; Poole, F.G.

    1998-01-01

    We report here the discovery of a new taxon of Paleozoic tetrapod from the Late Mississippian of Nevada (330-340 Ma). It has a unique vertebral column with principal centra having vertical anterior and posterior faces, ventrally incomplete accessory centra located antero-dorsally in each centrum, and enlarged presacral/sacral vertebrae. The head and pectoral girdle were not preserved but the large femur, robust pelvic girdle and enlarged sacral vertebrae possibly indicate a terrestrial mode of life. This new form significantly extends the western geographic range of known Mississippian tetrapods. It presents a mosaic of primitive and derived features, indicating that continued revision of traditional accounts of vertebral homology and the early diversifications of Paleozoic tetrapods will be necessary.

  18. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Cody, George D.

    2015-03-01

    Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is ∼5 days at 373 K, ∼200 days at 323 K, and ∼70 years at 273 K with ammonia, and ∼25 days at 373 K, ∼13 years at 323 K, and ∼2 × 104 years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  19. Life on Earth: From Chemicals in Space?

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses experimental evidence for the existence of organic material in the solar system prior to the earth's formation. Indicates that the earth could have received much of its organic compounds from meteors falling on its primitive surface. (CC)

  20. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions.

    PubMed

    Liu, Kai; Ren, Xiaokang; Sun, Jianxuan; Zou, Qianli; Yan, Xuehai

    2018-06-01

    The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn 2+ ) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H 2 ) evolution, carbon dioxide (CO 2 ) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD + ) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.

  1. Editorial: Special issue “Planetary evolution and life”

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman

    2014-08-01

    Given the enormous number of stars in the universe and the number of confirmed and postulated planets in our galaxy, it is generally agreed that our home planet Earth is not likely to be unique (e.g., Sagan, 1980; Bignami et al., 2005; Hawking and Mlodinow, 2010). But is it? Although the number of known extrasolar planets grows almost by the day, observational bias caused by the technological challenges of finding Earth-size, rocky extrasolar planets and determining their masses and sizes have thus far prohibited the detection of a second Earth. But even if a second Earth were to be found-located in what is termed the habitable zone (e.g., Kasting et al., 1993)-can we expect that life would have originated there and have evolved beyond the most primitive forms? Is the universe "bio-friendly" as Paul Davies said (cited after Sullivan and Baross, 2007) using the Anthropic Principle (Barrow and Tipler, 1986) or is the origin of life so complex and our home planet so peculiar (Ward and Brownlee, 2000) that we are the unlikely product of a chain of unlikely events (Gould, 1989)? And if life existed on a second Earth or on many other planets, would we be able to detect it? Would life have shaped these planets such as life has shaped the Earth?

  2. From the Primitive Soup to Cyanobacteria: It May have Taken Less Than 10 Million Years

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.; Lazcano, Antonio

    1996-01-01

    Most scientific discussions on the likelihood of extraterrestrial life have been constrained by the characteristics of life on our planet and the environmental conditions under which it may have emerged. Although it has been generally assumed that this process must have been extremely slow, involving hundreds of millions or even billions of years, a number of recent discoveries have led to a considerable compression of the time believed necessary for life to appear. It is now recognized that during its early history the Earth and other bodies of the inner Solar System went through a stage of intense collisions. Some of these impacts by large asteroids or comets may have raised the terrestrial surface to sterilizing temperatures and may have evaporated the oceans and killed off life as late as 3.8 x 10(exp 9) years ago. However, there is also ample paleontological evidence derived from the 3.5 x 10(exp 9) year old Warrawoona sediments showing that only 300 million years after the period of intense impacts ended, our planet was populated by phototactic, stromatolite-forming microorganisms. Although these discoveries are now generally interpreted to imply that the origin and early evolution of life were rapid, no attempts have been made to estimate the actual time required for these processes to occur.

  3. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  4. Support for life-cycle product reuse in NASA's SSE

    NASA Technical Reports Server (NTRS)

    Shotton, Charles

    1989-01-01

    The Software Support Environment (SSE) is a software factory for the production of Space Station Freedom Program operational software. The SSE is to be centrally developed and maintained and used to configure software production facilities in the field. The PRC product TTCQF provides for an automated qualification process and analysis of existing code that can be used for software reuse. The interrogation subsystem permits user queries of the reusable data and components which have been identified by an analyzer and qualified with associated metrics. The concept includes reuse of non-code life-cycle components such as requirements and designs. Possible types of reusable life-cycle components include templates, generics, and as-is items. Qualification of reusable elements requires analysis (separation of candidate components into primitives), qualification (evaluation of primitives for reusability according to reusability criteria) and loading (placing qualified elements into appropriate libraries). There can be different qualifications for different installations, methodologies, applications and components. Identifying reusable software and related components is labor-intensive and is best carried out as an integrated function of an SSE.

  5. Where should one look for traces of life on Venus?

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2018-05-01

    Now Venus is not very similar to a suitable place for living. It surface temperature exceeds 730 K, the pressure is 90 atmospheres, the cloud layer consists of sulfur dioxide, and the fog above cloud is a solution of sulfuric acid. But about 3 billion years ago, this planet among the Earth-type planets within the Solar System was perhaps the most suitable place for the existence of some form of life there. Measurements of the ratio of hydrogen isotopes in the atmosphere also showed that the planet once had much more water, and perhaps it was enough even for the oceans. In early years on Venus was similar to the earth's climate, have a satisfactory temperature and oceans of liquid water. That is, under the above conditions with moderate temperature, sufficient heat and liquid water, Venus would be quite suitable for the emergence of certain microorganisms and for the existence of primitive life there, especially in the oceans. One way to check whether the ancient Venus was once covered by the oceans is the study of the tremolite found on Earth. It is necessary to hope to find the tremolite at some depth below the surface of Venus. Also necessary to search for some biosignals in the form of petrified remains, of possibly simple thermophilic microorganisms. We believe that such an experiment can be prepared and technically carried out during the next decades.

  6. Adapting to Adaptations: Behavioural Strategies that are Robust to Mutations and Other Organisational-Transformations

    PubMed Central

    Egbert, Matthew D.; Pérez-Mercader, Juan

    2016-01-01

    Genetic mutations, infection by parasites or symbionts, and other events can transform the way that an organism’s internal state changes in response to a given environment. We use a minimalistic computational model to support an argument that by behaving “interoceptively,” i.e. responding to internal state rather than to the environment, organisms can be robust to these organisational-transformations. We suggest that the robustness of interoceptive behaviour is due, in part, to the asymmetrical relationship between an organism and its environment, where the latter more substantially influences the former than vice versa. This relationship means that interoceptive behaviour can respond to the environment, the internal state and the interaction between the two, while exteroceptive behaviour can only respond to the environment. We discuss the possibilities that (i) interoceptive behaviour may play an important role of facilitating adaptive evolution (especially in the early evolution of primitive life) and (ii) interoceptive mechanisms could prove useful in efforts to create more robust synthetic life-forms. PMID:26743579

  7. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  8. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    NASA Astrophysics Data System (ADS)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions from the 10 ka Grímsvötn tephra series record few primary signals in their volatile contents, they nevertheless record information about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.

  9. Pseudo-random number generator for the Sigma 5 computer

    NASA Technical Reports Server (NTRS)

    Carroll, S. N.

    1983-01-01

    A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.

  10. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  11. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  12. Encephalization and quantitative brain composition in bats in relation to their life-habits.

    PubMed

    Pirlot, P; Pottier, J

    1977-12-01

    A quantitative analysis of the brains of 43 bat species is presented. Eleven brain components were studied. The species were arranged according to seven distinct dietary groups and it was found that the relative development of the principal components is related to those groups. The importance of neocorticalization as a reflection of evolution of all the bats in contrast to specialization in some species is stressed. This work gives a clearer view of Chiropteran progressiveness or primitiveness: the insectivorous forms occupy the least advanced, although most specialized, level; the vampires, the carnivorous species and the flying foxes are at the top of the scale. The importance of behaviour and the relative development of the central nervous system in the hierarchial classification of mammals is stressed.

  13. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  14. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles.

    PubMed

    Alibardi, L; Gill, B J

    2007-07-01

    Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25-30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting.

  15. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles

    PubMed Central

    Alibardi, L; Gill, B J

    2007-01-01

    Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25–30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting. PMID:17532799

  16. Sulfur, ultraviolet radiation, and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.

  17. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.

    2004-01-01

    Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.

  18. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers.

    PubMed

    Amalric, Marie; Wang, Liping; Pica, Pierre; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a "geometrical language" with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.

  19. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

    PubMed Central

    Amalric, Marie; Wang, Liping; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. PMID:28125595

  20. Delivery of extraterrestrial amino acids to the primitive Earth. Exposure experiments in Earth orbit.

    PubMed

    Barbier, B; Bertrand, M; Boillot, F; Chabin, A; Chaput, D; Henin, O; Brack, A

    1998-06-01

    A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50 to 100 micrometers size range, the carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon. They might have brought more carbon to the surface of the primitive Earth than that involved in the present surficial biomass. Amino acids such as "-amino isobutyric acid have been identified in these Antarctic micrometeorites. Enantiomeric excesses of L-amino acids have been detected in the Murchison meteorite. A large fraction of homochiral amino acids might have been delivered to the primitive Earth via meteorites and micrometeorites. Space technology in Earth orbit offers a unique opportunity to study the behaviour of amino acids required for the development of primitive life when they are exposed to space conditions, either free or associated with tiny mineral grains mimicking the micrometeorites. Our objectives are to demonstrate that porous mineral material protects amino acids in space from photolysis and racemization (the conversion of L-amino acids into a mixture of L- and D-molecules) and to test whether photosensitive amino acids derivatives can polymerize in mineral grains under space conditions. The results obtained in BIOPAN-1 and BIOPAN-2 exposure experiments on board unmanned satellite FOTON are presented.

  1. A Darwinian approach to the origin of life cycles with group properties.

    PubMed

    Rashidi, Armin; Shelton, Deborah E; Michod, Richard E

    2015-06-01

    A selective explanation for the evolution of multicellular organisms from unicellular ones requires knowledge of both selective pressures and factors affecting the response to selection. Understanding the response to selection is particularly challenging in the case of evolutionary transitions in individuality, because these transitions involve a shift in the very units of selection. We develop a conceptual framework in which three fundamental processes (growth, division, and splitting) are the scaffold for unicellular and multicellular life cycles alike. We (i) enumerate the possible ways in which these processes can be linked to create more complex life cycles, (ii) introduce three genes based on growth, division and splitting that, acting in concert, determine the architecture of the life cycles, and finally, (iii) study the evolution of the simplest five life cycles using a heuristic model of coupled ordinary differential equations in which mutations are allowed in the three genes. We demonstrate how changes in the regulation of three fundamental aspects of colonial form (cell size, colony size, and colony cell number) could lead unicellular life cycles to evolve into primitive multicellular life cycles with group properties. One interesting prediction of the model is that selection generally favors cycles with group level properties when intermediate body size is associated with lowest mortality. That is, a universal requirement for the evolution of group cycles in the model is that the size-mortality curve be U-shaped. Furthermore, growth must decelerate with size. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An embryo of protocells: The capsule of graphene with selective ion channels

    PubMed Central

    Li, Zhan; Wang, Chunmei; Tian, Longlong; Bai, Jing; Yao, Huijun; Zhao, Yang; Zhang, Xin; Cao, Shiwei; Qi, Wei; Wang, Suomin; Shi, Keliang; Xu, Youwen; Mingliang, Zhang; Liu, Bo; Qiu, Hongdeng; Liu, Jie; Wu, Wangsuo; Wang, Xiaoli; Wenzhen, An

    2015-01-01

    The synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into a secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr25+, has a high selectivity for permeation of the monovalent metal ions ( Rb+ > K+ > Cs+ > Na+ > Li+, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K+ into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life. PMID:25989440

  3. An embryo of protocells: The capsule of graphene with selective ion channels

    DOE PAGES

    Li, Zhan; Wang, Chunmei; Tian, Longlong; ...

    2015-05-19

    In this study, the synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into amore » secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr 25+, has a high selectivity for permeation of the monovalent metal ions ( Rb + > K + > Cs + > Na + > Li +, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K + into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life.« less

  4. Interaction of Tryptophane and Phenylalanine with Cadmium and Molybdenum Ferrocyanides and Its Implications in Chemical Evolution and Origins of Life.

    NASA Astrophysics Data System (ADS)

    Tewari, Brij

    2016-07-01

    Insoluble metal hexacyanoferrate(II) complexes could have concentrated biomonomers from dilute prebiotic soup during course of chemical evolution and origin of life or primitive earth. In the light of above hypothesis, adsorption of tryptophane and phenylalanine was studied on cadmium and molybdenum ferrocyanides at neutral pH (7.0 ± 0.01) and at a temperature of 30 ± 1º C. Interaction of amino acids with metal ferrocyanides are found to be maximum at neutral pH. Neutral pH is chosen for the adsorption studies because most of the reactions in biological systems taken place at neutral pH range. Adsorption trend follow Langmuir isotherm model. The Langmuir constants b and Qo were calculated at neutral pH, tryptophane was found to more adsorbed than phenylalanine on both metal ferrocyanides studied. Molybdenum ferrocyanides studied. Molybdenum ferrocyanides was found to have more uptake capacity for both adsorbates than cadmium ferrocyanides. The present study suggests that metal ferrocyanides might have played a role in the stabilization of biomolecules through their surface activity during course of chemical solution and origins of life on primitive earth.

  5. Drake Equation for the Multiverse:. from the String Landscape to Complex Life

    NASA Astrophysics Data System (ADS)

    Gleiser, M.

    It is argued that the selection criteria usually referred to as "anthropic conditions" for the existence of intelligent (typical) observers widely adopted in cosmology amount only to preconditions for primitive life. The existence of life does not imply in the existence of intelligent life. On the contrary, the transition from single-celled to complex, multicellular organisms is far from trivial, requiring stringent additional conditions on planetary platforms. An attempt is made to disentangle the necessary steps leading from a selection of universes out of a hypothetical multiverse to the existence of life and of complex life. It is suggested that what is currently called the "anthropic principle" should instead be named the "prebiotic principle."

  6. Drawbacks of the ancient RNA-based life-like system under primitive earth conditions.

    PubMed

    Kawamura, Kunio

    2012-07-01

    Following the discovery of ribozymes, the "RNA world" hypothesis has become the most accepted hypothesis concerning the origin of life and genetic information. However, this hypothesis has several drawbacks. Verification of the hypothesis from different viewpoints led us to proposals from the viewpoint of the hydrothermal origin of life, solubility of RNA and related biopolymers, and the possibility of creating an evolutionary system comparable to the in vitro selection technique for functional RNA molecules based on molecular biology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  8. Black Lights: Chaos, Complexity, and the Promise of Information Warfare

    DTIC Science & Technology

    1997-01-01

    control— cybernetics—and the etymology of control, a term which comes from the Latin contrarotulare, mean- ing to mark similarities and differences...in the brain and central nervous system. Chemistry domi- nated life processes for four billion years until primitive electronics became important when

  9. Mars Life? - Microscopic Structures

    NASA Image and Video Library

    1996-08-09

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283

  10. Cryopreservation of native Kazakhstan apricot (Prunus armeniaca L) seeds and embryonic axes

    USDA-ARS?s Scientific Manuscript database

    Preserving the genetic diversity of Central Asia includes conserving wild apricots found in the foothills of several mountain ranges. These plants include primitive and genetically diverse populations with important characteristics for crop improvement. Apricot seeds have a short storage life, so cr...

  11. From Savage to Citizen: Education, Colonialism and Idiocy

    ERIC Educational Resources Information Center

    Simpson, Murray K.

    2007-01-01

    In constructing a framework for the participation and inclusion in political life of subjects, the Enlightenment also produced a series of systematic exclusions for those who did not qualify: including "idiots" and "primitive races". "Idiocy" emerged as part of wider strategies of governance in Europe and its…

  12. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF

    PubMed Central

    De Kleer, Ismé; Henri, Sandrine; Post, Sijranke; Vanhoutte, Leen; De Prijck, Sofie; Deswarte, Kim; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N.

    2013-01-01

    Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life. PMID:24043763

  13. Primal negation as a primitive agony: reflections on the absence of a place-for-becoming.

    PubMed

    Dowd, Amanda

    2012-02-01

    The fundamental existential question for the borderline/ hysteric patient is not 'who am I?' but 'where am I?' or perhaps 'where can I be?'. This paper(1) explores this statement with reference to a pivotal clinical experience which changed the author's thinking and theorizing about this state. Case material is presented which focuses on an experience of what the author describes as 'primal negation' which gives rise to primitive displacement anxiety and this is proposed as a specific form of primitive mental agony. There is an elaboration of a borderline defence against an unthinkable experience of formless dread which the author conceives as an attempt to construct a sense of a liveable shape. There is a description of an aspect of the analyst's 'dreaming on behalf of the patient' and an elaboration of what this came to mean for both analyst and patient. © 2012, The Society of Analytical Psychology.

  14. Life on Mars: chemical arguments and clues from Martian meteorites.

    PubMed

    Brack, A; Pillinger, C T

    1998-08-01

    Primitive terrestrial life-defined as a chemical system able to transfer its molecular information via self-replication and to evolve-probably originated from the evolution of reduced organic molecules in liquid water. Several sources have been proposed for the prebiotic organic molecules: terrestrial primitive atmosphere (methane or carbon dioxide), deep-sea hydrothermal systems, and extraterrestrial meteoritic and cometary dust grains. The study of carbonaceous chondrites, which contain up to 5% by weight of organic matter, has allowed close examination of the delivery of extraterrestrial organic material. Eight proteinaceous amino acids have been identified in the Murchison meteorite among more than 70 amino acids. Engel reported that L-alanine was surprisingly more abundant than D-alanine in the Murchison meteorite. Cronin also found excesses of L-enantiomers for nonprotein amino acids. A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50- to 100-micron size range, carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon, on average. They might have brought more carbon than that involved in the present surficial biomass. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars, attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well and fossilized microorganisms may still be present in the near subsurface. The Viking missions to Mars in 1976 did not find evidence of either contemporary or past life, but the mass spectrometer on the lander aeroshell determined the atmospheric composition, which has allowed a family of meteorites to be identified as Martian. Although these samples are essentially volcanic in origin, it has been recognized that some of them contain carbonate inclusions and even veins that have a carbon isotopic composition indicative of an origin from Martian atmospheric carbon dioxide. The oxygen isotopic composition of these carbonate deposits allows calculation of the temperature regime existing during formation from a fluid that dissolved the carbon dioxide. As the composition of the fluid is unknown, only a temperature range can be estimated, but this falls between 0 degree and 90 degrees C, which would seem entirely appropriate for life processes. It was such carbonate veins that were found to host putative microfossils. Irrespective of the existence of features that could be considered to be fossils, carbonate-rich portions of Martian meteorites tend to have material, at more than 1000 ppm, that combusts at a low temperature; i.e., it is an organic form of carbon. Unfortunately, this organic matter does not have a diagnostic isotopic signature so it cannot be unambiguously said to be indigenous to the samples. However, many circumstantial arguments can be made to the effect that it is cogenetic with the carbonate and hence Martian. If it could be proved that the organic matter was preterrestrial, then the isotopic fractionation between it and the carbon is in the right sense for a biological origin.

  15. Clues to the origin of metal in Almahata Sitta EL and EH chondrites and implications for primitive E chondrite thermal histories

    NASA Astrophysics Data System (ADS)

    Horstmann, Marian; Humayun, Munir; Bischoff, Addi

    2014-09-01

    Enstatite (E) chondrites are a group of texturally highly variable meteorites formed under strongly reducing conditions giving rise to unique mineral and chemical characteristics (e.g., high abundances of various sulfides and Si-bearing metal). In particular the abundant metal comprises a range of textures in E chondrites of different petrologic type, but available in situ siderophile trace element data on metal are limited. Nine samples of E chondrites from the recent Almahata Sitta fall [one EH3, two EL3/4, two EL6, two EL impact melt rocks (IMR), two EH IMR] were investigated in this study in addition to St. Mark's (EH5) and Grein 002 (EL4/5), with a focus on the nature of their metal constituents. Special attention was given to metal-silicate intergrowths (MSSI) that occur in many primitive E chondrites, which have been interpreted as post-accretionary asteroidal impact melts or primitive nebular condensates. This study shows that siderophile trace element systematics in E chondrite metal are independent of petrologic type of the host rock and distinct from condensation signatures. Three basic types of siderophile trace element signatures can be distinguished, indicating crystallization from a melt, thermal equilibration upon metamorphism/complete melting, and exsolution of schreibersite-perryite-sulfide. Textural and mineral-chemical constraints from EL3/4s are used to evaluate previously proposed formation processes of MSSI (impact melting vs. nebular condensation) and elucidate which other formation scenarios are feasible. It is shown that post-accretionary (in situ) impact melting or metallic melt injection forming MSSI on the thin section scale, and nebular condensation, are unlikely formation processes. This leads to the conclusion that MSSIs are pre-accretionary melt objects that were formed during melting processes prior to the accretion of the primitive E chondrites. The same can be concluded for metal nodules in the EH3 chondrite examined. The pre-accretionary origin of MSSIs in E chondrites is consistent with a growing body of evidence for early differentiation followed by impact disruption of early formed planetesimals in all major chondrite types.

  16. Outward to the Beginning: the CRAF and Cassini Missions of the Mariner Mark 2 Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two successive journeys will soon offer a perspective on the origin of the solar system and perhaps provide clues on the origin of life as well. The missions, the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini (the Saturn orbiter/Titan probe), combine to form the first initiative of the Mariner Mark 2 program, a series of planetary missions whose common objective is to explore primitive bodies and the outer solar system, toward the ultimate goal of understanding the nature of our origins. Cassini and CRAF are exciting planetary missions. The objectives that they share, the region of the solar system in which comets, asteroids, and the Saturnian system have evolved and now reside, and the spacecraft that will carry both sets of experiments to their targets in the outer solar system are described.

  17. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    PubMed

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  18. Eskimo Medicine Man.

    ERIC Educational Resources Information Center

    George, Otto

    "Eskimo Medicine Man" is a record of primitive Alaskan life in the 1930's. It records the experiences in Alaska's remote areas of Dr. Otto George, the last "traveling physician" for the Department of Interior's Indian Service, when in all the territory (an area one-fifth that of the contiguous United States) there were fewer…

  19. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments

    PubMed Central

    Kawamura, Kunio

    2017-01-01

    Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048

  20. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    PubMed Central

    Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851

  1. Habitability and Life - an Overview

    NASA Astrophysics Data System (ADS)

    Bredehöft, J. H.

    2008-09-01

    Abstract The search for habitable planets has seen a significant boost, since much effort was invested into development of newer and more powerful techniques of detecting such planetary bodies. This search is fuelled by the interest that is sparked by its help in answering the bigger question of the origin of life on Earth and its abundance in the universe. Traditionally a planetary body has been deemed habitable when it provides conditions under which water is liquid. This led to the formulation of a habitable zone across stars, in which liquid water can exist. [1] Liquid water remains to this day the single most important feature in the search for life. There have been various suggestions of life being present in waterless environments like liquid hydrocarbons or even liquid ammonia, but how exactly a living system under such conditions might work, no one can satisfactorily explain. [2] A very important point in this context that is not often raised is that while water might be a favourable medium in which to live and certainly a major constituent of all living organism we know of, water alone is not alive and it will not spontaneously evolve into life. It would thus seem that apart from the presence of liquid water there a number of other, minor, necessary ingredients to life that determine whether a planet is habitable (meaning capable of sustaining life) or whether it is also capable of providing the starting grounds for the evolution of living systems. These other ingredients are determined by the minimum requirements of life itself. They include the molecular components of the most primitive encasing of an organism, the most primitive molecules needed for something like a metabolism and the most primitive way of storing information. [3] In addition to these molecular components, life must be able to utilise a source of energy to drive chemical reactions. Observations of various extremophiles on Earth utilising all kinds disequilibria suggest that these can be very diverse. The exact nature of these other ingredients, their possible presence and history of formation and their impact for the formation and evolution of life will be discussed for several different types of habitats all across the regime in which liquid water can be found, such as very dry and cold bodies like Mars, hot bodies like Venus, bodies covered completely in water or bodies with subsurface oceans. References [1] Kasting J.F., Whitmire D.P., Reynolds R.T., (1993) Icarus 101(1), 108-128 [2] Benner S.A., Ricardo A., Carrigan M.A. (2004) Curr Opin Chem Biol 8(6), 672-689 [3] Ruiz-Mirazo K., Peretó J., Moreno A., (2004) OLEB 34(3), 323-346 EPSC Abstracts, Vol. 3, EPSC2008-A-00039, 2008 European Planetary Science Congress, Author(s) 2008

  2. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  3. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that necessarily they had extra terrestrial origin. In fact Ziechman et al7, in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generate on early earth conditions by polymerizing simple organic molecules. Which evidences support our Ideas? 1- Suppose a wet land located in a warm area of primitive earth, covered with a layer of black humic materials, ready to action and reaction. Under this umbrella, basic molecules of life can interact freely and benefit from catalyzing and stimulating effects of HS. Amino and nucleic acid molecules may line up, grow, and develop mutually. Protein molecules can appear and do practices and before decaying a strand of nucleotides is ready to save their information and can rebuilt them for further practices. Thus, chemical evolution on a bed of humic acid can promote targeted, firmly and continuously towards a large network that be able to support a self replicating cell! We deliberately suggested, land and not the sea, as cradle of life. Because sodium, the most prevalent cation in oceans could not participate in primitive life, instead potassium played an important role. 2- There are strong evidences that show HS, really acted as the main elemental selector and even chairal selector for life on early earth. HS, show strong affinity and fast releasing tendency for macro nutrients (N, P, K).There is moderate affinity and releasing tendency for Ca, Mg, S. Also there is weak affinity and reluctance for liberating micronutrients. More interesting, HS generate insoluble compounds with nearly all toxic elements. As you see not only HS selected some and rejected other elements but also definite their proportions in the cell structure. 3- What is the reason of homochairality in living organism? As you know, none of previous theories in this field provided an easy explanation for this difficult and fundamental question. But, humic theory has a simple answer. Humic substances accepted some and rejected the other enantiomers, because their spatial structure dictate, as did so regarding elemental selection. References: 1- Miller, Stanly L." production of amino acid under possible primitive Earth conditions" Science 117:528.(may 1953) 2- Encyclopedia Britannica website "carbonaceous contrite" October 17, 2014 3- Shapiro, Robert " A simpler origin for life" Science American February 12 . 2007 4- Pettit, Robert, "organic matter, humus, humate, humic acid, fulvic acid humin: their importance in soil fertility and plant health" 5- International Humic Substances Society website, " What are humic substances" 6- Humic, Fulvic and microbial balance: organic soil conditioning, by William R. Jackson 1993, pag 165-167 7- Steinberg, Christian E.W "Ecology of humic substances in freshwater-determination from geochemistry to ecological niches" (2003)

  4. A mid-Cretaceous Eccrinales infesting a primitive wasp in Myanmar amber.

    PubMed

    Poinar, George

    2016-12-01

    A mid-Cretaceous Eccrinales in Myanmar amber is described as Paleocadus burmiticus gen. et sp. nov. in the family Eccrinaceae. The fossil is represented by two types of sporangiospores formed on different thalli protruding from the anus of a primitive wasp, with secondary infestation spores multinucleate and thin walled. Its presence establishes the Eccrinales in the mid-Cretaceous and shows that at that time, lineages of this group parasitized wasps, an association unknown with extant members of the Order. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. SUPERNOVA NEUTRINO NUCLEOSYNTHESIS OF THE RADIOACTIVE {sup 92}Nb OBSERVED IN PRIMITIVE METEORITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, T.; Chiba, S.; Iwamoto, N.

    2013-12-10

    The isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 × 10{sup 7} yr. Although this isotope does not exist in the current solar system, initial abundance ratios for {sup 92}Nb/{sup 93}Nb at the time of solar system formation have been measured in primitive meteorites. The astrophysical origin of this material, however, has remained unknown. In this Letter, we present new calculations which demonstrate a novel origin for {sup 92}Nb via neutrino-induced reactions in core-collapse supernovae (ν-process). Our calculated result shows that the observed ratio of {sup 92}Nb/{sup 93}Nb ∼ 10{sup –5} can be explained by the ν-process.

  6. Chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  7. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability.

  8. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability

  9. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Haase, Karsten M.; Brandl, Philipp A.; Krumm, Stefan H.

    2017-05-01

    Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand's Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.

  10. Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis.

    PubMed

    Haznedaroglu, Ibrahim C; Beyazit, Yavuz

    2013-03-01

    The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.

  11. Comets and life in the Universe

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.; Lazcano, A.

    1995-01-01

    The notion that comets supplied the primitive Earth with the requisite chemical species for the process of chemical evolution, which is widely held to have led to the origin of life on Earth, has now gained considerable intellectual momentum since its first formulation in 1961. The role of comets in the Earth's biogenesis has been thoroughly addressed in the literature. At this time, in light of a few recent findings, we present here a concise review of this topic together with a brief discussion of the possible role of cometary material in the origin of life elsewhere in the Universe.

  12. ISSOL Meeting, Barcelona, Spain, 1993

    NASA Technical Reports Server (NTRS)

    Ferris, James P. (Editor)

    1995-01-01

    Topics in a conference on the origins of life and the evolution of the biosphere include the origin of chirality, prebiotic chemistry of small biomolecules, primitive polymer formation, RNA regulation and control. Early origins of life and the ecology of hydrothermal systems such as ocean floor vents and their simple organisms are examined. The process of mineral catalysis in Montmorillonite as a model for early metabolism is used. The origin of the genetic code and the development of branching in molecular structures of amino acids is described. Studies are reported of the effects of meteorite impact on early Earth life.

  13. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions.

    PubMed

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  14. A Guide to Understanding Security Testing and Test Documentation in Trusted Systems, Version 1

    DTIC Science & Technology

    1993-07-01

    necessary to allow the testing of access with all other types of objects. The above test data also provide partial coverage because they de not include...two types of assurance are needed. They are life-cycle assurance and operational assurance. "Life-cycle assurance refers to steps taken by an...procedures depends to a certain extent on the nature of the TCB interface under test. For example, for most TCB-primitive tests that require the same type

  15. Modular Curriculum: English/Social Studies, Japanese Civilization.

    ERIC Educational Resources Information Center

    Spear, Richard L.

    This independent study course for college credit is a study of Japanese civilization. The nine lessons that comprise the course are: 1. The Origins of the Civilization: From Primitive to Early Classical Times; 2. The Classical Tradition I: The Religion and Aesthetics of Classical Times; 3. The Classical Tradition II: A View of Court Life through…

  16. The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)

    1982-01-01

    This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.

  17. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  18. A comparative SEM morphological study of biogenic and abiogenic carbonates for the search for biostructures on Mars.

    NASA Astrophysics Data System (ADS)

    D'Elia, M.; Blanco, A.; Galiano, A.; Orofino, V.; Fonti, S.; Mancarella, F.; Guido, A.

    Next space missions will investigate the possibility of extinct or extant life on Mars. In previous laboratory works by studying the infrared spectral modifications induced by thermal processing on different carbonate samples (recent shells and fossils of different ages), we developed a method able to discriminate biogenic carbonates from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed among the oldest traces of biological activity known on Earth. These results are of valuable importance since such carbonates are linked to primitive living organisms which can be considered as good analogues for putative Martian life forms. Due to the fact that the microstructures of biogenic carbonate may be different from those of abiogenic origin, we have recently investigated the microscopic morphology at different scales of our samples (shells, skeletal grains, microbialites and stromatolites) using a scanning electron microscope (SEM). In this paper we present some preliminary results that can be of valuable interest in view of the high resolution imaging systems that in the near future will explore the surface of Mars in the search for biological traces of life.

  19. A Functional Perspective on the Embryology and Anatomy of the Cerebral Blood Supply

    PubMed Central

    Menshawi, Khaled; Mohr, Jay P

    2015-01-01

    The anatomy of the arterial system supplying blood to the brain can influence the development of arterial disease such as aneurysms, dolichoectasia and atherosclerosis. As the arteries supplying blood to the brain develop during embryogenesis, variation in their anatomy may occur and this variation may influence the development of arterial disease. Angiogenesis, which occurs mainly by sprouting of parent arteries, is the first stage at which variations can occur. At day 24 of embryological life, the internal carotid artery is the first artery to form and it provides all the blood required by the primitive brain. As the occipital region, brain stem and cerebellum enlarge; the internal carotid supply becomes insufficient, triggering the development of the posterior circulation. At this stage, the posterior circulation consists of a primitive mesh of arterial networks that originate from projection of penetrators from the distal carotid artery and more proximally from carotid-vertebrobasilar anastomoses. These anastomoses regress when the basilar artery and the vertebral arteries become independent from the internal carotid artery, but their persistence is not uncommon in adults (e.g., persistent trigeminal artery). Other common remnants of embryological development include fenestration or duplication (most commonly of the basilar artery), hypoplasia (typically of the posterior communicating artery) or agenesis (typically of the anterior communicating artery). Learning more about the hemodynamic consequence that these variants may have on the brain territories they supply may help understand better the underlying physiopathology of cerebral arterial remodeling and stroke in patients with these variants. PMID:26060802

  20. Effects of social games on infant vocalizations*.

    PubMed

    Hsu, Hui-Chin; Iyer, Suneeti Nathani; Fogel, Alan

    2014-01-01

    The aim of the present study was to examine the contextual effects of social games on prelinguistic vocalizations. The two main goals were to (1) investigate the functions of vocalizations as symptoms of affective arousal and symbols of social understanding, and (2) explore form-function (de)coupling relations between vocalization types and game contexts. Seventy-one six-month-olds and sixty-four twelve-month-olds played with their mothers in normal and perturbed tickle and peek-a-boo games. The effects of infant age, game, game climax, and game perturbation on the frequency and types of infant vocalizations were examined. Results showed twelve-month-olds vocalized more mature canonical syllables during peek-a-boo and more primitive quasi-resonant nuclei during tickle than six-month-olds. Six- and twelve-month-olds increased their vocalizations from the set-up to climax during peek-a-boo, but they did not show such an increase during tickle. Findings support the symptom function of prelinguistic vocalizations reflecting affective arousal and the prevalence of form-function decoupling during the first year of life.

  1. THE METAMORPHOSIS OF VISUAL SYSTEMS IN THE SEA LAMPREY

    PubMed Central

    Wald, George

    1957-01-01

    The life cycle of the sea lamprey, Petromyzon marinus, includes two metamorphoses. At the end of a period spent as a blind larva, buried in the mud of streams, a first metamorphosis prepares it to migrate downstream to the sea or a lake for its growth phase. Then, following a second metamorphosis, it migrates upstream as a sexually mature adult to spawn and die. The downstream migrants have a visual system based upon rhodopsin and vitamin A1, whereas that of the upstream migrants is based upon porphyropsin and vitamin A2. The livers contain vitamin A1 at all stages. The sea lamprey therefore exhibits a metamorphosis of visual systems, like those observed earlier among amphibia. The presence of porphyropsin in this member of the most primitive living group of vertebrates, as in fishes and amphibia, supports the notion that porphyropsin may have been the primitive vertebrate visual pigment. Its association with fresh water existence throughout this range of organisms also is consistent with the view that the vertebrate stock originated in fresh water. The observation that in the life cycle of the lamprey rhodopsin precedes porphyropsin is not at variance with the idea that porphyropsin is the more primitive pigment, since this change is part of the second metamorphosis, marking the return to the original environment. The observation that in lampreys, fishes, and amphibia, porphyropsin maintains the same general association with fresh water, and rhodopsin with marine and terrestrial habit, suggests that a single genetic mechanism may govern this association throughout this wide span of organisms. PMID:13439167

  2. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).

  3. Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon

    NASA Astrophysics Data System (ADS)

    Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.

    2018-03-01

    The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.

  4. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  5. Abiogenic synthesis of nucleotides on the surface of small space bodies with high energy particles

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Antropov, A. E.; Dodonova, N. Ya

    Abiotic formation of such complex biochemical compounds as nucleotides and oligopeptides on the surface of interstellar and interplanetary dust particles (IDP) by cosmic radiation was examined. In order to study the formation of organic compounds on IDPs, solid films prepared from nucleososide and inorganic phosphate were irradiated with high energy protons. Irradiated products were analyzed with HPLC. The natural nucleotides were detected. The main products were 5' AMP (3.2%) and 2'3' cAMP (2.7%). The results were compared with others experiments on the action of ultraviolet radiation with different wavelengths, γ-radiation and heat on solid mixtures of biologically significant compounds. The experiment on abiogenic synthesis of nucleotides on board of space satellite "BION-11" was compared also. The present results suggest that a considerable amount of complex biochemical compounds formed in extraterrestrial environments could have been supplied to the primitive earth before the origin of life.

  6. The lost language of the RNA World

    PubMed Central

    Nelson, James W.; Breaker, Ronald R.

    2018-01-01

    The possibility of an RNA World is based on the notion that life on Earth passed through a primitive phase without proteins, at a time when all genomes and enzymes were composed of ribonucleic acid. Numerous apparent vestiges of this ancient RNA World remain today, including many nucleotide-derived coenzymes, self-processing ribozymes, metabolite-binding riboswitches, and even ribosomes. Intriguingly, many of the most common signaling molecules and second messengers used by modern organisms are also formed from RNA. For example, nucleotide derivatives such as cAMP, ppGpp, and ZTP, as well as the cyclic dinucleotides c-di-GMP and c-di-AMP, are intimately involved in signaling diverse physiological or metabolic changes in bacteria and other organisms. Herein we describe the potential diversity of this ‘lost language’ of the RNA World, and speculate on whether additional components of this ancient communication machinery might remain hidden though still very much relevant to modern cells. PMID:28611182

  7. Complex regulation of HSC emergence by the Notch signaling pathway

    PubMed Central

    Butko, Emerald; Pouget, Claire; Traver, David

    2016-01-01

    Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development. PMID:26586199

  8. The prospect of life on Jupiter.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.; Molton, P.

    1973-01-01

    We have simulated electrical discharges in the Jovian atmosphere, using anhydrous methane-ammonia mixtures, and shown the formation of simple aliphatic nitriles, amino-nitriles, and their oligomers. Including hydrogen sulfide in the gas mixture, it appears that sulfur-containing amino-nitriles are not formed, since the hydrolysate of the products did not contain the corresponding amino-acids. There is a strong analogy between these reactions and the classical spark reactions simulating the primitive earth's atmosphere. We are attempting a closer simulation of Jupiter's atmosphere by using appropriate temperature and pressure conditions. It seems that prebiotic synthesis on Jupiter may have reached an advanced state. As an alternative approach we have tested the survival ability of common terrestrial microorganisms in aqueous media at 102 atmospheres pressure and at 20 C in a simulated Jovian atmosphere. E. coli, S. marcescens, A. aerogenes, and B. subtilis will all tolerate 24 hr under these conditions with little death.

  9. Preferential uptake of ribose by primitive cells might explain why RNA was favored over its analogs

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Wei, Chenyu

    Permeation of molecules through membranes is a fundamental process in biological systems, which not only involves mass and signal transfers between the interior of a contemporary cell and its environment, but was also of crucial importance in the origin of life. In the absence of complex protein transporters, nutrients and building blocks of biopolymers must have been able to permeate membranes at sufficient rates to support primordial metabolism and cel-lular reproduction. From this perspective one class of solutes that is of special interest are monosaccharides, which serve not only as nutritional molecules but also as building blocks for information molecules. In particular, ribose is a part of the RNA backbone, but RNA analogs containing a number of other sugars have also been shown to form stable duplexes. Why, among these possibilities, ribose (and, subsequently, deoxyribose) was selected for the backbone of information polymers is still poorly understood. It was recently found that ribose permeates membranes an order of magnitude faster than its diastereomers, arabinose and xylose [1]. On this basis it was hypothesized that differences in membrane permeability to aldopentoses provide a mechanism for preferential delivery of ribose to primitive cells for subsequent, selective incorporation into nucleotides and their polymers. However, the origins of these unusually large differences had not been well understood. We addressed this issue in molecular dynamics simulations combined with free energy calculations. It was found that the free energy barrier for transferring ribose from water to the bilayer is lower by 1.5-2 kcal/mol than the barrier for transferring the other two aldopentoses. The calculated [2] and measured [1] permeability coefficients are in an excellent agreement. The sugar structures that permeate the membrane are -pyranoses, with a possible contribution of the -anomer for arabinose. The furanoid form of ribose is not substantially involved in perme-ation, even though it is non-negligibly populated in aqueous solution. The differences in free energy barrier between ribose and arabinose or xylose are due to stronger, highly cooperative, intramolecular interactions between consecutive exocyclic hydroxyl groups, which are stable in non-polar media, but rare in water. Most recently, we extended calculations of permeations to ribonucleosides and their anomers. We determined that, in contrast to sugars, permeation of membranes to these species is nearly identical. This is because sugars of nucleotides exist in the furanose rather than pyranose form. In this form intermolecular interactions between hydroxyl groups are not nearly as efficient for sterical reasons. Our results contribute to the discussion about autotrophic vs. heterotrophic origins of life. Chemical reactions inside protobiological vesicle required supply of organic material from the environment. What was the inventory of organics that must have been delivered to primitive cells is still being debated. According to the autotrophic hypothesis, ancestors of cells pro-duced complex organic molecules from simple substrates. In contrast, the heterotrophic model implies that protocells were able to utilize complex organics delivered from external sources. A possibility of sufficiently efficient uptake of molecules needed to build biopolymers provides an important argument supporting the heterotrophic hypothesis [3]. Viewed in the context of the "RNA world" hypothesis [4], which states that RNA molecules were the first biological poly-mers and acted as both catalysts of biochemical reactions and information storage systems, our results demonstrate that, in the absence of sophisticated mechanisms available to contemporary organisms for achieving selectivity during synthesis and transmembrane transport, preferential uptake of ribose by primitive cells might have provided a kinetic mechanism that favored its selective incorporation into nucleic acids and, ultimately, the emergence of RNA. The same mechanism, however, could not have operated if the species transported across protocellular walls were nucleosides (or, presumably, nucleotides) rather than sugars. References: [1] M. G. Sacerdote and J. W. Szostak, 2005, Proc. Natl. Acad. Sci USA, 102, 6004; [2] C. Wei, and A. Pohorille, 2009, J. Am. Chem. Soc. 131, 10237: [3] S. S. Mansy, J. P. Schrum, M. Krishnamurthy, S. Tobé, D. A. Treco and J. W. Szostak, 2008, Nature. 454, 122; [4] W. Gilbert, 1986, Nature 319, 618.

  10. Prebiotic chemistry and nucleic acid replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Lohrmann, R.

    1974-01-01

    Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.

  11. Expression, purification, crystallization and preliminary X-ray diffraction analysis of α-11 giardin from Giardia lamblia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathuri, Puja; Nguyen, Emily Tam; Luecke, Hartmut, E-mail: hudel@uci.edu

    2006-11-01

    α-11 giardin from the intestinal protozoan parasite, G. lamblia has been cloned, expressed, purified and crystallized under two different conditions and in two different space groups. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group and crystals obtained in the second condition diffracted to 2.93 Å and belong to a primitive monoclinic space group. α-11 Giardin, a protein from the annexin superfamily, is a 35.0 kDa protein from the intestinal protozoan parasite Giardia lamblia which triggers a form of diarrhea called giardiasis. Here, the cloning, expression, purification and the crystallization of α-11more » giardin under two different conditions and in two different space groups is reported. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group, while crystals from the second condition, which included calcium in the crystallization solution, diffracted to 2.93 Å and belong to a primitive monoclinic space group. Determination of the detailed atomic structure of α-11 giardin will provide a better insight into its biological function and might establish whether this class of proteins is a potential drug target against giardiasis.« less

  12. Robust Indoor Human Activity Recognition Using Wireless Signals.

    PubMed

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  13. Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis.

    PubMed

    Delgado-Viscogliosi, P; Brugerolle, G; Viscogliosi, E

    1996-01-01

    Using several specific monoclonal antibodies, we investigated the occurrence and distribution of different post-translationally modified tubulin during interphase and division of the primitive flagellated protist Trichomonas vaginalis. Immunoblotting and immunofluorescence experiments revealed that interphasic microtubular structures of T. vaginalis contained acetylated and glutamylated but non-tyrosinated and non-glycylated [Brugerolle and Adoutte, 1988: Bio Systems 21: 255-268] tubulin. Immunofluorescence studies performed on dividing cells showed that the extranuclear mitotic spindle (or paradesmosis) was acetylated and glutamylated, which contrast with the ephemeral nature of this structure. Newly formed short axostyles also contained acetylated and glutamylated tubulin suggesting that both post-translational modifications might take place very early after assembly of microtubular structures. Our results indicate that acetylation and glutamylation of tubulin appeared early in the history of eukaryotes and could reflect the occurrence of post-translational modifications of tubulin in the primitive eukaryotic cells. These cells probably had a highly ordered cross-linked microtubular cytoskeleton in which microtubules showed a low level of subunit exchange dynamics.

  14. Synthesis of phosphatidylcholine under possible primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Rao, M.; Eichberg, J.; Oro, J.

    1982-01-01

    Using a primitive earth evaporating pond model, the synthesis of phosphatidylcholine was accomplished when a reaction mixture of choline chloride and disodium phosphatidate, in the presence of cyanamide and traces of acid, was evaporated and heated at temperatures ranging from 25 to 100 C for 7 hours. Optimum yields of about 15% were obtained at 80 C. Phosphatidylcholine was identified by chromatographic, chemical and enzymatic degradation methods. On enzymatic hydrolysis with phospholipase A2 and phospholipase C, lysophosphatidylcholine and phosphorylcholine were formed, respectively. Alkaline hydrolysis gave glycerophosphorylcholine. The synthesis of phosphatidylcholine as the major compound was accompanied by the formation of lysophosphatidylcholine in smaller amounts. Cyanamide was found to be essential for the formation of phosphatidylcholine, and only traces of HCl, of the order of that required to convert the disodium phosphatidate to free phosphatidic acid were found necessary for the synthesis. This work suggests that phosphatidylcholine, which is an essential component of most biological membranes, could have been synthesized on the primitive earth.

  15. Contamination of the asteroid belt by primordial trans-Neptunian objects.

    PubMed

    Levison, Harold F; Bottke, William F; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis

    2009-07-16

    The main asteroid belt, which inhabits a relatively narrow annulus approximately 2.1-3.3 au from the Sun, contains a surprising diversity of objects ranging from primitive ice-rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in situ from a primordial disk that experienced radical chemical changes within this zone. Here we show that the violent dynamical evolution of the giant-planet orbits required by the so-called Nice model leads to the insertion of primitive trans-Neptunian objects into the outer belt. This result implies that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. The dark captured bodies, composed of organic-rich materials, would have been more susceptible to collisional evolution than typical main-belt asteroids. Their weak nature makes them a prodigious source of micrometeorites-sufficient to explain why most are primitive in composition and are isotopically different from most macroscopic meteorites.

  16. Probabilistic Modeling of High-Temperature Material Properties of a 5-Harness 0/90 Sylramic Fiber/ CVI-SiC/ MI-SiC Woven Composite

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh

    1998-01-01

    An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.

  17. Chemical evolution and the origin of life.

    PubMed

    Oro, J

    1983-01-01

    During the last three decades major advances have been made in our understanding of the formation of carbon compounds in the universe and of the occurence of processes of chemical evolution. 1) Carbon and other biogenic elements (C,H,N,O,S and P) are some of the most abundant in the universe. 2) The interstellar medium has been found to contain a diversity of molecules of these elements. 3) Some of these molecules have also been found in comets which are considered the most primordial bodies of the solar system. 4) The atmospheres of the outer planets and their satellites, for example, Titan, are actively involved in the formation of organic compounds which are the precursors of biochemical molecules. 5) Some of these biochemical molecules, such as amino acids, purines and pyrimidines, have been found in carbonaceous chondrites. 6) Laboratory experiments have shown that most of the monomers and oligomers necessary for life can be synthesized under hypothesized but plausible primitive Earth conditions from compounds found in the above cosmic bodies. 7) It appears that the primitive Earth had the necessary and sufficient conditions to allow the chemical synthesis of biomacromolecules and to permit the processes required for the emergence of life on our planet. 8) It is unlikely that the emergence of life occurred in any other body of the solar system, although the examination of the Jovian satellite Europa may provide important clues about the constraints of this evolutionary process. Some of the fundamental principles of chemical evolution are briefly discussed.

  18. Reproductive characteristics of the Point Arena mountain beaver (Aplodontia rufa nigra)

    Treesearch

    William Zielinski; M. J. Mazurek

    2016-01-01

    Little is known about the ecology and life history of the federally endangered Point Arena mountain beaver (Aplodontia rufa nigra). The distribution of this primitive burrowing rodent is disjunct from the balance of the species’ range and occurs in a unique maritime environment of coastal grasslands and forests. Fundamental to protecting this taxon...

  19. Managing Sirex noctilio populations in Patagonia (Argentina): silviculture and biological control

    Treesearch

    José Villacide; Deborah Fischbein; Nélida Jofré; Juan Corley

    2010-01-01

    Sirex noctilio is a primitive wood boring solitary wasp with a univoltine life cycle. Characteristic of this species is the occurrence of severely damaging, pulse-like eruptive population outbreaks. During outbreaks, the damage to pine plantations can be severe; tree mortality may reach levels close to 80 percent. Outbreak behavior is thus important...

  20. Synthesis of Large Molecules in Cometary Ice Analogs: Physical Properties

    NASA Astrophysics Data System (ADS)

    Dworkin, Jason; Sandford, S. A.; Allamandola, L. J.; Deamer, D. W.; Gillette, S. J.; Zare, R. N.

    Comets and carbonaceous micrometeorites may have been important sources of volatiles on the early Earth; their organic composition may therefore be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. Within the cloud and especially the presolar nebula, these icy grains would have been photoprocessed by ultraviolet light to produce more complex molecules. We are investigating the molecules that could have been generated in precometary ices. Experiments were conducted by forming a realistic interstellar ice (H_2^O, CH_3H, NH_3 and CO) at ~10 K under high vacuum irradiated UV by a hydrogen plasma lamp. The residue remaining after warming to room temperature was analyzed by HPLC and by several mass spectrometric methods. This material contains a variety of complex compounds with MS profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. In other experiments, the residues were dispersed in aqueous media for microscopy. The organic material forms 10-40 micrometer droplets that fluoresce (300-450 nm) under UV excitation and appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material synthesized on cold grains photochemically and compounds that may have contributed to the organic inventory of the primitive Earth. The amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures required for the first forms of cellular life.

  1. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi

    2015-02-01

    Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.

  2. Designers workbench: toward real-time immersive modeling

    NASA Astrophysics Data System (ADS)

    Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu

    2000-05-01

    This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.

  3. Combination Chemotherapy in Treating Patients With Non-Metastatic Extracranial Ewing Sarcoma

    ClinicalTrials.gov

    2018-02-09

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Supratentorial Primitive Neuroectodermal Tumor; Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Extraosseous Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Peripheral Primitive Neuroectodermal Tumor of the Kidney; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  4. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  5. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  6. Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia.

    PubMed

    Feng, Jin-Mei; Sun, Jun; Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.

  7. Modeling with Livingstone

    NASA Technical Reports Server (NTRS)

    Kurien, J.; Nayak, P.; Williams, B.; Koga, Dennis (Technical Monitor)

    1998-01-01

    MPL is the language with which a modeler describes a system to be diagnosed or controlled by Livingstone. MPL is used to specify what are the components of the system, how they are interconnected, and how they behave both nominally and when failed. Component behavioral models used by Livingstone are described by a set of propositional, well-formed formula (wff). An understanding of well-formed formula, primitive component types specified through defcomponent, and device structure specified by defmodule, is essential to understanding of MPL, This document describes: welI-formed formula (wff): The basis for describing the behavior of a component in a system defvalues: Specifies the domain (legal values) of a variable defcomponent: Defines the modes, behaviors and mode transitions for primitive components deftnodule: Defines composite devices, consisting of interconnected components defrelation: A macro mechanism for expanding a complex wff according to the value of an argument forall: An iteration construct used to expand a wff or relation on a set of arguments defsymbol-expansion: A mechanism for naming a collection of symbols (eg the name of all valves in the system)

  8. On Synchronization Primitive Systems.

    DTIC Science & Technology

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  9. Organic Analysis in Miller Range 090657 and Buckley Island 10933 CR2 Chondrites: Part 1 In-Situ Observation of Carbonaceous Material

    NASA Technical Reports Server (NTRS)

    Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.

  10. Photochemical reactions of water and carbon monoxide in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Chang, S.

    1983-01-01

    The gas-phase photolysis of H2O at 1849 A in the presence of CO yields mainly CO2 and H2 and a variety of organic compounds, including C1-C3 hydrocarbons, alcohols, aldehydes, acetone, and acetic acid. The overall quantum yield for conversion of CO to organic compounds varies between 0.23 and 0.03 as a function of the CO abundance. These results indicate that even if primitive earth's atmosphere initially contained no molecular hydrogen and contained carbon only in the form of CO or a mixture of CO and CO2, the prebiotic environment would have become enriched with a variety of organic compounds produced by photochemical processes.

  11. SEM morphological studies of carbonates and the search for ancient life on Mars

    NASA Astrophysics Data System (ADS)

    D'Elia, M.; Blanco, A.; Galiano, A.; Orofino, V.; Fonti, S.; Mancarella, F.; Guido, A.; Russo, F.; Mastandrea, A.

    2017-04-01

    Next space missions will investigate the possibility of extinct or extant life on Mars. Studying the infrared spectral modifications, induced by thermal processing on different carbonate samples (recent shells and fossils of different ages), we developed a method able to discriminate biogenic carbonates from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed to among the oldest traces of biological activity known on Earth. These results are of valuable importance since such carbonates are linked to primitive living organisms that can be considered as good analogues for putative Martian life forms. Considering that the microstructures of biogenic carbonate are different from those of abiogenic origin, we investigated the micromorphology of shells, skeletal grains and microbialites at different scale with a scanning electron microscope. The results show that this line of research may provide an alternative and complementary approach to other techniques developed in the past by our group to distinguish biotic from abiotic carbonates. In this paper, we present some results that can be of valuable interest since they demonstrate the utility for a database of images concerning the structures and textures of relevant carbonate minerals. Such data may be useful for the analysis of Martian samples, coming from sample return missions or investigated by future in situ explorations, aimed to characterize the near-subsurface of Mars in search for past or present life.

  12. Snowmobiling in the 1980's: continued progress for a mature recreational activity

    Treesearch

    William T., Jr. Jobe

    1980-01-01

    In less than two decades, snowmobiling has changed from a novelty to a way of life for some 20,000,000 Canadian and American citizens of all ages. Why has snowmobiling continued to mushroom? Why did the challenges of inadequate safe use areas, public criticism and skepticism and primitive machines fail to doom the activity to a passing fad?

  13. Magical thinking by inpatient staff members.

    PubMed

    Pilette, W L

    1983-01-01

    Magical thinking is a primitive form of mental activity which, nevertheless, the author contends, is common among mental health professionals. Four examples of magical thinking by inpatient staff members are presented and briefly explored, in order to shed light on our work and ourselves.

  14. The force on the flex: Global parallelism and portability

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.

    1986-01-01

    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment.

  15. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis

    USGS Publications Warehouse

    Perfit, M.R.; Fornari, D.J.; Ridley, W.I.; Kirk, P.D.; Casey, J.; Kastens, K.A.; Reynolds, J.R.; Edwards, M.; Desonie, D.; Shuster, R.; Paradis, S.

    1996-01-01

    Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo91.5-Fo89.5) and complexly zoned Cr-Al spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo90.5-Fo89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al2O3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% < MgO < 14%). Compared to typical N-MORB from the East Pacific Rise, the Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

  16. Microfluidic assay of the deformability of primitive erythroblasts.

    PubMed

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  17. A two-level generative model for cloth representation and shape from shading.

    PubMed

    Han, Feng; Zhu, Song-Chun

    2007-07-01

    In this paper, we present a two-level generative model for representing the images and surface depth maps of drapery and clothes. The upper level consists of a number of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness prior (Markov random field). We show that the classical ill-posed problem-shape from shading (SFS) can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the dictionary of primitives. Given an input image, we first infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form the "skeleton" of the drapery/cloth surfaces. Then, the lower level is computed by conventional SFS method using the fold areas as boundary conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on the depth map. We show a number of experiments which demonstrate more robust results in comparison with state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr's idea [23] of computing the 2(1/2)D sketch from primal sketch. In a companion paper [2], we study shape from stereo based on a similar two-level generative sketch representation.

  18. The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2003-05-01

    The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.

  19. The breath of life: an essay on the earliest history of respiration: part ii.

    PubMed

    Gandevia, B

    1970-06-01

    It is to ancient Greek civilization that we must look for the first groping steps towards a naturalistic concept of respiration, although we shall not, of course, expect to find one which is consistent with modern views. Nearly a millennium before Christ, Homer wrote of the gods as more less predictable and very human beings, deserving more of admiration and emulation than worship; they took a fairly commonsense view of man's earthly pursuits, and left him a measure of control over his own destiny. From this relatively disrespectful state-by comparison with primitive or Old Testament views-it is but a stage to a rationalistic view of the universe, that is, to science, and this step was taken about three centuries later (6th century B.C.) by Thales, Anaximander and Anaximenes. We cannot pause to consider their views in detail, nor can we digress, as strictly we should, to consider the emerging relationship between philosophy and science. Suffice it to say that these first philosopher-scientists sought to explain the universe and life in rational terms, basing their rationalizations-we might say extrapolations-on certain specific observations of natural phenomena. The latter were concerned, in the main, with the interrelationships of basic substances (ultimately regarded as the four elements) such as fire, earth, air and water. Water, for example, could be condensed to form earth, or rarefied to form mist and vapour. Copyright © 1970 Australian Physiotherapy Association. Published by . All rights reserved.

  20. Microbialites vs detrital micrites: Degree of biogenicity, parameter suitable for Mars analogues

    NASA Astrophysics Data System (ADS)

    Blanco, Armando; D'Elia, Marcella; Orofino, Vincenzo; Mancarella, Francesca; Fonti, Sergio; Mastandrea, Adelaide; Guido, Adriano; Tosti, Fabio; Russo, Franco

    2014-07-01

    In upcoming years several space missions will investigate the habitability of Mars and the possibility of extinct or extant life on the planet. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of recent shells and fossils of different ages, whose biogenic origin is indisputable. The goal was to develop a method able to discriminate biogenic carbonate samples from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced microcrystalline carbonate deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed among the oldest traces of biological activity known on Earth. In this work we show that, by applying our method to different parts of the same carbonate rock, we are able to discriminate the presence, nature and biogenicity of various micrite types (i.e. detrital vs autochthonous) and to distinguish them from the skeletal grains. To test our methodology we preliminarily used the epifluorescence technique to select on polished samples, skeletal grains, autochthonous and allochthonous micrites, each one characterized by different organic matter content. The results on the various components show that, applying the infrared spectral modifications induced by thermal processing, it is possible to determine the degree of biogenicity of the different carbonate samples. The results are of valuable importance since such carbonates are linked to primitive living organisms that can be considered as good analogues for putative Martian life forms.

  1. Exponent and scrambling index of double alternate circular snake graphs

    NASA Astrophysics Data System (ADS)

    Rahmayanti, Sri; Pasaribu, Valdo E.; Nasution, Sawaluddin; Liani Salnaz, Sishi

    2018-01-01

    A graph is primitive if it contains a cycle of odd length. The exponent of a primitive graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a (n,r)-double alternate circular snake graph, denoted by DA(C r,n ), is a graph obtained from a path u 1 u 2 ... u n by replacing each edge of the form u 2i u 2i+1 by two different r-cycles. We study the exponent and scrambling index of DA(C r,n ) and show that exp(DA(C r,n )) = n + r - 4 and k(DA(C r,n )) = (n + r - 3)/2.

  2. Distinguishing synchronous and time-varying synergies using point process interval statistics: motor primitives in frog and rat

    PubMed Central

    Hart, Corey B.; Giszter, Simon F.

    2013-01-01

    We present and apply a method that uses point process statistics to discriminate the forms of synergies in motor pattern data, prior to explicit synergy extraction. The method uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable in complex patterns where pulse onsets may be overlapping. An interval statistic derived from the point processes of EMG peak timings distinguishes time-varying synergies from synchronous synergies (SS). Model data shows that the statistic is robust for most conditions. Its application to both frog hindlimb EMG and rat locomotion hindlimb EMG show data from these preparations is clearly most consistent with synchronous synergy models (p < 0.001). Additional direct tests of pulse and interval relations in frog data further bolster the support for synchronous synergy mechanisms in these data. Our method and analyses support separated control of rhythm and pattern of motor primitives, with the low level execution primitives comprising pulsed SS in both frog and rat, and both episodic and rhythmic behaviors. PMID:23675341

  3. Creation and Distribution of CAIs in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Davis, S. S.; Dobrovolskis, A. R.

    2003-01-01

    CaAl rich refractory mineral inclusions (CAIs) found at 1 - 10% mass fraction in primitive chondrites appear to be several million years older than the dominant (chondrule) components in the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We assess a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can prevent significant numbers of CAI-size particles from being lost into the sun for times of 1 - 3 x 10(exp 6) years. To match the CAI abundances quantitatively, we advocate an enhancement of the inner hot nebula in silicate-forming material, due to rapid inward migration of very primitive, silicate and carbon rich, meter-sized objects. 'Combustion' of the carbon into CO would make the CAI formation environment more reduced than solar, as certain observations imply. Abundant CO might also play a role in mass-independent chemical fractionation of oxygen isotopes as seen in CAIs and associated primitive, high-temperature condensates.

  4. Cnidarian Nerve Nets and Neuromuscular Efficiency.

    PubMed

    Satterlie, Richard A

    2015-12-01

    Cnidarians are considered "nerve net animals" even though their nervous systems include various forms of condensation and centralization. Yet, their broad, two-dimensional muscle sheets are innervated by diffuse nerve nets. Do the motor nerve nets represent a primitive organization of multicellular nervous systems, do they represent a consequence of radial symmetry, or do they offer an efficient way to innervate a broad, two-dimensional muscle sheet, in which excitation of the muscle sheet can come from multiple sites of initiation? Regarding the primitive nature of cnidarian nervous systems, distinct neuronal systems exhibit some adaptations that are well known in higher animals, such as the use of oversized neurons with increased speed of conduction, and condensation of neurites into nerve-like tracts. A comparison of neural control of two-dimensional muscle sheets in a mollusc and jellyfish suggests that a possible primitive feature of cnidarian neurons may be a lack of regional specialization into conducting and transmitting regions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    USDA-ARS?s Scientific Manuscript database

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  6. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, Noel C.; Emery, James D.; Smith, Maurice L.

    1988-04-05

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.

  7. Cosmological Aspects of Habitability of Exoplanets

    NASA Astrophysics Data System (ADS)

    Shchekinov, Yu. A.; Safonova, M.; Murphy, J.

    2014-10-01

    Habitable zone (HZ) defines the region around a start within which planets may support liquid water at their surfaces, which is supposed to be the necessary factor for origination and development of life on the planet. Currently we know about 30 planets inside HZ. The most interesting question is that of possibility of existence of complex life on the planets. As several space-based project aimed at searching of traces of life at exoplanets are presently being worked out, the problem of elaboration of criteria for selection out of the list of planets inside HZ those which most probably host life acquires supreme importance. It is usually implicitly assumed that planets inside HZ may host life, not taking into consideration such an important factor as the planet age. On the other hand the crucial importance of the factor meets the eye immediately. In fact, if we consider a life similar to that on the Earth, it is obvious, that planets younger than 1 Gyr can hardly bear even primitive life-forms because life needs time to originate and develop. Moreover, as a part of biochemical and metabolic processes are endothermic, and, therefore, threshold, the process of life origination may prove extremely sensitive even to tiny HZ parameter variations. Still a most of the discovered planets are known to orbit young stars (stellar population I), no older than several mullions of years. So a considerable number of planets sure HZ inhabitants may prove too young to be really inhabitable. On the other hand, 12-13 Gyr old planetary systems (population II) may happen to be more probable bearers of life. In spite of the fact that such systems are, in the average more distant from us that the population I stars, estimations of possibility of direct detection of traces of metabolism on those systems are quite optimistic, if we bear in mind planetary systems of old law-mass K-stars.

  8. What Is Life? What Was Life? What Will Life Be?

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    Our laboratory is exploring self-assembly processes and polymerization reactions of organic compounds in natural geothermal environments and related laboratory simulations. Although the physical environment that fostered primitive cellular life is still largely unconstrained, we can be reasonably confident that liquid water was required, together with a source of organic compounds and energy to drive polymerization reactions. There must also have been a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. In earlier work we observed that macromolecules such as nucleic acids and proteins are readily encapsulated in membranous boundaries during wet-dry cycles such as those that would occur at the edges of geothermal springs or tide pools. The resulting structures are referred to as protocells, in that they exhibit certain properties of living cells and are models of the kinds of encapsulated macromolecular systems that would have led toward the first forms of cellular life. However, the assembly of protocells is markedly inhibited by conditions associated with extreme environments: High temperature, high salt concentrations, and low pH ranges. From a biophysical perspective, it follows that the most plausible planetary environment for the origin of cellular life would be an aqueous phase at moderate temperature ranges and low ionic strength, having a pH value near neutrality and divalent cations at submillimolar concentrations. This suggestion is in marked contrast to the view that life most likely began in a geothermal or marine environment, perhaps even the extreme environment of a hydrothermal vent. A more plausible site for the origin of cellular life would be fresh water pools maintained by rain falling on volcanic land masses resembling present-day Hawaii and Iceland. After the first cellular life was able to establish itself in a relatively benign environment, it would rapidly begin to adapt through Darwinian selection to more rigorous environments, including the extreme temperatures, salt concentrations and pH ranges that we now associate with the limits of life on the Earth.

  9. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1988-01-01

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  10. Prebiotic Synthesis of Vitamin B6-type Compounds

    NASA Astrophysics Data System (ADS)

    Austin, Sabrina M.; Waddell, Thomas G.

    1999-05-01

    Heating a dilute solution of NH3 and glycoaldehyde gives a large family of pyridines substituted with the same functional groups as occur in the forms of vitamin B6. Thus, vitamin B6-like molecules could have been present on the early Earth and could have been available for catalysis of primitive transamination reactions. Ethanolamine and N-methylethanolamine are also formed as major products. These are choline-like molecules, the latter of which is apparently formed by a prebiotic methylation process.

  11. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  12. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    PubMed

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  13. Novel Protein Folding Pathways for Protein Salvage and Recycling

    DTIC Science & Technology

    2013-08-26

    cooperative protein folding and unfolding reactions. Archaea are primitive microorganisms placed by most taxonomic criteria at the base of the Tree of...Life. The Archaea have many molecular properties that are found universally in modern lineages of both Bacteria and Archaea , and many species are...specialized for survival and growth in extreme conditions, including at or above the normal boiling point of water. These hyperthermophilic archaea

  14. Ordinary People and Extra-Ordinary Protections: A Post-Kleinian Approach to the Treatment of Primitive Mental States. The New Library of Psychoanalysis 40.

    ERIC Educational Resources Information Center

    Mitrani, Judith L.

    Many people come to analysis appearing quite ordinary on the surface. However, once below that surface, there often appear extraordinary protections created to keep at bay any awareness of deeply traumatic happenings occurring at some point in life. This book investigates the development and function of these protections, allowing the reader to…

  15. The domestication of fire: the relationship between biomass fuel, fossil fuel and burns.

    PubMed

    Albertyn, R; Rode, H; Millar, A J W; Peck, M D

    2012-09-01

    Primitive man's discovery and use of fire had a tremendous impact on modern development. It changed lifestyles, and brought with it new fuel sources and cooking methods. It also introduced devastation, injury, pain, disfigurement, and loss of life, and the need to continuously develop management, training and prevention programs. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  16. A simple physical mechanism enables homeostasis in primitive cells

    NASA Astrophysics Data System (ADS)

    Engelhart, Aaron E.; Adamala, Katarzyna P.; Szostak, Jack W.

    2016-05-01

    The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.

  17. A recursive vesicle-based model protocell with a primitive model cell cycle

    NASA Astrophysics Data System (ADS)

    Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi

    2015-09-01

    Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.

  18. Whole-Body Radiation Therapy, Systemic Chemotherapy, and High-Dose Chemotherapy Followed By Stem Cell Rescue in Treating Patients With Poor-Risk Ewing Sarcoma

    ClinicalTrials.gov

    2015-01-07

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  19. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  20. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    PubMed

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  1. Morphogenesis of univentricular hearts.

    PubMed Central

    Anderson, R H; Becker, A E; Wilkinson, J L; Gerlis, L M

    1976-01-01

    Two main theories exist for the explanation of univentricular hearts. One states that the bulboventricular septum becomes realigned to form the interventricular septum, and that univentricular hearts are a consequence of failure of this realignment. The other states that bulboventricular and interventricular septa are different structures, and that the univentricular heart results from failure of formation of the posterior interventricular septum. Four hearts are described in which both the posterior septum and an anterior bulboventricular septum are present. In each heart, therefore, the right ventricular sinus is separated both from the left ventricular sinus and from a discrete outlet chamber which supports the pulmonary artery. It is argued that these findings militate strongly against theories proposing reorientation of the bulboventricular septum to form the definitive interventricular septum. They support strongly the concept that the definitive right ventricle is formed in part from the bulbus and in part from the primitive ventricle. On the basis of these findings, it is suggested that the distinctive feature of the univentricular heart is absence of the posterior septum. Such hearts can properly be termed 'primitive ventricle'. It is also suggested that hearts with atretic or straddling valves should be included within this category. Images PMID:1275986

  2. Comet 81P/Wild 2 under a microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, D; Tsou, P; Aleon, J

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixingmore » on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators around the world participated in the preliminary analysis of the returned samples, and the papers in this issue summarize their findings.« less

  3. Secure Heterogeneous Multicore Platform Through Diversity and Redundancy

    DTIC Science & Technology

    2012-03-31

    implementation detects synchronization in this way. If a programmer uses custom synchronization primitives , our approach assumes that such primitives ... synchronization primitives . Primitives such as barriers and spinlocks explicitly enforce a pre- determined ordering among threads. Therefore, the outcome of...these synchronization operations are deterministic. In the discussion, we will refer to these primitives as ordering synchronization operations. On the

  4. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Stern, C. R.

    2018-01-01

    Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion in equilibrium with mantle olivine. Table S5. Melting parameters Fm and CoH2O. Table S6. Major element compositions of phenocrysts and glasses occurring with the olivine-hosted melt inclusions.

  5. Comparative Analysis of the 5S rRNA and Its Associated Proteins Reveals Unique Primitive Rather Than Parasitic Features in Giardia lamblia

    PubMed Central

    Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    Background 5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. Methodology/Principal Findings By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. Conclusion/Significance The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features. PMID:22685540

  6. Melt Inclusions Record Extreme Compositional Variability in Primitive Magmas at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.

    2002-12-01

    Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.

  7. Biomarkers as tracers for life on early earth and Mars

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  8. Chemical Evolution and the Origin of Life: Bibliography 1975

    NASA Technical Reports Server (NTRS)

    West, Martha W. (Compiler); Koch, Rowena A. (Compiler); Chang, Sherwood (Compiler)

    1977-01-01

    This bibliography is the sixth annual supplement to the comprehensive bibliography on the same subject which was published in Space Life Sci.We would like to draw attention to a recently published cumulative bibliography on this same subject: Biochemical Origin of Life: Chemistry and Life. Soil and Water and Its Relationship to Origin of Life. MR - Studies of Prebiotic Polypeptides. Energy, Matter, and Life. Prospects for the Future Orientation of Scientific Research. Photochemical Formation of Self Sustaining Coacervates. Photochemical Formation of Self-Sustaining Coacervates. Comparative Study of Abiogenesis of Cysteine and Other Amino Acids Catalyzed by Various Metal Ions. Protein Structure and the Molecular Evolution of Biological Energy Conversion. Origin of Life. Clues from Relations Between Chemical Compositions of Living Organisms and Natural Environments. Shock Synthesis of Amino Acids II.', Origins of Life 6(1-2). Dynamics of the Chemical Evolution of Earth's Primitive Atmosphere. The Mechanisms of Amino Acids Synthesis by High Temperature Shock-Waves. Theory of Chemical Evolution. Physical Foundations of Probability of Biogenesis.

  9. Educational Research and Public Policy: Problems and Promise. Occasional Paper No. 12.

    ERIC Educational Resources Information Center

    Bush, Robert N.

    The art of relating educational research to public policy is still primitive. Educational policy is formed mainly by tradition and the political pressure of interest groups, while educational researchers study questions determined by the scientific community. Educational research has not noticeably influenced policy because trained researchers…

  10. Chemical evolution. XXII - The hydantoins released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Lobo, A. P.

    1974-01-01

    The isolation of three hydantoins from HCN oligomers is described. One of these hydantoins, 5-carboxymethylidine hydantoin (5-CMH), rearranges to pyrimidine orotic acid in basic solution. The isolation of 5-CMH suggests the possibility that pyrimidines were formed directly from HCN on the primitive earth.

  11. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells

    PubMed Central

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-01-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM. PMID:27252540

  12. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  13. [Main evolution lines of plant parasitic nematodes of the order Aphelenchida siddiqi, 1980].

    PubMed

    Ryss, A Iu

    2007-01-01

    Phylogenic models for each aphelenchid family and phylogeny of the order Aphelenchida as a whole were developed on the base of detailed comparative morphological and bionomical analysis of the order. Bionomical and morphological characters having a phylogenetic significance were selected. Classification proposed by Hunt, 1993 was used as the starting-point of the study. Life cycles and their evolution in Aphelenchida were analyzed on the base of phylogenetic trees. It is concluded, that aphelenchid ancestors combined mycophagy, plant parasitic, and partly predaceous feeding. Relations of the primitive Aphelenchida with their symbionts developed from the spots of the fungal organic matter decomposition in the "nema- tode-fungi" associations, followed by a transition to the temporary endoparasitic habit omitting ectoparasitism. With a complication of the nematodes' life cycles, the insect vector (detritophagous or pollinator) transformed into the real insect host of the parasitic nematode in the 2-host life cycle (with the plant and insect hosts) or in the obligate 1-host entomoparasitic life cycle of the aphelenchid nematodes. Specialization of the aphelenchid life cycles to insect vectors followed two main ways. In the first way, the resistant to unfavorable environmental conditions nematode juveniles, known already for the primitive aphelenchids transformed into dispersal juveniles, and later into parasitic juveniles. In the second evolution line the dispersal function were laid on inseminated but non-gravid (not egg-producing) females. Both above-mentioned trends of parasitic specialization were arisen independently in different phylogenetic lines of the Aphelenchida. In each line of the parasitic development in different nematode families, the highly specialized ectoparasites, as well as endoparasites on insects, were formed. In the evolution of life cycle of parasitic nematodes, a tendency to decrease the body size took place. The function of dispersion shifted to more junior juvenile stage (the first line of specialization), or body sizes of non-gravid females and males copulated with the latter become smaller (second specialization line, till the development of dwarf males and location of the males and small inseminated non-gravid females in the uterus of gravid nematode female). The hypothetic fundamental model of the parasitic cycles' specialization in the order Aphelenchida was developed, basing on the comparison of known life cycles in different phylogenetic lines within aphelenchid families. The conception of the geographic origin and historic dispersal of the order Aphelenchida was proposed. The origin of the superfamily Aphelenchoidoidea and order Aphelenchida as a whole probably took place in eastern areas of Gondwana (parts of which are recently Hindustan, Indo-Malaya, Australia and Antarctica), presumably in the Devonian period. When the Gondwana and Laurasia paleocontinents were joined into Pangea in Carbon period, aphelenchids dispersed in the Laurasian part of Pangea. Endemism of the advanced entomophilic ectoparasitic Acugutturidae indicates on the secondary hotbed of speciation in Caribbean area. Development of the anhydrobiotic adaptations in the Aphelenchida promoted their successful invasion in the cold regions of Holarctic. Another important adaptations was the transformation of the initially resistant nematode life cycle phase into the dispersal phases vectored by insects.

  14. A RESOURCE GUIDE FOR THIRD GRADE SUMMER SCHOOL ACCELERATION CLASSES. THE AMERICAN INDIAN--A STUDY OF LIFE IN A PRIMITIVE CULTURE.

    ERIC Educational Resources Information Center

    TRAINOR, LOIS M.; AND OTHERS

    THE SUMMER PROGRAM IS PART OF A PROGRAM IN WHICH SECOND-GRADE GIFTED STUDENTS ARE GIVEN INSTRUCTION IN BASIC THIRD-GRADE SKILLS IN LANGUAGE AND ARITHMETIC DURING THE SPRING SEMESTER. THE SUMMER SESSION PROVIDES FOR IMPROVEMENT IN THESE SKILLS ON AN INDIVIDUAL BASIS AND FOR ENRICHMENT IN SOCIAL STUDIES. THE UNIT ON THE AMERICAN INDIAN DESCRIBED IS…

  15. Structural action recognition in body sensor networks: distributed classification based on string matching.

    PubMed

    Ghasemzadeh, Hassan; Loseu, Vitali; Jafari, Roozbeh

    2010-03-01

    Mobile sensor-based systems are emerging as promising platforms for healthcare monitoring. An important goal of these systems is to extract physiological information about the subject wearing the network. Such information can be used for life logging, quality of life measures, fall detection, extraction of contextual information, and many other applications. Data collected by these sensor nodes are overwhelming, and hence, an efficient data processing technique is essential. In this paper, we present a system using inexpensive, off-the-shelf inertial sensor nodes that constructs motion transcripts from biomedical signals and identifies movements by taking collaboration between the nodes into consideration. Transcripts are built of motion primitives and aim to reduce the complexity of the original data. We then label each primitive with a unique symbol and generate a sequence of symbols, known as motion template, representing a particular action. This model leads to a distributed algorithm for action recognition using edit distance with respect to motion templates. The algorithm reduces the number of active nodes during every classification decision. We present our results using data collected from five normal subjects performing transitional movements. The results clearly illustrate the effectiveness of our framework. In particular, we obtain a classification accuracy of 84.13% with only one sensor node involved in the classification process.

  16. Prebiological evolution and the physics of the origin of life

    NASA Astrophysics Data System (ADS)

    Delaye, Luis; Lazcano, Antonio

    2005-03-01

    The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.

  17. Prebiological evolution and the physics of the origin of life.

    PubMed

    Delaye, Luis; Lazcano, Antonio

    2005-03-01

    The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.

  18. Life cycles, fitness decoupling and the evolution of multicellularity.

    PubMed

    Hammerschmidt, Katrin; Rose, Caroline J; Kerr, Benjamin; Rainey, Paul B

    2014-11-06

    Cooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence. Collectives reproduced via life cycles that either embraced, or purged, cheating types. When embraced, the life cycle alternated between phenotypic states. Selection fostered inception of a developmental switch that underpinned the emergence of collectives whose fitness, during the course of evolution, became decoupled from the fitness of constituent cells. Such development and decoupling did not occur when groups reproduced via a cheat-purging regime. Our findings capture key events in the evolution of Darwinian individuality during the transition from single cells to multicellularity.

  19. Dynamic Primitives of Motor Behavior

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919

  20. Cinder Pool's Sulfur Chemistry: Implications for the Origin of Life in Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Sydow, L.; Bennett, P.; Nordstrom, D.

    2012-12-01

    One theory of the origin of life posits the abiotic formation of alkyl thiols as an initial step to forming biomolecules and eventually a simple chemoautotrophic cell. The premise of this theory is that a recurring reaction on the charged surfaces of pyrite served as a primordial metabolism analogous to the Acetyl-CoA pathway (Wächtershäuser 1988) and was later enveloped by a primitive cellular membrane. However, alkyl thiols have not previously been identified in terrestrial hot springs as unequivocally abiogenic. We have identified methanethiol (CH3SH), the simplest of the alkyl thiols, as well as dimethyl sulfide and dimethyldisulfide, in Cinder Pool, an acid-sulfate-chloride hot spring in the One Hundred Spring Plain of Norris Geyser Basin, Yellowstone National Park. It is unusual in that it contains a molten sulfur layer on the bottom (~20 m depth) and thousands of iron-sulfur-spherules floating on the surface (the iconic "cinders" the pool is named for), created by gas bubbling through the molten basement of the spring. These unique features make it a good candidate for abiotically generated CH3SH. Gas samples were collected from Cinder pool as well as an adjacent hydrothermal feature in the autumn of 2011 using the bubble strip method modified for use with hydrothermal waters. Several samples contained measurable quantities of methanethiol and other organic sulfur gases, with concentrations increasing with depth in the pool. Laboratory microcosm experiments were conducted to investigate the geochemical conditions required to abiotically form CH3SH. Sterile, artificial Cinder Pool water was injected into sterilized 60 mL serum bottles containing different iron-sulfur compounds, including cinders collected from the pool itself, as catalytic surfaces for the methanethiol-generating reaction. The bottles were then charged with hydrogen and carbon dioxide as reaction gases and incubated for a week at temperatures between 60 and 120oC. Bottles using FeS as a catalytic surface consistently produced methanethiol as expected from previous work. Bottles containing pyrite or cinders also generated lower but measurable quantities of CH3SH. While CH3SH is central to the autotroph-first theory and has been synthesized in the laboratory (e.g. Heinen and Lauwers 1996), it has not previously been observed to form abiotically in natural systems (although it is a common microbial byproduct of sulfur metabolism). We have identified CH3SH in a natural hydrothermal feature where it is unlikely to have formed secondary to microbial activity, as the only microorganism found in Cinder Pool is Aquificales Hydrogenobaculum (Spear et al. 2005) which can oxidize reduced sulfur compounds and would use methanethiol as a substrate, but should not form it as a byproduct. We have duplicated our field findings in sterile laboratory experiments using the cinders as a reactive surface. Also of note, the autotroph-first theory suggests that the primitive cellular membrane that enclosed the first metabolism was an FeS bubble created by a redox front (Russell and Hall 1997). While the cinders are not purely FeS, they could potentially serve this purpose based on the material's ability to function as a catalytic surface.

  1. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    PubMed Central

    Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.

    2005-01-01

    The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme. PMID:16508111

  2. Enceladus: a cradle of life of the Solar System?

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2014-05-01

    According to [1]: "For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, […] to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean" (see also [2]). We consider here conditions for origin of life in the early Enceladus and later proliferation of the life. Mass of serpentinite: The serpentinization on the Earth is often considered with hydrothermal activity in neovolcanic zones along mid-oceanic spreading centers. The total length of present spreading centers is ~80 000 km. However, only in small part of them the hydrothermal activity really occurs. Even if in Hadean oceans the hydrothermal activity was more widespread, still only small part of terrestrial rocks could be serpentinized. After [3] we consider the following reaction of serpentinization: Mg2SiO4 (forsterite) + MgSiO3 (enstatite) + 2H2O --> Mg3Si2O5(OH)4 (antigorite). [4] considered the process of differenrtiation and core forming in Enceladus. He found that the result of differentiation is a relatively cold core of loosely packed grains with water between them. At that time, there is not mechanism of removing the water. Since terrestrial rocks are permeable up to the pressure of ~300 MPa then the entire core of Enceladus was probably permeable for liquids and gases. This could lead to formation of extensive hydrothermal convective systems. Note that in Enceladus most of silicate could be serpetenized (contrary to the Earth). It indicates that total mass of serpententinized silicate in Enceladus could be larger than on the Earth. T-p conditions in Enceladus: The pressure in the center of Enceladus is ~2.3 107 Pa that correspond to pressure on the depth 2300 m in the terrestrial ocean. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is given in [4] It is possible that for hundreds of Myr the conditions in the interior of Enceladus were more favorable for origin of life than on the Earth. Proliferation of life: We do not know the probability of life origin. The life could be a common phenomenon originating in relatively short time if conditions are favorable. However, it is possible also that the life had originated only one time in the Universe. If this option is true then the transport of primitive organism is critical. The low gravity of the Enceladus and its volcanic activity make this transport possible. Note that the low temperature of plumes does not kill the organism. The primitive bacteria could leave the Enceladus with volcanic jets in the same way as particles of the E ring. Therefore it is possible that the Enceladus was a cradle of the life in the Solar System. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). References: [1] Russell, M. J., Hall, A. J., And Martin W. (2010). Geobiology (2010), 8, 355-371. [2] Izawa M.R.M. et al. (2010). Planet. Space Sci. 58, 583-591. [3] Abramov, O., Mojzsis, S.J., (2011) Icarus 213, 273-279. [4] Czechowski, L. (2013) Submitted

  3. Endometrial endometrioid adenocarcinoma associated with primitive neuroectodermal tumour of the uterus: a poor prognostic subtype of uterine tumours.

    PubMed

    Bartosch, Carla; Vieira, Joana; Teixeira, Manuel R; Lopes, José Manuel

    2011-12-01

    Uterine primitive neuroectodermal tumours are extremely rare tumours. They can occur in pure form or combined with another component including endometrioid adenocarcinoma. We aimed to review the clinical impact of neuroectodermal phenotype in uterine tumours, after we recently diagnosed one such case. A 58-year-old female presented with irregular vaginal bleeding. Ultrasonography and CT showed the presence of a large uterine mass with irregular contours. At laparotomy it was found to extend to the right ureter, sigmoid colon and some small intestinal loops. Microscopic examination revealed that the tumour consisted of an endometrioid adenocarcinoma component merging with an extensive neuroectodermal component. No EWSR1 or FUS rearrangement was found in the two tumour components. The patient received two courses of chemotherapy but died 11 months after the initial diagnosis. We reviewed the morphological and molecular criteria for the diagnosis of uterine primitive neuroectodermal tumours published in the literature. We conclude that regardless of the detection of an EWSR1 rearrangement, the presence of a neuroectodermal differentiation component in these rare uterine tumours is a marker of aggressive behaviour, and its presence should be highlighted in the diagnosis.

  4. Jung, individuation, and moral relativity in Qohelet 7:16--17.

    PubMed

    Kotzé, Zacharias

    2014-04-01

    Qohelet's warning in chapter 7:16 'not to be too righteous' has commonly been interpreted by biblical scholars in ways that acquit the author of teaching immorality. This article approaches the text from a psychological critical perspective, bringing it into dialogue with the psychological maturation process of individuation in Jungian psychology. The confrontation with the shadow, made up of reprehensible qualities residing in the unconscious that a person wishes to deny, forms the prologue to this process. Projection or repression of these primitive instincts can lead to various problems, such as stagnation and neurosis. Raising the shadowy, primitive, and archaic content of the unconscious to consciousness and integrating it with the ego, however, leads to a mysterious union of opposites and a new personality, a 'self' that transcends consciousness.

  5. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  6. Sexual life in Pharaonic Egypt: towards a urological view.

    PubMed

    Shokeir, A A; Hussein, M I

    2004-10-01

    Sex is a basic human need, common to all people at all times. It is evident that the ancient Egyptians were real human beings, not only a people who built massive pyramids and made mummies of their dead. The ancient Egyptians had a rich and varied sexual life, which they found an opportunity to describe in words and pictures. As in the other early primitive civilizations, erotic matters were of prime importance and became an integral part of life. In Pharaonic times, the Egyptians described impotence and recorded several methods to increase the sexual power. In the present paper, we will shed light on some aspects of the sexual life in ancient Egypt that may be interesting to the urologists, including ancient Egyptian concepts of sex and erotic matters, their own way of treatment of impotence and Min, the Egyptian fertility God.

  7. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 3 C and N Isotopic Imaging

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Elsila, J. E.; Berger, E. L.; Burton, A. S.; Clemett, S. J.; Cao, T.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble nanoglobules of macro-molecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Large H, C and N isotopic anomalies suggest some organic components formed in low-T interstellar or outer Solar System environments. The highest isotope anomalies occur in m-scale inclusions in the most primitive materials, such as cometary dust and the least altered carbonaceous chondrites. Often, the hosts of these isotopically anomalous 'hotspots' are discrete organic nanoglobules that probably formed in the outermost reaches of the protosolar disk or cold molecular cloud. Molecular and isotopic studies of meteoritic organic matter are aimed at identifying the chemical properties and formation processes of interstellar organic materials and the subsequent chemical evolutionary pathways in various Solar System environments. The combination of soluble and insoluble analyses with in situ and bulk studies provides powerful constraints on the origin and evolution of organic matter in the Solar System. Using macroscale extraction and analysis techniques as well as microscale in situ observations we have been studying both insoluble and soluble organic material in primitive astromaterial samples. Here, we present results of bulk C and N isotopic measurements and coordinated in situ C and N isotopic imaging and mineralogical and textural studies of carbonaceous materials in a Cr2 carbonaceous chondrite. In accompanying abstracts we discuss the morphology and distribution of carbonaceous components and soluble organic species of this meteorite.

  8. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors*

    PubMed Central

    Altman, Jessica K.; Sassano, Antonella; Kaur, Surinder; Glaser, Heather; Kroczynska, Barbara; Redig, Amanda J.; Russo, Suzanne; Barr, Sharon; Platanias, Leonidas C.

    2011-01-01

    Purpose To determine whether mTORC2 and RI-mTORC1 complexes are present in AML cells and to examine the effects of dual mTORC2/mTORC1 inhibition on primitive AML leukemic progenitors. Experimental Design Combinations of different experimental approaches were used, including immunoblotting to detect phosphorylated/activated forms of elements of the mTOR pathway in leukemic cell lines and primary AML blasts; cell proliferation assays; direct assessment of mRNA translation in polysomal fractions of leukemic cells; and clonogenic assays in methylcellulose to evaluate leukemic progenitor colony formation. Results mTORC2 complexes are active in AML cells and play critical roles in leukemogenesis. Rapamycin insensitive (RI) mTORC1 complexes are also formed and regulate the activity of the translational repressor 4E-BP1 in AML cells. OSI-027, blocks mTORC1 and mTORC2 activities and suppresses mRNA translation of cyclin D1 and other genes that mediate proliferative responses in AML cells. Moreover, OSI-027 acts as a potent suppressor of primitive leukemic precursors from AML patients and is much more effective than rapamycin in eliciting antileukemic effects in vitro. Conclusions Dual targeting of mTORC2 and mTORC1 results in potent suppressive effects on primitive leukemic progenitors from AML patients. Inhibition of the mTOR catalytic site with OSI-027 results in suppression of both mTORC2 and RI-mTORC1 complexes and elicits much more potent antileukemic responses than selective mTORC1 targeting with rapamycin. PMID:21415215

  9. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  10. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture.

    PubMed

    Yoon, D S; Kim, Y H; Jung, H S; Paik, S; Lee, J W

    2011-10-01

    This study has aimed to repopulate 'primitive' cells from late-passage mesenchymal stem cells (MSCs) of poor multipotentiality and low cell proliferation rate, by simply altering plating density. Effects of low density culture compared t high density culture on late-passage bone marrow (BM)-derived MSCs and pluripotency markers of multipotentiality were investigated. Cell proliferation, gene expression, RNA interference and differentiation potential were assayed. We repopulated 'primitive' cells by replating late-passage MSCs at low density (17 cells/cm(2) ) regardless of donor age. Repopulated MSCs from low-density culture were smaller cells with spindle shaped morphology compared to MSCs from high-density culture. The latter had enhanced colony-forming ability, proliferation rate, and adipogenic and chondrogenic potential. Strong expression of osteogenic-related genes (Cbfa1, Dlx5, alkaline phosphatase and type Ι collagen) in late-passage MSCs was reduced by replating at low density, whereas expression of three pluripotency markers (Sox2, Nanog and Oct-4), Osterix and Msx2 reverted to levels of early-passage MSCs. Knockdown of Sox2 and Msx2 but not Nanog, using RNA interference, showed significant decrease in colony-forming ability. Specifically, knockdown of Sox2 significantly inhibited multipotentiality and cell proliferation. Our data suggest that plating density should be considered to be a critical factor for enrichment of 'primitive' cells from heterogeneous BM and that replicative senescence and multipotentiality of MSCs during in vitro expansion may be predominantly regulated through Sox2. © 2011 Blackwell Publishing Ltd.

  11. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids

    PubMed Central

    Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi

    2010-01-01

    Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614

  12. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  13. Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: Consequences for mantle source heterogeneity within the Cameroon Volcanic Line

    NASA Astrophysics Data System (ADS)

    Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.

    2017-09-01

    Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.

  14. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  15. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  16. The Suffix "-oso" in Central American Spanish.

    ERIC Educational Resources Information Center

    Scavnicky, Gary Eugene A.

    1982-01-01

    Examines the lexical formative "-oso," which is added to nominal and verbal roots to form adjectives to denote possession of the quality contained in the primitive, in Central American Spanish. Concludes it is used with traditional Spanish denotations and has undergone various semantic shifts and is being applied to roots in a completely…

  17. Campus-Wide Computing: Early Results Using Legion at the University of Virginia

    DTIC Science & Technology

    2006-01-01

    Bernard et al., “Primitives for Distributed Computing in a Heterogeneous Local Area Network Environ- ment”, IEEE Trans on Soft. Eng. vol. 15, no. 12...1994. [16] F. Ferstl, “CODINE Technical Overview,” Genias, April, 1993. [17] R. F. Freund and D. S. Cornwell , “Superconcurrency: A form of distributed

  18. On the Status of Logic in Piaget

    ERIC Educational Resources Information Center

    Reginensi, Luc

    2004-01-01

    This article analyses the way in which Piaget links the analogy between the child and the primitive with a theory of the history of the sciences, that is, it analyses Piaget's version of Haeckel's principle in which ontogenesis recapitulates phylogenesis. From this analysis, we reconstitute the operations through which Piaget forms and expresses…

  19. Linguistic Diversity in a Deaf Prison Population: Implications for Due Process

    ERIC Educational Resources Information Center

    Miller, Katrina R.

    2004-01-01

    The entire deaf prison population in the state of Texas formed the basis for this research. The linguistic skills of prison inmates were assessed using the following measures: (1) Kannapell's categories of bilingualism, (2) adaptation of the diagnostic criteria for Primitive Personality Disorder, (3) reading scores on the Test of Adult Basic…

  20. The solar nebula redox state as recorded by the most reduced chondrules of five primitive chondrites

    NASA Technical Reports Server (NTRS)

    Johnson, M. C.

    1986-01-01

    Mafic minerals in the most reduced chondrules of five primitive meteorites were analyzed with an electron microprobe to determine the lower limit on their FeO contents. The accuracy obtained was + or - 0.01 weight percent FeO. The thermodynamic relationship between mole fraction FeSiO3 and pO2 of the ambient nebular gas at the time of mineral equilibration was established, and was used to infer the local O/H ratio of the nebular gas during chondrule formation. The lowest ferrosilite compositions reflected equilibration at 1500 K with a gas 2-18 times more oxidizing than a gas of solar composition. Olivines in low-FeO unequilibrated ordinary chondrites (UOC) chondrules are uniformly more FeO-rich than coexisting pyroxenes. This discrepancy suggests that a significant change in the O/H ratio of the nebular gas occurred between the time of olivine and pyroxene crystallization in the region of the nebula where UOCs formed. Mineral compositions in the chondrules of two C2 chondrites studied suggest they formed in a more homogeneous region of the nebula than the UOCs.

  1. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, N.C.; Emery, J.D.; Smith, M.L.

    1985-04-29

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object. 19 figs.

  2. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    NASA Technical Reports Server (NTRS)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  3. Complex igneous processes and the formation of the primitive lunar crustal rocks

    NASA Technical Reports Server (NTRS)

    Longhi, J.; Boudreau, A. E.

    1979-01-01

    Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.

  4. [Life cycle of Maupasina weissi Seurat, 1913, Subuluroidea Nematode, parasite of the elephant shrew (author's transl)].

    PubMed

    Quentin, J C; Verdier, J M

    1979-01-01

    The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.

  5. Life on Mars? 1: The chemical environment

    NASA Technical Reports Server (NTRS)

    Banin, A.; Mancinelli, R. L.

    1995-01-01

    The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extend did such conditions prevail on Mars? Two companion-papers will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.

  6. Chemical evolution and the origin of life; Proceedings of the Third International Conference, Pont-a-Mousson, France, April 19-25, 1970. Volume 1 - Molecular evolution.

    NASA Technical Reports Server (NTRS)

    Buvet, R. (Editor); Ponnamperuma, C.

    1971-01-01

    The present state of investigations on the origin of life is surveyed together with the current state of molecular paleontology. General and theoretical subjects discussed include an energetic approach to prebiological chemistry, the recognition of description and function in chemical reaction networks, and the origin and development of optical activity of bio-organic compounds on the primordial earth. Other fields considered are the syntheses of small molecules, oligomers and polymers; photochemical processes; the origin of biological structures; primitive biochemistry and biology; and exobiology. Individual items are abstracted in this issue.

  7. Indigenous Amino Acids in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  8. Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments.

    PubMed

    Mokhtari, Saloomeh; Baptista, Pedro M; Vyas, Dipen A; Freeman, Charles Jordan; Moran, Emma; Brovold, Matthew; Llamazares, Guillermo A; Lamar, Zanneta; Porada, Christopher D; Soker, Shay; Almeida-Porada, Graça

    2018-03-01

    Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271-282. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Dimensional analysis using toric ideals: primitive invariants.

    PubMed

    Atherton, Mark A; Bates, Ronald A; Wynn, Henry P

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.

  10. The physics of cellular synthesis, growth and division

    NASA Technical Reports Server (NTRS)

    Pollard, E. C.

    1974-01-01

    Three areas of research in NASA'S University Program are described. Primitive terrestrial living cells were studied as a guide to the kind of cells to look for in extraterrestrial life. Experiments in zero gravity conditions are described with emphasis upon effects on small organisms. The effects of ionizing radiation on cells are studied so that it will be possible to predict dosages which can be tolerated by humans with no permanent damage.

  11. Extensibility Experiments with the Software Life-Cycle Support Environment

    DTIC Science & Technology

    1991-11-01

    APRICOT ) and Bit- Oriented Message Definer (BMD); and three from the Ada Software Repository (ASR) at White Sands-the NASA/Goddard Space Flight Center...Graphical Kernel System (GKS). c. AMS - The Automated Measurement System tool supports the definition, collec- tion, and reporting of quality metric...Ada Primitive Order Compilation Order Tool ( APRICOT ) 2. Bit-Oriented Message Definer (BMD) 3. LGEN: A Language Generator Tool 4. I"ilc Chc-ker 5

  12. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Wyatt, M.B.; Gellert, Ralf; Bell, J.F.; Morris, R.V.; Herkenhoff, K. E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; Arvidson, R. E.; Bartlett, P.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Des Marais, D.J.; Economou, T.; Farmer, J.D.; Farrand, W.; Ghosh, A.; Golombek, M.; Gorevan, S.; Greeley, R.; Hamilton, V.E.; Johnson, J. R.; Joliff, B.L.; Klingelhofer, G.; Knudson, A.T.; McLennan, S.; Ming, D.; Moersch, J.E.; Rieder, R.; Ruff, S.W.; Schrorder, C.; de Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Yen, A.; Zipfel, J.

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times. Copyright 2006 by the American Geophysical Union.

  13. G-autonomy of EEG recordings of psychotic patients undergoing the primitive expression form of dance therapy

    NASA Astrophysics Data System (ADS)

    Ventouras, E.-C.; Lardi, I.; Dimitriou, S.; Margariti, A.; Chondraki, P.; Kalatzis, I.; Economou, N.-T.; Tsekou, H.; Paparrigopoulos, T.; Ktonas, P. Y.

    2015-09-01

    Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. Brain connectivity has been measured in electroencephalographic (EEG) data of patients with schizophrenia undergoing PE DT, using the correlation coefficient and mutual information. These parameters do not measure the existence or absence of directionality in the connectivity. The present study investigates the use of the G-autonomy measure of EEG electrode voltages of the same group of schizophrenic patients. G-autonomy is a measure of the “autonomy” of a system. It indicates the degree by which prediction of the system's future evolution is enhanced by taking into account its own past states, in comparison to predictions based on past states of a set of external variables. In the present research, “own” past states refer to voltage values in the time series recorded at a specific electrode and “external” variables refer to the voltage values recorded at other electrodes. Indication is provided for an acute effect of early-stage PE DT expressed by the augmentation of G-autonomy in the delta rhythm and an acute effect of late- stage PE DT expressed by the reduction of G-autonomy in the theta and alpha rhythms.

  14. Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Wyatt, M. B.; Gellert, R.; Bell, J. F., III; Morris, R. V.; Herkenhoff, K. E.; Crumpler, L. S.; Milam, K. A.; Stockstill, K. R.; Tornabene, L. L.; hide

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times.

  15. 18F-FLT Positron Emission Tomography and Diffusion-Weighted Magnetic Resonance Imaging in Planning Surgery and Radiation Therapy and Measuring Response in Patients With Newly Diagnosed Ewing Sarcoma

    ClinicalTrials.gov

    2017-11-16

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  16. Prebiotic Soup-Revisiting the Miller Experiment

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Lazcano, Antonio

    2003-01-01

    'Isn't life wonderful?' sang Alma Cogan and Les Howard in their almost forgotten 1953 hit. That same year, Stanley L. Miller raised the hopes of understanding the origin of life when on 15 May, Science published his paper on the synthesis of amino acids under conditions that simulated primitive Earth's atmosphere. Miller had applied an electric discharge to a mixture of CH4, NH3, H2O, and H2 - believed at the time to be the atmospheric composition of early Earth. Surprisingly, the products were not a random mixture of organic molecules, but rather a relatively small number of biochemically significant compounds such as amino acids, hydroxy acids, and urea. With the publication of these dramatic results, the modem era in the study of the origin of life began.

  17. Prebiotic Soup: Revisiting the Miller Experiment

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Lazcano, Antonio

    2003-01-01

    Isn't life wonderful? sang Alma Cogan and Les Howard in their almost forgotten 1953 hit. That same year, Stanley L. Miller raised the hopes of understanding the origin of life when on 15 May, Science published his paper on the synthesis of amino acids under conditions that simulated primitive Earth's atmosphere. Miller had applied an electric discharge to a mixture of CH4, NH3, H2O, and H2 - believed at the time to be the atmospheric composition of early Earth. Surprisingly, the products were not a random mixture of organic molecules. but rather a relatively small number of biochemically significant compounds such as amino acids, hydroxy acids, and urea. With the publication of these dramatic results, the modern era in the study of the origin of life began.

  18. Question 2: why an astrobiological study of titan will help us understand the origin of life.

    PubMed

    Raulin, Francois

    2007-10-01

    For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.

  19. Efficient Agent-Based Models for Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    Gupta, Nachi; Agogino, Adrian; Tumer, Kagan

    2006-01-01

    Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.

  20. A recursive vesicle-based model protocell with a primitive model cell cycle

    PubMed Central

    Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi

    2015-01-01

    Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. PMID:26418735

  1. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

    PubMed Central

    Berger, Lee R; Hawks, John; de Ruiter, Darryl J; Churchill, Steven E; Schmid, Peter; Delezene, Lucas K; Kivell, Tracy L; Garvin, Heather M; Williams, Scott A; DeSilva, Jeremy M; Skinner, Matthew M; Musiba, Charles M; Cameron, Noel; Holliday, Trenton W; Harcourt-Smith, William; Ackermann, Rebecca R; Bastir, Markus; Bogin, Barry; Bolter, Debra; Brophy, Juliet; Cofran, Zachary D; Congdon, Kimberly A; Deane, Andrew S; Dembo, Mana; Drapeau, Michelle; Elliott, Marina C; Feuerriegel, Elen M; Garcia-Martinez, Daniel; Green, David J; Gurtov, Alia; Irish, Joel D; Kruger, Ashley; Laird, Myra F; Marchi, Damiano; Meyer, Marc R; Nalla, Shahed; Negash, Enquye W; Orr, Caley M; Radovcic, Davorka; Schroeder, Lauren; Scott, Jill E; Throckmorton, Zachary; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Wei, Pianpian; Zipfel, Bernhard

    2015-01-01

    Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001 PMID:26354291

  2. The Composition and Organization of Cytoplasm in Prebiotic Cells

    PubMed Central

    Trevors, Jack T.

    2011-01-01

    This article discusses the hypothesized composition and organization of cytoplasm in prebiotic cells from a theoretical perspective and also based upon what is currently known about bacterial cytoplasm. It is unknown if the first prebiotic, microscopic scale, cytoplasm was initially contained within a primitive, continuous, semipermeable membrane, or was an uncontained gel substance, that later became enclosed by a continuous membrane. Another possibility is that the first cytoplasm in prebiotic cells and a primitive membrane organized at the same time, permitting a rapid transition to the first cell(s) capable of growth and division, thus assisting with the emergence of life on Earth less than a billion years after the formation of the Earth. It is hypothesized that the organization and composition of cytoplasm progressed initially from an unstructured, microscopic hydrogel to a more complex cytoplasm, that may have been in the volume magnitude of about 0.1–0.2 μm3 (possibly less if a nanocell) prior to the first cell division. PMID:21673913

  3. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  4. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  5. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of extraterrestrial materials and returned samples are essential to understand the origins of Solar System organic material and the roles of comets and asteroids to providing the starting materials for the emergence of life.

  6. Diagnostic Study of Tumor Characteristics in Patients With Ewing's Sarcoma

    ClinicalTrials.gov

    2013-06-20

    Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  7. Observations of Nitrogen Fractionation in Prestellar Cores: Nitriles Tracing Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Charnley, S. B.

    2012-01-01

    Primitive materials provide important clues on the processes that occurred during the formation and early evolution of the Solar System. Space-based and ground-based observations of cometary comae show that comets appear to contain a mixture of the products of both interstellar and nebular chemistries. Significant 15-nitrogen enrichments have been measured in CN and HCN towards a number of comets and may suggest an origin of interstellar chemical fractionation. Additionally, large N-15 enhancements are found in meteorites and has also led to to the view that the N-15 traces material formed in the interstellar medium (ISM), although multiple sources cannot be excluded. Here, we show the results of observations of the nitrogen and carbon fractionation in prestellar cores for various N-bearing species to decipher the origin of primitive material isotopic enrichments.

  8. How early ferns became trees.

    PubMed

    Galtier, J; Hueber, F M

    2001-09-22

    A new anatomically preserved fern, discovered from the basalmost Carboniferous of Australia, shows a unique combination of very primitive anatomical characters (solid centrarch cauline protostele) with the elaboration of an original model of the arborescent habit. This plant possessed a false trunk composed of a repetitive branching system of very small stems, which established it as the oldest tree-fern known to date. The potential of this primitive zygopterid fern to produce such an unusual growth form-without real equivalent among living plants-is related to the possession of two kinds of roots that have complementary functional roles: (i) large roots produced by stems with immediate positive geotropism, strongly adapted to mechanical support and water uptake from the soil; and (ii) small roots borne either on large roots or on petiole bases for absorbing humidity inside the false trunk.

  9. Learning New Basic Movements for Robotics

    NASA Astrophysics Data System (ADS)

    Kober, Jens; Peters, Jan

    Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

  10. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.

    PubMed

    Seiter, J; Derungs, A; Schuster-Amft, C; Amft, O; Tröster, G

    2015-01-01

    Monitoring natural behavior and activity routines of hemiparetic rehabilitation patients across the day can provide valuable progress information for therapists and patients and contribute to an optimized rehabilitation process. In particular, continuous patient monitoring could add type, frequency and duration of daily life activity routines and hence complement standard clinical scores that are assessed for particular tasks only. Machine learning methods have been applied to infer activity routines from sensor data. However, supervised methods require activity annotations to build recognition models and thus require extensive patient supervision. Discovery methods, including topic models could provide patient routine information and deal with variability in activity and movement performance across patients. Topic models have been used to discover characteristic activity routine patterns of healthy individuals using activity primitives recognized from supervised sensor data. Yet, the applicability of topic models for hemiparetic rehabilitation patients and techniques to derive activity primitives without supervision needs to be addressed. We investigate, 1) whether a topic model-based activity routine discovery framework can infer activity routines of rehabilitation patients from wearable motion sensor data. 2) We compare the performance of our topic model-based activity routine discovery using rule-based and clustering-based activity vocabulary. We analyze the activity routine discovery in a dataset recorded with 11 hemiparetic rehabilitation patients during up to ten full recording days per individual in an ambulatory daycare rehabilitation center using wearable motion sensors attached to both wrists and the non-affected thigh. We introduce and compare rule-based and clustering-based activity vocabulary to process statistical and frequency acceleration features to activity words. Activity words were used for activity routine pattern discovery using topic models based on Latent Dirichlet Allocation. Discovered activity routine patterns were then mapped to six categorized activity routines. Using the rule-based approach, activity routines could be discovered with an average accuracy of 76% across all patients. The rule-based approach outperformed clustering by 10% and showed less confusions for predicted activity routines. Topic models are suitable to discover daily life activity routines in hemiparetic rehabilitation patients without trained classifiers and activity annotations. Activity routines show characteristic patterns regarding activity primitives including body and extremity postures and movement. A patient-independent rule set can be derived. Including expert knowledge supports successful activity routine discovery over completely data-driven clustering.

  11. The Self-Regulating Brain: Cortical-Subcortical Feedback and the Development of Intelligent Action

    ERIC Educational Resources Information Center

    Lewis, Marc D.; Todd, Rebecca M.

    2007-01-01

    To speak of cognitive regulation versus emotion regulation may be misleading. However, some forms of regulation are carried out by executive processes, subject to voluntary control, while others are carried out by "automatic" processes that are far more primitive. Both sets of processes are in constant interaction, and that interaction gives rise…

  12. Troping the Primitive: The Rhetoric of Socialization in Novels of Education and Educational Theory

    ERIC Educational Resources Information Center

    Bell, Katherine

    2012-01-01

    One narrative form that has significantly shaped the Western profile of adolescence is the novel of education, or traditional "bildungsroman." The very notion that adolescence is punctuated with "storm and stress" is culled from G. Stanley Hall's close reading of Goethe's (1774) "bildungsroman," "The Sorrows of Young Werther." For Hall, Werther's…

  13. Production of Basic Emotions by Children with Congenital Blindness: Evidence for the Embodiment of Theory of Mind

    ERIC Educational Resources Information Center

    Roch-Levecq, Anne-Catherine

    2006-01-01

    Children with congenital blindness are delayed in understanding other people's minds. The present study examined whether this delay was related to a more primitive form of inter-subjectivity by which infants draw correspondence between parental mirroring of the infant's display and proprioceptive sensations. Twenty children with congenital…

  14. How primitive are the gases in Titan's atmosphere?

    PubMed

    Owen, T

    1987-01-01

    Titan's atmosphere contains a mixture of nitrogen, methane, argon, hydrogen, simple hydrocarbons and nitriles, carbon monoxide, and carbon dioxide. Sources of nitrogen may be as a product of the photodissociation of ammonia or trapped in the ices that formed the satellite. Reasons for the abundance of deuterium are examined and its association with nitrogen on Titan is explained.

  15. Turbulent Size Selection and Concentration of Chondrule-Sized Objects: Reynolds Number Invariance and Implications

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Hogan, R.; Dobrovolskis, A.; Paque, J.

    2006-01-01

    It is generally agreed that individual chondrules formed as entities in a gaseous nebula prior to being accumulated into a meteorite parent body, within which they incur various forms of modification before arriving in our labs. While there are major unanswered questions about the properties of the nebula environment in which chondrules formed, the process by which the most primitive meteorites are formed overwhelmingly from chondrules must then be an aspect of "nebula processing". Textures in certain fragments of primitive meteorites might be summarized as being primarily chondrules and clastic, chondrule-sized, fragments of other minerals, each covered with a rim of fine dust with physical and chemical properties which are essentially independent of the composition and mineralogy of the underlying chondrule. This (unfortunately rather rare) texture was called "primary accretionary texture" to reflect their belief that it precedes subsequent stages in which fragmentation, comminution, mixing, heating, and other forms of alteration occur on the parent body(-ies). The size distribution of these chondrules and fragments, and the properties of their dusty rims, are key clues regarding the primary nebula accretion process. Even in the much more abundant meteorites which have clearly suffered internal mixing, abrasion, grinding, and even mineralogical alteration or replacement (due presumably to the collisional growth and heating process itself), key chondrule properties such as mean size and density remain relatively well defined, and well defined rims persist in many cases. It has been our goal to infer the key nebula processes indirectly from the properties of these very earliest primitive meteorites by making use of a theoretical framework in which the nebula possesses a plausible level of isotropic turbulence. We have shown that turbulence has the property of concentrating one particular particle size by orders of magnitude, where the preferentially concentrated size depends primarily on the intensity of the turbulent kinetic energy (represented by the Reynolds number of the nebula). Specifically, the preferentially concentrated particle is that which has a stopping time equal to the turnover time of the smallest eddy. The intensity level of turbulence implied by chondrule sizes can be maintained by even a small fraction of the energy released by the radially evolving disk (it must be noted that the details of how this transfer of energy actually occurs remain obscure, however).

  16. Collecting and Storing Biological Samples From Patients With Ewing Sarcoma

    ClinicalTrials.gov

    2017-12-11

    Askin Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  17. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will also present our plan to incorporate polarization measurements, and particularly circular polarization, because it can be a marker of homochirality, which is supposed to be a universal property of life. Finally, the analyses of both biotic and abiotic materials will help to assess if (or in which peculiar conditions) remote sensing techniques can discriminate between false positive and strong biomarkers. Ultimately, these laboratory data can serve as reference data to guide and interpret future observations, paving the way for the detection of life on distant exoplanets.

  18. La forme pseudo tumorale de la tuberculose primitive du nasopharynx: à propos de deux nouvelles observations et revue de la littérature

    PubMed Central

    Touati, Mohammed; Aljalil, Abdelfettah; Chihani, Mehdi; Bouchentouf, Rachid; Bouaity, Brahim; Ammar, Haddou

    2013-01-01

    La tuberculose primitive du nasopharynx est rare, nous présentons deux observations révélées par un aspect pseudo tumoral et à travers lesquelles nous soulevons le problème de diagnostic différentiel avec les lésions malignes du nasopharynx. La première observation concerne un jeune patient de 22 ans hospitalisé pour obstruction nasale bilatérale évoluant dans un contexte d'apyrexie et de conservation de l’état général. La nasofibrosopie et le scanner ont monté un processus tumoral évoquant une hypertrophie des végétations adénoïdes. Le deuxième cas est celui d'un homme de 45 ans tabagique chronique qui a présenté une adénopathie latérocervicale droite, une obstruction nasale et une otite séromuqueuse homolatérale. La nasophibroscopie et le scanner on montré un bourgeon tumoral postéro latéral droit du nasopharynx évoquant un carcinome nasopharyngé. Les biopsies du nasopharynx et les études histologiques, chez les deux patients, ont confirmé le diagnostic de tuberculose. La recherche d'autres localisations était négative. Le pronostic était favorable après 6 mois de traitement antibacillaire. La tuberculose primitive du cavum est rare, elle revêt le plus souvent des formes pseudotumorales et pose des problèmes de diagnostic différentiel avec les tumeurs nasopharyngées, son pronostic sous traitement antibacillaire est. PMID:23565310

  19. In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

    PubMed Central

    Richter, Maximilian; Saydaminova, Kamola; Yumul, Roma; Krishnan, Rohini; Liu, Jing; Nagy, Eniko-Eva; Singh, Manvendra; Izsvák, Zsuzsanna; Cattaneo, Roberto; Uckert, Wolfgang; Palmer, Donna; Ng, Philip; Haworth, Kevin G.; Kiem, Hans-Peter; Ehrhardt, Anja; Papayannopoulou, Thalia

    2016-01-01

    Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. PMID:27554082

  20. Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging.

    PubMed

    Ratajczak, Mariusz Z; Bartke, Andrzej; Darzynkiewicz, Zbigniew

    2017-08-01

    The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.

  1. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  2. The deprivation syndrome is the driving force of phylogeny, ontogeny and oncogeny.

    PubMed

    Heininger, K

    2001-01-01

    Energy is the motor of life. Energy ensures the organism's survival and competitive advantage for reproductive success. For almost 3 billion years, unicellular organisms were the only life form on earth. Competition for limited energy resources and raw materials exerted an incessant selective pressure on organisms. In the adverse environment and due to their 'feast and famine' life style, hardiness to a variety of stressors, particularly to nutrient deprivation, was the selection principle. Both resistance and mutagenic adaptation to stressors were established as survival strategies by means of context-specific processes creating stability or variability of DNA sequence. The conservation of transduction pathways and functional homology of effector molecules clearly bear witness that the principles of life established during prokaryotic and eukaryotic unicellular evolution, although later diversified, have been unshakably cast to persist during metazoan phylogenesis. A wealth of evidence suggests that unicellular organisms evolved the phenomena of differentiation and apoptosis, sexual reproduction, and even aging, as responses to environmental challenges. These evolutionary accomplishments were elaborated from the dichotomous resistance/mutagenesis response and sophisticated the capacity of cells to tune their genetic information to changing environmental conditions. Notably, the social deprivation responses, differentiation and apoptosis, evolved as intercellularly coordinated events: a multitude of differentiation processes were elaborated from sporulation, the prototypic stress resistance response, while apoptosis, contrary to current concepts, is no altruistic cell suicide but was programmed as a mutagenic survival response; this response, however, is socially thwarted leading into mutagenic error catastrophe. In the hybrid differentiation-apoptosis process, cytocide and cannibalism of apoptotic cells thus serve the purpose of fueling the survival of the selfish genes in the differentiating cells. However, successful mutagenesis, although repressed, persisted in the asocial stress response of carcinogenesis as a regression to primitive unicellular behavior following failure of intercellular communication. While somatic mutagenesis was largely prevented, Metazoa elaborated germ cell mutagenesis as an evolutionary vehicle. Genetic competence, a primitive, stress-induced mating behavior, evolved into sexual reproduction which harnessed mutagenesis by subjecting highly mutable germ cells to a rigid viability selection. These processes were programmatically fixed as life- and cell-cycle events but retained their deprivation response phenotypes. Thus, the differentiation-apoptosis tandem evolved as the 'clay' to mold the specialized structures and functions of a multicellular organism while sexual reproduction elaborated the principle of quality-checked mutagenesis to create the immense diversity of Metazoa following the Cambrian explosion. Throughout these events, reactive oxygen and nitrogen species, which are regulated by energy homeostasis, shape the genetic information in a regulated but random, uncoded process providing the fitness-related feedback of phenotype to genotype. The interplay of genes and environment establishes a dynamic stimulus-response feedback cycle which, in animate nature, may be the organizing principle to contrive the reciprocal duality of energy and matter.

  3. Single molecules can operate as primitive biological sensors, switches and oscillators.

    PubMed

    Hernansaiz-Ballesteros, Rosa D; Cardelli, Luca; Csikász-Nagy, Attila

    2018-06-18

    Switch-like and oscillatory dynamical systems are widely observed in biology. We investigate the simplest biological switch that is composed of a single molecule that can be autocatalytically converted between two opposing activity forms. We test how this simple network can keep its switching behaviour under perturbations in the system. We show that this molecule can work as a robust bistable system, even for alterations in the reactions that drive the switching between various conformations. We propose that this single molecule system could work as a primitive biological sensor and show by steady state analysis of a mathematical model of the system that it could switch between possible states for changes in environmental signals. Particularly, we show that a single molecule phosphorylation-dephosphorylation switch could work as a nucleotide or energy sensor. We also notice that a given set of reductions in the reaction network can lead to the emergence of oscillatory behaviour. We propose that evolution could have converted this switch into a single molecule oscillator, which could have been used as a primitive timekeeper. We discuss how the structure of the simplest known circadian clock regulatory system, found in cyanobacteria, resembles the proposed single molecule oscillator. Besides, we speculate if such minimal systems could have existed in an RNA world.

  4. Classical and molecular cytogenetic characterization of Agonostomus monticola, a primitive species of Mugilidae (Mugiliformes).

    PubMed

    Nirchio, Mauro; Oliveira, Claudio; Ferreira, Irani A; Martins, Cesar; Rossi, Anna Rita; Sola, Luciana

    2009-01-01

    This study reports the first description of the karyotype of Agonostomus monticola, a species belonging to a genus which is considered to be the most primitive among living mugilid fish. Specimens from Panama and Venezuela were cytogenetically analysed by conventional chromosome banding (Ag and base-specific-fluorochrome staining, C-banding) and by fluorescent in situ hybridization (FISH). Agonostomus monticola showed a chromosome complement of 2n = 48, composed of 23 acrocentric and one subtelocentric chromosome pairs and a pericentromeric distribution of the C-positive heterochromatin in all chromosomes. Major ribosomal genes were found to be located on the short arms of the subtelocentric chromosome pair number 24 and minor ribosomal genes in a paracentromeric position of a single medium-sized chromosome pair. All these observed cytogenetic features are similar to those previously described in four representatives of two genera, Liza and Chelon, which are considered to be among the most advanced in the family. Thus, this karyotypic form might represent the plesiomorphic condition for the mullets. This hypothesis regarding the plesiomorphic condition, if confirmed, would shed new light on the previously inferred cytotaxonomic relationships for the studied species of Mugilidae, because the karyotype with 48 acrocentric chromosomes, which has been so far regarded as primitive for the family, would have to be considered as derived.

  5. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  6. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  7. Sandboxes for Model-Based Inquiry

    NASA Astrophysics Data System (ADS)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-04-01

    In this article, we introduce a class of constructionist learning environments that we call Emergent Systems Sandboxes ( ESSs), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual construction environment that support students in creating, exploring, and sharing computational models of dynamic systems that exhibit emergent phenomena. They provide learners with "entity"-level construction primitives that reflect an underlying scientific model. These primitives can be directly "painted" into a sandbox space, where they can then be combined, arranged, and manipulated to construct complex systems and explore the emergent properties of those systems. We argue that ESSs offer a means of addressing some of the key barriers to adopting rich, constructionist model-based inquiry approaches in science classrooms at scale. Situating the ESS in a large-scale science modeling curriculum we are implementing across the USA, we describe how the unique "entity-level" primitive design of an ESS facilitates knowledge system refinement at both an individual and social level, we describe how it supports flexible modeling practices by providing both continuous and discrete modes of executability, and we illustrate how it offers students a variety of opportunities for validating their qualitative understandings of emergent systems as they develop.

  8. Controlled evolution of an RNA enzyme

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1991-01-01

    It is generally thought that prior to the origin of protein synthesis, life on earth was based on self-replicating RNA molecules. This idea has become especially popular recently due to the discovery of catalytic RNA (ribozymes). RNA has both genotypic and phenotypic properties, suggesting that it is capable of undergoing Darwinian evolution. RNA evolution is likely to have played a critical role in the early history of life on earth, and thus is important in considering the possibility of life elsewhere in the solar system. We have constructed an RNA-based evolving system in the laboratory, combining amplification and mutation of an RNA genotype with selection of a corresponding RNA phenotype. This system serves as a functional model of a primitive organism. It can also be used as a tool to explore the catalytic potential of RNA. By altering the selection constraints, we are attempting to modify the substrate specificity of an existing ribozyme in order to develop ribozymes with novel catalytic function. In this way, we hope to gain a better understanding of RNA's catalytic versatility and to assess its suitability for the role of primordial catalyst. All of the RNA enzymes that are known to exist in contemporary biology carry out cleavage/ligation reactions involving RNA substrates. The Tetrahymena ribozyme, for example, catalyzes phosphoester transfer between a guanosine containing and an oligopyrimidine containing substrate. We tested the ability of mutant forms of the Tetrahymena ribozyme to carry out a comparable reaction using DNA, rather than RNA substrate. An ensemble of structural variants of the ribozyme was prepared and tested for their ability to specifically cleave d(GGCCCTCT-A3TA3TA) at the phosphodiester bond following the sequence CCCTCT. We recovered a mutant form of the enzyme that cleaves DNA more efficiently than does the wild-type. Beginning with this selected mutant we have now scattered random mutations throughout the ribozyme and have begun an evolutionary search to further expand the catalytic repertoire of RNA.

  9. Microbial Extremophiles in Aspect of Limits of Life

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Tang, Jane

    2007-01-01

    During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self-protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels. In table 1 all known types of microbial communities are shown (Pikuta et a]., 2005). In deep underground (lithospheric) and deep-sea ecosystems an additional factor - pressure, and irradiation - could also be included in the list of microbial communities. Currently the beststudied ecosystems are: human body (due to the medical importance), and fresh water and marine ecosystems (due to the reason of an environmental safety). For a long time, extremophiles were terra incognita, since the environments with aggressive parameters (compared to the human body temperature, pH, mineralization, and pressure) were considered a priori as a dead zone.

  10. Undifferentiated myxoid lipoblastoma with PLAG1-HAS2 fusion in an infant; morphologically mimicking primitive myxoid mesenchymal tumor of infancy (PMMTI)--diagnostic importance of cytogenetic and molecular testing and literature review.

    PubMed

    Warren, Mikako; Turpin, Brian K; Mark, Melissa; Smolarek, Teresa A; Li, Xia

    2016-01-01

    Lipoblastoma is a benign myxoid neoplasm arising in young children that typically demonstrates adipose differentiation. It is often morphologically indistinguishable from primitive myxoid mesenchymal tumor of infancy (PMMTI), which is characterized by a well-circumscribed myxoid mass with a proliferation of primitive mesenchymal cells with mild cytologic atypia. PMMTI occurs in the first year of life and is known to have locally aggressive behavior. No specific genetic rearrangements have been reported to date. In contrast, the presence of PLAG1 (Pleomorphic Adenoma Gene 1) rearrangement is diagnostic for lipoblastoma. We hereby demonstrate the combined application of multiple approaches to tackle the diagnostic challenges of a rapidly growing neck tumor in a 3-month-old female. An incisional tumor biopsy had features of an undifferentiated, myxoid mesenchymal neoplasm mimicking PMMTI. However, tumor cells showed diffuse nuclear expression by immunohistochemical (IHC) stain. Conventional cytogenetic and fluorescence in situ hybridization (FISH) analyses as well as next generation sequencing (NGS) demonstrated evidence of PLAG1 rearrangement, confirming the diagnosis of lipoblastoma. This experience warrants that undifferentiated myxoid lipoblastoma can mimic PMMTI, and the combination of cytogenetic and molecular approaches is essential to distinguish these two myxoid neoplasms. Literature on lipoblastomas with relevant molecular and cytogenetic findings is summarized. Our case is the first lipoblastoma diagnosed with a PLAG1 fusion defined by NGS technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Do Modern Forms of Human Capital Matter in Primitive Economies? Comparative Evidence from Bolivia

    ERIC Educational Resources Information Center

    Godoy, R.; Karlan, D.S.; Rabindran, S.; Huanca, T

    2005-01-01

    We examine the correlation between modern human capital and income among adult men in four foraging-horticultural societies of Bolivia. Despite their remote location, we find results similar to those found in developed nations. We find that: (a) education correlates with 4.5% higher overall income and with 5.9% higher wages and math skills…

  12. Esthetic and prosthetic dentistry as reflected in the Old Testament and other ancient scriptures.

    PubMed

    Stern, N

    1997-01-01

    The great technologic strides of the past have transformed medicine and dentistry from a primitive craft into a modern science. Although the past century has witnessed great advances in the evolution of esthetic dentistry, it is fitting to pay tribute to the ancient practitioners of this craft, who formed a basis for its present progress.

  13. A Symbolic Approach Using Feature Construction Capable of Acquiring Information/Knowledge for Building Expert Systems.

    ERIC Educational Resources Information Center

    Major, Raymond L.

    1998-01-01

    Presents a technique for developing a knowledge-base of information to use in an expert system. Proposed approach employs a popular machine-learning algorithm along with a method for forming a finite number of features or conjuncts of at most n primitive attributes. Illustrates this procedure by examining qualitative information represented in a…

  14. Evidence for Knowledge of the Syntax of Large Numbers in Preschoolers

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Thevenot, Catherine; Fayol, Michel

    2010-01-01

    The aim of this study was to provide evidence for knowledge of the syntax governing the verbal form of large numbers in preschoolers long before they are able to count up to these numbers. We reasoned that if such knowledge exists, it should facilitate the maintenance in short-term memory of lists of lexical primitives that constitute a number…

  15. Use of Optical Storage Devices as Shared Resources in Local Area Networks

    DTIC Science & Technology

    1989-09-01

    13 3. SERVICE CALLS FOR MS-DOS CD-ROM EXTENSIONS . 14 4. MS-DOS PRIMITIVE GROUPS ....................... 15 5. RAM USAGE FOR VARIOUS LAN...17 2. Service Call Translation to DOS Primitives ............. 19 3. MS-DOS Device Drivers ............................. 21 4. MS-DOS/ROM...directed to I/O devices will be referred to as primitive instruction groups). These primitive instruction groups include keyboard, video, disk, serial

  16. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.

    It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ( H) and polar ( P) monomers in a computational model. We find that even short hydrophobic polar ( HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating othermore » such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.« less

  17. Addressing the ethical issues raised by synthetic human entities with embryo-like features

    PubMed Central

    Aach, John; Lunshof, Jeantine; Iyer, Eswar; Church, George M

    2017-01-01

    The "14-day rule" for embryo research stipulates that experiments with intact human embryos must not allow them to develop beyond 14 days or the appearance of the primitive streak. However, recent experiments showing that suitably cultured human pluripotent stem cells can self-organize and recapitulate embryonic features have highlighted difficulties with the 14-day rule and led to calls for its reassessment. Here we argue that these and related experiments raise more foundational issues that cannot be fixed by adjusting the 14-day rule, because the framework underlying the rule cannot adequately describe the ways by which synthetic human entities with embryo-like features (SHEEFs) might develop morally concerning features through altered forms of development. We propose that limits on research with SHEEFs be based as directly as possible on the generation of such features, and recommend that the research and bioethics communities lead a wide-ranging inquiry aimed at mapping out solutions to the ethical problems raised by them. DOI: http://dx.doi.org/10.7554/eLife.20674.001 PMID:28494856

  18. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages.

    PubMed

    Hoeffel, Guillaume; Wang, Yilin; Greter, Melanie; See, Peter; Teo, Pearline; Malleret, Benoit; Leboeuf, Marylène; Low, Donovan; Oller, Guillaume; Almeida, Francisca; Choy, Sharon H Y; Grisotto, Marcos; Renia, Laurent; Conway, Simon J; Stanley, E Richard; Chan, Jerry K Y; Ng, Lai Guan; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2012-06-04

    Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)-derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development.

  19. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages

    PubMed Central

    Hoeffel, Guillaume; Wang, Yilin; Greter, Melanie; See, Peter; Teo, Pearline; Malleret, Benoit; Leboeuf, Marylène; Low, Donovan; Oller, Guillaume; Almeida, Francisca; Choy, Sharon H.Y.; Grisotto, Marcos; Renia, Laurent; Conway, Simon J.; Stanley, E. Richard; Chan, Jerry K.Y.; Ng, Lai Guan; Samokhvalov, Igor M.

    2012-01-01

    Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)–derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development. PMID:22565823

  20. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers

    DOE PAGES

    Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.

    2017-08-22

    It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ( H) and polar ( P) monomers in a computational model. We find that even short hydrophobic polar ( HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating othermore » such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.« less

  1. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers

    PubMed Central

    Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.

    2017-01-01

    It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic (H) and polar (P) monomers in a computational model. We find that even short hydrophobic polar (HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition. PMID:28831002

  2. THE CELLULAR ORIGIN OF HUMAN IMMUNOGLOBULINS (γ2, γ1M, γ1A)

    PubMed Central

    Mellors, Robert C.; Korngold, Leonhard

    1963-01-01

    A study was made of the cellular origin of human immunoglobulins (γ2, γ1M, γ1A). The results indicated that two closely related families of cells form immunoglobulins in human lymphoid tissue: germinal (reticular) centers and plasma cells. Thus their cellular origin in addition to their known antigenic relations further justifies placing the immunoglobulins in one family of proteins. Immunoglobulins were also formed to a small extent in primitive reticular cells which resembled those of germinal centers but were separated from them. Possibly such cells were undergoing transition to the much more numerous plasma cells with which they were commonly associated. The mantles of small lymphocytes which surrounded germinal centers did not contain detectable quantities of immunoglobulins. While in general only one type of immunoglobulin was present in an individual cell or germinal center, γ2- and γ1M-globulin were identified on occasion in the same plasma cell and germinal center. A peculiarity of the fetal thymus gland was the presence of immunoglobulin, mainly γ1M, in a small number of cells of small and intermediate size and primitive reticular appearance and in Hassall's corpuscles. PMID:14077999

  3. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell

    PubMed Central

    Joyce, Walter G.; Lucas, Spencer G.; Scheyer, Torsten M.; Heckert, Andrew B.; Hunt, Adrian P.

    2008-01-01

    A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations. PMID:18842543

  4. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell.

    PubMed

    Joyce, Walter G; Lucas, Spencer G; Scheyer, Torsten M; Heckert, Andrew B; Hunt, Adrian P

    2009-02-07

    A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.

  5. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates.

    PubMed

    Kim, Hyo-Joong; Benner, Steven A

    2017-10-24

    According to a current "RNA first" model for the origin of life, RNA emerged in some form on early Earth to become the first biopolymer to support Darwinism here. Threose nucleic acid (TNA) and other polyelectrolytes are also considered as the possible first Darwinian biopolymer(s). This model is being developed by research pursuing a "Discontinuous Synthesis Model" (DSM) for the formation of RNA and/or TNA from precursor molecules that might have been available on early Earth from prebiotic reactions, with the goal of making the model less discontinuous. In general, this is done by examining the reactivity of isolated products from proposed steps that generate those products, with increasing complexity of the reaction mixtures in the proposed mineralogical environments. Here, we report that adenine, diaminopurine, and hypoxanthine nucleoside phosphates and a noncanonical pyrimidine nucleoside (zebularine) phosphate can be formed from the direct coupling reaction of cyclic carbohydrate phosphates with the free nucleobases. The reaction is stereoselective, giving only the β-anomer of the nucleotides within detectable limits. For purines, the coupling is also regioselective, giving the N -9 nucleotide for adenine as a major product. In the DSM, phosphorylated carbohydrates are presumed to have been available via reactions explored previously [Krishnamurthy R, Guntha S, Eschenmoser A (2000) Angew Chem Int Ed 39:2281-2285], while nucleobases are presumed to have been available from hydrogen cyanide and other nitrogenous species formed in Earth's primitive atmosphere. Published under the PNAS license.

  6. Method for concurrent execution of primitive operations by dynamically assigning operations based upon computational marked graph and availability of data

    NASA Technical Reports Server (NTRS)

    Mielke, Roland V. (Inventor); Stoughton, John W. (Inventor)

    1990-01-01

    Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager.

  7. How to Spot a Primitive Black Hole

    NASA Image and Video Library

    2010-03-17

    These two data plots from NASA Spitzer Space Telescope show a primitive supermassive black hole top compared to a typical one; usually, dust tori are missing and only gas disks are observed in primitive black holes.

  8. Opportunistic brood theft in the context of colony relocation in an Indian queenless ant

    PubMed Central

    Paul, Bishwarup; Paul, Manabi; Annagiri, Sumana

    2016-01-01

    Brood is a very valuable part of an ant colony and behaviours increasing its number with minimum investment is expected to be favoured by natural selection. Brood theft has been well documented in ants belonging to the subfamilies Myrmicinae and Formicinae. In this study we report opportunistic brood theft in the context of nest relocation in Diacamma indicum, belonging to the primitively eusocial subfamily Ponerinae. Pupae was the preferred stolen item both in laboratory conditions and in natural habitat and a small percentage of the members of a colony acting as thieves stole about 12% of the brood of the victim colony. Stolen brood were not consumed but became slaves. We propose a new dimension to the risks of relocation in the form of brood theft by conspecific neighbours and speculate that examination of this phenomenon in other primitively eusocial species will help understand the origin of brood theft in ants. PMID:27796350

  9. Opportunistic brood theft in the context of colony relocation in an Indian queenless ant.

    PubMed

    Paul, Bishwarup; Paul, Manabi; Annagiri, Sumana

    2016-10-31

    Brood is a very valuable part of an ant colony and behaviours increasing its number with minimum investment is expected to be favoured by natural selection. Brood theft has been well documented in ants belonging to the subfamilies Myrmicinae and Formicinae. In this study we report opportunistic brood theft in the context of nest relocation in Diacamma indicum, belonging to the primitively eusocial subfamily Ponerinae. Pupae was the preferred stolen item both in laboratory conditions and in natural habitat and a small percentage of the members of a colony acting as thieves stole about 12% of the brood of the victim colony. Stolen brood were not consumed but became slaves. We propose a new dimension to the risks of relocation in the form of brood theft by conspecific neighbours and speculate that examination of this phenomenon in other primitively eusocial species will help understand the origin of brood theft in ants.

  10. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction.

    PubMed

    Wang, Xia; Xu, Yuantao; Zhang, Siqi; Cao, Li; Huang, Yue; Cheng, Junfeng; Wu, Guizhi; Tian, Shilin; Chen, Chunli; Liu, Yan; Yu, Huiwen; Yang, Xiaoming; Lan, Hong; Wang, Nan; Wang, Lun; Xu, Jidi; Jiang, Xiaolin; Xie, Zongzhou; Tan, Meilian; Larkin, Robert M; Chen, Ling-Ling; Ma, Bin-Guang; Ruan, Yijun; Deng, Xiuxin; Xu, Qiang

    2017-05-01

    The emergence of apomixis-the transition from sexual to asexual reproduction-is a prominent feature of modern citrus. Here we de novo sequenced and comprehensively studied the genomes of four representative citrus species. Additionally, we sequenced 100 accessions of primitive, wild and cultivated citrus. Comparative population analysis suggested that genomic regions harboring energy- and reproduction-associated genes are probably under selection in cultivated citrus. We also narrowed the genetic locus responsible for citrus polyembryony, a form of apomixis, to an 80-kb region containing 11 candidate genes. One of these, CitRWP, is expressed at higher levels in ovules of polyembryonic cultivars. We found a miniature inverted-repeat transposable element insertion in the promoter region of CitRWP that cosegregated with polyembryony. This study provides new insights into citrus apomixis and constitutes a promising resource for the mining of agriculturally important genes.

  11. Searching Remotely Sensed Images for Meaningful Nested Gestalten

    NASA Astrophysics Data System (ADS)

    Michaelsen, E.; Muench, D.; Arens, M.

    2016-06-01

    Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed instances. This can be a very challenging combinatorial effort. The contribution at hand gives some tools and structures unfolding a finite and comparably small subset of the possible combinations. Yet, the intended Gestalten still are contained and found with high probability and moderate efforts. Experiments are made with images obtained from a virtual globe system, and use the SIFT method for extraction of the primitive Gestalten. Comparison is made with manually extracted ground-truth Gestalten salient to human observers.

  12. Primitive erythrocytes are generated from hemogenic endothelial cells.

    PubMed

    Stefanska, Monika; Batta, Kiran; Patel, Rahima; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2017-07-25

    Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP + cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.

  13. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.

    PubMed

    Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.

  14. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    PubMed

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of these results lend support to the proposition that differences in the packing frustration between inverse bicontinuous cubic phases play a pivotal role in their relative phase stability.

  15. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2015-11-01

    Asteroid families are formed by the fragments produced by the disruption of a common parent body (Bendjoya & Zappalà 2002). Primitive asteroids in the solar system are believed to have undergone less thermal processing than the S-complex asteroids. Thus, study of primitive asteroid families provides information about the solar system formation period. The Erigone collisional family, together with other three families (Polana, Clarissa and Sulamitis), are believed to be the origin of the two primitive Near-Earth asteroids that are the main targets of the NASA’s OSIRIS-REx ((101955) Bennu) and JAXA’s Hayabusa 2 ((162173) 1999 JU3) missions (Campins et al. 2010; Campins et al. 2013; Lauretta et al. 2010; Tsuda et al. 2013). These spacecrafts will visit the asteroids, and a sample of their surface material will be returned to Earth. Understanding of the families that are considered potential sources will enhance the scientific return of the missions. The main goal of the work presented here is to characterize the Erigone collisional family. Asteroid (163) Erigone has been classified as a primitive object (Bus 1999; Bus & Binzel 2002), and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. We performed a taxonomical classification of these asteroids, finding that the number of primitive objects in our sample is in agreement with the hypothesis of a common parent body. In addition, we have found a significant fraction of asteroids in our sample that present evidences of aqueous alteration. Study of aqueous alterations is important, as it can give information on the heating processes of the early Solar System, and for the associated astrobiological implications (it has been suggested that the Earth’s present water supply was brought here by asteroids, instead of comets, in opposition to previous explanations (Morbidelli et al. 2000).

  16. Project Cassini: a Saturn Orbiter/titan Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Gautier, D.; Ip, W. H.

    1984-12-01

    Titan is the only moon in the solar system with a substantial atmosphere. The organic chemistry of its N2-CH4 atmosphere may resemble that of the earth's primitive atmosphere before life arose. The investigation of the synthesis of prebiotic molecules in Titan's atmosphere and the atmospheric and surface environments of this planet-sized moon will be the focal point of the Cassini Project proposed to the European Space Agency for an international Saturn Orbiter/Titan Probe mission.

  17. Cytochemical studies of planetary microorganisms explorations in exobiology

    NASA Technical Reports Server (NTRS)

    Levinthal, E. C.

    1980-01-01

    Experiments to identify free living organisms in soils that may be substantially simpler in genetic content, and mirroring a more primitive stage of evolution than the species with which we are familiar to date, were designed. Organic chemical studies on the composition and disposition of elementary carbon leave nothing wanting as an aboriginal substrate for the original of life and early chemical evolution. Such studies were missed when it came to the interpretation of the Viking lander data, and needed for conceptual planning of future planetary missions.

  18. Aerospace Medicine and Biology. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-12-01

    GLYCERALDEHYDE AS A SOURCE OF SIMULATION ABOUT THE ORIGIN OF LIFE ENERGY AND MONOMERS FOR PREBIOTIC CONDENSATION URSULA NIESERT (Freiburg, Universitaet, Freiburg...primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5’-AMP, 5’-GMP, 5’-CMP and 5’-UMP onto gypsum was studied. It...Cambridge University Press. 1986. 378 p. For individual titles see A87-49035 to A87-49049. Topics discussed include prebiotic systems and evolutionary

  19. Intracardiac heterotopia--mesenchymal and endodermal.

    PubMed Central

    Ariza, S; Rafel, E; Castillo, J A; Garcia-Canton, J A

    1978-01-01

    A case is reported of an intracardiac 'epithelial heterotopia' with a predominant mesenchymal component. This is thought to have resulted from the differentiation of aberrant primitive cell(s) displaced into the heart during its development. Though microscopically resembling a myxoma, this lesion is clearly distinguished by the presence of glandular structures. The myxoid component exhibited a startling invasiveness which resulted in occlusion of the superior vena cava, causing symptoms very early in life and death at the age of 6 months. Images PMID:637987

  20. The emergence and early evolution of biological carbon-fixation.

    PubMed

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form.

  1. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life exists on Earth wherever there is liquid water, it is suggested that comets might also harbour viable and/or cryopreserved microbiota.

  2. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    NASA Astrophysics Data System (ADS)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  3. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  4. Primitive material surviving in chondrites - Mineral grains

    NASA Astrophysics Data System (ADS)

    Steele, Ian M.

    Besides chondrules and various kinds of polymineralic inclusion, carbonaceous chondrites commonly contain, embedded in their matrices, isolated grains of mafic silicates and metallic iron. Most of the silicate grains probably originated in chondrules, but some appear to predate chondrule formation and may have formed as individual grains in the solar nebula. If that was the case, their compositions suggest some departure from equilibrium condensation from a gas of solar composition. Metal-grain compositions are broadly suggestive of nebular formation but the exact nature of the conditions in which they were formed remains problematical.

  5. Stardust in meteorites.

    PubMed

    Davis, Andrew M

    2011-11-29

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  6. Stardust in meteorites

    PubMed Central

    Davis, Andrew M.

    2011-01-01

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261

  7. A mutli-technique search for the most primitive CO chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.

    2018-01-01

    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.

  8. Fundamental physical theories: Mathematical structures grounded on a primitive ontology

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional primitive ontology that evolves according to a law determined by the wave function. The primitive ontology is what matter is made of while the wave function tells the matter how to move. One might think that what is important in the notion of primitive ontology is their three-dimensionality. If so, in a theory like classical electrodynamics electromagnetic fields would be part of the primitive ontology. I argue that, reflecting on what the purpose of a fundamental physical theory is, namely to explain the behavior of objects in three-dimensional space, one can recognize that a fundamental physical theory has a particular architecture. If so, electromagnetic fields play a different role in the theory than the particles and therefore should be considered, like the wave function, as part of the law. Therefore, we can characterize the general structure of a fundamental physical theory as a mathematical structure grounded on a primitive ontology. I explore this idea to better understand theories like classical mechanics and relativity, emphasizing that primitive ontology is crucial in the process of building new theories, being fundamental in identifying the symmetries. Finally, I analyze what it means to explain the word around us in terms of the notion of primitive ontology in the case of regularities of statistical character. Here is where the notion of typicality comes into play: we have explained a phenomenon if the typical histories of the primitive ontology give rise to the statistical regularities we observe.

  9. A novel class sensitive hashing technique for large-scale content-based remote sensing image retrieval

    NASA Astrophysics Data System (ADS)

    Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo

    2017-10-01

    This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.

  10. Learning multivariate distributions by competitive assembly of marginals.

    PubMed

    Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald

    2013-02-01

    We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

  11. Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis.

    PubMed

    Vicente, A; Varas, A; Sacedón, R; Zapata, A G

    1996-04-01

    Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.

  12. Mysterious Mycorrhizae? A Field Trip & Classroom Experiment to Demystify the Symbioses Formed between Plants & Fungi

    ERIC Educational Resources Information Center

    Johnson, Nancy C.; Chaudhary, V. Bala; Hoeksema, Jason D.; Moore, John C.; Pringle, Anne; Umbanhowar, James A.; Wilson, Gail W. T.

    2009-01-01

    Biology curricula cover fungi in units on bacteria, protists, and primitive plants, but fungi are more closely related to animals than to bacteria or plants. Like animals, fungi are heterotrophs and cannot create their own food; but, like plants, fungi have cell walls, and are for the most part immobile. Most species of fungi have a filamentous…

  13. A coupled implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  14. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    PubMed Central

    Furubayashi, Taro

    2018-01-01

    The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR) system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes. PMID:29373536

  15. Life and consciousness – The Vedāntic view

    PubMed Central

    Shanta, Bhakti Niskama

    2015-01-01

    In the past, philosophers, scientists, and even the general opinion, had no problem in accepting the existence of consciousness in the same way as the existence of the physical world. After the advent of Newtonian mechanics, science embraced a complete materialistic conception about reality. Scientists started proposing hypotheses like abiogenesis (origin of first life from accumulation of atoms and molecules) and the Big Bang theory (the explosion theory for explaining the origin of universe). How the universe came to be what it is now is a key philosophical question. The hypothesis that it came from Nothing (as proposed by Stephen Hawking, among others), proves to be dissembling, since the quantum vacuum can hardly be considered a void. In modern science, it is generally assumed that matter existed before the universe came to be. Modern science hypothesizes that the manifestation of life on Earth is nothing but a mere increment in the complexity of matter — and hence is an outcome of evolution of matter (chemical evolution) following the Big Bang. After the manifestation of life, modern science believed that chemical evolution transformed itself into biological evolution, which then had caused the entire biodiversity on our planet. The ontological view of the organism as a complex machine presumes life as just a chance occurrence, without any inner purpose. This approach in science leaves no room for the subjective aspect of consciousness in its attempt to know the world as the relationships among forces, atoms, and molecules. On the other hand, the Vedāntic view states that the origin of everything material and nonmaterial is sentient and absolute (unconditioned). Thus, sentient life is primitive and reproductive of itself – omne vivum ex vivo – life comes from life. This is the scientifically verified law of experience. Life is essentially cognitive and conscious. And, consciousness, which is fundamental, manifests itself in the gradational forms of all sentient and insentient nature. In contrast to the idea of objective evolution of bodies, as envisioned by Darwin and followers, Vedānta advocates the idea of subjective evolution of consciousness as the developing principle of the world. In this paper, an attempt has been made to highlight a few relevant developments supporting a sentient view of life in scientific research, which has caused a paradigm shift in our understanding of life and its origin. PMID:27066168

  16. Life and consciousness - The Vedāntic view.

    PubMed

    Shanta, Bhakti Niskama

    2015-01-01

    In the past, philosophers, scientists, and even the general opinion, had no problem in accepting the existence of consciousness in the same way as the existence of the physical world. After the advent of Newtonian mechanics, science embraced a complete materialistic conception about reality. Scientists started proposing hypotheses like abiogenesis (origin of first life from accumulation of atoms and molecules) and the Big Bang theory (the explosion theory for explaining the origin of universe). How the universe came to be what it is now is a key philosophical question. The hypothesis that it came from Nothing (as proposed by Stephen Hawking, among others), proves to be dissembling, since the quantum vacuum can hardly be considered a void. In modern science, it is generally assumed that matter existed before the universe came to be. Modern science hypothesizes that the manifestation of life on Earth is nothing but a mere increment in the complexity of matter - and hence is an outcome of evolution of matter (chemical evolution) following the Big Bang. After the manifestation of life, modern science believed that chemical evolution transformed itself into biological evolution, which then had caused the entire biodiversity on our planet. The ontological view of the organism as a complex machine presumes life as just a chance occurrence, without any inner purpose. This approach in science leaves no room for the subjective aspect of consciousness in its attempt to know the world as the relationships among forces, atoms, and molecules. On the other hand, the Vedāntic view states that the origin of everything material and nonmaterial is sentient and absolute (unconditioned). Thus, sentient life is primitive and reproductive of itself - omne vivum ex vivo - life comes from life. This is the scientifically verified law of experience. Life is essentially cognitive and conscious. And, consciousness, which is fundamental, manifests itself in the gradational forms of all sentient and insentient nature. In contrast to the idea of objective evolution of bodies, as envisioned by Darwin and followers, Vedānta advocates the idea of subjective evolution of consciousness as the developing principle of the world. In this paper, an attempt has been made to highlight a few relevant developments supporting a sentient view of life in scientific research, which has caused a paradigm shift in our understanding of life and its origin.

  17. Human primitive meninges in and around the mesencephalic flexure and particularly their topographical relation to cranial nerves.

    PubMed

    Cho, Kwang Ho; Rodríguez-Vázquez, Jose Francisco; Han, Eui Hyeog; Verdugo-López, Samuel; Murakami, Gen; Cho, Baik Hwan

    2010-09-20

    Development of the meninges in and around the plica ventralis encephali has not been well documented. A distinct mesenchymal structure, the so-called plica ventralis encephali, is sandwiched by the fetal mesencephalic flexure. We histologically examined paraffin-embedded sections from 18 human embryos and fetuses at 6-12 weeks of gestation. In the loose tissues of the plica, the first meninx appeared as a narrow membrane along the oculomotor nerve at 7-8 weeks. Subsequently, the plica ventralis evolved into 3 parts: bilateral lateral mesenchymal condensations and a primitive membranous meninx extending between. Notably, the topographical anatomy of the oculomotor, trochlear and trigeminal nerves did not change: the oculomotor nerve ran along the rostral aspect of the membranous meninx, the trigeminal nerve ran along the caudal side of the lateral mesenchymal condensation, and the trochlear nerve remained embedded in the lateral condensation. Up to 9-10 weeks, the lateral mesenchymal condensations became tongue-like folds; i.e., the primitive form of the tentorium cerebelli, while the membranous meninx became the diaphragma sellae. The falx cerebri seemed to develop from the tongue-like folds. Overall, the final tentorium cerebelli corresponded to the regressed plica ventralis, while the parasellar area originated from the base of the plica and other tissues along the ventral aspects of the basisphenoid and basioccipital. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  19. The Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    Looking at the nature, origin, and evolution of life on Earth is one way of assessing whether extraterrestrial life exists on Earth-like planets elsewhere (see Chaps. 5 and 6). A more direct approach is to search for favorable conditions and traces of life on other celestial bodies, both in the solar system and beyond. Clearly, there is little chance of encountering nonhuman intelligent beings in the solar system. But there could well be primitive life on Mars, particularly as in the early history of the solar system the conditions on Mars were quite similar to those on Earth. In addition, surprisingly favorable conditions for life once existed on the moons of Jupiter. Yet even if extraterrestrial life is not encountered in forthcoming space missions, it would be of utmost importance to recover fossils of past organisms as such traces would greatly contribute to our basic understanding of the formation of life. In addition to the planned missions to Mars and Europa, there are extensive efforts to search for life outside the solar system. Rapid advances in the detection of extrasolar planets, outlined in Chap. 3, are expected to lead to the discovery of Earth-like planets in the near future. But how can we detect life on these distant bodies?

  20. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  1. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  2. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  3. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  4. Purported nanobacteria in human blood as calcium carbonate nanoparticles.

    PubMed

    Martel, Jan; Young, John Ding-E

    2008-04-08

    Recent evidence suggests a role for nanobacteria in a growing number of human diseases, including renal stone formation, cardiovascular diseases, and cancer. This large body of research studies promotes the view that nanobacteria are not only alive but that they are associated with disease pathogenesis. However, it is still unclear whether they represent novel life forms, overlooked nanometer-size bacteria, or some other primitive self-replicating microorganisms. Here, we report that CaCO(3) precipitates prepared in vitro are remarkably similar to purported nanobacteria in terms of their uniformly sized, membrane-delineated vesicular shapes, with cellular division-like formations and aggregations in the form of colonies. The gradual appearance of nanobacteria-like particles in incubated human serum as well as the changes seen with their size and shape can be influenced and explained by introducing varying levels of CO(2) and NaHCO(3) as well as other conditions known to influence the precipitation of CaCO(3). Western blotting reveals that the monoclonal antibodies, claimed to be specific for nanobacteria, react in fact with serum albumin. Furthermore, nanobacteria-like particles obtained from human blood are able to withstand high doses of gamma-irradiation up to 30 kGy, and no bacterial DNA is found by performing broad-range PCR amplifications. Collectively, our results provide a more plausible abiotic explanation for the unusual properties of purported nanobacteria.

  5. Purported nanobacteria in human blood as calcium carbonate nanoparticles

    PubMed Central

    Martel, Jan; Young, John Ding-E

    2008-01-01

    Recent evidence suggests a role for nanobacteria in a growing number of human diseases, including renal stone formation, cardiovascular diseases, and cancer. This large body of research studies promotes the view that nanobacteria are not only alive but that they are associated with disease pathogenesis. However, it is still unclear whether they represent novel life forms, overlooked nanometer-size bacteria, or some other primitive self-replicating microorganisms. Here, we report that CaCO3 precipitates prepared in vitro are remarkably similar to purported nanobacteria in terms of their uniformly sized, membrane-delineated vesicular shapes, with cellular division-like formations and aggregations in the form of colonies. The gradual appearance of nanobacteria-like particles in incubated human serum as well as the changes seen with their size and shape can be influenced and explained by introducing varying levels of CO2 and NaHCO3 as well as other conditions known to influence the precipitation of CaCO3. Western blotting reveals that the monoclonal antibodies, claimed to be specific for nanobacteria, react in fact with serum albumin. Furthermore, nanobacteria-like particles obtained from human blood are able to withstand high doses of γ-irradiation up to 30 kGy, and no bacterial DNA is found by performing broad-range PCR amplifications. Collectively, our results provide a more plausible abiotic explanation for the unusual properties of purported nanobacteria. PMID:18385376

  6. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    PubMed

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 36 CFR 261.21 - National Forest primitive areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Forest primitive areas. 261.21 Section 261.21 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.21 National Forest primitive areas. The following are...

  8. Did the Pre-RNA World Rest Upon DNA Molecules?

    NASA Technical Reports Server (NTRS)

    Lazcano, Antonio; Dworkin, Jason P.; Miller, Stanley L.

    2004-01-01

    The isolation of a DNA sequence that catalyzes the ligation of oligodeoxynucleotides via the formation of 3' - 5' phosphodiester linkage significance in selection experiments has been reported. Ball recently used this to discuss the possibility that natural DNA molecules may have formed in the primitive Earth leading to the origin of life. As noted by Ferris and Usher, if metabolic pathways evolved backwards, it could be argued that the biosynthesis of 2-deoxyribose from ribose suggests that RNA came from DNA. As summarized elsewhere, there are several properties of deoxyribose which could be interpreted to support the possibility that DNA-like molecules arose prior to the RNA world. For example, 2-deoxyribose is slightly more soluble than ribose (which may have been an advantage in a drying pool scenario), may have been more reactive under possible prebiotic conditions (it forms a nucleoside approx. 150 times faster than ribose with the alternative base urazole at 25 C), while it decomposes in solution (approximately 2.6 times more slowly than ribose at 100 C). Other advantages of DNA over RNA are that it has one fewer chiral center, has a greater stability at the 8.2 pH value of the current oceans, and does not has the 2'5' and 3'5' ambiguity in polymerizations. Yet, there is strong molecular biological and biochemical evidence that RNA was featured in the biology well before the last common ancestor. The presence of sugar acids, including both ribo- and deoxysugar acids, in the 4.6 Ga old Murchison meteorite suggest that both may have been available in the primitive Earth, derived from the accretion of extraterrestrial sources and/or from endogenous processes involving formaldehyde and its derivatives. However, the abiotic synthesis of deoxyribose, ribose, and other sugars from glyceraldehyde and acetaldehyde under alkaline conditions is inefficient and unespecific. Although sugars are labile compounds, the role of cyanamide or borate minerals in the stabilization of the cyclic forms of ribose and other pentoses has recently been demonstrated. Nonetheless, the assumption either RNA or DNA was the first genetic material needs to be supplemented by laboratory models demonstrating that the prebiotic synthesis of activated beta-D-(deoxy)ribonucleotides and their polymers was feasible. As of today such evidence is lacking, and there is no convincing synthesis of any nucleotide, since all model experiments produce complex mixtures of products in which there is no preferential synthesis of chiral D-nucleotides. This strongly suggests that both DNA and RNA may have been preceded by pairing structures much simpler than extant nucleic acids. It is doubtful that DNA molecules, or indeed other (de0xy)ribofuranoid oligonucleotides formed the basis of these as yet undescribed pre-RNA worlds.

  9. The Distributed Memory Computing Conference (5th) Held in Charleston, South Carolina on April 8-12, 1990. Volume 1. Applications

    DTIC Science & Technology

    1991-03-31

    nodes, directional arrows show the parent and child rela- and the graphics driver runs on the CP, i.e., the tionship of processes. Although there is a...about ODB plus some number of transitory primitives, whether or not its child primitives are resident. Transitory primitives are discarded as needed...true if this Hnode’s child primitives approached. are not resident. This method of ODB decomposition has the ability to distribute a very large number of

  10. A quantitative evaluation of the iron-sulfur world and its relevance to life's origins.

    PubMed

    Ross, David S

    2008-04-01

    The significance of Wächtershäuser's iron-sulfur world to the origin of life and the limits to its notional autocatalytic cycles are examined in kinetic simulations of the chain polymerization sequence: primitive materials-->amino acids-->oligomers. The simulations were run for the formation of all oligomers up to the 20-mer over a 1 Gy interval from the end of the period of heavy bombardment, during which period life emerged. Upper-limit rate constant estimates developed from the studies of Huber and Wächtershäuser were employed. The simulations showed that oligomer production consistent with life's start within that interval emerges only with an autocatalyst exhibiting a catalytic proficiency comparable to that of contemporary enzymes. The simulations, moreover, ignored likely thermodynamic and statistical burdens which, if included, would have led to the need for catalytic capacities well in excess of those in present-day enzymes. Prebiotic oligomers with such levels of activity are clearly not likely, and it is apparent that the iron-sulfur scheme could not have played a role in life's beginnings.

  11. A quantitative evaluation of the iron-sulfur world and its relevance to life's origins

    USGS Publications Warehouse

    Ross, D.S.

    2008-01-01

    The significance of Wa??chtersha??user's iron-sulfur world to the origin of life and the limits to its notional autocatalytic cycles are examined in kinetic simulations of the chain polymerization sequence primitive materials ??? amino acids ??? oligomers The simulations were run for the formation of all oligomers up to the 20-mer over a 1 Gy interval from the end of the period of heavy bombardment, during which period life emerged. Upper-limit rate constant estimates developed from the studies of Huber and Wa??chtersha?? user were employed. The simulations showed that oligomer production consistent with life's start within that interval emerges only with an autocatalyst exhibiting a catalytic proficiency comparable to that of contemporary enzymes. The simulations, moreover, ignored likely thermodynamic and statistical burdens which, if included, would have led to the need for catalytic capacities well in excess of those in present-day enzymes. Prebiotic oligomers with such levels of activity are clearly not likely, and it is apparent that the iron-sulfur scheme could not have played a role in life's beginnings. ?? 2008 Mary Ann Liebert, Inc.

  12. Interaction among minerals, organics and water in comets: insights from Antarctic micrometeorites

    NASA Astrophysics Data System (ADS)

    Nagahara, Hiroko; Noguchi, Takaaki; Yabuta, Hikaru; Itoh, Shoichi; Sakamoto, Naoya; Mitsunari, Takuya; Okubo, Aya; Okazaki, Ryuji; Nakamura, Tomoki; Tachibana, Shogo; Terada, Kentaro; Ebihara, Mitsuru; Imae, Naoya; Kimura, Makoto

    2016-04-01

    The evolution and interaction of inorganic materials and organic materials are one of the crucial issues of space science, which is also a main topic of current planetary missions. In order to clarify the early stage of evo-lution of primitive materials in the solar system, we have carried out a comprehensive study on micrometeorites collected from the Antarctica virgin snow with SEM, TEM, Carbon-, N-, and O-XANES, and SIMS. On the basis of observation, we estimate the primary materials and the sequence of aqueous reaction in the inorganic and organic materials. The most primitive materials are GEMS (amorphous silicate with Fe-metal and sulfide), small olivine and low-Ca pyroxene, and pyrrhotite, which are embedded in organic materials. The or-ganic materials are macromolecules being rich in C=O groups with subordinate amount of C≡N and/or C=N-C groups, and they accompany D and 15N enrichments. Due to the heavy hydrogen and nitrogen isotopic composi-tions, the organics are estimated to be originated at very low temperature in the molecular cloud or a prestellar environment, which also generated various organic molecules. The aqueous alteration reaction started at first in organic materials, where N-heterocycle, δD, and δ15N are lost and the organics become aromatic-rich. GEMS altered next, where metallic Fe dissolved into water to form Fe-rich saponite remaining Mg-rich amorphous silicate (Stage I). The aromaticity of the organics increases, and the chemical nature of organics becomes close to insoluble organic materials in primitive chondrites. Then, sulfide in GEMS, small olivine and low-Ca pyroxene grains, and Fe-rich saponite react with water to form Mg-rich saponite and Fe-hydroxide (Stage II). Sulfur may have been incorporated into phyllosilicate and/or organics or flew away. Finally, heterogeneous phyllosilicates at Stage II were homogenized to be Mg-rich saponite with formation of carbonate and loss of organics (Stage III). Carbon to form carbonate were supplied from organics or carbon dioxide and/or methane ice. Finally, the assemblage of micrometeorites becomes Mg-saponite, magnetite, and carbonates, of which mineral assemblage and chemical compositions are very similar to those of primitive carbonaceous chondrites. Stages I and II should have taken place at ~0 °C and almost instantaneously, probably in hours to days, in order to prevent total aqueous alteration of silicates. Therefore, most plausible process would be transient heat-ing by an impact. On the other hand, Stage III was at a little higher temperature in order to homogenize Mg and Fe in heterogeneous phyllosilicates and/or lasted for a little longer duration. A possible process may be either by a shock or approaching of cometary bodies to the Sun. However, we should evaluate the temperature and dura-tion very carefully, because the Rosetta mission showed us extremely porous nature of comets. It should be noted that the final products of aqueous reactions shown in the present study are the same as those of primitive carbonaceous chondrites. More compact nature of chondrites and probably higher temperature by short-lived radio-isotopes resulted in pervasive water flow in the bodies and through alteration of silicates into phyllosilicates.

  13. Visualization of Microbial Biomarkers by Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.; Allen, Carlton C.; Child, Alice

    2001-01-01

    We are developing tools to link the biochemical structure of selected biomarkers with putative biogenic structures observed in mineralized samples. The detection of evidence of life on Mars and other planets will rely on methods that can discriminate compounds formed exclusively by living organisms. While biogenic compounds, such as amino acids and nucleotides have been discovered in extraterrestrial sources, such as meteorites and comets, their formation can be explained by abiotic means. The formation of cellular structures, or more elaborate organic molecules, such as complex lipids, proteins or nucleic acids, however, is strongly correlated to the presence of even the most primitive life processes. Recent evidence lends support to the hypothesis that life may have once existed on Mars. Carbonate globules and ppm concentrations of polycyclic aromatic hydrocarbons (PAHs) have been described in ALH84001, a meteorite originating from Mars ejecta captured by Earth over 13,000 years ago. The localized high concentration of PAHs that follow an increasing gradient from the intact fusion crust towards the interior corresponds to microgram quantities of hydrocarbon. Even though ALH84001 and other similar meteorites have withstood the forces capable of ejecting rock through Mars' escape velocity, upon entering Earth's atmosphere, their core temperatures are likely not to have been raised significantly, as evidenced by the survival of remanent magnetic signatures. Ideal biomarkers of ancient or modern biological life would include molecules that are (or were) pervasive and highly resistant to degradation. Also, requisite methods of detection should be simple, extremely sensitive and broadly inclusive (NASA SP-530). Lipopolysaccharide (LPS), peptidoglycan or pseudopeptidoglycan and beta-glucan are microbial cell wall components which together cover the entire microbial spectrum of eubacteria, archea and fungi. They are all remarkably resistant to thermal degradation. Fortunately, many antimicrobial defense systems of higher organisms require sensitive detection to combat microbial pathogens. We employ here the primitive immune system of the evolutionarily ancient horseshoe crab, Limulus polyphemus. This species relies on multi-enzyme signal amplification detection of cell wall molecules and they can be applied to the development of useful detectors of life. An extension of this work includes the visualization of microbial signatures by labeling LAL components with chromogenic or electron dense markers. The protein Limulus Anti-LPS Factor (LALF) has an extremely high affinity for LPS. By coupling LALF binding with colloidal gold labels we demonstrate a correlation of the structures visible by electron microscopy with biochemical evidence of microbial cell wall materials. Pure silica particles were mixed with cultures of E. coli (10(exp 6) cfu/mL). Samples were washed sequentially with buffered saline, LALF, antibody to LALF and finally colloidal gold-labeled Protein A. Negative controls were not exposed to E. coli but received identical treatment otherwise. Samples were coated with carbon and imaged on a JEOL JSM-840 scanning electron microscope with LaB6 source in the back scatter mode with the JEOL annular back scatter detector. 20 nm-scale black spots in this contrast-reversed image originate from electrons back-scattered by gold atoms. Negative controls did not give any signal. Future work will expand application of this technique to soil simulants and mineralized rock samples.

  14. ROCKY PLANETESIMAL FORMATION VIA FLUFFY AGGREGATES OF NANOGRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Sota; Nakamoto, Taishi, E-mail: arakawa.s.ac@m.titech.ac.jp

    2016-12-01

    Several pieces of evidence suggest that silicate grains in primitive meteorites are not interstellar grains but condensates formed in the early solar system. Moreover, the size distribution of matrix grains in chondrites implies that these condensates might be formed as nanometer-sized grains. Therefore, we propose a novel scenario for rocky planetesimal formation in which nanometer-sized silicate grains are produced by evaporation and recondensation events in early solar nebula, and rocky planetesimals are formed via aggregation of these nanograins. We reveal that silicate nanograins can grow into rocky planetesimals via direct aggregation without catastrophic fragmentation and serious radial drift, and ourmore » results provide a suitable condition for protoplanet formation in our solar system.« less

  15. Designers Workbench: Towards Real-Time Immersive Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuester, F; Duchaineau, M A; Hamann, B

    2001-10-03

    This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technologymore » or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.« less

  16. Ultraviolet to near-infrared spectroscopy of the potentially hazardous, low delta-V asteroid (175706) 1996 FG3. Backup target of the sample return mission MarcoPolo-R

    NASA Astrophysics Data System (ADS)

    Perna, D.; Dotto, E.; Barucci, M. A.; Fornasier, S.; Alvarez-Candal, A.; Gourgeot, F.; Brucato, J. R.; Rossi, A.

    2013-07-01

    Context. Primitive near-Earth asteroids (NEAs) are important subjects of study for current planetary research. Their investigation can provide crucial information on topics such as the formation of the solar system, the emergence of life, and the mitigation of the risk of asteroid impact. Sample return missions from primitive asteroids have been scheduled or are being studied by space agencies, including the MarcoPolo-R mission selected for the assessment study phase of ESA M3 missions. Aims: We want to improve our knowledge of the surface composition and physical nature of the potentially hazardous, low delta-V asteroid (175706) 1996 FG3, backup target of MarcoPolo-R. This intriguing object shows an as-yet unexplained spectral variability. Methods: We performed spectroscopic observations of 1996 FG3 using the visible spectrograph DOLORES at the Telescopio Nazionale Galileo (TNG), and the UV-to-NIR X-Shooter instrument at the ESO Very Large Telescope (VLT). Results: We find featureless spectra and we classify 1996 FG3 as a primitive Xc-type in the Bus-DeMeo taxonomy. Based on literature comparison, we confirm the spectral variability of this object at near-infrared (NIR) wavelengths, and find that spectral variations exist also for the visible spectral region. Phase reddening cannot explain such variations. Obtained with the same observational conditions for the whole 0.3-2.2 μm range, our X-Shooter spectrum allowed a proper comparison with the RELAB meteorite database. A very good fit is obtained with the very primitive C2 Tagish Lake carbonaceous chondrite (pressed powder), confirming 1996 FG3 as a suitable target for a sample return mission from primitive NEAs. Conclusions: We hypothesize a compacted/cemented surface for 1996 FG3, like that observed by the Hayabusa mission on (25143) Itokawa, with the possible presence of regions showing different degrees of surface roughness. This variegation could be related to the binary nature of 1996 FG3, but to check this hypothesis further observations are necessary. Based on observations carried out at the European Southern Observatory (ESO), Chile (programme 088.C-0695), and with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (programme AOT25/TAC13).

  17. Racism: A Symptom of the Narcissistic Personality

    PubMed Central

    Bell, Carl C.

    1980-01-01

    Despite the criticism that psychoanalytic models are not applicable to social phenomena, knowledge of the dynamics of narcissistic development aids in understanding a particular kind of racist individual. Specifically, racist attitudes may be indicative of a narcissistic personality disorder or of a regression to primitive narcissistic functioning secondary to environmental forces. The differentiation between the narcissistic racist, the stress-induced racist, and the socially misinformed racist is discussed utilizing clinical paradigms discovered in psychotherapy. Life experiences and religion are discussed as possible aids in the transformation of primary narcissism into secondary narcissism. PMID:7392083

  18. Blowing in the Wind: II. Creation and Redistribution of Refractory Inclusions in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Davis, Sanford S.; Dobrovolskis, Anthony R.

    2003-01-01

    Ca-A1 rich refractory mineral inclusions (CAIs) found at 1-6% mass fraction in primitive chondrites appear to be 1-3 million years older than the dominant (chondrule) components which were accreted into the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We reassess the situation in terms of a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can overwhelm inward drift, and prevent significant numbers of CAI-size particles from being lost into the sun for times on the order of 10(exp 6) years. CAIs can form early, when the inner nebula was hot, and persist in sufficient abundance to be incorporated into primitive planetesimals at a much later time. Small (less than or approximately 0.1 mm diameter) CAIs persist for longer times than large (greater than or approximately 5mm diameter ones. To obtain a quantitative match to the observed volume fractions of CAIs in chondrites, another process must be allowed for: a substantial enhancement of the inner hot nebula in silicate-forming material, which we suggest was caused by rapid inward drift of meter-sized objects. This early in nebula history, the drifting rubble would have a carbon content probably an order of magnitude larger than even the most primitive (CI) carbonaceous chondrites. Abundant carbon in the evaporating material would help keep the nebula oxygen fugacity low, plausibly solar; as inferred for the formation environment of CAIs. The associated production of a larger than canonical amount of CO2 might also play a role in mass-independent fractionation of oxygen isotopes, leaving the gas rich in O-16 as inferred from CAIs and other high temperature condensates.

  19. Blowing in the Wind: II. Creation and Redistribution of Refractory Inclusions in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Davis, Sanford S.; Dobrovolskis, Anthony R.

    2003-01-01

    Ca-Al rich refractory mineral inclusions (CAIs) found at 1-6% mass fraction in primitive chondrites appear to be 1-3 million years older than the dominant (chondrule) components which were accreted into the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We reassess the situation in terms of a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can overwhelm inward drift, and prevent significant numbers of CAI-size particles from being lost into the sun for times on the order of 10(exp 6) years. CAIs can form early, when the inner nebula was hot, and persist in sufficient abundance to be incorporated into primitive planetesimals at a much later time. Small (less than or approx. equal to 0.1 mm diameter) CAIs persist for longer times than large (greater than or approx. equal to 5mm diameter ones). To obtain a quantitative match t o the observed volume fractions of CAIs in chondrites, another process must be allowed for: a substantial enhancement of the inner hot nebula in silicate-forming material, which we suggest was caused by rapid inward drift of meter-sized objects. This early in nebula history, the drifting rubble would have a carbon content probably an order of magnitude larger than even the most primitive (CI) carbonaceous chondrites. Abundant carbon in the evaporating material would help keep the nebula oxygen fugacity low, plausably solar, as inferred for the formation environment of CAIs. The associated production of a larger than canonical amount of CO2 might also play a role in mass-independent fractionation of oxygen isotopes, leaving the gas rich in l60 as inferred from CAIs and other high temperature condensates.

  20. Health status of the elderly population among four primitive tribes of Orissa, India: a clinico-epidemiological study.

    PubMed

    Kerketta, A S; Bulliyya, G; Babu, B V; Mohapatra, S S S; Nayak, R N

    2009-02-01

    Primitive tribal groups (PTGs) are the most marginalised and vulnerable communities in India. Clinico-epidemiological studies on morbidity patterns among the elderly primitive tribe members are essential to recommend special intervention programmes to improve the health of the elderly in these communities. A community-based cross-sectional study was carried out among the elderly populations of four different PTGs, namely Langia Saora (LS), Paudi Bhuiyan (PB), Kutia Kondh (KK) and Dongria Kondh (DK) living in the forests of Orissa, India. Clinical and anthropometric data were collected using standard methods and haemoglobin was estimated by the cyanomethaemoglobin method. The average number of illnesses per person was 3.0. Common disabilities like vision and hearing impairment and mobility-related problems were found in considerable numbers. Gastrointestinal problems like acid peptic disease were found among 2.6% to 20% of cases. Non-specific fever was marked in 10.2% to 24.2% of individuals. The iodine deficiency disorder, namely goitre, was found among 4.2% to 6.0% of individuals. Diseases of the respiratory tract, like upper and lower respiratory tract infection, asthma, tuberculosis and leprosy, were found in small numbers. The prevalence of hypertension among males and females was 31.8% and 42.2%, respectively. The LS had the highest prevalence of hypertension (63% among men and 68% among women). With regard to anaemia status, severe anaemia was marked in 70% of males and 76.7% of females in the LS, while in other groups the prevalence of severe anaemia ranged from 15% to 33%. Although the prevalence of severe anaemia in other tribal communities is lower than in the LS, mild to moderate anaemia was found to range from 60% to 80%. The present study revealed a high prevalence of physical disabilities with both non-communicable as well as communicable diseases among the elderly primitive tribal members. This warrants the implementation of a special health care strategy to reduce suffering at this crucial age and improve quality of life.

  1. Photochemical Concepts on the Origin of Biomolecular Asymmetry

    NASA Astrophysics Data System (ADS)

    Meierhenrich, Uwe J.; Thiemann, Wolfram H.-P.

    2004-02-01

    Biopolymers like DNA and proteins are strongly selective towards the chirality of their monomer units. The use of homochiral monomers is regarded as essential for the construction and function of biopolymers; the emergence of the molecular asymmetry is therefore considered as a fundamental step in Chemical Evolution. This work focuses on physicochemical mechanisms for the origin of biomolecular asymmetry. Very recently two groups, one from Allamandola at NASA Ames and the other from our Inter-European team, demonstrated simultaneously the spontaneous photoformation of a variety of chiral amino acid structures under simulated interstellar conditions. Since both groups used unpolarized light for the photoreaction the obtained amino acids turned out racemic as expected. The obtained experimental data support the assumption that tiny ice grains can furthermore play host to important asymmetric reactions when irradiated by interstellar circularly polarized ultraviolet light. It is possible that such ice grains could have become incorporated into the early cloud that formed our Solar System and ended up on Earth, assisting life to start. Several lines of evidence suggest that some of the building blocks of life were delivered to the primitive Earth via (micro-) meteoroids and/or comets. These results suggest that asymmetric interstellar photochemistry may have played a significant part in supplying Earth with some of the enantioenriched organic materials needed to trigger life. The search for the origin of biomolecular homochirality leads to a strong interest in the fields of asymmetric photochemistry with special emphasis on absolute asymmetric synthesis. We outline here the theoretical background on asymmetric interstellar ice photochemistry, summarize recent concepts and advances in the field, and discuss briefly its implications. The obtained data are crucial for the design of the enantioselective COSAC GC-MS experiment onboard the ROSETTA spacecraft to a comet to be launched in the very near future.

  2. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  3. Primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Becker, L E; Hinton, D

    1983-06-01

    Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.

  4. Primitive Magnesian Andesites at Mt. Shasta, California: A Real Mix-up

    NASA Astrophysics Data System (ADS)

    Barr, J. A.; Grove, T. L.; Carlson, R. W.; Krawczynski, M. J.

    2009-12-01

    Until recently, the only described occurrence of primitive magnesian andesite (PMA) at Mt. Shasta was a cinder-pit in the saddle between Whaleback and Deer Mtns. (Location S-17 of Anderson, 1974), north of the main edifice of the volcano. We have reinvestigated PMA occurrence and collected samples from other nearby vents and associated lava flows to provide better constraints on the magmatic processes that led to the formation of this important magma type. The petrology of the PMA samples from S-17 and the newly recognized PMA occurrences nearby, point to a mixing scenario, in which a PMA is the dominant component in the mixed magma. This stands in contrast to other suggestions in which the PMA is created by mixing melts that differ strongly in composition from the PMA. This idea is not new, and previous researchers (e.g. Grove et al., 2005) have shown that crustal-level fractionation products of PMA lavas are one of the major mixing components in the Mt. Shasta plumbing system. The addition of new samples of PMA indicate that the erupted magma was a multi-component mix of two primitive magmas, the PMA and a primitive basaltic andesite (BA) as well as a minor component of evolved andesite or dacite lava. Mineral compositional data, major and trace element systematics, and Sr, Nd and Re/Os isotopic data on the expanded PMA data set provides additional constraints on the mantle melting, crustal level fractional crystallization and magma mixing processing at work underneath Mt. Shasta. The compositional evidence from surrounding lava flows better constrains the composition of the PMA end member involved in the magma mixing at ~ 57.5 wt. % SiO2 at 10.5 wt. % MgO. Petrologic and isotopic data also firmly rule out the possibility suggested by Streck et al. (2007) that the Shasta PMA was formed by mixing an evolved Shasta dacite and Trinity peridotite.

  5. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Sokolovskiy, M. A.; Belonenko, T. V.; Volkov, D. L.; Isachsen, P. E.; Carton, X.

    2017-10-01

    The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal decreases in amplitude while the radius increases by as much as 25-30% relative to the values in the core. Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard configurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography. The QG results show a number of common features with those of the primitive equation model. Thus, among the azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of perturbations, only 10-30% volume loss during the same period is detected. Taking into account the gently sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of development of instability close to that in the primitive equation model. Some remaining differences in the two models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.

  6. Effective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution.

    PubMed

    Janecek, Jirí; Netz, Roland R

    2009-02-21

    Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.

  7. Principles determining the structure of high-pressure forms of metals: The structures of cesium(IV) and cesium(V)

    PubMed Central

    Pauling, Linus

    1989-01-01

    Consideration of the relation between bond length and bond number and the average atomic volume for different ways of packing atoms leads to the conclusion that the average ligancy of atoms in a metal should increase when a phase change occurs on increasing the pressure. Minimum volume for each value of the ligancy results from triangular coordination polyhedra (with triangular faces), such as the icosahedron and the Friauf polyhedron. Electron transfer may permit atoms of an element to assume different ligancies. Application of these principles to Cs(IV) and Cs(V), which were previously assigned structures with ligancy 8 and 6, respectively, has led to the assignment to Cs(IV) of a primitive cubic unit cell with a = 16.11 Å and with about 122 atoms in the cube and to Cs(V) of a primitive cubic unit cell resembling that of Mg32(Al,Zn)49, with a = 16.97 Å and with 162 atoms in the cube. PMID:16578839

  8. Primitive Oxygen-, Nitrogen-, and Organic-Rich Vein Preserved in a Xenolith Hosted in the Metamorphosed Carancas Meteorite

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukawa, Y.; Franchi, I.; Wright, I.; Zhao, I.; Rahman, Z.; Utas, J.

    2018-01-01

    Primitive xenolithic CI-like carbonaceous (C) clasts are sometimes hosted within meteorites of a different origin (ordinary chondrite, ureilite, howardite, and eucrite). These xenoliths contain aggregates of macromolecular carbon (MMC), which are often present as discrete grains and exhibit a wide range of structural order and chemical compositions. The Carancas meteorite is a H4-5 that impacted south of Lake Titicaca, Peru in 2007. While the meteorite exhibits extensive recrystallization of the matrix indicating metamorphism, it contains dark, CI-like clasts that show no evidence of heating. Similar to other xenolithic clasts, the examined C clast of Carancas contains MMC, which however exists in the form of a vein-like structure dissimilar to the typical occurrence of MMC in meteorites. We investigated the organic and isotopic compositions of the organic-rich vein with C,N,O-X-ray absorption near-edge structure (XANES), Raman spectroscopy, and NanoSIMS, in order to constrain its possible origin.

  9. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-02-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8-2.1 GPa and 1,280-1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile-peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.

  10. Optical music recognition on the International Music Score Library Project

    NASA Astrophysics Data System (ADS)

    Raphael, Christopher; Jin, Rong

    2013-12-01

    A system is presented for optical recognition of music scores. The system processes a document page in three main phases. First it performs a hierarchical decomposition of the page, identifying systems, staves and measures. The second phase, which forms the heart of the system, interprets each measure found in the previous phase as a collection of non-overlapping symbols including both primitive symbols (clefs, rests, etc.) with fixed templates, and composite symbols (chords, beamed groups, etc.) constructed through grammatical composition of primitives (note heads, ledger lines, beams, etc.). This phase proceeds by first building separate top-down recognizers for the symbols of interest. Then, it resolves the inevitable overlap between the recognized symbols by exploring the possible assignment of overlapping regions, seeking globally optimal and grammatically consistent explanations. The third phase interprets the recognized symbols in terms of pitch and rhythm, focusing on the main challenge of rhythm. We present results that compare our system to the leading commercial OMR system using MIDI ground truth for piano music.

  11. The birth of embryonic pluripotency

    PubMed Central

    Boroviak, Thorsten; Nichols, Jennifer

    2014-01-01

    Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis. PMID:25349450

  12. The Modern Primitives: Applying New Technological Approaches to Explore the Biology of the Earliest Red Blood Cells

    PubMed Central

    Fraser, Stuart T.

    2013-01-01

    One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861

  13. A Chill Sequence to the Bushveld Complex - Insight into the First Stages of Emplacement and the Parental Magmas to the World's Largest Layered Intrusion

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2012-04-01

    Evidence of the initial stages of magma emplacement in large mafic chambers is commonly lacking because of resorption of early-formed chills and complicated by the fact that the first magmas that entered the chamber were usually more evolved than the true parental magma. Deep drilling has revealed a rare occurrence of a chill sequence from the eastern Bushveld Complex at the base of a previously unrecognized thick succession of ultramafic rocks that forms part of the Lower Zone. The chill sequence (1.8 m thick) includes a true chill against quartzite floor rock, crystalline quench textured and orthopyroxene spinifex textured rocks. Importantly the chill composition represents a relatively evolved magma formed by the separation of high-Mg olivines prior to its emplacement, probably in a conduit or a pre-chamber. An overlying pyroxene dunite represents the extract that gave rise to the chill and was emplaced either as a crystal slurry derived from the feeder conduit or as the crystallization product from a slightly later influx of primitive magma of komatiitic composition. This highly-Mg rich pyroxene dunite most likely acted as a barrier to the thermal erosion of the chill sequence as the chamber filled. The olivine in the pyroxene dunite layer is the most primitive yet recorded for the Bushveld Complex at Mg# 0.915, and the cores of associated orthopyroxene are Mg# 0.93. Compositions of the orthopyroxene in the quench and spinifex textured units range from Mg# 0.91 to 0.72 and preserve cores close to the original liquidus as well as tracking the complete in-situ solidification process. Olivine contains abundant dendritic exsolution structures of Cr-spinel and Al-rich clinopyroxene indicating that they formed at high temperature from incorporation of Ca, Al and Cr into olivine, with little time to equilibrate before emplacement. Chromite in the section is the most primitive yet recorded for the Bushveld Complex. The komatiite magma that was initially emplaced into the Bushveld chamber contained 19-20% MgO but trace element analysis indicates that it was derived from melting of a more primitive komatiite source which digested about 40% of typical Kaapvaal basement to give the strong crustal signature represented by trace elements and Sr isotopes. The evolved B1 magma, which compositionally is only broadly constrained, is regarded as the parental magma to the Lower and Critical Zones, but this is shown to represent a number of different magmas also derived from a komatiitic source with relatively high degrees of crustal contamination. The komatiite source to the Bushveld magmas could have been derived from subducted Archean ocean crust such as the silica- rich but highly depleted Commondale-type komatiites, as well as Barberton-type komatiites and komatiitic basalts. A mantle peridotite source is not considered a suitable bulk source because the Ni content in the Bushveld olivines (up to 4000 ppm) is indicative of a pyroxenite source in the mantle.

  14. Theoretical studies of the extraterrestrial chemistry of biogenic elements and compounds

    NASA Technical Reports Server (NTRS)

    Defrees, D. J.

    1991-01-01

    Organic compounds, molecules related to those in living systems, are found in many different extraterrestrial environments. The study of organic astrochemistry is important to exobiology both because it demonstrates the ubiquity of processes which led to life on Earth and because the dust clouds where molecules are found are analogs of the solar nebula from which the Earth formed. In the long chain of events leading from the Big Bang, and a universe composed of atomic hydrogen and helium, to the emergence of life on Earth, molecular interstellar clouds are an early link, the most primitive objects which display any significant organic chemistry. One such cloud was the direct precursor to the solar system and to all objects which it contains. Theoretical methods are ideally suited to studying interstellar cloud chemistry. They have been applied to determine spectroscopic constants of candidate interstellar molecules, mechanisms of ion-molecule reactions, and composition of dust grains. Accurate predictions of rotational constants and dipole moments of long-chain carbon molecules HC13N, HC15N, and C5O have been made to aid in determining the size limit of gas-phase interstellar molecules. Models of gas-phase interstellar chemistry use reaction rate constants measured at room temperature and extrapolated to interstellar temperatures. The temperature dependence of NH3(+)+H2 yields NH4(+)+H is anomalous, however, with a minimum rate at about 100K, casting doubt on the extrapolation procedures. The temperature dependence has now been explained.

  15. The forgotten dispute: A.I. Oparin and H.J. Muller on the origin of life.

    PubMed

    Falk, Raphael; Lazcano, Antonio

    2012-01-01

    The debate between A.I. Oparin's heterotrophic proposal of the origin of life and H.J. Muller's suggestion that what may be considered a posteriori the beginning of life, was an autocatalytic, replicative gene, is analyzed. Although both recognized that what was needed was an interacting system contiguous in space and time, it is now rarely mentioned that this scientific confrontation went on for several decades against the background of intense ideological issues, political tensions, and scientific developments that include the rise and demise of Lysenkoism, on the one hand, and, on the other, the establishment of neoDarwinism and the birth of molecular biology. Whereas for Oparin life was the outcome of the step-wise slow process of precellular evolution in which membrane-bounded polymolecular systems played a key role, Muller argued that life started with the appearance of the first nucleic-acid (DNA) molecule in the primitive oceans. Oparin and Muller came from different scientific backgrounds and almost opposite intellectual traditions, so their common interest in the origin of life did nothing to assuage their opposing views, which as argued soon became part of the debates that took place within the framework of intense ideological confrontations.

  16. Sexual reproduction and genetic exchange in parasitic protists.

    PubMed

    Weedall, Gareth D; Hall, Neil

    2015-02-01

    A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the 'higher' eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.

  17. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry.

    PubMed

    Ritson, Dougal J; Battilocchio, Claudio; Ley, Steven V; Sutherland, John D

    2018-05-08

    When considering life's aetiology, the first questions that must be addressed are "how?" and "where?" were ostensibly complex molecules, considered necessary for life's beginning, constructed from simpler, more abundant feedstock molecules on primitive Earth. Previously, we have used multiple clues from the prebiotic synthetic requirements of (proto)biomolecules to pinpoint a set of closely related geochemical scenarios that are suggestive of flow and semi-batch chemistries. We now wish to report a multistep, uninterrupted synthesis of a key heterocycle (2-aminooxazole) en route to activated nucleotides starting from highly plausible, prebiotic feedstock molecules under conditions which mimic this scenario. Further consideration of the scenario has uncovered additional pertinent and novel aspects of prebiotic chemistry, which greatly enhance the efficiency and plausibility of the synthesis.

  18. Density of Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Killen, Duncan A.

    2004-01-01

    Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…

  19. A Discussion on the Substitution Method for Trigonometric Rational Functions

    ERIC Educational Resources Information Center

    Ponce-Campuzano, Juan Carlos; Rivera-Figueroa, Antonio

    2011-01-01

    It is common to see, in the books on calculus, primitives of functions (some authors use the word "antiderivative" instead of primitive). However, the majority of authors pay scant attention to the domains over which the primitives are valid, which could lead to errors in the evaluation of definite integrals. In the teaching of calculus, in…

  20. Scientific Terminology and Minimum Terms in Speech Communication: Some Philosophical Ramblings.

    ERIC Educational Resources Information Center

    Krivonos, Paul D.; Sussman, Lyle.

    Philosophers of science have emphasized the need for primitive terms, or "givens," in the construction of theory for any discipline. While there are inherent dangers regarding the use of primitive terms, they can have great value in serving as the basis for minimum terms, which are primitive terms unique to a discipline. (Borrowed terms are those…

  1. A manual for PARTI runtime primitives

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel

    1990-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  2. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, P. Manish; Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Prabhune, Asmita

    The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants willmore » provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.« less

  3. Circuit design tool. User's manual, revision 2

    NASA Technical Reports Server (NTRS)

    Miyake, Keith M.; Smith, Donald E.

    1992-01-01

    The CAM chip design was produced in a UNIX software environment using a design tool that supports definition of digital electronic modules, composition of these modules into higher level circuits, and event-driven simulation of these circuits. Our design tool provides an interface whose goals include straightforward but flexible primitive module definition and circuit composition, efficient simulation, and a debugging environment that facilitates design verification and alteration. The tool provides a set of primitive modules which can be composed into higher level circuits. Each module is a C-language subroutine that uses a set of interface protocols understood by the design tool. Primitives can be altered simply by recoding their C-code image; in addition new primitives can be added allowing higher level circuits to be described in C-code rather than as a composition of primitive modules--this feature can greatly enhance the speed of simulation.

  4. Retention of primitive reflexes and delayed motor development in very low birth weight infants.

    PubMed

    Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G

    1984-06-01

    Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.

  5. Postcrania of the most primitive euprimate and implications for primate origins.

    PubMed

    Boyer, Doug M; Toussaint, Séverine; Godinot, Marc

    2017-10-01

    The fossil record of early primates is largely comprised of dentitions. While teeth can indicate phylogenetic relationships and dietary preferences, they say little about hypotheses pertaining to the positional behavior or substrate preference of the ancestral crown primate. Here we report the discovery of a talus bone of the dentally primitive fossil euprimate Donrussellia provincialis. Our comparisons and analyses indicate that this talus is more primitive than that of other euprimates. It lacks features exclusive to strepsirrhines, like a large medial tibial facet and a sloping fibular facet. It also lacks the medially positioned flexor-fibularis groove of extant haplorhines. In these respects, the talus of D. provincialis comes surprisingly close to that of the pen-tailed treeshrew, Ptilocercus lowii, and extinct plesiadapiforms for which tali are known. However, it differs from P. lowii and is more like other early euprimates in exhibiting an expanded posterior trochlear shelf and deep talar body. In overall form, the bone approximates more leaping reliant euprimates. The phylogenetically basal signal from the new fossil is confirmed with cladistic analyses of two different character matrices, which place D. provincialis as the most basal strepsirrhine when the new tarsal data are included. Interpreting our results in the context of other recent discoveries, we conclude that the lineage leading to the ancestral euprimate had already become somewhat leaping specialized, while certain specializations for the small branch niche came after crown primates began to radiate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  7. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes

    PubMed Central

    Giles, Sam; Darras, Laurent; Clément, Gaël; Blieck, Alain; Friedman, Matt

    2015-01-01

    Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) ‘Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae. PMID:26423841

  8. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    PubMed

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Decentralized Control of Scheduling in Distributed Systems.

    DTIC Science & Technology

    1983-12-15

    does not perform quite as well as the 10 state system, but is less sensitive to changes in scheduling period. It performs best when scheduling is...intra-process concerns. We extend theLr concept of a process to inolude Inter -ress comunication. That is. various form of send and receive primitives...Current busyness of each site based on some responses to requests for bids. A received bid is utilization factor. adjusted by incrementing it by a

  10. A constraint on impact theories of chondrule formation

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Kieffer, S. W.

    1977-01-01

    The association between agglutinates and chondrule-like spherules, which characterizes the assemblage of impact-derived melt products in lunar regolith samples and some gas-rich achondrites, is not found in primitive chondrites. This observation suggests that impacts into a parent-body regolith are unlikely to have produced the chondrules. We believe that if chondrules were formed from impact melt, it was probably generated by jetting during particle-to-particle collisions, presumably in the nebula.

  11. Parallel language constructs for tensor product computations on loosely coupled architectures

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Van Rosendale, John

    1989-01-01

    A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G.C.; Stevens, P.R.; Rittenberg, A.

    A compilation is presented of reaction data taken from experimental high energy physics journal articles, reports, preprints, theses, and other sources. Listings of all the data are given, and the data points are indexed by reaction and momentum, as well as by their source document. Much of the original compilation was done by others working in the field. The data presented also exist in the form of a computer-readable and searchable database; primitive access facilities for this database are available.

  13. Removal of Perfluorooctanoic Acid from Water Using Primitive, Conventional and Novel Carbonaceous Sorbent Materials

    DTIC Science & Technology

    Polyfluoroalkyl Substances ( PFAS ), like perfluorooctanoic acid, have been used for the last 50 years in a wide variety of industrial processes and...The Department of Defense (DoD) has used PFAS -based Aqueous Film Forming Foam (AFFF) at fire training facilities and aircraft hangars. These AFFFs have...contaminated approximately 600 sites classified as fire training facilities with PFAS (Huang, 2013). This study focused on testing the most likely

  14. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  15. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  16. Transcending the caesura: reverie, dreaming and counter-dreaming.

    PubMed

    Bergstein, Avner

    2013-08-01

    The author reflects about our capacity to get in touch with primitive, irrepresentable, seemingly unreachable parts of the Self and with the unrepressed unconscious. It is suggested that when the patient's dreaming comes to a halt, or encounters a caesura, the analyst dreams that which the patient cannot. Getting in touch with such primitive mental states and with the origin of the Self is aspired to, not so much for discovering historical truth or recovering unconscious content, as for generating motion between different parts of the psyche. The movement itself is what expands the mind and facilitates psychic growth. Bion's brave and daring notion of 'caesura', suggesting a link between mature emotions and thinking and intra-uterine life, serves as a model for bridging seemingly unbridgeable states of mind. Bion inspires us to 'dream' creatively, to let our minds roam freely, stressing the analyst's speculative imagination and intuition often bordering on hallucination. However, being on the seam between conscious and unconscious, dreaming subverts the psychic equilibrium and poses a threat of catastrophe as a result of the confusion it affords between the psychotic and the non-psychotic parts of the personality. Hence there is a tendency to try and evade it through a more saturated mode of thinking, often relying on external reality. The analyst's dreaming and intuition, perhaps a remnant of intra-uterine life, is elaborated as means of penetrating and transcending the caesura, thus facilitating patient and analyst to bear unbearable states of mind and the painful awareness of the unknowability of the emotional experience. This is illustrated clinically. Copyright © 2013 Institute of Psychoanalysis.

  17. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Geppert, Wolf D.; Carrasco, Nathalie; Holm, Nils G.; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J. Hunter; Watanabe, Naoki; Ziurys, Lucy M.

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.

  18. Spontaneous encapsulation and concentration of biological macromolecules in liposomes: an intriguing phenomenon and its relevance in origins of life.

    PubMed

    de Souza, Tereza Pereira; Fahr, Alfred; Luisi, Pier Luigi; Stano, Pasquale

    2014-12-01

    One of the main open questions in origin of life research focuses on the formation, by self-organization, of primitive cells composed by macromolecular compounds enclosed within a semi-permeable membrane. A successful experimental strategy for studying the emergence and the properties of primitive cells relies on a synthetic biology approach, consisting in the laboratory assembly of cell models of minimal complexity (semi-synthetic minimal cells). Despite the recent advancements in the construction and characterization of synthetic cells, an important physical aspect related to their formation is still not well known, namely, the mechanism of solute entrapment inside liposomes (in particular, the entrapment of macromolecules). In the past years, we have investigated this phenomenon and here we shortly review our experimental results. We show how the detailed cryo-transmission electron microscopy analyses of liposome populations created in the presence of ferritin (taken as model protein) or ribosomes have revealed that a small fraction of liposomes contains a high number of solutes, against statistical expectations. The local (intra-liposomal) macromolecule concentration in these liposomes largely exceeds the bulk concentration. A similar behaviour is observed when multi-molecular reaction mixtures are used, whereby the reactions occur effectively only inside those liposomes that have entrapped high number of molecules. If similar mechanisms operated in early times, these intriguing results support a scenario whereby the formation of lipid compartments plays an important role in concentrating the components of proto-metabolic systems-in addition to their well-known functions of confinement and protection.

  19. The Gulliver sample return mission to Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Robinson, M.; Gulliver Team

    The Martian moon Deimos presents a unique opportunity for a sample return mission. Deimos is spectrally analogous to type D asteroids, which are thought to be composed of highly primitive carbonaceous material that originated in the outer asteroid belt. It also is in orbit around Mars and has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. There are a number of factors that make sample return from Deimos extremely attractive. It is Better: Deimos is a repository for two kinds of extremely significant and scientifically exciting ancient samples: (1) Primitive spectral D-type material that may have accreted in the outer asteroid belt and Trojan swarm. This material samples the composition of solar nebula well outside the zone of terrestrial planets and provides a direct sample of primitive material so common past 3 AU but so uncommon in the meteorite collection. (2) Ancient Mars, which could include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. It is Closer: Compared to other primitive D-type asteroids, Deimos is by far the most accessible. Because of its orbit around Mars, Deimos is far closer than any other D asteroid. It is Safer: Deimos is also by far the safest small body for sample return yet imaged. It is an order of magnitude less rocky than Eros and the NEAR-Shoemaker mission succeeded in landing on Eros with a spacecraft not designed for landing and proximity maneuvering. Because of Viking imagery we already know a great deal about the surface roughness of Deimos. It is known to be very smooth and have moderate topography and gravitational slopes. It is Easier: Deimos is farther from Mars and smaller than Phobos. This location minimizes the delta-V penalties from entering the Martian gravity well; minimizes the energy requirements for sampling maneuvers; and minimizes Martian tidal effects on S/C operations. After initial processing these samples will be made available as soon as possible to the international cosmochemistry community for detailed analysis. The mission management team includes Lockheed Martin Astronautics (flight system, I&T) and JPL (payload, mission ops, and mission management).

  20. Using Abstraction in Explicity Parallel Programs.

    DTIC Science & Technology

    1991-07-01

    However, we only rely on sequential consistency of memory operations. includ- ing reads. writes and any synchronization primitives provided by the...explicit synchronization primitives . This demonstrates the practical power of sequentially consistent memory, as opposed to weaker models of memory that...a small set of synchronization primitives , all pro- cedures have non-waiting specifications. This is in contrast to richer process-oriented

  1. Semantically-Sensitive Macroprocessing

    DTIC Science & Technology

    1989-12-15

    constr uct for protecting critical regions. Given the synchronization primitives P and V, we might implement the following transformation, where...By this we mean that the semantic model for the base language provides a primitive set of concepts, represented by data types and operations...the gener- ation of a (dynamic-) semantically equivalent program fragment ultimately expressible in terms of built-in primitives . Note that static

  2. A manual for PARTI runtime primitives, revision 1

    NASA Technical Reports Server (NTRS)

    Das, Raja; Saltz, Joel; Berryman, Harry

    1991-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  3. Fast concurrent array-based stacks, queues and deques using fetch-and-increment-bounded, fetch-and-decrement-bounded and store-on-twin synchronization primitives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gara, Alana; Heidelberger, Philip

    Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.

  4. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  5. Geomorphology: Perspectives on observation, history, and the field tradition

    NASA Astrophysics Data System (ADS)

    Vitek, John D.

    2013-10-01

    Other than a common interest in form and process, current geomorphologists have little in common with those who established the foundations of this science. Educated people who had an interest in Earth processes during the nineteenth century cannot be compared to the scholars who study geomorphology in the twenty-first century. Whereas Earth has undergone natural change from the beginning of time, the human record of observing and recording processes and changes in the surface Is but a recent phenomena. Observation is the only thread, however, that connects all practitioners of geomorphology through time. As people acquired knowledge related to all aspects of life, technological revolutions, such as the Iron Age, Bronze Age, agricultural revolution, the atomic age, and the digital age, shaped human existence and thought. Technology has greatly changed the power of human observation, including inward to the atomic scale and outward into the realm of space.Books and articles describe how to collect and analyze data but few references document the field experience. Each of us, however, has experienced unique circumstances during field work and we learned from various mentors how to observe. The surface of Earth on which we practice the vocation of geomorphology may not be much different from a hundred years ago but many things about how we collect data, analyze it and disseminate the results have changed. How we function in the field, including what we wear, what we eat, how we get there, and where we choose to collect data, clearly reflects the complexity of the human system on Earth and the processes and forms that arouse our interest. Computers, miniaturization of electronics, satellite communications and observation platforms in space provide access to data to aid in our quest to understand Earth surface processes. Once, people lived closer to nature in primitive shelters in contrast with life in urban environments. But as urban life continues to expand and people need to know how Earth operates, geomorphologists, therefore, serve humanity today as the primary observers and reporters in the realm of Earth surface processes.

  6. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars

    NASA Technical Reports Server (NTRS)

    Parnell, J.; Osinski, G. R.; Lee, P.; Cockell, C. S.

    2005-01-01

    Microbes in Haughton Crater Sulfates: Impact craters are of high interest in planetary exploration because they are viewed as possible sites for evidence of life [1]. Hydrothermal systems in craters are particularly regarded as sites where primitive life could evolve. Evidence from the Miocene Haughton impact structure shows that crater hydrothermal deposits may also be a preferred site for subsequent colonization and hence possible extant life: Hydrothermal sulfates at Haughton are colonized by viable cyanobacteria [2]. The Haughton impact structure, Devon Island, Canadian High Arctic, is a 24 km-diameter crater of mid-Tertiary age. The structure preserves an exceptional record of impact-induced hydrothermal activity, including sulfide, and sulfate mineralization [3]. The target rocks excavated at the site included massive gypsum-bearing carbonate rocks of Ordovician age. Impact-remobilized sulfates occur as metre-scale masses of intergrown crystals of the clear form of gypsum selenite in veins and cavity fillings within the crater s impact melt breccia deposits [4]. The selenite is part of the hydrothermal assemblage as it was precipitated by cooling hot waters that were circulating as a result of the impact. Remobilization of the sulfate continues to the present day, such that it occurs in soil crusts (Fig. 1) including sandy beds with a gypsum cement. The sulfate-cemented beds make an interesting comparison with the sulfate-bearing sandy beds encountered by the Opportunity MER [5]. The selenite crystals are up to 0.3 m in width, of high purity, and transparent. They locally exhibit frayed margins where cleavage surfaces have separated. This exfoliation may be a response to freeze-thaw weathering. The selenite contains traces of rock detritus, newly precipitated gypsum, and microbial colonies. The rock detritus consists of sediment particles which penetrated the opened cleavages by up to 2cm from the crystal margins. Some of the detritus is cemented into place by gypsum, which must have been dissolved and reprecipitated from the host selenite.

  7. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system.

    PubMed

    Kobesova, Alena; Kolar, Pavel

    2014-01-01

    Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Enhanced Photolysis of Nucleic Acid Monomers by Pyrophosphate in the Simulated Primitive Soup

    NASA Astrophysics Data System (ADS)

    Kongjiang, Wang; Zhifang, Chai; Xianming, Pan

    1999-05-01

    In our simulation of the photochemistry of the primitive soup, it was found that yield of chromophore loss of some nucleic acid bases, nucleosides and nucleotides [NA] undergoing ultraviolet radiation by medium pressure mercury lamp [MPML] was enhanced by pyrophosphate and triphosphate whether O2 is present or not. The yield of chromophore loss of guanosine, uracil, 5' CMP, and the derivatives of adenine and thymine was observed to rise with the increase of molar concentration of pyrophosphate in N2-saturated systems. In air-saturated samples, increase in yield of chromophore loss was observed when the concentration of pyrophosphate reaches 5×10-4 M, relative yield of chromophore loss (CLrel) coming to maximum in the range from 0.01 to 0.1 M, followed by a slight decline with the further increase of pyrophosphate concentration. The enhancement of photolysis of NA by pyrophosphate was due to the interaction between NA and pyrophosphate radicals photoionized by UV quanta of wavelength less than about 210 nm in the emission spectrum of a MPML. The relevance of this phenomenon to the origin of life has been discussed as well.

  9. [Demographic transition or revolution? The weaknesses and implications of the demographic transition theory. Part 1: the origins].

    PubMed

    Bourcier De Carbon, P

    1998-01-01

    The work of Adolphe Landry is reviewed in relation to development of demographic transition theory. Landry was appointed administrator in 1912 of the National Alliance Against Depopulation and remained active in it his whole life. He also helped create family allowance programs in France. As early as 1909, Landry described three different population regimes. In the "primitive" regime, which characterized all nonhuman life and human life during most of history, the population was adjusted to available subsistence by mortality. In the "intermediate" phase, restrictions on marriage and control of reproduction outside marriage maintained the population at a level below the maximum supportable. In the "contemporary" regime, the universal practice of contraception and abortion could lead to very low levels of fertility. The spread of contraception and low fertility appeared to Landry a true demographic revolution. He attributed the acceptance of contraception to a change in the common aspirations of human beings regarding their conditions, a desire for improved material well-being and social advancement, and an increased spirit of rationality and even calculation in their behavior. Landry believed that the contemporary regime, unlike the preceding two, had no mechanism implying equilibrium. The demographic revolution freed fertility from social determinants and linked it more closely to individual interests. Landry expected the contemporary regime to spread throughout the entire world, with many areas still in the primitive phase passing directly to the contemporary. He was concerned with the effects of demographic aging, and he deplored birth control propaganda that claimed it as a cure for unemployment and for overpopulation in the poor Asian countries. The birth control movements in England and the US were successful in bringing the two countries into the contemporary regime. A number of organizations such as the Population Association of America and the Office of Population Research at Princeton were favorable toward the spread of birth control through the rest of the world.

  10. The possibility of life proliferation from Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    Enceladus is a medium sized icy satellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. According to [1]: "For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy" (see also [2]). We consider here conditions for origin of life in the early Enceladus and later proliferation of the life. Mass of serpentinite: The serpentinization on the Earth is often considered with hydrothermal activity in neovolcanic zones along mid-oceanic spreading centers. However, only in small part the hydrothermal activity really occurs. A simple calculations (e.g. [3]) indicate that mass fraction of silicates in Enceladus is ~0.646, hence the total mass of its silicate is ~6.97 10^1^9 kg. [4] considered the process of differentiation and core forming in Enceladus. He found that the result of differentiation is a relatively cold core of loosely packed grains with water between them. The entire core of Enceladus was probably permeable. This could lead to formation of extensive hydrothermal convective systems. It indicates that total mass of serpententinized silicate in Enceladus could be larger than on the Earth. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is given in [4]. He found that the temperature allows for existing the life even in the center of the satellite. It is possible that for hundreds of Myr the conditions in Enceladus were more favorable for origin of life than on the Earth. Proliferation of life: The low gravity of the Enceladus and its volcanic activity make transport possible. Note that the low temperature of plumes from active region of Enceladus does not kill the organisms. The primitive bacteria could leave the Enceladus with volcanic jets in the same way as particles of the E ring. Other mechanisms could transport particles to terrestrial planets. Therefore it is possible that the Enceladus was a cradle of the life in the Solar System. References: [1] Russell, M. J., Hall, A. J., And Martin W. (2010). Geobiology (2010), 8, 355-371. [2] Izawa M.R.M. et al. (2010). Planet. Space Sci. 58, 583-591. [3] Abramov, O., Mojzsis, S.J., (2011) Icarus 213, 273-279. [4] Czechowski, L. (2014) Planet. Space Sci. 104, 185-199

  11. Comparative Anatomy of Maintenance Tasks (CAMT): A Feasibility Study

    DTIC Science & Technology

    1992-03-01

    systems. Methods for task primitive definition were developed, then taken into the field for testing . Task primitives were defined to cover three remove...engine maintenance) and to test whether task primitives developed for one weapon system could have applicability to other weapon systems (Phase 2...requirements, levying MPT constraints and predicting MPT requirements are only ritualistic exercises until the operational test and evaluation of a

  12. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  13. Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1979-01-01

    The ions, radicals, and molecules observed in comets may be derived intact or by partial decomposition from parent compounds of the sort found either in the interstellar medium or in carbonaceous meteorites. The early loss of highly reducing primitive atmosphere and its replacement by a secondary atmosphere dominated by H2O, CO2, and N2, as depicted in current models of the earth's evolution, pose a dilemma for the origin of life: the synthesis of organic compounds necessary for life from components of the secondary atmosphere appears to be difficult, and plausible mechanisms have not been evaluated. Both comets and carbonaceous meteorites are implicated as sources for the earth's atmophilic and organogenic elements. A mass balance argument involving the estimated ratios of hydrogen to carbon in carbonaceous meteorites, comets, and the crust and upper mantle suggests that comets supplied the earth with a large fraction of its volatiles. The probability that comets contributed significantly to the earth's volatile inventory suggests a chemical evolutionary link between comets, prebiotic organic synthesis, and the origin of life.

  14. Evidence for magma oceans on asteroids, the moon, and Earth

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Norman, Marc D.

    1992-01-01

    There are sound theoretical reasons to suspect that the terrestrial planets melted when they formed. For Earth, the reasons stem largely from the hypothesis that the moon formed as a result of the impact of a Mars-sized planetesimal with the still accreting Earth. Such a monumental event would have led to widespread heating of the Earth and the materials from which the moon was made. In addition, formation of a dense atmosphere on the Earth (and possibly the Moon) would have led to retention of accretional heat and, thus, widespread melting. In other words, contemporary theory suggests that the primitive Moon and terrestrial planets had magma oceans.

  15. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    NASA Astrophysics Data System (ADS)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  16. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

    NASA Astrophysics Data System (ADS)

    Günther, T.; Haase, K. M.; Klemd, R.; Teschner, C.

    2018-06-01

    We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr-143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of < 4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures ( 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative ɛNdi (- 5.2 to - 9.4) and radiogenic ɛSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10-20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.

  17. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  18. Physics of the primitive solar nebula and of giant gaseous protoplanets

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1978-01-01

    It has been proposed that the supernova responsible for injecting Al-26 into the early solar system was in fact responsible for triggering the collapse of an interstellar cloud in order to produce a system of stars, one of which would be the solar system. Details concerning the mechanism involved in such a process are discussed. Attention is given to the evolution of the primitive solar nebula, the instabilities in the primitive solar nebula, and the giant gaseous protoplanets. The principal conclusion to be drawn from the material presented is that the primitive solar nebula was a rather chaotic place, highly turbulent, with the multiple formation of giant gaseous protoplanets.

  19. Analyses at High Spatial Resolution of Organic Molecules in Extraterrestrial Samples: Two-Step Laser Mass Spectrometry: Search for Polycyclic Aromatic Hydrocarbons in Antarctic Meteorite and Micrometeorite Samples

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    1998-01-01

    Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in fragments of fifteen (approx. 200 microns) carbonaceous antarctic micrometeorites (AMMs). 8. "Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH 84001" We have undertaken additional contamination studies of ALH 84001.

  20. Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

    PubMed Central

    2008-01-01

    Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production. PMID:18826645

  1. Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    PubMed Central

    Pérez-Losada, Marcos; Høeg, Jens T; Crandall, Keith A

    2009-01-01

    Background The Thecostraca are arguably the most morphologically and biologically variable group within the Crustacea, including both suspension feeders (Cirripedia: Thoracica and Acrothoracica) and parasitic forms (Cirripedia: Rhizocephala, Ascothoracida and Facetotecta). Similarities between the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups. Results To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2,402), Histone H3 (328)] and 41 larval characters in seven facetotectans, five ascothoracidans, three acrothoracicans, 25 rhizocephalans and 39 thoracicans (ingroup) and 12 Malacostraca and 10 Copepoda (outgroup). Maximum parsimony, maximum likelihood and Bayesian analyses showed the Facetotecta, Ascothoracida and Cirripedia each as monophyletic. The better resolved and highly supported DNA maximum likelihood and morphological-DNA Bayesian analysis trees depicted the main phylogenetic relationships within the Thecostraca as (Facetotecta, (Ascothoracida, (Acrothoracica, (Rhizocephala, Thoracica)))). Conclusion Our analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from the Rhizocephala and strongly indicated for the Facetotecta had no common origin. Future analyses are needed to determine whether the most recent common ancestor of the Thecostraca was free-living or some primitive form of ectoparasite. PMID:19374762

  2. A Complication in Determining the Precise Age of the Solar System

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.

    2010-01-01

    Primitive components in meteorites contain a detailed record of the conditions and processes in the solar nebula, the cloud of dust and gas surrounding the infant Sun. Determining accurately when the first materials formed requires the lead-lead (Pb-Pb) dating method, a method based on the decay of uranium (U) isotopes to Pb isotopes. The initial ratio of U-238 to U-235 is critical to determining the ages correctly, and many studies have concluded that the ratio is constant for any given age. However, my colleagues at Arizona State University, Institut fur Geowissenschaften, Goethe-Universitat (Frankfurt, Germany), and the Senckenberg Forschungsinstitut und Naturmuseum (also in Frankfurt) and I have found that some calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites deviate from the conventional value for the U-238/U-235 ratio. This could lead to inaccuracies of up to 5 million years in the age of these objects, if no correction is made. Variations in the concentrations of thorium and neodymium with the U-238/U-235 ratio suggest that the ratio may have been lowered by the decay of curium-247, which decays to U-235 with a half-life of 15.6 million years. Curium-247 is created in certain types of energetic supernovae, so its presence suggests that a supernova added material to the pre-solar interstellar cloud between 110 and 140 million years before the Solar System began to form.

  3. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  4. Quantization of Motor Activity into Primitives and Time-Frequency Atoms Using Independent Component Analysis and Matching Pursuit Algorithms

    DTIC Science & Technology

    2001-10-25

    form: (1) A is a scaling factor, t is time and r a coordinate vector describing the limb configuration. We...combination of limb state and EMG. In our early examination of EMG we detected underlying groups of muscles and phases of activity by inspection and...representations of EEG or other biological signals has been thoroughly explored. Such components might be used as a basis for neuroprosthetic control

  5. Dwarfism in art.

    PubMed

    Limon, Janusz

    2015-01-01

    Throughout the history of mankind the birth of a child with congenital malformation raised anxiety and torment, along with attempts to explain its origins. It is possible to find relics of such events in prehistoric rock drawings and primitive sculptures, in numerous art pieces produced through the centuries up to modern sculptures, paintings and drawings. The aim of the present article is to show how dwarfs were portrayed in a variety of art forms at different moments in the history of our world.

  6. Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed

    NASA Astrophysics Data System (ADS)

    Rivkin, Andrew S.; Howell, Ellen S.; Emery, Joshua P.; Sunshine, Jessica

    2018-04-01

    Water and hydroxyl, once thought to be found only in the primitive airless bodies that formed beyond roughly 2.5-3 AU, have recently been detected on the Moon and Vesta, which both have surfaces dominated by evolved, non-primitive compositions. In both these cases, the water/OH is thought to be exogenic, either brought in via impacts with comets or hydrated asteroids or created via solar wind interactions with silicates in the regolith or both. Such exogenic processes should also be occurring on other airless body surfaces. To test this hypothesis, we used the NASA Infrared Telescope Facility (IRTF) to measure reflectance spectra (2.0-4.1 μm) of two large near-Earth asteroids (NEAs) with compositions generally interpreted as anhydrous: 433 Eros and 1036 Ganymed. OH is detected on both of these bodies in the form of absorption features near 3 μm. The spectra contain a component of thermal emission at longer wavelengths, from which we estimate thermal inertias of 167 ± 98 J m-2s-1/2K-1 for Eros (consistent with previous estimates) and 214 ± 80 J m-2s-1/2K-1 for Ganymed, the first reported measurement of thermal inertia for this object. These observations demonstrate that processes responsible for water/OH creation on large airless bodies also act on much smaller bodies.

  7. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    PubMed

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  8. Oxidoreductase mimic activity of natural pyrrhotite

    NASA Astrophysics Data System (ADS)

    Ibáñez de Aldecoa, A. L.; Velasco, F.; Menor-Salván, C.

    2012-09-01

    The theory of the chemo-autotrophic origin of life, also called the "iron-sulfur world hypothesis", proposes that the system FeS/FeS2 present in the primitive Earth crust gave the reductive power necessary to conduct the first protometabolic redox reactions. Some experimental studies demonstrated the redox activity of the FeS/SH2 system, but none of them used natural FeS. Here, we show that the iron sulfide mineral pyrrhotite is able to mimic the redox activity of the enzyme lactate dehydrogenase, which reversibly reduces the pyruvate in lactate, under prebiotic conditions with pyrite formation.

  9. WLC Preface

    NASA Astrophysics Data System (ADS)

    Miret, Josep M.; Sebé, Francesc

    Low-cost devices are the key component of several applications: RFID tags permit an automated supply chain management while smart cards are a secure means of storing cryptographic keys required for remote and secure authentication in e-commerce and e-government applications. These devices must be cheap in order to permit their cost-effective massive manufacturing and deployment. Unfortunately, their low cost limits their computational power. Other devices such as nodes of sensor networks suffer from an additional constraint, namely, their limited battery life. Secure applications designed for these devices cannot make use of classical cryptographic primitives designed for full-fledged computers.

  10. The Origin of Primitive Cells, Nutrient Intake, and Non-Enzymatic Elongation of Encapsulated Nucleotides

    NASA Technical Reports Server (NTRS)

    Meierhenrich, Uwe J.; Filippi, Jean-Jacques; Meinert, Cornelia; Vierling, Pierre; Dworkin, Jason P.

    2009-01-01

    Fatty acids and fatty alcohols are commonly found in experiments simulating the prebiotic 'soup'. These amphiphiles can be synthesized under prebiotic conditions, at least as long as the molecules are chemically relatively simple and do not need to be enantiomerically pure. In the context of topical origin-of-life theories, two distinct formation pathways for amphiphiles have been described; one related to geophysical sites, such as marine hydrothermal systems, and another to extraterrestrial sources, such as the proto-solar nebula, which was fed by interplanetary and interstellar nebulae. The chemical analysis of each provides individual characteristic challenges.

  11. Religion and mental health

    PubMed Central

    Behere, Prakash B.; Das, Anweshak; Yadav, Richa; Behere, Aniruddh P.

    2013-01-01

    In this chapter, the relation between religion and mental health and vice versa has been described. From primitive times different religions have different beliefs and systems of worshipping. Every religion with their belief system has implications on mental health and illness. We described how Hindu system of beliefs and rituals may have an effect in causation of various mental illnesses. It is also described how religion can help an individual to sustain one's life in various domains. The relationship between different religion and symptomatology is described. The impact and outcome of religion on mental health have been highlighted. PMID:23858253

  12. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  13. [A short history of René Groupil, patron saint of anesthetists].

    PubMed

    Quintal, J

    1994-10-01

    Born in 1608 near Angers, France, René Goupil looked after the native people at Sillery, Québec between 1640 and 1642 as surgeon and donné. Ambushed and captured by Mohawk warriors, he was killed in September 1642 near Auriesville NY. He was canonized in 1930. The life of Goupil is reviewed with regards to primitive medicine of the 17th century. In 1951, american nurse anesthetists chose René Goupil, health worker and saint of North America, as the patron saint of the anaesthetists. Since, he has been recognized by more and more practitioners of anaesthesia.

  14. Primitive processes, metaphor, and recognition in the treatment of traumatic loss.

    PubMed

    Ansorge, William

    2012-12-01

    This paper explores how traumatic loss and emotional abuse ruptured a patient's symbolic process and shattered her experience of the reality of her self. In treatment, metaphoric investigation of physical processes of expulsion and incorporation led to a transformation of projective identification into the containment she sought. The therapist's ability to metabolize pain, shame, and the risks of incestuous merger re-experienced in the treatment grew out of his recognition of disturbing experiences of his own that she brought to life. Mutual recognition, linked to the therapist's reverie, was a key treatment factor as both patient and therapist changed.

  15. A study on a nascent entomopathogenic association between caenorhabditis briggsae and serratia sp.SCBI

    NASA Astrophysics Data System (ADS)

    Abebe-Akele, Feseha

    Life is inconceivable in the absence of interactions which could be cooperative, antagonistic or neutral. Interactions are in constant flux because on one hand it is often difficult to demarcate where one form of interaction ends and the other begins on the other hand what is cooperative at one point in time could evolve into antagonistic or neutral or vice versa. Thus, organisms, as a consequence of mutation, adaptation and natural selection would inevitably enter into natural associations from which they emerge as mutual partners, inveterate enemies or passive cohabitants. Entomopathogenic nematode (EPN) partnerships are tripartite interactions where a nematode-bacteria symbiont duo attacks a third organism -an insect or insect larva-for the mutual benefit of the attacking partners and the detriment of the insect they invade. All three participants in the interaction---the nematode worms with their symbiont bacteria and the target insect host-are among the most ancient, diverse and abundant species on earth, however, these EPN partnerships are not as common as circumstances would suggest. EPN associations, which are arguably at the peak of evolutionary co adaptations, where two primitive forms of life cooperate to take advantage of a larger species are not only fascinating but immensely important for humans. The biological and molecular mechanisms underlying entomopathogenesis have been studied in great detail for decades for their potential as biological control agents against invasive insects. In spite of intense research in The EPN field, the evolutionary history of EPN associations are largely unknown because there are no known intermediate forms. In this thesis, a nascent EPN partnership is described between Caenorhabditid nematodes and Serratia sp. SCBI. Comparative analysis of this association with other EPNs suggests that crucial aspect of EPN associations may be the ability of partners to co-exist without killing each other and that the end results of EPN associations- insect killing, cadaver bioconversion and re-colonization-could be achieved by dissimilar and/or overlapping, mechanisms in different symbiotic partners. This study also suggests that the urea metabolism pathway may play a pivotal role in EPN complex formation. This nascent EPN association will be an important resource in understanding EPN evolution.

  16. Using Parallel Processing for Problem Solving.

    DTIC Science & Technology

    1979-12-01

    are the basic parallel proces- sing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities...Language primitives are provided for manipulating running activities. Viewpoints are a generalization of context FOM -(over "*’ DD I FON 1473 ’EDITION OF I...arc the basic parallel processing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities. Language

  17. Security Primitives for Reconfigurable Hardware-Based Systems

    DTIC Science & Technology

    2010-05-01

    work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented

  18. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    DTIC Science & Technology

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  19. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  20. Intrapartum synthetic oxytocin reduce the expression of primitive reflexes associated with breastfeeding.

    PubMed

    Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-05-01

    Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.

  1. MACOP modular architecture with control primitives

    PubMed Central

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  2. A real-time robot arm collision detection system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1990-01-01

    A data structure and update algorithm are presented for a prototype real time collision detection safety system for a multi-robot environment. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3-D space into eight equal cubic octants until each octant meets some decomposition criteria. The octree stores cylspheres (cylinders with spheres on each end) and rectangular solids as primitives (other primitives can easily be added as required). These primitives make up the two seven degrees-of-freedom robot arms and environment modeled by the system. Octree nodes containing more than a predetermined number N of primitives are decomposed. This rule keeps the octree small, as the entire environment for the application can be modeled using a few dozen primitives. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Incidents in which one robot arm comes too close to another arm or an object are reported. Cycle time for interpreting current joint angles, updating the octree, and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 80386 processor running at 20 MHz.

  3. Mineral Biomarkers in Martian Meteorite Allan Hills 84001?

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Bazylinski, D. A.; Wentworth, S. J.; McKay, D. S.; Golden, D. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The occurrence of fine-grained magnetite in the Fe-rich rims surrounding carbonate globules in the martian meteorite ALH84001, originally described in , have been proposed as fossil remains of primitive martian organisms. Here we report observations on size and shape distributions of magnetites from ALH84001 and compare them to biogenic and inorganic magnetite crystals of terrestrial origin. While some magnetite morphology is not unequivocally diagnostic for its biogenicity, such as cubodial forms of magnetite, which are common in inorganically formed magnetites, other morphologies of magnetite (parallel-epiped or elongated prismatic and arrowhead forms) are more likely signatures of biogenic activity. Some ALH 84001 magnetite particles described below have unique morphology and length-to-width ratios that are indistinguishable from a variety of terrestrial biogenic magnetite and distinct from all known inorganic forms of magnetite.

  4. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    NASA Astrophysics Data System (ADS)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results are consistent with this primitive organic matter being produced by the alternative process of condensation of C-bearing ices onto the grain surfaces and production of refractory organic matter by UV or other ionizing radiation bombardment of the ices [4]. The processes by which primitive grains aggregate to form the first dust of our Solar System are not well understood. Collision experiments indicate that bare rocky grains bounce apart at collision speeds ¡30 to 50 m/s and shatter at larger speeds [5]. However, experiments indicate grains coated with organic matter stick quite easily, even at speeds up to 5 m/s -an order of magnitude higher than the speed at which silicate grains accrete [6]. Thus the organic grain coatings we identified likely played a critical role in dust aggregation in the early Solar System. References: [1] Ishii, H. et al. Science 2009. [2] Flynn, G. J. et al. (2003) Geochim. Cosmochim. Acta, 67, 4791-4806. [3] Keller L. P. et al. GCA (2004) Geochim. Cosmochim. Acta, 68, 2577-2589. [4] Bernstein, M. P. et al. (1995) Astrophys. J., 454, 327-344. [5] Hartmann, W. K. (1978) Icarus, 33, 50-61. [6] Kudo, T. et al. (2002) Meteoritics Planet. Sci., 37, 1975-1983.

  5. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  6. Towards a Global Names Architecture: The future of indexing scientific names

    PubMed Central

    Pyle, Richard L.

    2016-01-01

    Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inaccessible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit microscopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade. The rapid evolution in recent decades of computer database management software, and of information dissemination via the Internet, have both dramatically improved the potential for streamlining the entire taxonomic process. Unfortunately, the potential still largely exceeds the reality. The vast majority of taxonomic information is either not yet digitized, or digitized in a form that does not allow direct and easy access. Moreover, the information that is easily accessed in digital form is not yet seamlessly interconnected. In an effort to bring reality closer to potential, a loose affiliation of major taxonomic resources, including GBIF, the Encyclopedia of Life, NBII, Catalog of Life, ITIS, IPNI, ICZN, Index Fungorum, and many others have been crafting a “Global Names Architecture” (GNA). The intention of the GNA is not to replace any of the existing taxonomic data initiatives, but rather to serve as a dynamic index to interconnect them in a way that streamlines the entire taxonomic enterprise: from gathering specimens in the field, to publication of new taxa and related data. PMID:26877664

  7. Towards a Global Names Architecture: The future of indexing scientific names.

    PubMed

    Pyle, Richard L

    2016-01-01

    For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inaccessible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit microscopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all - which we are still in the midst of, and which has not yet been fully realized - is the means by which taxonomists manage and communicate the information of their trade. The rapid evolution in recent decades of computer database management software, and of information dissemination via the Internet, have both dramatically improved the potential for streamlining the entire taxonomic process. Unfortunately, the potential still largely exceeds the reality. The vast majority of taxonomic information is either not yet digitized, or digitized in a form that does not allow direct and easy access. Moreover, the information that is easily accessed in digital form is not yet seamlessly interconnected. In an effort to bring reality closer to potential, a loose affiliation of major taxonomic resources, including GBIF, the Encyclopedia of Life, NBII, Catalog of Life, ITIS, IPNI, ICZN, Index Fungorum, and many others have been crafting a "Global Names Architecture" (GNA). The intention of the GNA is not to replace any of the existing taxonomic data initiatives, but rather to serve as a dynamic index to interconnect them in a way that streamlines the entire taxonomic enterprise: from gathering specimens in the field, to publication of new taxa and related data.

  8. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    PubMed

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. Next Generation, 4-D Distributed Modeling and Visualization of Battlefield

    DTIC Science & Technology

    2006-07-14

    accurate. However, the effectiveness of such a view is determined by its usability. If the picture contained all the information that had been...major key to success in such missions is the ability to model real-world urban areas accurately and effectively , so as to support US military mission...primitives (including the standard CG primitives such as plane, cube, wedge, polyhedron, cylinder and sphere, and high-order surface primitives such as

  10. A Guide to FASTGEN Target Geometric Modeling

    DTIC Science & Technology

    1993-10-01

    component part is described in plate mode. These rules apply to all primitives with the exception of rod mode primitives which are always accompanied by a...format. A detailed discussion of the rules for preparing the target description file, where components are described using primitives defined as triangles...NN position is 99, the diameter of a rod mode component is limited to a maximum of 1.98-inches. Theie are several rules and cautions associated with

  11. Hydrostatic calculations of axisymmetric flow and its stability for the AGCE model

    NASA Technical Reports Server (NTRS)

    Miller, T. L.; Gall, R. L.

    1981-01-01

    Baroclinic waves in the atmospherics general circulation experiment (AGCE) apparatus by the use of numerical hydrostatic primitive equation models were determined. The calculation is accomplished by using an axisymmetric primitive equation model to compute, for a given set of experimental parameters, a steady state axisymmetric flow and then testing this axisymmetric flow for stability using a linear primitive equation model. Some axisymmetric flows are presented together with preliminary stability calculations.

  12. Primitive neuroectodermal tumor of the cervix: a case report

    PubMed Central

    2011-01-01

    Introduction Peripheral primitive neuroectodermal tumor of the cervix uteri is extremely rare. Between 1987 and 2010, there were only nine cases reported in the English literature, with considerably different management policies. Case presentation A 45-year-old Iranian woman presented to our facility with a primitive neuroectodermal tumor of the cervix uteri. Her clinical stage IB2 tumor was treated successfully with chemotherapy. Our patient underwent radical hysterectomy. There was no trace of the tumor after four years of follow-up. Conclusions According to current knowledge, primitive neuroectodermal tumors belong to the Ewing's sarcoma family, and the improvement of treatment outcome in our patient was due to dose-intensive neoadjuvant chemotherapy, surgery and consolidation chemotherapy in accordance with the protocol for bony Ewing's sarcoma. PMID:21962148

  13. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  14. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis.

    PubMed

    Hu, Yi-Bing; Sosso, Davide; Qu, Xiao-Qing; Chen, Li-Qing; Ma, Lai; Chermak, Diane; Zhang, De-Chun; Frommer, Wolf B

    2016-10-01

    SWEETs represent a new class of sugar transporters first described in plants, animals, and humans and later in prokaryotes. Plant SWEETs play key roles in phloem loading, seed filling, and nectar secretion, whereas the role of archaeal, bacterial, and animal transporters remains elusive. Structural analyses show that eukaryotic SWEETs are composed of 2 triple-helix bundles (THBs) fused via an inversion linker helix, whereas prokaryotic SemiSWEETs contain only a single THB and require homodimerization to form transport pores. This study indicates that SWEETs retained sugar transport activity in all kingdoms of life, and that SemiSWEETs are likely their ancestral units. Fusion of oligomeric subunits into single polypeptides during evolution of eukaryotes is commonly found for transporters. Phylogenetic analyses indicate that THBs of eukaryotic SWEETs may not have evolved by tandem duplication of an open reading frame, but rather originated by fusion between an archaeal and a bacterial SemiSWEET, which potentially explains the asymmetry of eukaryotic SWEETs. Moreover, despite the ancient ancestry, SWEETs had not been identified in fungi or oomycetes. Here, we report the identification of SWEETs in oomycetes as well as SWEETs and a potential SemiSWEET in primitive fungi. BdSWEET1 and BdSWEET2 from Batrachochytrium dendrobatidis, a nonhyphal zoosporic fungus that causes global decline in amphibians, showed glucose and fructose transport activities.-Hu, Y.-B., Sosso, D., Qu, X.-Q., Chen, L.-Q., Ma, L., Chermak, D., Zhang, D.-C., Frommer, W. B. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis. © FASEB.

  15. A molecular phylogeny of the nightjars (Aves: Caprimulgidae) suggests extensive conservation of primitive morphological traits across multiple lineages.

    PubMed

    Larsen, Carl; Speed, Michael; Harvey, Nicholas; Noyes, Harry A

    2007-03-01

    We report a molecular re-assessment of the classification of the nightjars which draws conclusions that are strongly at odds with the traditional, morphology-based classifications. We used maximum likelihood and Bayesian methods to compare the cytochrome b gene for 14 species from seven of the 15 genera of the Caprimulgidae and partial cytochrome b sequence data was available for a further seven species including three further genera. We found that within the Caprimulgidae there were four geographically isolated clades with bootstrap support greater than 70%. One of these clades contained just Chordeiles species, the remaining three clades each contained a mixture of genera including Caprimulgus sp. A clade of exclusively South American nightjars included the genera Caprimulgus, Uropsalis, Eleopthreptus and Hydropsalis. A clade of African and Eurasian birds included Caprimulgus and Macrodipteryx. Phalaenoptilus nuttallii and Caprimulgus vociferous formed a clade of North American birds. Two ecological factors appear to make morphological classification potentially misleading: first, the apparent retention of primitive anti-predator and foraging-related traits across genetically divergent groups; second, rapid divergence in other traits, especially those related to mating, which generate high levels of morphological divergence between species that are genetically very similar. The cytochrome b data suggests that the genus Caprimulgus is not monophyletic and is restricted to Africa and Eurasia and that Caprimulgus species from outside this area have been misclassified as a consequence of retention of primitive adaptations for crepuscular/nocturnal living. Some other genera also appear to have little support from the cytochrome b data.

  16. Oxygen isotope and trace element compositions of platiniferous dunite pipes of the Bushveld Complex, South Africa - Signals from a recycled mantle component?

    NASA Astrophysics Data System (ADS)

    Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.

    2018-06-01

    Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.

  17. Enceladus: a Cradle of Life of the Solar System?

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    Introduction: Enceladus is a medium sized icy sat-ellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. Enceladus with its radius of 250 km is one of the smallest of MIS, however, contrary to the rest of them, it is geologically active. According to [1]: “For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, […] to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean” (see also [2]). We consider here conditions for origin of life in the early Enceladus and later proliferation of the life. Mass of serpentinite: The serpentinization on the Earth is often considered with hydrothermal activity in neovolcanic zones along mid-oceanic spreading cen-ters. The total length of present spreading centers is ~80 000 km. However, only in small part of them the hydrothermal activity really occurs. Even if in Hadean oceans the hydrothermal activity was more widespread, still only small part of terrestrial rocks could be serpen-tinized. After [3] we consider the following reaction of serpentinization: Mg2SiO4 (forsterite) + MgSiO3 (enstatite) + 2H2O --> Mg3Si2O5(OH)4 (antigorite). This reaction releases 241 000 J per kg of serpen-tine produced. A simple calculations (e.g. [3]) indicate that mass fraction of silicates fmas in Enceladus is ~0.646, hence the total mass of its silicate is ~6.97 1019 kg. [4] considered the process of differenrtiation and core forming in Enceladus. He found that the result of differentiation is a relatively cold core of loosely packed grains with water between them. At that time, there is not mechanism of removing the water. Since terrestrial rocks are permeable up to the pressure of ~300 MPa then the entire core of Enceladus was probably permeable for liquids and gases. This could lead to formation of extensive hydrothermal convective systems. Note that in Enceladus most of silicate could be serpetenized (contrary to the Earth). It indicates that total mass of serpententinized silicate in Enceladus could be larger than on the Earth. T-p conditions in Enceladus: The pressure in the center of Enceladus is ~2.3 107 Pa that correspond to pressure on the depth 2300 m in the terrestrial ocean. The evolution of temperature in the Enceladus inte-rior for the first a few hundreds Myr is given in Fig. 1 (no tidal heating is included). Note that for tini = 2.4 or 3.0 My, the temperature allows for existing the life even in the center of the satellite. It is possible that for hun-dreds of Myr the conditions in the interior of Enceladus were more favorable for origin of life than on the Earth. Proliferation of life: We do not know the prob-ability of life origin. The life could be a common phe-nomenon originating in relatively short time if condi-tions are favorable. However, it is possible also that the life had originated only one time in the Universe. If this option is true then the transport of primitive organism is critical. The low gravity of the Enceladus and its volcanic activity make this transport possible. Note that the low temperature of plumes does not kill the organ-ism. The primitive bacteria could leave the Enceladus with volcanic jets in the same way as particles of the E ring. Therefore it is possible that the Enceladus was a cradle of the life in the Solar System. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). References: [1] Russell, M. J., Hall, A. J., And Martin W. (2010). Geobiology (2010), 8, 355-371. [2] Izawa M.R.M. et al. (2010). Planet. Space Sci. 58, 583-591. [3] Abramov, O., Mojzsis, S.J., (2011) Icarus 213, 273-279. [4] Czechowski, L. (2013) Submitted.

  18. Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Durisen, R. H.

    2005-03-01

    Chondrules are millimeter-sized spherules found throughout primitive chondritic meteorites. Flash heating by a shock front is the leading explanation of their formation. However, identifying a mechanism for creating shock fronts inside the solar nebula has been difficult. In a gaseous disk capable of forming Jupiter, the disk must have been marginally gravitationally unstable at and beyond Jupiter's orbit. We show that this instability can drive inward spiral shock fronts with shock speeds of up to ~10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. The mixing and transport of solids in such a disk, combined with the planet-forming tendencies of gravitational instabilities, results in a unified scenario linking chondrite production with gas giant planet formation.

  19. ARCGRAPH SYSTEM - AMES RESEARCH GRAPHICS SYSTEM

    NASA Technical Reports Server (NTRS)

    Hibbard, E. A.

    1994-01-01

    Ames Research Graphics System, ARCGRAPH, is a collection of libraries and utilities which assist researchers in generating, manipulating, and visualizing graphical data. In addition, ARCGRAPH defines a metafile format that contains device independent graphical data. This file format is used with various computer graphics manipulation and animation packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). In its full configuration, the ARCGRAPH system consists of a two stage pipeline which may be used to output graphical primitives. Stage one is associated with the graphical primitives (i.e. moves, draws, color, etc.) along with the creation and manipulation of the metafiles. Five distinct data filters make up stage one. They are: 1) PLO which handles all 2D vector primitives, 2) POL which handles all 3D polygonal primitives, 3) RAS which handles all 2D raster primitives, 4) VEC which handles all 3D raster primitives, and 5) PO2 which handles all 2D polygonal primitives. Stage two is associated with the process of displaying graphical primitives on a device. To generate the various graphical primitives, create and reprocess ARCGRAPH metafiles, and access the device drivers in the VDI (Video Device Interface) library, users link their applications to ARCGRAPH's GRAFIX library routines. Both FORTRAN and C language versions of the GRAFIX and VDI libraries exist for enhanced portability within these respective programming environments. The ARCGRAPH libraries were developed on a VAX running VMS. Minor documented modification of various routines, however, allows the system to run on the following computers: Cray X-MP running COS (no C version); Cray 2 running UNICOS; DEC VAX running BSD 4.3 UNIX, or Ultrix; SGI IRIS Turbo running GL2-W3.5 and GL2-W3.6; Convex C1 running UNIX; Amhdahl 5840 running UTS; Alliant FX8 running UNIX; Sun 3/160 running UNIX (no native device driver); Stellar GS1000 running Stellex (no native device driver); and an SGI IRIS 4D running IRIX (no native device driver). Currently with version 7.0 of ARCGRAPH, the VDI library supports the following output devices: A VT100 terminal with a RETRO-GRAPHICS board installed, a VT240 using the Tektronix 4010 emulation capability, an SGI IRIS turbo using the native GL2 library, a Tektronix 4010, a Tektronix 4105, and the Tektronix 4014. ARCGRAPH version 7.0 was developed in 1988.

  20. An experimental distributed microprocessor implementation with a shared memory communications and control medium

    NASA Technical Reports Server (NTRS)

    Mejzak, R. S.

    1980-01-01

    The distributed processing concept is defined in terms of control primitives, variables, and structures and their use in performing a decomposed discrete Fourier transform (DET) application function. The design assumes interprocessor communications to be anonymous. In this scheme, all processors can access an entire common database by employing control primitives. Access to selected areas within the common database is random, enforced by a hardware lock, and determined by task and subtask pointers. This enables the number of processors to be varied in the configuration without any modifications to the control structure. Decompositional elements of the DFT application function in terms of tasks and subtasks are also described. The experimental hardware configuration consists of IMSAI 8080 chassis which are independent, 8 bit microcomputer units. These chassis are linked together to form a multiple processing system by means of a shared memory facility. This facility consists of hardware which provides a bus structure to enable up to six microcomputers to be interconnected. It provides polling and arbitration logic so that only one processor has access to shared memory at any one time.

Top