NASA Technical Reports Server (NTRS)
Glaisner, F.; Tezduyar, T. E.
1987-01-01
Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
A dual potential formulation of the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Gegg, S. G.; Pletcher, R. H.; Steger, J. L.
1989-01-01
A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P. T.
1993-09-01
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Provingmore » this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H 1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.« less
A boundary integral approach in primitive variables for free surface flows
NASA Astrophysics Data System (ADS)
Casciola, C.; Piva, R.
The boundary integral formulation, very efficient for free surface potential flows, was considered for its possible extension to rotational flows either inviscid or viscous. We first analyze a general formulation for unsteady Navier-Stokes equations in primitive variables, which reduces to a representation for the Euler equations in the limiting case of Reynolds infinity. A first simplified model for rotational flows, obtained by decoupling kinematics and dynamics, reduces the integral equations to a known kinematical form whose mathematical and numerical properties have been studied. The dynamics equations to complete the model are obtained for the free surface and the wake. A simple and efficient scheme for the study of the non linear evolution of the wave system and its interaction with the body wake is presented. A steady state version for the calculation of the wave resistance is also reported. A second model was proposed for the simulation of rotational separated regions, by coupling the integral equations in velocity with an integral equation for the vorticity at the body boundary. The same procedure may be extended to include the diffusion of the vorticity in the flowfield. The vortex shedding from a cylindrical body in unsteady motion is discussed, as a first application of the model.
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Computation of viscous incompressible flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
1989-01-01
Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.
A Global Interpolation Function (GIF) boundary element code for viscous flows
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Lafe, O.; Cheng, A. H-D.
1995-01-01
Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.
A defect stream function, law of the wall/wake method for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.
1989-01-01
The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.
Adaptive finite element method for turbulent flow near a propeller
NASA Astrophysics Data System (ADS)
Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois
1994-11-01
This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.
Probabilistic structural analysis of a truss typical for space station
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.
1990-01-01
A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1991-01-01
The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
NASA Technical Reports Server (NTRS)
Ghia, K. N.; Ghia, U.
1996-01-01
The first major area of this study was to develop a vorticity-velocity formulation and numerical solution algorithms suitable for the analyses of incompressible as well as low-to- moderate-speed compressible flows. Research performed towards contributing to the determination of the appropriate vorticity and dilation creation boundary conditions suggested to temporarily set aside this approach and use a primitive-variable approach other than the pseudo-compressibility approach used. The second major area of study was initiated to comprehensively examine the INS-2D and INS-3D programs from the point of view of boundary conditions. The research carried out was documented in the form of two technical papers which are included in Appendices A and B; the boundary-condition related issues for INS-3D are briefly mentioned.
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Dumbser, Michael
2016-01-01
We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
Distributed Relaxation for Conservative Discretizations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2001-01-01
A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.
Formulation of Efficient Finite Element Prediction Models.
1980-01-01
vorticity-divergence FEM formulation. This paper will compare these FEM formulations by considering the Vgeostrophic adjustment process with the linearized...by Fourier transforming the terms that are independent of t in (2.12)-(2.14) or (2.19)-(2.21). However, in this paper the final state will be...filtering in a baroclinic primitive equation model. 17 L . , 5. Conclusions The objective of this paper is to determine the response of various finite
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
NASA Technical Reports Server (NTRS)
Pinckney, John
2010-01-01
With the advent of high speed computing Monte Carlo ray tracing techniques has become the preferred method for evaluating spacecraft orbital heats. Monte Carlo has its greatest advantage where there are many interacting surfaces. However Monte Carlo programs are specialized programs that suffer from some inaccuracy, long calculation times and high purchase cost. A general orbital heating integral is presented here that is accurate, fast and runs on MathCad, a generally available engineering mathematics program. The integral is easy to read, understand and alter. The integral can be applied to unshaded primitive surfaces at any orientation. The method is limited to direct heating calculations. This integral formulation can be used for quick orbit evaluations and spot checking Monte Carlo results.
Learning multivariate distributions by competitive assembly of marginals.
Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald
2013-02-01
We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.
A Preliminary Model Study of the Large-Scale Seasonal Cycle in Bottom Pressure Over the Global Ocean
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
1998-01-01
Output from the primitive equation model of Semtner and Chervin is used to examine the seasonal cycle in bottom pressure (Pb) over the global ocean. Effects of the volume-conserving formulation of the model on the calculation Of Pb are considered. The estimated seasonal, large-scale Pb signals have amplitudes ranging from less than 1 cm over most of the deep ocean to several centimeters over shallow, boundary regions. Variability generally increases toward the western sides of the basins, and is also larger in some Southern Ocean regions. An oscillation between subtropical and higher latitudes in the North Pacific is clear. Comparison with barotropic simulations indicates that, on basin scales, seasonal Pb variability is related to barotropic dynamics and the seasonal cycle in Ekman pumping, and results from a small, net residual in mass divergence from the balance between Ekman and Sverdrup flows.
Concept-based query language approach to enterprise information systems
NASA Astrophysics Data System (ADS)
Niemi, Timo; Junkkari, Marko; Järvelin, Kalervo
2014-01-01
In enterprise information systems (EISs) it is necessary to model, integrate and compute very diverse data. In advanced EISs the stored data often are based both on structured (e.g. relational) and semi-structured (e.g. XML) data models. In addition, the ad hoc information needs of end-users may require the manipulation of data-oriented (structural), behavioural and deductive aspects of data. Contemporary languages capable of treating this kind of diversity suit only persons with good programming skills. In this paper we present a concept-oriented query language approach to manipulate this diversity so that the programming skill requirements are considerably reduced. In our query language, the features which need technical knowledge are hidden in application-specific concepts and structures. Therefore, users need not be aware of the underlying technology. Application-specific concepts and structures are represented by the modelling primitives of the extended RDOOM (relational deductive object-oriented modelling) which contains primitives for all crucial real world relationships (is-a relationship, part-of relationship, association), XML documents and views. Our query language also supports intensional and extensional-intensional queries, in addition to conventional extensional queries. In its query formulation, the end-user combines available application-specific concepts and structures through shared variables.
Aguayo-Ortiz, A; Mendoza, S; Olvera, D
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.
Mendoza, S.; Olvera, D.
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh
1998-01-01
An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.
GRBs as standard candles: There is no “circularity problem” (and there never was)
NASA Astrophysics Data System (ADS)
Graziani, Carlo
2011-02-01
Beginning with the 2002 discovery of the "Amati Relation" of GRB spectra, there has been much interest in the possibility that this and other correlations of GRB phenomenology might be used to make GRBs into standard candles. One recurring apparent difficulty with this program has been that some of the primary observational quantities to be fit as "data" - to wit, the isotropic-equivalent prompt energy Eiso and the collimation-corrected "total" prompt energy Eγ - depend for their construction on the very cosmological models that they are supposed to help constrain. This is the so-called "circularity problem" of standard candle GRBs. This paper is intended to point out that the circularity problem is not in fact a problem at all, except to the extent that it amounts to a self-inflicted wound. It arises essentially because of an unfortunate choice of data variables - "source-frame" variables such as Eiso, which are unnecessarily encumbered by cosmological considerations. If, instead, the empirical correlations of GRB phenomenology which are formulated in source-variables are mapped to the primitive observational variables (such as fluence) and compared to the observations in that space, then all taint of circularity disappears. I also indicate here a set of procedures for encoding high-dimensional empirical correlations (such as between Eiso, Epk(src),tjet(src), and T45(src)) in a "Gaussian Tube" smeared model that includes both the correlation and its intrinsic scatter, and how that source-variable model may easily be mapped to the space of primitive observables, to be convolved with the measurement errors and fashioned into a likelihood. I discuss the projections of such Gaussian tubes into sub-spaces, which may be used to incorporate data from GRB events that may lack some element of the data (for example, GRBs without ascertained jet-break times). In this way, a large set of inhomogeneously observed GRBs may be assimilated into a single analysis, so long as each possesses at least two correlated data attributes.
Nongeostrophic theory of zonally averaged circulation. I - Formulation
NASA Technical Reports Server (NTRS)
Tung, Ka Kit
1986-01-01
A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
NASA Astrophysics Data System (ADS)
Báez, Elsa; Nicolás, Alfredo
2013-11-01
Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a new direct projection method on the Boussinesq approximation in primitive variables. The study deals with “cat's eyes” instabilities and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. The flows are validated with those reported before using the stream function-vorticity variables. New cases, A=12 and 20 varying ϕ, lead to get more insight on the physical phenomenon.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures
NASA Astrophysics Data System (ADS)
Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.
2017-12-01
Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents the deepest, hottest and lowest viscosity magma of all the samples considered. [1] Jennings E. S., Gibson S. A., Maclennan J. and Heinonen J. S. (2017) Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas. Geochimica et Cosmochimica Acta 196, 36-57.
NASA Astrophysics Data System (ADS)
Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.
2002-12-01
Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.
Development of an Instrument for Assessing the Effectiveness of Chemistry Classroom Teaching
NASA Astrophysics Data System (ADS)
Zheng, Changlong; Fu, Lihai; He, Peng
2014-04-01
Classroom teaching is a main frontier of the implementation of new curricular ideas in China. The study reported in this article is concerned with the effectiveness of system of classroom teaching (SCT) in chemistry lessons. According to the Systems Science theory, we took a macroscopic view on the SCT, arguing that SCT is a hierarchy of system, which includes class system, plate system, unit system, and primitive system. In this study, we focused on primitive system of classroom teaching (PrS)—the lowest level in a SCT. Using focus group interviews, this study investigated the variables related to the effectiveness of PrS. We found a total of 21 such variables. To identify the main factors underlying the effectiveness of PrS, we further used exploratory factor analysis and confirmatory factor analysis. We found five main factors: rational use of time, quality of teaching behavior chain, match degree, quality of using resource and technology, and rationality of primitive content. Based on these findings, we constructed an evaluation scale for assessing the effectiveness of primitive system of chemistry classroom teaching.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1982-01-01
A conservative flux difference splitting is presented for the hyperbolic systems of gasdynamics. The stable robust method is suitable for wide application in a variety of schemes, explicit or implicit, iterative or direct, for marching in either time or space. The splitting is modeled on the local quasi one dimensional characteristics system for multi-dimensional flow similar to Chakravarthy's nonconservative split coefficient matrix method; but, as the result of maintaining global conservation, the method is able to capture sharp shocks correctly. The embedded characteristics formulation is cast in a primitive variable the volumetric internal energy (rather than the pressure) that is effective for treating real as well as perfect gases. Finally the relationship of the splitting to characteristics boundary conditions is discussed and the associated conservative matrix formulation for a computed blown wall boundary condition is developed as an example. The theoretical development employs and extends the notion of Roe of constructing stable upwind difference formulae by sending split simple one sided flux difference pieces to appropriate mesh sites. The developments are also believed to have the potential for aiding in the analysis of both existing and new conservative difference schemes.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.
Beyond ideal magnetohydrodynamics: from fibration to 3 + 1 foliation
NASA Astrophysics Data System (ADS)
Andersson, N.; Hawke, I.; Dionysopoulou, K.; Comer, G. L.
2017-06-01
We consider a resistive multi-fluid framework from the 3 + 1 space-time foliation point-of-view, paying particular attention to issues relating to the use of multi-parameter equations of state and the associated inversion from evolved to primitive variables. We highlight relevant numerical issues that arise for general systems with relative flows. As an application of the new formulation, we consider a three-component system relevant for hot neutron stars. In this case we let the baryons (neutrons and protons) move together, but allow heat and electrons to exhibit relative flow. This reduces the problem to three momentum equations; overall energy-momentum conservation, a generalised Ohm’s law and a heat equation. Our results provide a hierarchy of increasingly complex models and prepare the ground for new state-of-the-art simulations of relevant scenarios in relativistic astrophysics.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1989-01-01
A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
Probabilistic evaluation of fuselage-type composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1992-01-01
A methodology is developed to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, ply, laminate and structural levels. This methodology is implemented in the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. A fuselage-type composite structure is analyzed to demonstrate the code's capability. The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages
Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro
2017-01-01
Abstract Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. PMID:28369657
Propagation of eigenmodes and transfer functions in waveguide WDM structures
NASA Astrophysics Data System (ADS)
Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk
1998-02-01
A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.
Numerical simulation using vorticity-vector potential formulation
NASA Technical Reports Server (NTRS)
Tokunaga, Hiroshi
1993-01-01
An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.
A numerical study of the string function using a primitive equation ocean model
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Käse, R.
We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.
Zonally averaged model of dynamics, chemistry and radiation for the atmosphere
NASA Technical Reports Server (NTRS)
Tung, K. K.
1985-01-01
A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to zonal velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean zonal flow but reveals that the mean meridional velocity is in general ageostrophic.
Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages.
Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro; Imai, Kenichiro
2017-07-01
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases' evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cloud Library for Directed Probabilistic Graphical Models
2014-10-01
integrated into popular big - data analytical software like Hive to lower developer friction, leveraging both the data access primitives in Hive and BayesDB...Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way...obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder
Probabilistic lifetime strength of aerospace materials via computational simulation
NASA Technical Reports Server (NTRS)
Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.
1991-01-01
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.
On cat's eyes and multiple disjoint cells natural convection flow in tall tilted cavities
NASA Astrophysics Data System (ADS)
Báez, Elsa; Nicolás, Alfredo
2014-10-01
Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a direct projection method applied on the unsteady Boussinesq approximation in primitive variables. The study is focused on the so called cat's eyes and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. Results have already been reported with primitive and stream function-vorticity variables. The former are validated with the latter ones, which in turn were validated through mesh size and time-step independence studies. The new results complemented with the previous ones lead to find out the fluid motion and heat transfer invariant properties of this thermal phenomenon, which is the novelty here.
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Verification of Concurrent Programs. Part II. Temporal Proof Principles.
1981-09-01
not modify any of the shared program variables. In order to ensure the correct synchronization between the processes we use three semaphore variables...direct, simple, and intuitive rides for the establishment of these properties. rhey usually replace long but repetitively similar chains of primitive ...modify the variables on which Q actually depends. A typical case is that of semaphores . We have the following property: The Semaphore Variable Rule
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel
1992-01-01
A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.
Assessment of WENO-extended two-fluid modelling in compressible multiphase flows
NASA Astrophysics Data System (ADS)
Kitamura, Keiichi; Nonomura, Taku
2017-03-01
The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis.
Rosas, Antonio; Ferrando, Anabel; Bastir, Markus; García-Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; García-Martínez, Daniel; Pastor, Juan Francisco; de la Rasilla, Marco
2017-10-01
The El Sidrón tali sample is assessed in an evolutionary framework. We aim to explore the relationship between Neandertal talus morphology and body size/shape. We test the hypothesis 1: talar Neandertal traits are influenced by body size, and the hypothesis 2: shape variables independent of body size correspond to inherited primitive features. We quantify 35 landmarks through 3D geometric morphometrics techniques to describe H. neanderthalensis-H. sapiens shape variation, by Mean Shape Comparisons, Principal Component, Phenetic Clusters, Minimum spanning tree analyses and partial least square and regression of talus shape on body variables. Shape variation correlated to body size is compared to Neandertals-Modern Humans (MH) evolutionary shape variation. The Neandertal sample is compared to early hominins. Neandertal talus presents trochlear hypertrophy, a larger equality of trochlear rims, a shorter neck, a more expanded head, curvature and an anterior location of the medial malleolar facet, an expanded and projected lateral malleolar facet and laterally expanded posterior calcaneal facet compared to MH. The Neandertal talocrural joint morphology is influenced by body size. The other Neandertal talus traits do not co-vary with it or not follow the same co-variation pattern as MH. Besides, the trochlear hypertrophy, the trochlear rims equality and the short neck could be inherited primitive features; the medial malleolar facet morphology could be an inherited primitive feature or a secondarily primitive trait; and the calcaneal posterior facet would be an autapomorphic feature of the Neandertal lineage. © 2017 Wiley Periodicals, Inc.
Numerical Procedures for Inlet/Diffuser/Nozzle Flows
NASA Technical Reports Server (NTRS)
Rubin, Stanley G.
1998-01-01
Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein.
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
Palazzi, Carlo; D'Amico, Emilio; D'Angelo, Salvatore; Gilio, Michele; Olivieri, Ignazio
2016-01-28
Hepatitis C virus (HCV) is a hepato- and lymphotropic agent that is able to induce several autoimmune rheumatic disorders: vasculitis, sicca syndrome, arthralgias/arthritis and fibromyalgia. The severity of clinical manifestations is variable and sometimes life-threatening. HCV infection can mimic many primitive rheumatic diseases, therefore, it is mandatory to distinguish HCV-related manifestations from primitive ones because the prognosis and therapeutic strategies can be fairly dissimilar. The new direct-acting antivirals drugs can help to avoid the well-known risks of worsening or new onset of autoimmune diseases during the traditional interferon-based therapies.
Mangwandi, Chirangano; Adams, Michael J; Hounslow, Michael J; Salman, Agba D
2012-05-10
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brill, K. F.; Uccellini, L. W.; Burkhart, R. P.; Warner, T. T.; Anthes, R. A.
1985-01-01
A numerical study was performed of a severe weather event (tornado) which occurred on May 10, 1973 in the Ohio region. The situation was modeled with a primitive equation mesoscale dynamic formulation. Account was taken of precipitation, the planetary boundary layer parameters as bulk quantities, the vertical pressure gradient, and lateral boundary conditions based on radiosonde data. Two 12-hr simulations, adiabatic and nondivergent, respectively, were analyzed for relationships between upper and lower level jets. In the adiabatic formulation, a transverse circulation with a low level jet formed at the exit region of the upper level jet. The nondivergent situation led to similar, but weaker, phenomena. Both forms suggest that indirect circulation in the exit zone of an upper level jet is strongly influenced by the initial structure of the jet.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Raghunath, R.; Fu, L. L.
1996-01-01
The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.
NASA Astrophysics Data System (ADS)
Gleißner, P.; Becker, H.
2017-05-01
Abundances of HSE, Te, Se, and S in ancient lunar impactites constrain accretion of differentiated and primitive material (including carbonaceous chondrite-like material) and variable mixing of their compositions on the lunar surface.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
On computations of the integrated space shuttle flowfield using overset grids
NASA Technical Reports Server (NTRS)
Chiu, I-T.; Pletcher, R. H.; Steger, J. L.
1990-01-01
Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield.
Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1996-01-01
A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
ERIC Educational Resources Information Center
Beardslee, Edward Clarke
The purpose of the study was to examine the effect of instruction using Dienes' perceptual variability principles on primitive generalization and mathematical generalization. The following was studied: the effect of achievement-to-criterion on one, two, or three non-symbolic embodiments of an objective using a selected class of variables on the…
Learning abstract visual concepts via probabilistic program induction in a Language of Thought.
Overlan, Matthew C; Jacobs, Robert A; Piantadosi, Steven T
2017-11-01
The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.
2018-02-01
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.
NASA Astrophysics Data System (ADS)
Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.
2018-02-01
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Choice of Variables and Preconditioning for Time Dependent Problems
NASA Technical Reports Server (NTRS)
Turkel, Eli; Vatsa, Verr N.
2003-01-01
We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.
Clynne, M.A.; Borg, L.E.
1997-01-01
Chromian spinel and coexisting olivine phenocrysts from a geochemically diverse suite of primitive tholeiitic and calc-alkaline basalts and magnesian andesites from the Lassen region, in the southernmost Cascade Range, in California, show that the sub-arc mantle is zoned. Depleted calc-alkaline basalts and magnesian andesites erupt in the forearc region, and calc-alkaline basalts contain increasing abundances of incompatible elements toward the backarc. High-alumina olivine tholeiites erupt from the arc and backarc areas. Olivine from all these lavas displays a limited compositional range, from Fo86 to Fo91, and crystallized at high temperature, generally 1225-1275??C. Chromian spinel trapped in the olivine phenocrysts displays a large range of composition: Cr# values span the range 9-76. Excess Al in the spinel relative to that in 1-atm spinel suggests that it crystallized at elevated pressure. The phenocrysts in these lavas are in equilibrium with their host liquids. The full range of Cr# of the spinel compositions cannot be explained by differentiation or variable pressure, variations in f(O2), subsolidus equilibration or variations in degree of partial melting of a single peridotitic source. Rather, the systematic compositional differences among phenocrysts in these primitive lavas result from bulk chemical variability in their mantle sources. Correlations between spinel and host-rock compositions support the assertion that the geochemical diversity of Lassen basalts reflects the relative fertility of their mantle sources.
Optimisation of an idealised primitive equation ocean model using stochastic parameterization
NASA Astrophysics Data System (ADS)
Cooper, Fenwick C.
2017-05-01
Using a simple parameterization, an idealised low resolution (biharmonic viscosity coefficient of 5 × 1012 m4s-1 , 128 × 128 grid) primitive equation baroclinic ocean gyre model is optimised to have a much more accurate climatological mean, variance and response to forcing, in all model variables, with respect to a high resolution (biharmonic viscosity coefficient of 8 × 1010 m4s-1 , 512 × 512 grid) equivalent. For example, the change in the climatological mean due to a small change in the boundary conditions is more accurate in the model with parameterization. Both the low resolution and high resolution models are strongly chaotic. We also find that long timescales in the model temperature auto-correlation at depth are controlled by the vertical temperature diffusion parameter and time mean vertical advection and are caused by short timescale random forcing near the surface. This paper extends earlier work that considered a shallow water barotropic gyre. Here the analysis is extended to a more turbulent multi-layer primitive equation model that includes temperature as a prognostic variable. The parameterization consists of a constant forcing, applied to the velocity and temperature equations at each grid point, which is optimised to obtain a model with an accurate climatological mean, and a linear stochastic forcing, that is optimised to also obtain an accurate climatological variance and 5 day lag auto-covariance. A linear relaxation (nudging) is not used. Conservation of energy and momentum is discussed in an appendix.
Bae, Hyun W; Zhao, Li; Kanim, Linda E A; Wong, Pamela; Delamarter, Rick B; Dawson, Edgar G
2006-05-20
Enzyme-linked immunosorbent assay was used to detect bone morphogenetic proteins (BMPs) 2, 4, and 7 in 9 commercially available ("off the shelf") demineralized bone matrix (DBM) product formulations using 3 different manufacturer's production lots of each DBM formulation. To evaluate and compare the quantity of BMPs among several different DBM formulations (inter-product variability), as well as examine the variability of these proteins in different production lots within the same DBM formulation (intra-product variability). DBMs are commonly used to augment available bone graft in spinal fusion procedures. Surgeons are presented with an ever-increasing variety of commercially available human DBMs from which to choose. Yet, there is limited information on a specific DBM product's osteoinductive efficacy, potency, and constancy. There were protein extracts from each DBM sample separately dialyzed 4 times against distilled water at 4 degrees C for 48 hours. The amount of BMP-2, BMP-4, and BMP-7 was determined using enzyme-linked immunosorbent assay. RESULTS.: The concentrations of detected BMP-2 and BMP-7 were low for all DBM formulations, only nanograms of BMP were extracted from each gram of DBM (20.2-120.6 ng BMP-2/g DBM product; 54.2-226.8 ng BMP-7/g DBM). The variability of BMP concentrations among different lots of the same DBM formulation, intra-product variability, was higher than the variability of concentrations among different DBM formulations, inter-product variability (coefficient of variation range BMP-2 [16.34% to 76.01%], P < 0.01; BMP-7 [3.71% to 82.08%], P < 0.001). BMP-4 was undetectable. The relative quantities of BMPs in DBMs are low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in concentration of BMPs among 3 different lots of the same DBM formulation than among different DBM formulations. This variability questions DBM products' reliability and, possibly, efficacy in providing consistent osteoinduction.
Comets and life in the Universe
NASA Technical Reports Server (NTRS)
Oro, J.; Mills, T.; Lazcano, A.
1995-01-01
The notion that comets supplied the primitive Earth with the requisite chemical species for the process of chemical evolution, which is widely held to have led to the origin of life on Earth, has now gained considerable intellectual momentum since its first formulation in 1961. The role of comets in the Earth's biogenesis has been thoroughly addressed in the literature. At this time, in light of a few recent findings, we present here a concise review of this topic together with a brief discussion of the possible role of cometary material in the origin of life elsewhere in the Universe.
Ultrastrukturelle Untersuchungen zur Morphologie und Genese der Spermien von Archaeogastropoda
NASA Astrophysics Data System (ADS)
Kohnert, R.; Storch, V.
1983-03-01
The sperm cells of Patella coerulea (Patellacea), Monodonta turbinata, and Gibbula tumida (Trochacea) were investigated by means of transmission electron microscopy. They belong to the primitive type (sensu Franzén) and have more features in common with primitive Bivalvia sperms than with Neritacea. Their head contains an apical acrosome and a roundish nucleus followed by 4 or 5 mitochondria and a centriolar apparatus which consists of two centrioles, one of which bears a flagellum. The sperm cells of Monodonta and Gibbula are very similar to each other and differ mainly in size; Patella exhibits more differences (very small acrosome, subacrosomal space, variable number of spherical mitochondria (origin of spermic dimorphism ?). The development of the sperm cells shows no peculiarities.
White, Robin R; Capper, Judith L
2014-03-01
The objective of this study was to use a precision nutrition model to simulate the relationship between diet formulation frequency and dairy cattle performance across various climates. Agricultural Modeling and Training Systems (AMTS) CattlePro diet-balancing software (Cornell Research Foundation, Ithaca, NY) was used to compare 3 diet formulation frequencies (weekly, monthly, or seasonal) and 3 levels of climate variability (hot, cold, or variable). Predicted daily milk yield (MY), metabolizable energy (ME) balance, and dry matter intake (DMI) were recorded for each frequency-variability combination. Economic analysis was conducted to calculate the predicted revenue over feed and labor costs. Diet formulation frequency affected ME balance and MY but did not affect DMI. Climate variability affected ME balance and DMI but not MY. The interaction between climate variability and formulation frequency did not affect ME balance, MY, or DMI. Formulating diets more frequently increased MY, DMI, and ME balance. Economic analysis showed that formulating diets weekly rather than seasonally could improve returns over variable costs by $25,000 per year for a moderate-sized (300-cow) operation. To achieve this increase in returns, an entire feeding system margin of error of <1% was required. Formulating monthly, rather than seasonally, may be a more feasible alternative as this requires a margin of error of only 2.5% for the entire feeding system. Feeding systems with a low margin of error must be developed to better take advantage of the benefits of precision nutrition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
1980-05-01
andcoptrpormigfrteublne nra ls fpoeue nacrac with Federal Standard 1003 fTelecommunications: Synchronous Bit Oriented Data Link Control Procedures...and the higher level user. The solution to the producer/consumer problem involves the use of PASS and SICHAL primitives and event variables or... semaphores . The event variables have been defined for the LS-microprocessor interface as part of I-1 the internal registers that are included in the F6856
2014-09-06
as the Riemann solver . The primitive-variable vector Ts kTwvupW ],,,,,,[ ω= is used in the reconstruction. The initial step in the PPM...University’s (NCSU) REACTMB flow solver is used in the present effort. REACTMB solves the Navier-Stokes equations governing a multi-component
First-Order System Least-Squares for the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.
NASA Astrophysics Data System (ADS)
Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.
2018-06-01
Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting
2015-12-01
To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca
Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less
Combination Chemotherapy in Treating Patients With Non-Metastatic Extracranial Ewing Sarcoma
2018-02-09
Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Supratentorial Primitive Neuroectodermal Tumor; Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Extraosseous Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Peripheral Primitive Neuroectodermal Tumor of the Kidney; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
NASA Astrophysics Data System (ADS)
Weller, D. J.; Stern, C. R.
2018-01-01
Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion in equilibrium with mantle olivine. Table S5. Melting parameters Fm and CoH2O. Table S6. Major element compositions of phenocrysts and glasses occurring with the olivine-hosted melt inclusions.
LEGO-MM: LEarning structured model by probabilistic loGic Ontology tree for MultiMedia.
Tang, Jinhui; Chang, Shiyu; Qi, Guo-Jun; Tian, Qi; Rui, Yong; Huang, Thomas S
2016-09-22
Recent advances in Multimedia ontology have resulted in a number of concept models, e.g., LSCOM and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few work explores the appropriate method to construct new concepts upon the existing models already in the warehouse. To address this issue, we propose a new framework in this paper, termed LEGO1-MM, which can seamlessly integrate both the new target training examples and the existing primitive concept models to infer the more complex concept models. LEGOMM treats the primitive concept models as the lego toy to potentially construct an unlimited vocabulary of new concepts. Specifically, we first formulate the logic operations to be the lego connectors to combine existing concept models hierarchically in probabilistic logic ontology trees. Then, we incorporate new target training information simultaneously to efficiently disambiguate the underlying logic tree and correct the error propagation. Extensive experiments are conducted on a large vehicle domain data set from ImageNet. The results demonstrate that LEGO-MM has significantly superior performance over existing state-of-the-art methods, which build new concept models from scratch.
Variable thickness transient ground-water flow model. Volume 1. Formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented.
On Synchronization Primitive Systems.
The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Rogers, Stuart E.
2002-01-01
This paper reviews recent progress made in incompressible Navier-Stokes simulation procedures and their application to problems of engineering interest. Discussions are focused on the methods designed for complex geometry applications in three dimensions, and thus are limited to primitive variable formulation. A summary of efforts in flow solver development is given followed by numerical studies of a few example problems of current interest. Both steady and unsteady solution algorithms and their salient features are discussed. Solvers discussed here are based on a structured-grid approach using either a finite -difference or a finite-volume frame work. As a grand-challenge application of these solvers, an unsteady turbopump flow simulation procedure has been developed which utilizes high performance computing platforms. In the paper, the progress toward the complete simulation capability of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of two parallel computing algorithms that have been implemented in the INS3D code. The relative motion of the grid systems for the rotorstator interaction was obtained using overact grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on SCSI Origin 3000 systems at NASA Ames Research Center. The same procedure has been extended to the development of NASA-DeBakey Ventricular Assist Device (VAD) that is based on an axial blood pump. Computational, and clinical analysis of this device are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patnaik, P. C.
The SIGMET mesoscale meteorology simulation code represents an extension, in terms of physical modelling detail and numerical approach, of the work of Anthes (1972) and Anthes and Warner (1974). The code utilizes a finite difference technique to solve the so-called primitive equations which describe transient flow in the atmosphere. The SIGMET modelling contains all of the physics required to simulate the time dependent meteorology of a region with description of both the planetary boundary layer and upper level flow as they are affected by synoptic forcing and complex terrain. The mathematical formulation of the SIGMET model and the various physicalmore » effects incorporated into it are summarized.« less
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
J. Michael Bowker; D. Murphy; H. Ken Cordell; Donald B.K. English; J.C. Bergstrom; C.M. Starbuck; C.J. Betz; G.T. Green
2006-01-01
This paper explores the influence of demographic and spatial variables on individual participation and consumption of wildland area recreation. Data from the National Survey on Recreation and the Environment are combined with geographical information systembased distance measures to develop nonlinear regression models used to predict both participation and the number...
ERIC Educational Resources Information Center
Haavelsrud, Magnus
A study was designed to test the hypothesis that different communication stages between nations--primitive, traditional, modern, and neomodern--provide important variables for explaining differences in pre-adults' conception of war in different countries. Although the two samples used in the study were drawn from two cultures which fall into the…
Formulation characteristics and in vitro release testing of cyclosporine ophthalmic ointments.
Dong, Yixuan; Qu, Haiou; Pavurala, Naresh; Wang, Jiang; Sekar, Vasanthakumar; Martinez, Marilyn N; Fahmy, Raafat; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming
2018-06-10
The aim of the present study was to investigate the relationship between formulation/process variables versus the critical quality attributes (CQAs) of cyclosporine ophthalmic ointments and to explore the feasibility of using an in vitro approach to assess product sameness. A definitive screening design (DSD) was used to evaluate the impact of formulation and process variables. The formulation variables included drug percentage, percentage of corn oil and lanolin alcohol. The process variables studied were mixing temperature, mixing time and the method of mixing. The quality and performance attributes examined included drug assay, content uniformity, image analysis, rheology (storage modulus, shear viscosity) and in vitro drug release. Of the formulation variables evaluated, the percentage of the drug substance and the percentage of corn oil in the matrix were the most influential factors with respect to in vitro drug release. Conversely, the process parameters tested were observed to have minimal impact. An evaluation of the release mechanism of cyclosporine from the ointment revealed an interplay between formulation (e.g. physicochemical properties of the drug and ointment matrix type) and the release medium. These data provide a scientific basis to guide method development for in vitro drug release testing of ointment dosage forms. These results demonstrate that the in vitro methods used in this investigation were fit-for-purpose for detecting formulation and process changes and therefore amenable to assessment of product sameness. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Perna, D.; Dotto, E.; Barucci, M. A.; Fornasier, S.; Alvarez-Candal, A.; Gourgeot, F.; Brucato, J. R.; Rossi, A.
2013-07-01
Context. Primitive near-Earth asteroids (NEAs) are important subjects of study for current planetary research. Their investigation can provide crucial information on topics such as the formation of the solar system, the emergence of life, and the mitigation of the risk of asteroid impact. Sample return missions from primitive asteroids have been scheduled or are being studied by space agencies, including the MarcoPolo-R mission selected for the assessment study phase of ESA M3 missions. Aims: We want to improve our knowledge of the surface composition and physical nature of the potentially hazardous, low delta-V asteroid (175706) 1996 FG3, backup target of MarcoPolo-R. This intriguing object shows an as-yet unexplained spectral variability. Methods: We performed spectroscopic observations of 1996 FG3 using the visible spectrograph DOLORES at the Telescopio Nazionale Galileo (TNG), and the UV-to-NIR X-Shooter instrument at the ESO Very Large Telescope (VLT). Results: We find featureless spectra and we classify 1996 FG3 as a primitive Xc-type in the Bus-DeMeo taxonomy. Based on literature comparison, we confirm the spectral variability of this object at near-infrared (NIR) wavelengths, and find that spectral variations exist also for the visible spectral region. Phase reddening cannot explain such variations. Obtained with the same observational conditions for the whole 0.3-2.2 μm range, our X-Shooter spectrum allowed a proper comparison with the RELAB meteorite database. A very good fit is obtained with the very primitive C2 Tagish Lake carbonaceous chondrite (pressed powder), confirming 1996 FG3 as a suitable target for a sample return mission from primitive NEAs. Conclusions: We hypothesize a compacted/cemented surface for 1996 FG3, like that observed by the Hayabusa mission on (25143) Itokawa, with the possible presence of regions showing different degrees of surface roughness. This variegation could be related to the binary nature of 1996 FG3, but to check this hypothesis further observations are necessary. Based on observations carried out at the European Southern Observatory (ESO), Chile (programme 088.C-0695), and with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (programme AOT25/TAC13).
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
Middle Pleistocene Hominin Teeth from Longtan Cave, Hexian, China
Xing, Song; Martinón-Torres, María; Bermúdez de Castro, José María; Zhang, Yingqi; Fan, Xiaoxiao; Zheng, Longting; Huang, Wanbo; Liu, Wu
2014-01-01
Excavations at the Longtan Cave, Hexian, Anhui Province of Eastern China, have yielded several hominin fossils including crania, mandibular fragments, and teeth currently dated to 412±25 ka. While previous studies have focused on the cranial remains, there are no detailed analyses of the dental evidence. In this study, we provide metric and morphological descriptions and comparisons of ten teeth recovered from Hexian, including microcomputed tomography analyses. Our results indicate that the Hexian teeth are metrically and morphologically primitive and overlap with H. ergaster and East Asian Early and mid-Middle Pleistocene hominins in their large dimensions and occlusal complexities. However, the Hexian teeth differ from H. ergaster in features such as conspicuous vertical grooves on the labial/buccal surfaces of the central incisor and the upper premolar, the crown outline shapes of upper and lower molars and the numbers, shapes, and divergences of the roots. Despite their close geological ages, the Hexian teeth are also more primitive than Zhoukoudian specimens, and resemble Sangiran Early Pleistocene teeth. In addition, no typical Neanderthal features have been identified in the Hexian sample. Our study highlights the metrical and morphological primitive status of the Hexian sample in comparison to contemporaneous or even earlier populations of Asia. Based on this finding, we suggest that the primitive-derived gradients of the Asian hominins cannot be satisfactorily fitted along a chronological sequence, suggesting complex evolutionary scenarios with the coexistence and/or survival of different lineages in Eurasia. Hexian could represent the persistence in time of a H. erectus group that would have retained primitive features that were lost in other Asian populations such as Zhoukoudian or Panxian Dadong. Our study expands the metrical and morphological variations known for the East Asian hominins before the mid-Middle Pleistocene and warns about the possibility that the Asian hominin variability may have been taxonomically oversimplified. PMID:25551383
NASA Astrophysics Data System (ADS)
Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.
2017-09-01
Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.
Microfluidic assay of the deformability of primitive erythroblasts.
Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi
2017-09-01
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
Reliability-Based Design Optimization of a Composite Airframe Component
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Coroneos, Rula; Patnaik, Surya N.
2011-01-01
A stochastic optimization methodology (SDO) has been developed to design airframe structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.
A coherent discrete variable representation method on a sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua -Gen
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
A coherent discrete variable representation method on a sphere
Yu, Hua -Gen
2017-09-05
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem
2007-04-01
Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.
Exploiting Virtual Synchrony in Distributed Systems
1987-02-01
for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes
Three-Dimensional, Primitive-Variable Model for Solid-Fuel Ramjet Combustion.
1984-02-01
INITIAL DISTRIBUTION LIST ,jo. of Copies 1. Library, Code 0212 2 Dean of Research, Code 012 2 Naval Postgraduate School Monterey, CA 93943 2...Dunlap I G. Jensen I P. Willoughby I P. LaForce 7. Chemical Propulsion Information Agency 2 APL-JHU Johns Hopkins Road Laurel, MD 20810 8. AFAPL 2 Wright-Patterson AFB, OH 45433 R. 0. Stull 19
ERIC Educational Resources Information Center
Fleming-May, Rachel A.
2011-01-01
The "use" of library resources and services is frequently presented in library and information science (LIS) literature as a primitive concept: an idea that need not be defined when it is being measured as an operational variable in empirical research. This project considered representations of library "use" through the…
Key-Generation Algorithms for Linear Piece In Hand Matrix Method
NASA Astrophysics Data System (ADS)
Tadaki, Kohtaro; Tsujii, Shigeo
The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.
NASA Astrophysics Data System (ADS)
Rougé, Charles; Tilmant, Amaury
2015-04-01
Stochastic dual dynamic programming (SDDP) is an optimization algorithm well-suited for the study of large-scale water resources systems comprising reservoirs - and hydropower plants - as well as irrigation nodes. It generates intertemporal allocation policies that balance the present and future marginal value of water while taking into account hydrological uncertainty. It is scalable, in the sense that the time and memory required for computation do not grow exponentially with the number of state variables. Still, this scalability relies on the sampling of a few relevant trajectories for the system, and the approximation of the future value of water through cuts -i.e., hyperplanes - at points along these trajectories. Therefore, the accuracy of this approximation arguably decreases as the number of state variables increases, and it is important not to have more than necessary. In previous formulations, SDDP had three types of state variables, namely storage in each reservoir, inflow at each node and water accumulated during the irrigation season for each crop at each node. We present a simplified formulation for irrigation that does not require using the latter type of state variable. It also requires only two decision variables for each irrigation site, where the previous formulation had four per crop - and there may be several crops at the same site. This reduction in decision variables effectively reduces computation time, since SDDP decomposes the stochastic, multiperiodic, non-linear maximization problem into a series of linear ones. The proposed formulation, while computationally simpler, is mathematically equivalent to the previous one, and therefore the model gives the same results. A corollary of this formulation is that marginal utility of water at an irrigation site is effectively related to consumption at that site, through a piecewise linear function representing the net benefits from irrigation. Last but not least, the proposed formulation can be extended to any type of consumptive use of water beyond irrigation, e.g., municipal, industrial, etc This slightly different version of SDDP is applied to a large portion of the Tigris-Euphrates river basin. It comprises 24 state variables representing storage in reservoirs, 28 hydrologic state variables, and 51 demand nodes. It is the largest yet to simultaneously consider hydropower and irrigation within the same river system, and the proposed formulation almost halves the number of state variables to be considered.
2015-01-07
Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.
2005-01-01
GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other components of the linear management formulation to form a complete linear formulation; the formulation is then solved by use of the simplex algorithm, which is incorporated into the RMS Package. Nonlinear formulations arise for simulated conditions that include water?table (unconfined) aquifers or head?dependent boundary conditions (such as streams, drains, or evapotranspiration from the water table). Nonlinear formulations are solved by sequential linear programming; that is, repeated linearization of the nonlinear features of the management problem. In this approach, response coefficients are recalculated for each iteration of the solution process. Mixed?binary linear (or mildly nonlinear) formulations are solved by use of the branch and bound algorithm, which is also incorporated into the RMS Package. Three sample problems are provided to demonstrate the use of GWM for typical ground?water flow management problems. These sample problems provide examples of how GWM input files are constructed to specify the decision variables, objective function, constraints, and solution process for a GWM run. The GWM Process runs with the MODFLOW?2000 Global and Ground?Water Flow Processes, but in its current form GWM cannot be used with the Observation, Sensitivity, Parameter?Estimation, or Ground?Water Transport Processes. The GWM Process is written with a modular structure so that new objective functions, constraint types, and solution algorithms can be added.
Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu
2011-01-01
Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.
Optimization of formulation variables of benzocaine liposomes using experimental design.
Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra
2008-01-01
This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.
Assessing bioequivalence of generic antiepilepsy drugs.
Krauss, Gregory L; Caffo, Brian; Chang, Yi-Ting; Hendrix, Craig W; Chuang, Kelly
2011-08-01
Patients with epilepsy are often concerned that switching between brand-name and generic formulations of antiepilepsy drugs (AEDs) may cause clinically significant changes in plasma drug concentrations. We assessed bioequivalence (BE) studies for approved generic AEDs to evaluate US Food and Drug Administration claims that: (1) generic AEDs are accurate copies of reference formulations; (2) delivery of reference formulations may be as variable as generic AEDs and so provide no increased benefit; and (3) switches between generic AED formulations are safe and effective. We determined differences in 90% confidence interval limits for total drug exposure (AUC(0-t) ) and peak concentration (Cmax) ratios of generic and reference formulations during fasting and fed BE studies. We simulated BE between generic formulations after adjusting for reference values. AUC(0-t) values of approved reference and generic formulations differed by <15% in 99% of BE studies; Cmax differed by <15% in 89% of studies. Food affected variability of Cmax but not AUC(0-t) . Intersubject variability in Cmax and AUC(0-t) was small and similar for reference and generic products. In simulated switches between 595 pairs of generic AED formulations, estimated AUC(0-t) differed by >15% for 17% of pairs; estimated Cmax differed by >15% for 39%. AEDs with low bioavailability and solubility (eg, oxcarbazepine) had the greatest variability in BE. Most generic AED products provide total drug delivery (AUC) similar to reference products; differences in peak concentrations between formulations are more common. Switches between generic AED products may cause greater changes in plasma drug concentrations than generic substitutions of reference products. Copyright © 2011 American Neurological Association.
Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3
NASA Technical Reports Server (NTRS)
Chakravarthy, Sukumar R.
1990-01-01
An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.
Secure Heterogeneous Multicore Platform Through Diversity and Redundancy
2012-03-31
implementation detects synchronization in this way. If a programmer uses custom synchronization primitives , our approach assumes that such primitives ... synchronization primitives . Primitives such as barriers and spinlocks explicitly enforce a pre- determined ordering among threads. Therefore, the outcome of...these synchronization operations are deterministic. In the discussion, we will refer to these primitives as ordering synchronization operations. On the
NASA Technical Reports Server (NTRS)
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Kara, Imdat; Derya, Tusan
2011-09-01
The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.
A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models
NASA Astrophysics Data System (ADS)
Cazes, F.; Coret, M.; Combescure, A.
2013-06-01
This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Li, Qiang; Sun, Li-Jian; Gong, Xian-Feng; Wang, Yang; Zhao, Xue-Ling
2017-01-01
Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities, and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response surface methodology. The effects of formulation variables (pH at complex coacervation, gelatin concentration, and core/wall ratio) on multiple response variables (yield, encapsulation efficiency, antioxidation rate, percent of drug released in 1 h, and time to 85% drug release) were systemically investigated. A desirability function that combined these five response variables was constructed. All response variables investigated were found to be highly dependent on the formulation variables, with strong interactions observed between the formulation variables. It was found that optimum overall desirability of AO microcapsules could be obtained at pH 6.20, gelatin concentration 25.00%, and core/wall ratio 40.40%. The experimental values of the response variables highly agreed with the predicted values. The antioxidation rate of optimum formulation was approximately 8 times higher than that of AO. The in-vitro drug release from microcapsules was followed Higuchi model with super case-II transport mechanism.
Swain, Eric D.; Chin, David A.
2003-01-01
A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.
A coupled implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho
1993-01-01
The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
On hydrostatic flows in isentropic coordinates
NASA Astrophysics Data System (ADS)
Bokhove, Onno
2000-01-01
The hydrostatic primitive equations of motion which have been used in large-scale weather prediction and climate modelling over the last few decades are analysed with variational methods in an isentropic Eulerian framework. The use of material isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct conceptual advantages since fluid motion is, under inviscid and statically stable circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an Eulerian isentropic Hamilton's principle, expressed in terms of fluid parcel variables, is therefore derived by transformation of a Lagrangian Hamilton's principle to an Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of the time-dependent domain in terms of advection of boundary isentropes sB; these are the values the isentropes have at their intersection with the (lower) boundary. A partial Legendre transform for only the interior variables yields an Eulerian ‘action’ principle. Secondly, Noether's theorem is used to derive energy and potential vorticity conservation from the Eulerian Hamilton's principle. Thirdly, these conservation laws are used to derive a wave-activity invariant which is second-order in terms of small-amplitude disturbances relative to a resting or moving basic state. Linear stability criteria are derived but only for resting basic states. In mid-latitudes a time- scale separation between gravity and vortical modes occurs. Finally, this time-scale separation suggests that conservative geostrophic and ageostrophic approximations can be made to the Eulerian action principle for hydrostatic flows. Approximations to Eulerian variational principles may be more advantageous than approximations to Lagrangian ones because non-dimensionalization and scaling tend to be based on Eulerian estimates of the characteristic scales involved. These approximations to the stratified hydrostatic formulation extend previous approximations to the shallow- water equations. An explicit variational derivation is given of an isentropic version of Hoskins & Bretherton's model for atmospheric fronts.
NASA Astrophysics Data System (ADS)
Weaver, S.; Wallace, P. J.; Johnston, A.
2010-12-01
There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with approximately 2 wt% H2O. Given the estimated crustal thicknesses of these two regions, our data suggest that both samples equilibrate with mantle minerals just below the Moho. Recent viscosity dependent thermal models that account for slab geometry suggest that JR-28 melts last equilibrate with harzburgite in a cooler region of the mantle wedge. In contrast, ID-16 equilibrated with a fertile source near the hotter core of the mantle wedge. Our results support the hypothesis that lherzolite melting (wet or dry) produces essentially basaltic melts, whereas more Si-rich primitive melts require shallow hydrous melting of harzburgite or reequilibration of basaltic melts with harzburgite in the uppermost part of the wedge.
NASA Astrophysics Data System (ADS)
Collinet, Max; Médard, Etienne; Charlier, Bernard; Vander Auwera, Jacqueline; Grove, Timothy L.
2015-10-01
We have performed piston-cylinder experiments on a primitive martian mantle composition between 0.5 and 2.2 GPa and 1160 to 1550 °C. The composition of melts and residual minerals constrain the possible melting processes on Mars at 50 to 200 km depth under nominally anhydrous conditions. Silicate melts produced by low degrees of melting (<10 wt.%) were analyzed in layers of vitreous carbon spheres or in micro-cracks inside the graphite capsule. The total range of melt fractions investigated extends from 5 to 50 wt.%, and the liquids produced display variable SiO2 (43.7-59.0 wt.%), MgO (5.3-18.6 wt.%) and Na2O + K2O (1.0-6.5 wt.%) contents. We provide a new equation to estimate the solidus temperature of the martian mantle: T (°C) = 1033 + 168.1 P (GPa) - 14.22P2 (GPa), which places the solidus 50 °C below that of fertile terrestrial peridotites. Low- and high-degree melts are compared to martian alkaline rocks and basalts, respectively. We suggest that the parental melt of Adirondack-class basalts was produced by ∼25 wt.% melting of the primitive martian mantle at 1.5 GPa (∼135 km) and ∼1400 °C. Despite its brecciated nature, NWA 7034/7533 might be composed of material that initially crystallized from a primary melt produced by ∼10-30 wt.% melting at the same pressure. Other igneous rocks from Mars require mantle reservoirs with different CaO/Al2O3 and FeO/MgO ratios or the action of fractional crystallization. Alkaline rocks can be derived from mantle sources with alkali contents (∼0.5 wt.%) similar to the primitive mantle.
Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin
NASA Technical Reports Server (NTRS)
Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.
2015-01-01
Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample.
Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius
NASA Technical Reports Server (NTRS)
Jacob, S. Daniel; LeVine, David M.
2010-01-01
Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.
Dynamic Primitives of Motor Behavior
Hogan, Neville; Sternad, Dagmar
2013-01-01
We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919
The application of the Routh approximation method to turbofan engine models
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1977-01-01
The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.
Buckling Analysis of Anisotropic Curved Panels and Shells with Variable Curvature
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A buckling formulation for anisotropic curved panels with variable curvature is presented in this paper. The variable curvature panel is assumed to consists of two or more panels of constant but different curvatures. Bezier functions are used as Ritz functions Displacement (C(sup 0)), and slope (C(sup 1)) continuities between segments are imposed by manipulation of the Bezier control points. A first-order shear-deformation theory is used in the buckling formulation. Results obtained from the present formulation are compared with those from finite element simulations and are found to be in good agreement.
[Optimization of formulations for dietetic pastry products].
Villarroel, M; Uquiche, E; Brito, G; Cancino, M
2000-03-01
Optimized formulations of dietetic pastry products such as cake and sponge cake premixes were formulated using the surface response methodology. % Emulsifier agent and baking time were the selected independent variables for cake, as well as % emulsifier agent % chlorinated flour the variables selected for sponge cake. Three different level of each variable summing up thirteen experimental formulae of each product were assessed to optimize the variables that could have some influence in the sensory characteristics of these dietetic products. The total sensory quality was determined for both dietetic products using the composite scoring test and a panel of 18 trained judges. Looking at the contour graphic and considering economic aspects the best combination of variables for cake formulation was 2% emulsifier agent and 48 minutes for baking time, With respect to sponge cake, the best combination was 6% emulsifier agent and 48% chlorinated flour. Shelf life studies showed that both dietetic formulations remained stable during storage conditions of 75 days at 30 degrees C. During this period, significant differences in sensory characteristics were not found (p < 0.05). Data of peroxide values were kept under the critical value reported for detection of organoleptic rancidity. Reported values of hedonic test showed that these dietetics pastry products had good acceptability, and open up marketing opportunities for new products with potential health benefits to consumers.
NASA Astrophysics Data System (ADS)
Westphal, T.; Nijssen, R. P. L.
2014-12-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.
Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R
2017-07-15
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.
Rahman, Ziyaur; Xu, Xiaoming; Katragadda, Usha; Krishnaiah, Yellela S R; Yu, Lawrence; Khan, Mansoor A
2014-03-03
Restasis is an ophthalmic cyclosporine emulsion used for the treatment of dry eye syndrome. There are no generic products for this product, probably because of the limitations on establishing in vivo bioequivalence methods and lack of alternative in vitro bioequivalence testing methods. The present investigation was carried out to understand and identify the appropriate in vitro methods that can discriminate the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion formulations having the same qualitative (Q1) and quantitative (Q2) composition as that of Restasis. Quality by design (QbD) approach was used to understand the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion. The formulation variables chosen were mixing order method, phase volume ratio, and pH adjustment method, while the process variables were temperature of primary and raw emulsion formation, microfluidizer pressure, and number of pressure cycles. The responses selected were particle size, turbidity, zeta potential, viscosity, osmolality, surface tension, contact angle, pH, and drug diffusion. The selected independent variables showed statistically significant (p < 0.05) effect on droplet size, zeta potential, viscosity, turbidity, and osmolality. However, the surface tension, contact angle, pH, and drug diffusion were not significantly affected by independent variables. In summary, in vitro methods can detect formulation and manufacturing changes and would thus be important for quality control or sameness of cyclosporine ophthalmic products.
The mevalonate pathway regulates primitive streak formation via protein farnesylation
Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi
2016-01-01
The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036
Probabilistic evaluation of uncertainties and risks in aerospace components
NASA Technical Reports Server (NTRS)
Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.
1992-01-01
A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.
NASA Astrophysics Data System (ADS)
Ventouras, E.-C.; Lardi, I.; Dimitriou, S.; Margariti, A.; Chondraki, P.; Kalatzis, I.; Economou, N.-T.; Tsekou, H.; Paparrigopoulos, T.; Ktonas, P. Y.
2015-09-01
Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. Brain connectivity has been measured in electroencephalographic (EEG) data of patients with schizophrenia undergoing PE DT, using the correlation coefficient and mutual information. These parameters do not measure the existence or absence of directionality in the connectivity. The present study investigates the use of the G-autonomy measure of EEG electrode voltages of the same group of schizophrenic patients. G-autonomy is a measure of the “autonomy” of a system. It indicates the degree by which prediction of the system's future evolution is enhanced by taking into account its own past states, in comparison to predictions based on past states of a set of external variables. In the present research, “own” past states refer to voltage values in the time series recorded at a specific electrode and “external” variables refer to the voltage values recorded at other electrodes. Indication is provided for an acute effect of early-stage PE DT expressed by the augmentation of G-autonomy in the delta rhythm and an acute effect of late- stage PE DT expressed by the reduction of G-autonomy in the theta and alpha rhythms.
Agrawal, Gauravkuma; Wakte, Pravin; Shelke, Santosh
2017-01-01
The objectives of the present investigation were to prepare recombinant human insulin entrapped Eudragit-S100 microspheres containing protease inhibitors and to precisely analyze the outcome of different formulation variables on the microspheres properties using a response surface methodology to develop an optimized formulation with desirable features. A central composite design was employed to produce microspheres of therapeutic protein by w/o/w multiple emulsion solvent evaporation technique using Eudragit S-100 as coating material and polyvinyl alcohol as a stabilizer. The effect of formulation variables (independent variables) that is levels of Eudragit S-100 (X1), therapeutic protein (X2), volumes of inner aqueous phase (X3) and external aqueous phase (X4) on dependant variables, that are encapsulation efficiency (Y1), drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3) were evaluated. The significant terms in the mathematical models were generated for each response parameter using multiple linear regression analysis and analysis of variance. All the formulation variables except the volume of external aqueous phase (X4) exerted a significant effect (P <0.05) on drug encapsulation efficiency (Y1) whereas first two variables, namely the levels of Eudragit S-100 (X1) and therapeutic protein (X2) materialized as the determining factors which significantly influenced drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3). The formulation was numerically optimized by framing the constraints on the dependent and independent variables using the desirability approach. The experimental values for Y1 and Y2 of optimized formulation were found to be 77.65% and 3.64%, respectively which were quite closer to results suggested by software. The results recorded indicate that the recombinant human insulin loaded Eudragit S-100 microspheres containing aprotinin have the benefits of higher loading efficiency, pH responsive and prolonged release characteristics, which may help to carry insulin to the optimum site of absorption. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rahman, Ziyaur; Korang-Yeboah, Maxwell; Siddiqui, Akhtar; Mohammad, Adil; Khan, Mansoor A
2015-11-10
Warfarin sodium (WS) is a narrow therapeutic index drug and its product quality should be thoroughly understood and monitored in order to avoid clinical performance issues. This study was focused on understanding the effect of manufacturing and formulation variables on WS product critical quality attributes (CQAs). Eight formulations were developed with lactose monohydrate (LM) or lactose anhydrous (LA), and were either wet granulated or directly compressed. Formulations were granulated either with ethanol, isopropyl alcohol (IPA) and IPA-water mixture (50:50). Formulations were characterized for IPA, water content, hardness, disintegration time (DT), assay, dissolution and drug physical forms (scanning electron microscopy (SEM), near infrared chemical imaging (NIR-CI), X-ray powder diffraction (XRPD) and solid state nuclear magnetic resonance (ssNMR)), and performed accelerated stability studies at 40°C/75% RH for three days. The DT and dissolution of directly compressed formulations were faster than wet granulated formulations. This was due to phase transformation of crystalline drug into its amorphous form as indicated by SEM, NIR-CI, XRPD and ssNMR data which itself act as a binder. Similarly, LM showed faster disintegration and dissolution than LA containing formulations. Stability results indicated an increase in hardness and DT, and a decrease in dissolution rate and extent. This was due to phase transformation of the drug and consolidation with particles' bonding. In conclusion, the CQAs of WS product were significantly affected by manufacturing and formulation variables. Published by Elsevier B.V.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
Computational methods for structural load and resistance modeling
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Millwater, H. R.; Harren, S. V.
1991-01-01
An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.
Effect of crospovidone and hydroxypropyl cellulose on carbamazepine in high-dose tablet formulation.
Flicker, Felicia; Betz, Gabriele
2012-06-01
The aim of this study was to develop a high-dose tablet formulation of the poorly soluble carbamazepine (CBZ) with sufficient tablet hardness and immediate drug release. A further aim was to investigate the influence of various commercial CBZ raw materials on the optimized tablet formulation. Hydroxypropyl cellulose (HPC-SL) was selected as a dry binder and crospovidone (CrosPVP) as a superdisintegrant. A direct compacted tablet formulation of 70% CBZ was optimized by a 3² full factorial design with two input variables, HPC (0--10%) and CrosPVP (0--5%). Response variables included disintegration time, amount of drug released at 15 and 60 min, and tablet hardness, all analyzed according to USP 31. Increasing HPC-SL together with CrosPVP not only increased tablet hardness but also reduced disintegration time. Optimal condition was achieved in the range of 5--9% HPC and 3--5% CrosPVP, where tablet properties were at least 70 N tablet hardness, less than 1 min disintegration, and within the USP requirements for drug release. Testing the optimized formulation with four different commercial CBZ samples, their variability was still observed. Nonetheless, all formulations conformed to the USP specifications. With the excipients CrosPVP and HPC-SL an immediate release tablet formulation was successfully formulated for high-dose CBZ of various commercial sources.
Endophysical Models Based on Empirical Data
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
2005-10-01
Any proposed endophysical models need to acknowledge a number of subjective correlates that have been well established in such objectively quantifiable experimental contexts as anomalous human/machine interactions and remote perception information acquisition. Most notable of these factors are conscious and unconscious intention; gender disparities; serial position effects; intrinsic uncertainties; elusive replicability; and emotional resonance between the participants and the devices, process, and tasks. Perhaps even more pertinent are the insensitivities of the anomalous effects to spatial and temporal separations of the participants from the physical targets. Inclusion of subjective coordinates in the models, and exclusion of physical distance and time, raise formidable issues of specification, quantification, and dynamical formulation from both the physical and psychological perspectives. A few primitive examples of possible approaches are presented.
The 4th Thermodynamic Principle?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco
2007-04-28
It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulationmore » of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.« less
Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A
2001-01-01
A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.
2017-11-16
Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
NASA Astrophysics Data System (ADS)
Rathod, Vishal
The objective of the present project was to develop the Ibuprofen-loaded Nanostructured Lipid Carrier (IBU-NLCs) for topical ocular delivery based on substantial pre-formulation screening of the components and understanding the interplay between the formulation and process variables. The BCS Class II drug: Ibuprofen was selected as the model drug for the current study. IBU-NLCs were prepared by melt emulsification and ultrasonication technique. Extensive pre-formulation studies were performed to screen the lipid components (solid and liquid) based on drug's solubility and affinity as well as components compatibility. The results from DSC & XRD assisted in selecting the most suitable ratio to be utilized for future studies. DynasanRTM 114 was selected as the solid lipid & MiglyolRTM 840 was selected as the liquid lipid based on preliminary lipid screening. The ratio of 6:4 was predicted to be the best based on its crystallinity index and the thermal events. As there are many variables involved for further optimization of the formulation, a single design approach is not always adequate. A hybrid-design approach was applied by employing the Plackett Burman design (PBD) for preliminary screening of 7 critical variables, followed by Box-Behnken design (BBD), a sub-type of response surface methodology (RSM) design using 2 relatively significant variables from the former design and incorporating Surfactant/Co-surfactant ratio as the third variable. Comparatively, KolliphorRTM HS15 demonstrated lower Mean Particle Size (PS) & Polydispersity Index (PDI) and KolliphorRTM P188 resulted in Zeta Potential (ZP) < -20 mV during the surfactant screening & stability studies. Hence, Surfactant/Cosurfactant ratio was employed as the third variable to understand its synergistic effect on the response variables. We selected PS, PDI, and ZP as critical response variables in the PBD since they significantly influence the stability & performance of NLCs. Formulations prepared using BBD were further characterized and evaluated concerning PS, PDI, ZP and Entrapment Efficiency (EE) to identify the multi-factor interactions between selected formulation variables. In vitro release studies were performed using Spectra/por dialysis membrane on Franz diffusion cell and Phosphate Saline buffer (7.4 pH) as the medium. Samples for assay, EE, Loading Capacity (LC), Solubility studies & in-vitro release were filtered using Amicon 50K and analyzed via UPLC system (Waters) at a detection wavelength of 220 nm. Significant variables were selected through PBD, and the third variable was incorporated based on surfactant screening & stability studies for the next design. Assay of the BBD based formulations was found to be within 95-104% of the theoretically calculated values. Further studies were investigated for PS, PDI, ZP & EE. PS was found to be in the range of 103-194 nm with PDI ranging from 0.118 to 0.265. The ZP and EE were observed to be in the range of -22.2 to -11 mV & 90 to 98.7 % respectively. Drug release of 30% was observed from the optimized formulation in the first 6 hr of in-vitro studies, and the drug release showed a sustained release of ibuprofen thereafter over several hours. These values also confirm that the production method, and all other selected variables, effectively promoted the incorporation of ibuprofen in NLC. Quality by Design (QbD) approach was successfully implemented in developing a robust ophthalmic formulation with superior physicochemical and morphometric properties. NLCs as the nanocarrier demonstrated promising perspective for topical delivery of poorly water-soluble drugs.
Examining Preservice Science Teachers' Skills of Formulating Hypotheses and Identifying Variables
ERIC Educational Resources Information Center
Aydogdu, Bülent
2015-01-01
The aim of this study is to examine preservice science teachers' skills of formulating hypotheses and identifying variables. The research has a phenomenological research design. The data was gathered qualitatively. In this study, preservice science teachers were first given two scenarios (Scenario-1 & Scenario-2) containing two different…
Liu, Wu; Martinón-Torres, María; Kaifu, Yousuke; Wu, Xiujie; Kono, Reiko T; Chang, Chun-Hsiang; Wei, Pianpian; Xing, Song; Huang, Wanbo; Bermúdez de Castro, José María
2017-04-01
This study presents the first detailed morphological description and comparison of a Middle Pleistocene hominin mandibular fragment (PA 831) and associated teeth from the Hexian site in Eastern China. We aim to investigate where the Hexian mandible fits within the genus Homo variability in the light of an increased and better characterized Asian fossils record. Comparative samples include Pleistocene Homo mandibles and teeth from Africa, Asia, and Europe, as well as earlier African hominins (Australopithecus and early Homo) and Holocene recent humans. Both conventional morphological description and metric analysis were used. In addition, virtual reconstructions of the enamel dentine junction (EDJ) surface, pulp cavity, and roots with micro-CT were used to the mandible and teeth. The Hexian mandible is characterized by a plesiomorphic structural pattern for the Homo clade, with strong corpus robustness and a subparallel and low-positioned mylohyoid line that differentiates the swollen subalveolar planum from the shallow subalveolar fossa. Features that are derived compared to early Homo include a moderately curved dental arcade, a well-developed lateral prominence placed at the M 2 -M 3 level, and multiple mental foramina. The Hexian mandible's complex enamel surface and strong, stout root structure are primitive traits for the Homo clade. Finally, the highly crenulated "dendrite-like" EDJ found in the molars may represent a dental feature specific to the continental Asian Homo erectus, but more data is needed to confirm this. Mandibular and dental features indicate that the Hexian mandible and teeth differ from northern Chinese H. erectus and European Middle Pleistocene hominins, but show some affinities with the Early Pleistocene specimens from Africa (Homo ergaster) and Java (H. erectus), as well as the Middle-Late Pleistocene mandible from Penghu, Taiwan. Compared to contemporaneous continental Asian hominin populations, the Hexian fossils may represent the survival of a primitive hominin, with more primitive morphologies than other contemporaneous or some chronologically older Asian hominin specimens. © 2017 Wiley Periodicals, Inc.
Diagnostic Study of Tumor Characteristics in Patients With Ewing's Sarcoma
2013-06-20
Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
Dangre, Pankaj; Gilhotra, Ritu; Dhole, Shashikant
2016-10-01
The present investigation is aimed to design a statistically optimized self-microemulsifying drug delivery system (SMEDDS) of eprosartan mesylate (EM). Preliminary screening was carried out to find a suitable combination of various excipients for the formulation. A 3(2) full factorial design was employed to determine the effect of various independent variables on dependent (response) variables. The independent variables studied in the present work were concentration of oil (X 1) and the ratio of S mix (X 2), whereas the dependent variables were emulsification time (s), globule size (nm), polydispersity index (pdi), and zeta potential (mV), and the multiple linear regression analysis (MLRA) was employed to understand the influence of independent variables on dependent variables. Furthermore, a numerical optimization technique using the desirability function was used to develop a new optimized formulation with desired values of dependent variables. The optimized SMEDDS formulation of eprosartan mesylate (EMF-O) by the above method exhibited emulsification time, 118.45 ± 1.64 s; globule size, 196.81 ± 1.29 nm; zeta potential, -9.34 ± 1.2 mV, and polydispersity index, 0.354 ± 0.02. For the in vitro dissolution study, the optimized formulation (EMF-O) and pure drug were separately entrapped in the dialysis bag, and the study indicated higher release of the drug from EMF-O. In vivo pharmacokinetic studies in Wistar rats using PK solver software revealed 2.1-fold increment in oral bioavailability of EM from EMF-O, when compared with plain suspension of pure drug.
Collecting and Storing Biological Samples From Patients With Ewing Sarcoma
2017-12-11
Askin Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
Study of three-dimensional effects on vortex breakdown
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1988-01-01
The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.
Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions
NASA Astrophysics Data System (ADS)
Güler, Marifi
2017-10-01
Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.
Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.
Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun
2015-12-22
Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.
Optimized zein nanospheres for improved oral bioavailability of atorvastatin
Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA
2015-01-01
Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716
Evaluating structural pattern recognition for handwritten math via primitive label graphs
NASA Astrophysics Data System (ADS)
Zanibbi, Richard; MoucheÌre, Harold; Viard-Gaudin, Christian
2013-01-01
Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.
Eddington, N D; Ashraf, M; Augsburger, L L; Leslie, J L; Fossler, M J; Lesko, L J; Shah, V P; Rekhi, G S
1998-11-01
The purpose of this study was to evaluate the effect of formulation and processing changes on the dissolution and bioavailability of propranolol hydrochloride tablets. Directly compressed blends of 6 kg (20,000 units) were prepared by mixing in a 16-qt V blender and tablets were compressed on an instrumented Manesty D3B tablet press. A half-factorial (2(5-1), Resolution V) design was used to study the following variables: filler ratio (lactose/dicalcium phosphate), sodium starch glycolate level, magnesium stearate level, lubricant blend time, and compression force. The levels and ranges of the excipients and processing changes studied represented level 2 or greater changes as indicated by the Scale-up and Post Approval Changes (SUPAC-IR) Guidance. Changes in filler ratio, disintegrant level, and compression force were significant in affecting percent drug released (Q) in 5 min (Q5) and Q10. However, changes in magnesium stearate level and lubricant blend time did not influence Q5 and Q10. Hardness was found to be affected by changes in all of the variables studied. Some interaction effects between the variables studied were also found to be significant. To examine the impact of formulation and processing variables on in vivo absorption, three batches were selected for a bioavailability study based on their dissolution profiles. Thirteen subjects received four propranolol treatments (slow-, medium-, and fast-dissolving formulations and Inderal 80 mg) separated by 1 week washout according to a randomized crossover design. The formulations were found to be bioequivalent with respect to the log Cmax and log AUC0-infinity. The results of this study suggest that (i) bioavailability/bioequivalency studies may not be necessary for propranolol and perhaps other class 1 drugs after level 2 type changes, and (ii) in vitro dissolution tests may be used to show bioequivalence of propranolol formulations with processing or formulation changes within the specified level 2 ranges examined.
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.
The mechanical and chemical equations of motion of muscle contraction
NASA Astrophysics Data System (ADS)
Shiner, J. S.; Sieniutycz, Stanislaw
1997-11-01
Up to now no formulation of muscle contraction has provided both the chemical kinetic equations for the reactions responsible for the contraction and the mechanical equation of motion for the muscle. This has most likely been due to the lack of general formalisms for nonlinear systems with chemical-nonchemical coupling valid under the far from equilibrium conditions under which muscle operates physiologically. We have recently developed such formalisms and apply them here to the formulation of muscle contraction to obtain both the chemical and the mechanical equations. The standard formulation up to now has yielded only the dynamic equations for the chemical variables and has considered these to be functions of both time and an appropriate mechanical variable. The macroscopically observable quantities were then obtained by averaging over the mechanical variable. When attempting to derive the dynamics equations for both the chemistry and mechanics this choice of variables leads to conflicting results for the mechanical equation of motion when two different general formalisms are applied. The conflict can be resolved by choosing the variables such that both the chemical variables and the mechanical variables are considered to be functions of time alone. This adds one equation to the set of differential equations to be solved but is actually a simplification of the problem, since these equations are ordinary differential equations, not the partial differential equations of the now standard formulation, and since in this choice of variables the variables themselves are the macroscopic observables the procedure of averaging over the mechanical variable is eliminated. Furthermore, the parameters occurring in the equations at this level of description should be accessible to direct experimental determination.
NASA Astrophysics Data System (ADS)
Hu, Yong; Olguin, Hernan; Gutheil, Eva
2017-05-01
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2015-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.
Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain
2013-10-01
Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Solubility and bioavailability improvement of pazopanib hydrochloride.
Herbrink, Maikel; Groenland, Stefanie L; Huitema, Alwin D R; Schellens, Jan H M; Beijnen, Jos H; Steeghs, Neeltje; Nuijen, Bastiaan
2018-06-10
The anti-cancer drug pazopanib hydrochloride (PZH) has a very low aqueous solubility and a variable oral bioavailability. A new pharmaceutical formulation with an improved solubility may enhance the bioavailability and reduce the variability. A broad selection of polymer excipients was tested for their compatibility and solubilizing properties by conventional microscopic, thermal and spectrometric techniques. A wet milling and mixing technique was used to produce homogenous powder mixtures. The dissolution properties of the formulation were tested by a pH-switch dissolution model. The final formulation was tested in vivo in cancer patient following a dose escalation design. Of the tested mixture formulations, the one containing the co-block polymer Soluplus® in a 8:1 ratio with PZH performed best in terms of in vitro dissolution properties. The in vivo results indicated that 300 mg of the developed formulation yields similar exposure and a lower variability (379 μg/mL∗h (36.7% CV)) than previously reported values for the standard PZH formulation (Votrient®) at the approved dose of 800 mg. Furthermore, the expected plasma-C through levels (27.2 μg/mL) exceeds the defined therapeutic efficacy threshold of 20 μg/mL. Copyright © 2018 Elsevier B.V. All rights reserved.
Use of Optical Storage Devices as Shared Resources in Local Area Networks
1989-09-01
13 3. SERVICE CALLS FOR MS-DOS CD-ROM EXTENSIONS . 14 4. MS-DOS PRIMITIVE GROUPS ....................... 15 5. RAM USAGE FOR VARIOUS LAN...17 2. Service Call Translation to DOS Primitives ............. 19 3. MS-DOS Device Drivers ............................. 21 4. MS-DOS/ROM...directed to I/O devices will be referred to as primitive instruction groups). These primitive instruction groups include keyboard, video, disk, serial
A coarse-grid projection method for accelerating incompressible flow computations
NASA Astrophysics Data System (ADS)
San, Omer; Staples, Anne E.
2013-01-01
We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.
A finite element solution algorithm for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.
Continuous-variable protocol for oblivious transfer in the noisy-storage model.
Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie
2018-04-13
Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.
NASA Technical Reports Server (NTRS)
Mielke, Roland V. (Inventor); Stoughton, John W. (Inventor)
1990-01-01
Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager.
A browser-based tool for conversion between Fortran NAMELIST and XML/HTML
NASA Astrophysics Data System (ADS)
Naito, O.
A browser-based tool for conversion between Fortran NAMELIST and XML/HTML is presented. It runs on an HTML5 compliant browser and generates reusable XML files to aid interoperability. It also provides a graphical interface for editing and annotating variables in NAMELIST, hence serves as a primitive code documentation environment. Although the tool is not comprehensive, it could be viewed as a test bed for integrating legacy codes into modern systems.
PERIODIC AIR-BREATHING BEHAVIOUR IN A PRIMITIVE FISH REVEALED BY SPECTRAL ANALYSIS
Hedrick; Katz; Jones
1994-12-01
The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in birds and mammals. In this sense, periodism refers to behaviour that occurs with a definite, recurring interval (Bendat and Piersol, 1986). The characterisation of aerial ventilation patterns in fish as 'aperiodic' has been generally accepted on the basis of qualitative examination and it remains to be validated with rigorous testing. The bowfin, Amia calva (L.), is a primitive air-breathing fish that makes intermittent excursions to the airwater interface to gulp air, which is transferred to its well-vascularized gas bladder. Its phylogenetic position as the only extant member of the sister lineage of modern teleosts affords a unique opportunity to examine the evolution of aerial ventilation and provides a model for the examination of ventilatory patterns in primitive fishes. To establish whether Amia calva exhibit a particular pattern of air-breathing, we examined time series records of aerial ventilations from undisturbed fish over long periods (8 h). These records were the same as those used to calculate average ventilation intervals under a variety of experimental conditions (Hedrick and Jones, 1993). Their study also reported the occurrence of two distinct breath types. Type I breaths were characterised by an exhalation followed by an inhalation, whereas type II breaths were characterised by inhalation only. It was also hypothesized that the type I breaths were employed to meet oxygen demands, whereas the type II breaths were used to regulate gas bladder volume. However, they did not investigate the potential presence of a periodic ventilatory pattern. We now report the results of just such an analysis of ventilatory pattern that demonstrates a clear periodism to air-breathing in a primitive fish.
How to Spot a Primitive Black Hole
2010-03-17
These two data plots from NASA Spitzer Space Telescope show a primitive supermassive black hole top compared to a typical one; usually, dust tori are missing and only gas disks are observed in primitive black holes.
Primitive erythrocytes are generated from hemogenic endothelial cells.
Stefanska, Monika; Batta, Kiran; Patel, Rahima; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges
2017-07-25
Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP + cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.
Agin, Patricia Poh; Edmonds, Susan H
2002-08-01
The goals of this study were (i) to demonstrate that existing and widely used sun protection factor (SPF) test methodologies can produce accurate and reproducible results for high SPF formulations and (ii) to provide data on the number of test-subjects needed, the variability of the data, and the appropriate exposure increments needed for testing high SPF formulations. Three high SPF formulations were tested, according to the Food and Drug Administration's (FDA) 1993 tentative final monograph (TFM) 'very water resistant' test method and/or the 1978 proposed monograph 'waterproof' test method, within one laboratory. A fourth high SPF formulation was tested at four independent SPF testing laboratories, using the 1978 waterproof SPF test method. All laboratories utilized xenon arc solar simulators. The data illustrate that the testing conducted within one laboratory, following either the 1978 proposed or the 1993 TFM SPF test method, was able to reproducibly determine the SPFs of the formulations tested, using either the statistical analysis method in the proposed monograph or the statistical method described in the TFM. When one formulation was tested at four different laboratories, the anticipated variation in the data owing to the equipment and other operational differences was minimized through the use of the statistical method described in the 1993 monograph. The data illustrate that either the 1978 proposed monograph SPF test method or the 1993 TFM SPF test method can provide accurate and reproducible results for high SPF formulations. Further, these results can be achieved with panels of 20-25 subjects with an acceptable level of variability. Utilization of the statistical controls from the 1993 sunscreen monograph can help to minimize lab-to-lab variability for well-formulated products.
Efficient computation of optimal actions.
Todorov, Emanuel
2009-07-14
Optimal choice of actions is a fundamental problem relevant to fields as diverse as neuroscience, psychology, economics, computer science, and control engineering. Despite this broad relevance the abstract setting is similar: we have an agent choosing actions over time, an uncertain dynamical system whose state is affected by those actions, and a performance criterion that the agent seeks to optimize. Solving problems of this kind remains hard, in part, because of overly generic formulations. Here, we propose a more structured formulation that greatly simplifies the construction of optimal control laws in both discrete and continuous domains. An exhaustive search over actions is avoided and the problem becomes linear. This yields algorithms that outperform Dynamic Programming and Reinforcement Learning, and thereby solve traditional problems more efficiently. Our framework also enables computations that were not possible before: composing optimal control laws by mixing primitives, applying deterministic methods to stochastic systems, quantifying the benefits of error tolerance, and inferring goals from behavioral data via convex optimization. Development of a general class of easily solvable problems tends to accelerate progress--as linear systems theory has done, for example. Our framework may have similar impact in fields where optimal choice of actions is relevant.
Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H
2013-06-01
Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.
A key heterogeneous structure of fractal networks based on inverse renormalization scheme
NASA Astrophysics Data System (ADS)
Bai, Yanan; Huang, Ning; Sun, Lina
2018-06-01
Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.
Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor
2016-01-01
A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
Neonates need tailored drug formulations.
Allegaert, Karel
2013-02-08
Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.
A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading
NASA Technical Reports Server (NTRS)
Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.
2006-01-01
A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.
A mutli-technique search for the most primitive CO chondrites
NASA Astrophysics Data System (ADS)
Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.
2018-01-01
As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.
Large-eddy simulation of a turbulent mixing layer
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.
1978-01-01
The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.
Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar
2017-03-01
Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.
Shao, Q; Rowe, R C; York, P
2007-06-01
Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.
Dynamic primitives in the control of locomotion.
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.
Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo
2015-04-01
By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Ali, Bahaa E
2017-03-01
High shear wet granulation is a significant component procedure in the pharmaceutical industry. The objective of the study was to investigate the influence of two independent formulation variables; polyvinypyrrolidone (PVP) as a binder (X,) and croscarmellose sodium (CCS) as a disintegrant (X2) on the crit- ical quality attributes of acetaminophen granules and their corresponding tablets using design of experiment (DoE) approach. A two factor, three level (32) full factorial design has been applied; each variable was investi- gated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their density, granule size and flowability. Additionally, the produced tablets have been investigated for: break- ing force, friability, disintegration time and t. of drug dissolution. The analysis of variance (ANOVA) showed that the two variables had a significant impact (p < 0.05) on granules and tablets characteristics, while only the binder concentration influenced the tablets friability. Furthermore, significant interactions (p < 0.05) between the two variables, for granules and tablets attributes, were also found. However, variables interaction showed minimal effect for granules flowability as well as tablets friability. Desirability function was carried out to opti- mize the variables under study to obtain product within the USP limit. It was found that the higher desirability (0.985) could be obtained at the medium level of PVP and low level of CCS. Ultimately, this study supplies the formulator with beneficial tools in selecting the proper level of binder and disintegrant to attain product with desired characteristics.
Fundamental physical theories: Mathematical structures grounded on a primitive ontology
NASA Astrophysics Data System (ADS)
Allori, Valia
In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional primitive ontology that evolves according to a law determined by the wave function. The primitive ontology is what matter is made of while the wave function tells the matter how to move. One might think that what is important in the notion of primitive ontology is their three-dimensionality. If so, in a theory like classical electrodynamics electromagnetic fields would be part of the primitive ontology. I argue that, reflecting on what the purpose of a fundamental physical theory is, namely to explain the behavior of objects in three-dimensional space, one can recognize that a fundamental physical theory has a particular architecture. If so, electromagnetic fields play a different role in the theory than the particles and therefore should be considered, like the wave function, as part of the law. Therefore, we can characterize the general structure of a fundamental physical theory as a mathematical structure grounded on a primitive ontology. I explore this idea to better understand theories like classical mechanics and relativity, emphasizing that primitive ontology is crucial in the process of building new theories, being fundamental in identifying the symmetries. Finally, I analyze what it means to explain the word around us in terms of the notion of primitive ontology in the case of regularities of statistical character. Here is where the notion of typicality comes into play: we have explained a phenomenon if the typical histories of the primitive ontology give rise to the statistical regularities we observe.
NASA Astrophysics Data System (ADS)
Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo
2017-10-01
This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.
Cometary dust: the diversity of primitive refractory grains
Ishii, H. A.
2017-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979
Formal Compiler Implementation in a Logical Framework
2003-04-29
variable set [], we omit the brackets and use the simpler notation v. MetaPRL is a tactic-based prover that uses OCaml [20] as its meta-language. When a...rewrite is defined in MetaPRL, the framework creates an OCaml expression that can be used to apply the rewrite. Code to guide the application of...rewrites is written in OCaml , using a rich set of primitives provided by MetaPRL. MetaPRL automates the construction of most guidance code; we describe
Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu
2015-08-01
This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Dewes, Candida F; Rangwala, Imtiaz; Barsugli, Joseph J; Hobbins, Michael T; Kumar, Sanjiv
2017-01-01
Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models' expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change.
Basic primitives for molecular diagram sketching
2010-01-01
A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555
ERIC Educational Resources Information Center
Nyagah, Agnes S. M.
2015-01-01
The study is aimed at analyzing the factors that affect formulation of strategic plans in secondary schools in Mombasa County and its environs. The study looks at various variables namely leadership, training, resources allocation and education policy frameworks as the main challenges. The paper concludes that the above variables to a large extent…
Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Molnár, László; McDermott, John; Zann, Vanessa; Church, Ann; Mair, Stuart; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos
2017-10-01
Zytiga (abiraterone acetate, AA) is known to exhibit very low bioavailability and a significant positive food effect in men. The unfavorable pharmacokinetic properties are attributed to the inadequate and variable dissolution of the compound. Using a continuous flow precipitation technology, a novel AA formulation has been developed with improved solubility and dissolution characteristics. The current study was performed to evaluate the pharmacokinetics and safety of this novel formulation in healthy volunteers. The study was conducted in 11 healthy men aged 47-57 years. All subjects received 3 consecutive single doses of the novel formulation of AA (100 and 200 mg in the fasted state and 200 mg in the fed state). Data were compared with pharmacokinetic and safety data reported for 1000 mg Zytiga, the marketed drug. The novel formulation of AA allows rapid absorption of the compound with t max values within 1 hour. Based on AUC values, a ~250 mg dose of the novel formulation is predicted to give the same exposure as 1000 mg Zytiga in the fasted state. The significant positive food effect was also eliminated; actually, a slight, but statistically significant negative food effect was observed. Variability of exposure was significantly reduced when compared to Zytiga. AA administered in the novel formulation was well tolerated with no IMP-related safety AEs reported. The novel formulation might allow a 75% dose reduction with significant reduction of inter-individual variability. The negative food effect observed requires further investigations; however, elimination of the significant positive food effect could be adequate to negate the restriction of a food label.
Guzman, David Sanchez-Migallon; Court, Michael H; Zhu, Zhaohui; Summa, Noémie; Paul-Murphy, Joanne R
2017-09-01
Meloxicam has been shown to have a safe and favorable pharmacodynamic profile with individual variability in Hispaniolan Amazon parrots (Amazona ventralis). In the current study, we determined the pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to Hispaniolan Amazon parrots. Twelve healthy adult parrots, 6 males and 6 females, were used in the study. Blood samples were collected before (time 0) and at 0.5, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after a single dose of the sustained-release meloxicam formulation (3 mg/kg SC). Plasma meloxicam concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were determined by noncompartmental analysis. Plasma concentrations reached a mean C max of 23.4 μg/mL (range, 14.7-46.0 μg/mL) at 1.8 hours (range, 0.5-6 hours), with a terminal half-life of 7.4 hours (range, 1.4-40.9 hours). Individual variation was noticeable, such that some parrots (4 of 12 birds) had very low plasma meloxicam concentrations, similar to the high variability reported in a previous pharmacokinetic study of the standard meloxicam formulation in the same group of birds. Two birds developed small self-resolving scabs at the injection site. On the basis of these results, the sustained-release meloxicam formulation could be administered every 12 to 96 hours in Hispaniolan Amazon parrots to manage pain. Because of these highly variable results, the use of this formulation in this species cannot be recommended until further pharmacokinetic, safety, and pharmacogenomic evaluations are performed to establish accurate dosing recommendations and to understand the high pharmacokinetic variability.
Variation in nutrients formulated and nutrients supplied on 5 California dairies.
Rossow, H A; Aly, S S
2013-01-01
Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk protein percentages in ration formulation models. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Multi-processor including data flow accelerator module
Davidson, George S.; Pierce, Paul E.
1990-01-01
An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.
Dynamic primitives in the control of locomotion
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959
Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M
2015-11-01
This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.
du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe
2015-11-01
The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well as significantly reduces the between subject variability in bioavailability when compared to the reference solution. Copyright © 2015 Elsevier B.V. All rights reserved.
36 CFR 261.21 - National Forest primitive areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Forest primitive areas. 261.21 Section 261.21 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.21 National Forest primitive areas. The following are...
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
1991-03-31
nodes, directional arrows show the parent and child rela- and the graphics driver runs on the CP, i.e., the tionship of processes. Although there is a...about ODB plus some number of transitory primitives, whether or not its child primitives are resident. Transitory primitives are discarded as needed...true if this Hnode’s child primitives approached. are not resident. This method of ODB decomposition has the ability to distribute a very large number of
NASA Technical Reports Server (NTRS)
Mejzak, R. S.
1980-01-01
The distributed processing concept is defined in terms of control primitives, variables, and structures and their use in performing a decomposed discrete Fourier transform (DET) application function. The design assumes interprocessor communications to be anonymous. In this scheme, all processors can access an entire common database by employing control primitives. Access to selected areas within the common database is random, enforced by a hardware lock, and determined by task and subtask pointers. This enables the number of processors to be varied in the configuration without any modifications to the control structure. Decompositional elements of the DFT application function in terms of tasks and subtasks are also described. The experimental hardware configuration consists of IMSAI 8080 chassis which are independent, 8 bit microcomputer units. These chassis are linked together to form a multiple processing system by means of a shared memory facility. This facility consists of hardware which provides a bus structure to enable up to six microcomputers to be interconnected. It provides polling and arbitration logic so that only one processor has access to shared memory at any one time.
Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas
NASA Astrophysics Data System (ADS)
Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.
Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.
NASA Technical Reports Server (NTRS)
Kurien, J.; Nayak, P.; Williams, B.; Koga, Dennis (Technical Monitor)
1998-01-01
MPL is the language with which a modeler describes a system to be diagnosed or controlled by Livingstone. MPL is used to specify what are the components of the system, how they are interconnected, and how they behave both nominally and when failed. Component behavioral models used by Livingstone are described by a set of propositional, well-formed formula (wff). An understanding of well-formed formula, primitive component types specified through defcomponent, and device structure specified by defmodule, is essential to understanding of MPL, This document describes: welI-formed formula (wff): The basis for describing the behavior of a component in a system defvalues: Specifies the domain (legal values) of a variable defcomponent: Defines the modes, behaviors and mode transitions for primitive components deftnodule: Defines composite devices, consisting of interconnected components defrelation: A macro mechanism for expanding a complex wff according to the value of an argument forall: An iteration construct used to expand a wff or relation on a set of arguments defsymbol-expansion: A mechanism for naming a collection of symbols (eg the name of all valves in the system)
Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas
NASA Technical Reports Server (NTRS)
Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.
1988-01-01
Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.
Peripheral nervous system neuroimmunology seen by a neuro-pathologist.
Vallat, J-M
2014-10-01
In most dysimmune neuropathies, historically the microscopical lesions were described prior to immunological studies. The latter along with neuropathological studies have found some immune, albeit incomplete, explanations of the mechanisms of these lesions which we will describe in two main syndromes: the primitive auto-immune inflammatory peripheral polyneuropathies (GBS and CIDP) and polyneuropathies induced by a monoclonal dysglobulinemia. In some patients who have to be discussed case by case pathology (nerve biopsy) will confirm the diagnosis, may help to delineate the molecular anomalies and identify lesional mechanisms. We will review the high variability of nerve lesions which is characteristic of dysimmune neuropathies. Pathological studies confirm that both humoral and cellular immune reactions against Schwann cell and/or axonal antigens are implicated in primitive dysimmune neuropathies due to a dysfunction or failure of immune tolerance mechanisms. In case of a polyneuropathy associated to a monoclonal dysglobulinemia, pathological and immunological studies have shown that in many patients, the dysglobulinemia did harm the peripheral nerve; knowledge of the pathological lesions and their mechanisms is of major interest for orienting specific treatments. Copyright © 2014. Published by Elsevier Masson SAS.
Hominin teeth from the early Late Pleistocene site of Xujiayao, Northern China.
Xing, Song; Martinón-Torres, María; Bermúdez de Castro, Jose María; Wu, Xiujie; Liu, Wu
2015-02-01
It is generally accepted that from the late Middle to the early Late Pleistocene (∼340-90 ka BP), Neanderthals were occupying Europe and Western Asia, whereas anatomically modern humans were present in the African continent. In contrast, the paucity of hominin fossil evidence from East Asia from this period impedes a complete evolutionary picture of the genus Homo, as well as assessment of the possible contribution of or interaction with Asian hominins in the evolution of Homo sapiens and Homo neanderthalensis. Here we present a comparative study of a hominin dental sample recovered from the Xujiayao site, in Northern China, attributed to the early Late Pleistocene (MIS 5 to 4). Our dental study reveals a mosaic of primitive and derived dental features for the Xujiayao hominins that can be summarized as follows: i) they are different from archaic and recent modern humans, ii) they present some features that are common but not exclusive to the Neanderthal lineage, and iii) they retain some primitive conformations classically found in East Asian Early and Middle Pleistocene hominins despite their young geological age. Thus, our study evinces the existence in China of a population of unclear taxonomic status with regard to other contemporary populations such as H. sapiens and H. neanderthalensis. The morphological and metric studies of the Xujiayao teeth expand the variability known for early Late Pleistocene hominin fossils and suggest the possibility that a primitive hominin lineage may have survived late into the Late Pleistocene in China. Copyright © 2014 Wiley Periodicals, Inc.
Repeat-until-success cubic phase gate for universal continuous-variable quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Kevin; Pooser, Raphael; Siopsis, George
2015-03-24
We report that to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. Ultimately, we find that our scheme offers benefits in terms of the expected time until success, as well as the fact that we do not require any complex off-line resource state,more » although we require a primitive quantum memory.« less
Probabilistic Component Mode Synthesis of Nondeterministic Substructures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1996-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
Shah, Viral H; Jobanputra, Amee
2018-01-01
The present investigation focused on developing, optimizing, and evaluating a novel liposome-loaded nail lacquer formulation for increasing the transungual permeation flux of terbinafine HCl for efficient treatment of onychomycosis. A three-factor, three-level, Box-Behnken design was employed for optimizing process and formulation parameters of liposomal formulation. Liposomes were formulated by thin film hydration technique followed by sonication. Drug to lipid ratio, sonication amplitude, and sonication time were screened as independent variables while particle size, PDI, entrapment efficiency, and zeta potential were selected as quality attributes for liposomal formulation. Multiple regression analysis was employed to construct a second-order quadratic polynomial equation and contour plots. Design space (overlay plot) was generated to optimize a liposomal system, with software-suggested levels of independent variables that could be transformed to desired responses. The optimized liposome formulation was characterized and dispersed in nail lacquer which was further evaluated for different parameters. Results depicted that the optimized terbinafine HCl-loaded liposome formulation exhibited particle size of 182 nm, PDI of 0.175, zeta potential of -26.8 mV, and entrapment efficiency of 80%. Transungual permeability flux of terbinafine HCl through liposome-dispersed nail lacquer formulation was observed to be significantly higher in comparison to nail lacquer with a permeation enhancer. The developed formulation was also observed to be as efficient as pure drug dispersion in its antifungal activity. Thus, it was concluded that the developed formulation can serve as an efficient tool for enhancing the permeability of terbinafine HCl across human nail plate thereby improving its therapeutic efficiency.
Barsugli, Joseph J.; Hobbins, Michael T.; Kumar, Sanjiv
2017-01-01
Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change. PMID:28301603
Generalized compliant motion primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor)
1994-01-01
This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.
Primitive neuroectodermal tumors of the central nervous system.
Becker, L E; Hinton, D
1983-06-01
Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.
Influence of resin formulation variables on bond quality of southern pine plywood
C. -Y. Hse
1972-01-01
Thirty-six resins, each with two replicates, were factorially prepared with three formulation variables: molar ratios of sodium hydroxide to phenol of 0.4, 0.7, and 1.0; levels of resin solids content of 37, 40, and 43 percent; and molar ratios of formaldehyde to phenol of 1.6, 1.9, 2.2, and 2.5. Glue bond quality decreased substantially with a change of NaOH/phenol...
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M
2012-03-01
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.
NASA Astrophysics Data System (ADS)
Natland, J. H.
2009-12-01
Olivine-liquid FeO-MgO (OLFM) equilibria is often assumed and used to estimate eruptive (To) and melting (potential) temperatures (TP) of primitive magmas and their MgO contents at spreading ridges and linear volcanic chains. The technique involves incremental addition of melt calculated to be in equilibrium with successively more magnesian olivine until an olivine of “mantle” composition is reached. Incremental olivine addition depends on the assumption that that this olivine and the host liquid lie along a single liquid line of descent determined by crystallization of olivine and no other mineral; i.e., the parental liquid was formally picritic in composition. This assumption can be questioned on three grounds, which may vary in importance from place to place, but at least one of which always appears to be operative: 1) most picrites are hybrids between primitive and differentiated magmas, the latter expressing cotectic crystallization of olivine, plagioclase and/or clinopyroxene (e.g., Baffin-West Greenland, Hawaii, Samoa), and have higher Fe/Mg than primitive magma, making estimates of To and TP too high; 2) the rocks themselves contain phenocrysts of plagioclase (e.g., Iceland) and/or clinopyroxene (e.g., Samoa) as well as olivine; 3) not even the most primitive magmas, evidenced by mineral associations in accumulative magmatic xenoliths (dunite, wehrlite, olivine clinopyroxene; many examples) indicate stages of crystallization involving olivine by itself. An alternative approach that uses liquid compositions to estimate compositions of Cr-spinel (Poustovetov and Roeder, 2000) predicts no natural Cr-spinel that crystallized at temperature >1400C or pressure 1.5 GPa either in picrites or xenoliths at any of these localities; no parental liquid had MgO > 16%. Spinel predicted from high-MgO (>20%) parental liquids postulated by OLFM matches nothing in nature. Natural glass in Samoan harzburgite xenoliths is mainly differentiated basalt, hawaiite and mugearite with average melt temperature of ~1100C, the same temperature as given by Ca-in-orthopyroxene of the harzburgites. Cold ambient mantle draws heat from ascending magma, forcing differentiation at depth. Magma with TP greater by 200C than primitive basalt at spreading ridges does not exist at any of these places. TP does not constrain temperature of the mantle below the depth of melt extraction. High and variable 3He/4He at all these places may result from volatile incorporation from old harzburgite through which magmas must ascend. Poustovetov, A., and Roeder, P.L., 2000. Canad. Min. 39: 309-317.
NASA Astrophysics Data System (ADS)
Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2018-04-01
Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.
Computation of two-dimensional flows past ram-air parachutes
NASA Astrophysics Data System (ADS)
Mittal, S.; Saxena, P.; Singh, A.
2001-03-01
Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright
Model reduction method using variable-separation for stochastic saddle point problems
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2018-02-01
In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.
Density of Primitive Pythagorean Triples
ERIC Educational Resources Information Center
Killen, Duncan A.
2004-01-01
Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…
A Discussion on the Substitution Method for Trigonometric Rational Functions
ERIC Educational Resources Information Center
Ponce-Campuzano, Juan Carlos; Rivera-Figueroa, Antonio
2011-01-01
It is common to see, in the books on calculus, primitives of functions (some authors use the word "antiderivative" instead of primitive). However, the majority of authors pay scant attention to the domains over which the primitives are valid, which could lead to errors in the evaluation of definite integrals. In the teaching of calculus, in…
Scientific Terminology and Minimum Terms in Speech Communication: Some Philosophical Ramblings.
ERIC Educational Resources Information Center
Krivonos, Paul D.; Sussman, Lyle.
Philosophers of science have emphasized the need for primitive terms, or "givens," in the construction of theory for any discipline. While there are inherent dangers regarding the use of primitive terms, they can have great value in serving as the basis for minimum terms, which are primitive terms unique to a discipline. (Borrowed terms are those…
A manual for PARTI runtime primitives
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel
1990-01-01
Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.
Patel, Niketkumar; Jain, Shashank; Madan, Parshotam; Lin, Senshang
2016-11-01
The objective of this investigation is to develop mathematical equation to understand the impact of variables and establish statistical control over transdermal iontophoretic delivery of tacrine hydrochloride. In addition, possibility of using conductivity measurements as a tool of predicting ionic mobility of the participating ions for the application of iontophoretic delivery was explored. Central composite design was applied to study effect of independent variables like current strength, buffer molarity, and drug concentration on iontophoretic tacrine permeation flux. Molar conductivity was determined to evaluate electro-migration of tacrine ions with application of Kohlrausch's law. The developed mathematic equation not only reveals drug concentration as the most significant variable regulating tacrine permeation, followed by current strength and buffer molarity, but also is capable to optimize tacrine permeation with respective combination of independent variables to achieve desired therapeutic plasma concentration of tacrine in treatment of Alzheimer's disease. Moreover, relative higher mobility of sodium and chloride ions was observed as compared to estimated tacrine ion mobility. This investigation utilizes the design of experiment approach and extends the primary understanding of imapct of electronic and formulation variables on the tacrine permeation for the formulation development of iontophoretic tacrine delivery.
Gorrell, Ian B.; Henderson, Timothy W.; Albdeery, Kamal; Savage, Philip M.; Kee, Terence P.
2017-01-01
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II) under aerobic conditions within a silica hydrogel (SHG) environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i) Pi compound; (ii) gel formulation; (iii) metal salt additive; and (iv) pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V)] via 31P-NMR spectroscopy, takes place when the following components are present: (i) a mixture of mixture of Pi(III) and Pi(V) or pure PPi(III– V); (ii) Fe(II); (iii) acetic or formic acid (not hydrochloric acid); (iv) aerobic conditions or the presence of H2O2 as an oxidant; and (v) the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities. PMID:29156594
The birth of numerical weather prediction
NASA Astrophysics Data System (ADS)
Wiin-Nielsen, A.
1991-08-01
The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The interconnected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.
The birth of numerical weather prediction
NASA Astrophysics Data System (ADS)
Wiin-Nielsen, A.
1991-09-01
The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The inter-connected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
Comet Dust: The Diversity of "Primitive" Particles and Implications
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.
2016-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.
Comet Dust: The Diversity of Primitive Particles and Implications
NASA Technical Reports Server (NTRS)
John Bradley; Zolensky, Michael E.
2016-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice--rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.
NASA Astrophysics Data System (ADS)
Horstmann, Marian; Humayun, Munir; Bischoff, Addi
2014-09-01
Enstatite (E) chondrites are a group of texturally highly variable meteorites formed under strongly reducing conditions giving rise to unique mineral and chemical characteristics (e.g., high abundances of various sulfides and Si-bearing metal). In particular the abundant metal comprises a range of textures in E chondrites of different petrologic type, but available in situ siderophile trace element data on metal are limited. Nine samples of E chondrites from the recent Almahata Sitta fall [one EH3, two EL3/4, two EL6, two EL impact melt rocks (IMR), two EH IMR] were investigated in this study in addition to St. Mark's (EH5) and Grein 002 (EL4/5), with a focus on the nature of their metal constituents. Special attention was given to metal-silicate intergrowths (MSSI) that occur in many primitive E chondrites, which have been interpreted as post-accretionary asteroidal impact melts or primitive nebular condensates. This study shows that siderophile trace element systematics in E chondrite metal are independent of petrologic type of the host rock and distinct from condensation signatures. Three basic types of siderophile trace element signatures can be distinguished, indicating crystallization from a melt, thermal equilibration upon metamorphism/complete melting, and exsolution of schreibersite-perryite-sulfide. Textural and mineral-chemical constraints from EL3/4s are used to evaluate previously proposed formation processes of MSSI (impact melting vs. nebular condensation) and elucidate which other formation scenarios are feasible. It is shown that post-accretionary (in situ) impact melting or metallic melt injection forming MSSI on the thin section scale, and nebular condensation, are unlikely formation processes. This leads to the conclusion that MSSIs are pre-accretionary melt objects that were formed during melting processes prior to the accretion of the primitive E chondrites. The same can be concluded for metal nodules in the EH3 chondrite examined. The pre-accretionary origin of MSSIs in E chondrites is consistent with a growing body of evidence for early differentiation followed by impact disruption of early formed planetesimals in all major chondrite types.
Representation of Muscle Synergies in the Primate Brain.
Overduin, Simon A; d'Avella, Andrea; Roh, Jinsook; Carmena, Jose M; Bizzi, Emilio
2015-09-16
Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations ("spatial" synergies) or time-varying muscle commands ("spatiotemporal" synergies). Here, we examined forelimb muscle patterns and motor cortical spiking data in rhesus macaques (Macaca mulatta) handling objects of variable shape and size. From these data, we extracted both spatiotemporal and spatial synergies using non-negative decomposition. Each spatiotemporal synergy represents a sequence of muscular or neural activations that appeared to recur frequently during the animals' behavior. Key features of the spatiotemporal synergies (including their dimensionality, timing, and amplitude modulation) were independently observed in the muscular and neural data. In addition, both at the muscular and neural levels, these spatiotemporal synergies could be readily reconstructed as sequential activations of spatial synergies (a subset of those extracted independently from the task data), suggestive of a hierarchical relationship between the two levels of synergies. The possibility that motor cortex may execute even complex skill using spatiotemporal synergies has novel implications for the design of neuroprosthetic devices, which could gain computational efficiency by adopting the discrete and low-dimensional control that these primitives imply. We studied the motor cortical and forearm muscular activity of rhesus macaques (Macaca mulatta) as they reached, grasped, and carried objects of varied shape and size. We applied non-negative matrix factorization separately to the cortical and muscular data to reduce their dimensionality to a smaller set of time-varying "spatiotemporal" synergies. Each synergy represents a sequence of cortical or muscular activity that recurred frequently during the animals' behavior. Salient features of the synergies (including their dimensionality, timing, and amplitude modulation) were observed at both the cortical and muscular levels. The possibility that the brain may execute even complex behaviors using spatiotemporal synergies has implications for neuroprosthetic algorithm design, which could become more computationally efficient by adopting the discrete and low-dimensional control that they afford. Copyright © 2015 the authors 0270-6474/15/3512615-10$15.00/0.
Circuit design tool. User's manual, revision 2
NASA Technical Reports Server (NTRS)
Miyake, Keith M.; Smith, Donald E.
1992-01-01
The CAM chip design was produced in a UNIX software environment using a design tool that supports definition of digital electronic modules, composition of these modules into higher level circuits, and event-driven simulation of these circuits. Our design tool provides an interface whose goals include straightforward but flexible primitive module definition and circuit composition, efficient simulation, and a debugging environment that facilitates design verification and alteration. The tool provides a set of primitive modules which can be composed into higher level circuits. Each module is a C-language subroutine that uses a set of interface protocols understood by the design tool. Primitives can be altered simply by recoding their C-code image; in addition new primitives can be added allowing higher level circuits to be described in C-code rather than as a composition of primitive modules--this feature can greatly enhance the speed of simulation.
Retention of primitive reflexes and delayed motor development in very low birth weight infants.
Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G
1984-06-01
Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.
RIPE integrity primitives, part 2 (RACE Integrity Primitives Evaluation)
NASA Astrophysics Data System (ADS)
Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.
1993-04-01
A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communications technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.
RIPE integrity primitives, part 1 (RACE Integrity Primitives Evaluation)
NASA Astrophysics Data System (ADS)
Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.
1993-04-01
A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communication technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.
Application of satellite data in variational analysis for global cyclonic systems
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1987-01-01
The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Liang, Xu; Leung, Lai R.
2008-12-05
Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less
Phase-field modeling of fracture in variably saturated porous media
NASA Astrophysics Data System (ADS)
Cajuhi, T.; Sanavia, L.; De Lorenzis, L.
2018-03-01
We propose a mechanical and computational model to describe the coupled problem of poromechanics and cracking in variably saturated porous media. A classical poromechanical formulation is adopted and coupled with a phase-field formulation for the fracture problem. The latter has the advantage of being able to reproduce arbitrarily complex crack paths without introducing discontinuities on a fixed mesh. The obtained simulation results show good qualitative agreement with desiccation experiments on soils from the literature.
Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi
2007-09-01
A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p < 0.05) on the response parameters. Numerical optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.
Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert
2017-01-01
Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Xu, Xiaoming; Al-Ghabeish, Manar; Rahman, Ziyaur; Krishnaiah, Yellela S R; Yerlikaya, Firat; Yang, Yang; Manda, Prashanth; Hunt, Robert L; Khan, Mansoor A
2015-09-30
Owing to its unique anatomical and physiological functions, ocular surface presents special challenges for both design and performance evaluation of the ophthalmic ointment drug products formulated with a variety of bases. The current investigation was carried out to understand and identify the appropriate in vitro methods suitable for quality and performance evaluation of ophthalmic ointment, and to study the effect of formulation and process variables on its critical quality attributes (CQA). The evaluated critical formulation variables include API initial size, drug percentage, and mineral oil percentage while the critical process parameters include mixing rate, temperature, time and cooling rate. The investigated quality and performance attributes include drug assay, content uniformity, API particle size in ointment, rheological characteristics, in vitro drug release and in vitro transcorneal drug permeation. Using design of experiments (DoE) as well as a novel principle component analysis approach, five of the quality and performance attributes (API particle size, storage modulus of ointment, high shear viscosity of ointment, in vitro drug release constant and in vitro transcorneal drug permeation rate constant) were found to be highly influenced by the formulation, in particular the strength of API, and to a lesser degree by processing variables. Correlating the ocular physiology with the physicochemical characteristics of acyclovir ophthalmic ointment suggested that in vitro quality metrics could be a valuable predictor of its in vivo performance. Published by Elsevier B.V.
Using Abstraction in Explicity Parallel Programs.
1991-07-01
However, we only rely on sequential consistency of memory operations. includ- ing reads. writes and any synchronization primitives provided by the...explicit synchronization primitives . This demonstrates the practical power of sequentially consistent memory, as opposed to weaker models of memory that...a small set of synchronization primitives , all pro- cedures have non-waiting specifications. This is in contrast to richer process-oriented
Semantically-Sensitive Macroprocessing
1989-12-15
constr uct for protecting critical regions. Given the synchronization primitives P and V, we might implement the following transformation, where...By this we mean that the semantic model for the base language provides a primitive set of concepts, represented by data types and operations...the gener- ation of a (dynamic-) semantically equivalent program fragment ultimately expressible in terms of built-in primitives . Note that static
A manual for PARTI runtime primitives, revision 1
NASA Technical Reports Server (NTRS)
Das, Raja; Saltz, Joel; Berryman, Harry
1991-01-01
Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gara, Alana; Heidelberger, Philip
Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
Gohel, Mukesh; Patel, Madhabhai; Amin, Avani; Agrawal, Ruchi; Dave, Rikita; Bariya, Nehal
2004-04-26
The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Preparation and Characterization of Novel Montmorillonite Nanocomposites
NASA Astrophysics Data System (ADS)
Mansa, Rola
Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.
Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication
Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...
2016-11-08
Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less
Synchronization of a Josephson junction array in terms of global variables
NASA Astrophysics Data System (ADS)
Vlasov, Vladimir; Pikovsky, Arkady
2013-08-01
We consider an array of Josephson junctions with a common LCR load. Application of the Watanabe-Strogatz approach [Physica DPDNPDT0167-278910.1016/0167-2789(94)90196-1 74, 197 (1994)] allows us to formulate the dynamics of the array via the global variables only. For identical junctions this is a finite set of equations, analysis of which reveals the regions of bistability of the synchronous and asynchronous states. For disordered arrays with distributed parameters of the junctions, the problem is formulated as an integro-differential equation for the global variables; here stability of the asynchronous states and the properties of the transition synchrony-asynchrony are established numerically.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen
2012-07-01
The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.
NASA Astrophysics Data System (ADS)
Guo, J. Y.; Shang, K.; Jekeli, C.; Shum, C. K.
2015-04-01
Two approaches have been formulated to compute the gravitational potential difference using low-low satellite-to-satellite tracking data based on energy integral: one in the geocentric inertial reference system, and the other in the terrestrial reference system. The focus of this work is on the approach in the geocentric inertial reference system, where a potential rotation term appears in addition to the potential term. In former formulations, the contribution of the time-variable components of the gravitational potential to the potential term was included, but their contribution to the potential rotation term was neglected. In this work, an improvement to the former formulations is made by reformulating the potential rotation term to include the contribution of the time-variable components of the gravitational potential. A simulation shows that our more accurate formulation of the potential rotation term is necessary to achieve the accuracy for recovering the temporal variation of the Earth's gravity field, such as for use to the Gravity Recovery And Climate Experiment GRACE observation data based on this approach.
He, Y; Shen, D; Liang, X F; Lu, R H; Xiao, H
2013-10-15
It is very important to investigate the reasons for the large individual differences in individual performance of food acceptance when using formulated diets for the successful culture of larvae and juveniles of the Chinese sturgeon Acipenser sinensis. Genetic differences of the mitochondrial control region were investigated by direct sequencing in two groups of Chinese sturgeon, which were apt to accept or refuse formulated diets. Among 968-bp sequences, 111 variable sites were identified. One variable site showed close association with the individual performance of specimens fed with formulated diets. The commercial diet for Chinese sturgeons usually contains high levels of lipids. Lipoprotein lipase (LPL) and hepatic lipase (HL) are two members of the lipase gene family, which are essential for the utilization of dietary lipid. Single nucleotide polymorphisms (SNPs) in intron 7 were detected in the two experimental groups of Chinese sturgeons. We were able to demonstrate that one SNP in the LPL gene and one SNP in the HL gene showed close association with the performance of sturgeons on the formulated diet.
Comparative Anatomy of Maintenance Tasks (CAMT): A Feasibility Study
1992-03-01
systems. Methods for task primitive definition were developed, then taken into the field for testing . Task primitives were defined to cover three remove...engine maintenance) and to test whether task primitives developed for one weapon system could have applicability to other weapon systems (Phase 2...requirements, levying MPT constraints and predicting MPT requirements are only ritualistic exercises until the operational test and evaluation of a
NASA Astrophysics Data System (ADS)
Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.
2015-12-01
Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).
Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko
2015-01-01
Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.
Energy yields in the prebiotic synthesis of hydrogen cyanide and formaldehyde
NASA Technical Reports Server (NTRS)
Stribling, R.; Miller, S. L.
1986-01-01
Prebiotic experiments are usually reported in terms of carbon yields, i.e., the yield of product based on the total carbon in the system. These experiments usually involve a large input of energy and are designed to maximize the yields of product. However, large inputs of energy result in multiple activation of the reactants and products. A more realistic prebiotic experiment is to remove the products of the activation step so they are not exposed a second time to the energy source. This is equivalent to transporting the products synthesized in the primitive atmosphere to the ocean, and thereby protecting them from destruction by atmospheric energy sources. Experiments of this type, using lower inputs of energy, give energy yields (moles of products/joule) which can be used to estimate the relative importance of the different energy sources on the primitive earth. Simulated prebiotic atmospheres containing either CH4, CO or CO2 with N2, H2O and variable amounts of H2 were subjected to a high frequency Tesla coil. Samples of the aqueous phase were taken at various time intervals from 1 hr to 7 days, and the energy yields were obtained by extrapolation to zero time. The samples were analyzed for HCN with the cyanide electrode and for H2CO by chromotropic acid. The spark energy was estimated by calorimetry. The temperature rise in an insulated discharge flask was compared with the temperature rise from a resistance heater in the same flask. These results will be compared with calculated production rates of HCN and H2CO from lightning and a number of photochemical processes on the primitive Earth.
Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1991-01-01
The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.
Physics of the primitive solar nebula and of giant gaseous protoplanets
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1978-01-01
It has been proposed that the supernova responsible for injecting Al-26 into the early solar system was in fact responsible for triggering the collapse of an interstellar cloud in order to produce a system of stars, one of which would be the solar system. Details concerning the mechanism involved in such a process are discussed. Attention is given to the evolution of the primitive solar nebula, the instabilities in the primitive solar nebula, and the giant gaseous protoplanets. The principal conclusion to be drawn from the material presented is that the primitive solar nebula was a rather chaotic place, highly turbulent, with the multiple formation of giant gaseous protoplanets.
Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.
Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José
2015-04-01
d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Singh, Bhupinder; Khurana, Lalit; Bandyopadhyay, Shantanu; Kapil, Rishi; Katare, O O P
2011-11-01
Carvedilol, a widely prescribed cardiovascular drug for hypertension and congestive heart failure, exhibits low and variable bioavailability owing to poor absorption and extensive hepatic first-pass metabolism. The current research work, therefore, entails formulation development of liquid self-nano-emulsifying drug delivery systems (SNEDDS) to enhance the bioavailability of carvedilol by facilitating its transport via lymphatic circulation. The formulation constituents, i.e. lipids, surfactants, and co-surfactants, were selected on the basis of solubility studies. Pseudo-ternary phase diagrams were constructed to embark upon the selection of blend of lipidic (i.e. Capmul PG8) and hydrophilic components (i.e. Cremophor EL as surfactant and Transcutol HP as co-surfactant) for efficient and robust formulation of SNEDDS. The SNEDDS, systematically optimized employing a central composite design (CCD), were evaluated for various response variables viz drug release parameters, emulsification time, emulsion droplet size, and mean dissolution time. In vitro drug release studies depicted that the release from SNEDDS systems followed a non-Fickian kinetic behavior. The TEM imaging of the optimized formulation affirmed the uniform shape and nano size of the system. Accelerated studies of the optimized formulation indicated high stability of the formulation for 6 months. The in situ perfusion studies carried out in wistar rats construed several fold augmentation in the permeability and absorption potential of the optimized formulation vis-à-vis marketed formulation. Thus, the present studies ratified the potential of SNEDDS in augmenting the oral bioavailability of BCS class II drugs.
Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.
1998-01-01
Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.
Vainieri, Maria L; Blagborough, Andrew M; MacLean, Adam L; Haltalli, Myriam L R; Ruivo, Nicola; Fletcher, Helen A; Stumpf, Michael P H; Sinden, Robert E; Celso, Cristina Lo
2016-06-01
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1(+) progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host. © 2016 The Authors.
Vainieri, Maria L.; Blagborough, Andrew M.; MacLean, Adam L.; Haltalli, Myriam L. R.; Ruivo, Nicola; Fletcher, Helen A.; Stumpf, Michael P. H.; Sinden, Robert E.; Lo Celso, Cristina
2016-01-01
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1+ progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host. PMID:27335321
Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Mösta, Philipp; Desai, Dhruv; Wu, Samantha
2018-05-01
General-relativistic magnetohydrodynamic (GRMHD) simulations are an important tool to study a variety of astrophysical systems such as neutron star mergers, core-collapse supernovae, and accretion onto compact objects. A conservative GRMHD scheme numerically evolves a set of conservation equations for “conserved” quantities and requires the computation of certain primitive variables at every time step. This recovery procedure constitutes a core part of any conservative GRMHD scheme and it is closely tied to the equation of state (EOS) of the fluid. In the quest to include nuclear physics, weak interactions, and neutrino physics, state-of-the-art GRMHD simulations employ finite-temperature, composition-dependent EOSs. While different schemes have individually been proposed, the recovery problem still remains a major source of error, failure, and inefficiency in GRMHD simulations with advanced microphysics. The strengths and weaknesses of the different schemes when compared to each other remain unclear. Here we present the first systematic comparison of various recovery schemes used in different dynamical spacetime GRMHD codes for both analytic and tabulated microphysical EOSs. We assess the schemes in terms of (i) speed, (ii) accuracy, and (iii) robustness. We find large variations among the different schemes and that there is not a single ideal scheme. While the computationally most efficient schemes are less robust, the most robust schemes are computationally less efficient. More robust schemes may require an order of magnitude more calls to the EOS, which are computationally expensive. We propose an optimal strategy of an efficient three-dimensional Newton–Raphson scheme and a slower but more robust one-dimensional scheme as a fall-back.
Possible complex organic compounds on Mars.
Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T
1997-01-01
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.
Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.
Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P
2007-12-28
The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.
Bala, Rajni; Khanna, Sushil; Pawar, Pravin K.
2013-01-01
Clobazam is a newer 1,5-benzodiazepine used for the treatment of epilepsy. It is better tolerated and less sedating than other benzodiazepines. Absorption of the drug can be impacted by oral fast dissolving dosage form; this may have implications for epilepsy in pediatrics and those having difficulty in swallowing tablets/capsules resulting in improved patient compliance. The purpose of the present investigation was to formulate and optimize clobazam oro-dissolving tablets by direct compression method using response surface methodology (RSM). Oro-dispersible tablets of clobazam were prepared by direct compression method using crospovidone (2-6%) as a superdisintegrant, microcrystalline cellulose (MCC) (20-40%) was used as diluents along with directly compressible mannitol to enhance mouth feel. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and MCC over the independent variables disintegration time, wetting time and percent drug release. Disintegration time showed by all formulations was found to be in the range of 24.3-193 s based on evaluation parameters the formulation containing 6% of crospovidone and 30% of MCC showed promising performance against all other formulations. The results demonstrated that the RSM could efficiently be applied for the formulation of clobazam oro-dispersible tablets; therefore, constitute an advance in the management of epileptic attacks. PMID:24083203
Using Parallel Processing for Problem Solving.
1979-12-01
are the basic parallel proces- sing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities...Language primitives are provided for manipulating running activities. Viewpoints are a generalization of context FOM -(over "*’ DD I FON 1473 ’EDITION OF I...arc the basic parallel processing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities. Language
Security Primitives for Reconfigurable Hardware-Based Systems
2010-05-01
work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
A Generalized-Compliant-Motion Primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1993-01-01
Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.
Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-05-01
Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.
MACOP modular architecture with control primitives
Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin
2013-01-01
Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140
A real-time robot arm collision detection system
NASA Technical Reports Server (NTRS)
Shaffer, Clifford A.; Herb, Gregory M.
1990-01-01
A data structure and update algorithm are presented for a prototype real time collision detection safety system for a multi-robot environment. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3-D space into eight equal cubic octants until each octant meets some decomposition criteria. The octree stores cylspheres (cylinders with spheres on each end) and rectangular solids as primitives (other primitives can easily be added as required). These primitives make up the two seven degrees-of-freedom robot arms and environment modeled by the system. Octree nodes containing more than a predetermined number N of primitives are decomposed. This rule keeps the octree small, as the entire environment for the application can be modeled using a few dozen primitives. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Incidents in which one robot arm comes too close to another arm or an object are reported. Cycle time for interpreting current joint angles, updating the octree, and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 80386 processor running at 20 MHz.
Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite
NASA Astrophysics Data System (ADS)
Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu
2018-01-01
Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.
Acute erythremic myelosis (true erythroleukaemia): a variant of AML FAB-M6.
Hasserjian, R P; Howard, J; Wood, A; Henry, K; Bain, B
2001-03-01
Classic erythroleukaemia (acute myeloid leukaemia M6, or M6 AML) is defined as an excess of myeloblasts in an erythroid predominant background. Leukaemia variants in which the primitive blast cells are demonstrably erythroid are extremely rare and poorly characterised. Variably referred to as "true erythroleukaemia" or "acute erythremic myelosis", they are often included within the M6 AML category even though they do not meet strict criteria for this type of AML. Two cases of acute erythroid neoplasia are presented with clinical, morphological, immunophenotypic, and cytogenetic analysis. Both patients presented with profound anaemia, one in a setting of long standing myelodysplasia. Bone marrow examination revealed a predominant population of highly dysplastic erythroid cells in both cases. In one case, the liver was infiltrated by neoplastic erythroid cells. Both patients died within four months of diagnosis. This report illustrates that cases of acute leukaemia occur in which the dominant neoplastic cell is a primitive erythroid cell without an accompanying increase in myeloblasts. This does not preclude the neoplastic clone originating in a multipotent haemopoietic stem cell, as suggested by cases arising in patients with myelodysplasia. Acute erythremic myelosis should be recognised as a distinct variant of M6 AML.
Mantle-derived trace element variability in olivines and their melt inclusions
NASA Astrophysics Data System (ADS)
Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura
2018-02-01
Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.
Note on the ideal frame formulation
NASA Astrophysics Data System (ADS)
Lara, Martin
2017-09-01
An implementation of the ideal frame formulation of perturbed Keplerian motion is presented which only requires the integration of a differential system of dimension 7, contrary to the 8 variables traditionally integrated with this approach. The new formulation is based on the integration of a scaled version of the Eulerian set of redundant parameters and slightly improves runtime performance with respect to the 8-dimensional case while retaining comparable accuracy.
A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.
Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy
2015-06-20
The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar
2016-01-01
An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147
Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel
2017-11-01
Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.
C deg continuity elements by Hybrid Stress method. M.S. Thesis, 1982 Final Report
NASA Technical Reports Server (NTRS)
Kang, David Sung-Soo
1991-01-01
An intensive study of the assumed variable distribution necessary for the Assumed Displacement Formulation, the Hellinger-Reissner Formulation, and the Hu-Washizu Formulation is made in a unified manner. With emphasis on physical explanation, a systematic method for the Hybrid Stress element construction is outlined. The numerical examples use four and eight node plane stress elements and eight and twenty node solid elements. Computation cost study indicates that the hybrid stress element derived using recently developed Uncoupled Stress Formulation is comparable in CPU time to the Assumed Displacement element. Overall, main emphasis is placed on providing a broader understanding of the Hybrid Stress Formulation.
NASA Technical Reports Server (NTRS)
Henry, Donald P., Jr.
1991-01-01
The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.
Next Generation, 4-D Distributed Modeling and Visualization of Battlefield
2006-07-14
accurate. However, the effectiveness of such a view is determined by its usability. If the picture contained all the information that had been...major key to success in such missions is the ability to model real-world urban areas accurately and effectively , so as to support US military mission...primitives (including the standard CG primitives such as plane, cube, wedge, polyhedron, cylinder and sphere, and high-order surface primitives such as
A Guide to FASTGEN Target Geometric Modeling
1993-10-01
component part is described in plate mode. These rules apply to all primitives with the exception of rod mode primitives which are always accompanied by a...format. A detailed discussion of the rules for preparing the target description file, where components are described using primitives defined as triangles...NN position is 99, the diameter of a rod mode component is limited to a maximum of 1.98-inches. Theie are several rules and cautions associated with
Hydrostatic calculations of axisymmetric flow and its stability for the AGCE model
NASA Technical Reports Server (NTRS)
Miller, T. L.; Gall, R. L.
1981-01-01
Baroclinic waves in the atmospherics general circulation experiment (AGCE) apparatus by the use of numerical hydrostatic primitive equation models were determined. The calculation is accomplished by using an axisymmetric primitive equation model to compute, for a given set of experimental parameters, a steady state axisymmetric flow and then testing this axisymmetric flow for stability using a linear primitive equation model. Some axisymmetric flows are presented together with preliminary stability calculations.
Cave men: stone tools, Victorian science, and the 'primitive mind' of deep time.
Pettitt, Paul B; White, Mark J
2011-03-20
Palaeoanthropology, the study of the evolution of humanity, arose in the nineteenth century. Excavations in Europe uncovered a series of archaeological sediments which provided proof that the antiquity of human life on Earth was far longer than the biblical six thousand years, and by the 1880s authors had constructed a basic paradigm of what 'primitive' human life was like. Here we examine the development of Victorian palaeoanthropology for what it reveals of the development of notions of cognitive evolution. It seems that Victorian specialists rarely addressed cognitive evolution explicitly, although several assumptions were generally made that arose from preconceptions derived from contemporary 'primitive' peoples. We identify three main phases of development of notions of the primitive mind in the period.
Primitive neuroectodermal tumor of the cervix: a case report
2011-01-01
Introduction Peripheral primitive neuroectodermal tumor of the cervix uteri is extremely rare. Between 1987 and 2010, there were only nine cases reported in the English literature, with considerably different management policies. Case presentation A 45-year-old Iranian woman presented to our facility with a primitive neuroectodermal tumor of the cervix uteri. Her clinical stage IB2 tumor was treated successfully with chemotherapy. Our patient underwent radical hysterectomy. There was no trace of the tumor after four years of follow-up. Conclusions According to current knowledge, primitive neuroectodermal tumors belong to the Ewing's sarcoma family, and the improvement of treatment outcome in our patient was due to dose-intensive neoadjuvant chemotherapy, surgery and consolidation chemotherapy in accordance with the protocol for bony Ewing's sarcoma. PMID:21962148
Insights to primitive replication derived from structures of small oligonucleotides
NASA Technical Reports Server (NTRS)
Smith, G. K.; Fox, G. E.
1995-01-01
Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.
Oh, Ching Mien; Guo, Qiyun; Wan Sia Heng, Paul; Chan, Lai Wah
2014-07-01
In any manufacturing process, the success of producing an end product with the desired properties and yield depends on a range of factors that include the equipment, process and formulation variables. It is the interest of manufacturers and researchers to understand each manufacturing process better and ascertain the effects of various manufacturing-associated factors on the properties of the end product. Unless the manufacturing process is well understood, it would be difficult to set realistic limits for the process variables and raw material specifications to ensure consistently high-quality and reproducible end products. Over the years, spray congealing has been used to produce particulates by the food and pharmaceutical industries. The latter have used this technology to develop specialized drug delivery systems. In this review, basic principles as well as advantages and disadvantages of the spray congealing process will be covered. Recent developments in spray congealing equipment, process variables and formulation variables such as the matrix material, encapsulated material and additives will also be discussed. Innovative equipment designs and formulations for spray congealing have emerged. Judicious choice of atomizers, polymers and additives is the key to achieve the desired properties of the microparticles for drug delivery.
Canonical Formulation of Supermechanics
NASA Astrophysics Data System (ADS)
Matsumoto, S.
1990-07-01
The canonical formulation of a theory of dynamical systems with both Grassmann even and odd variables is investigated. The sufficient condition for the system being analytically solvable is given. The geodesic motion of a particle in the super Poincaré upper half plane is solved as an example.
Kundoor, Vipra; Dalby, Richard N
2011-08-01
To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.
Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A
2018-11-01
This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.
A probabilistic model of a porous heat exchanger
NASA Technical Reports Server (NTRS)
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
ARCGRAPH SYSTEM - AMES RESEARCH GRAPHICS SYSTEM
NASA Technical Reports Server (NTRS)
Hibbard, E. A.
1994-01-01
Ames Research Graphics System, ARCGRAPH, is a collection of libraries and utilities which assist researchers in generating, manipulating, and visualizing graphical data. In addition, ARCGRAPH defines a metafile format that contains device independent graphical data. This file format is used with various computer graphics manipulation and animation packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). In its full configuration, the ARCGRAPH system consists of a two stage pipeline which may be used to output graphical primitives. Stage one is associated with the graphical primitives (i.e. moves, draws, color, etc.) along with the creation and manipulation of the metafiles. Five distinct data filters make up stage one. They are: 1) PLO which handles all 2D vector primitives, 2) POL which handles all 3D polygonal primitives, 3) RAS which handles all 2D raster primitives, 4) VEC which handles all 3D raster primitives, and 5) PO2 which handles all 2D polygonal primitives. Stage two is associated with the process of displaying graphical primitives on a device. To generate the various graphical primitives, create and reprocess ARCGRAPH metafiles, and access the device drivers in the VDI (Video Device Interface) library, users link their applications to ARCGRAPH's GRAFIX library routines. Both FORTRAN and C language versions of the GRAFIX and VDI libraries exist for enhanced portability within these respective programming environments. The ARCGRAPH libraries were developed on a VAX running VMS. Minor documented modification of various routines, however, allows the system to run on the following computers: Cray X-MP running COS (no C version); Cray 2 running UNICOS; DEC VAX running BSD 4.3 UNIX, or Ultrix; SGI IRIS Turbo running GL2-W3.5 and GL2-W3.6; Convex C1 running UNIX; Amhdahl 5840 running UTS; Alliant FX8 running UNIX; Sun 3/160 running UNIX (no native device driver); Stellar GS1000 running Stellex (no native device driver); and an SGI IRIS 4D running IRIX (no native device driver). Currently with version 7.0 of ARCGRAPH, the VDI library supports the following output devices: A VT100 terminal with a RETRO-GRAPHICS board installed, a VT240 using the Tektronix 4010 emulation capability, an SGI IRIS turbo using the native GL2 library, a Tektronix 4010, a Tektronix 4105, and the Tektronix 4014. ARCGRAPH version 7.0 was developed in 1988.
Viscous flow computations using a second-order upwind differencing scheme
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1988-01-01
In the present computations of a wide range of fluid flow problems by means of the primitive variables-incorporating Navier-Stokes equations, a mixed second-order upwinding scheme approximates the convective terms of the transport equations and the scheme's accuracy is verified for convection-dominated high Re number flow problems. An adaptive dissipation scheme is used as a monotonic supersonic shock flow capture mechanism. Many benchmark fluid flow problems, including the compressible and incompressible, laminar and turbulent, over a wide range of M and Re numbers, are presently studied to verify the accuracy and robustness of this numerical method.
Linear and nonlinear pattern selection in Rayleigh-Benard stability problems
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1993-01-01
A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.
Exploration decisions and firms in the mineral industries
Attanasi, E.D.
1981-01-01
The purpose of this paper is to demonstrate how physical characteristics of deposits and results of past exploration enter future exploration decisions. A proposed decision model is presented that is consistent with a set of primitive probabilistic assumptions associated with deposit size distributions and discoverability. Analysis of optimal field exploration strategy showed the likely firm responses to alternative exploration taxes and effects on the distribution of future discoveries. Examination of the probabilistic elements of the decision model indicates that changes in firm expectations associated with the distribution of deposits cannot be totally offset by changes in economic variables. ?? 1981.
Ocean Thermal and Color Evolution During the 1997/1998 ENSO Event
NASA Technical Reports Server (NTRS)
Rienecker, Michele
1998-01-01
A reduced gravity primitive equation modeling and assimilation system is used to study the evolution of the tropical Pacific during the 1997/1998 ENSO cycle. The modeling/assimilation scheme ingests satellite altimeter data and TAO temperature profiles and uses SSM/I satellite derived winds as surface boundary forcing. The four-dimensional structure of the upper ocean circulation structure will be compared against available in situ observations across the Pacific basin. In particular, variability near the Galapagos Islands will be highlighted during the spring of 1998 when phytoplankton concentrations were observed to increase a hundred-fold over a two week period.
PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results
NASA Astrophysics Data System (ADS)
de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco
2015-11-01
NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.
Mimoto, Mizuho S.; Christian, Jan L.
2012-01-01
Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect. PMID:22235346
Telange, Darshan R; Patil, Arun T; Pethe, Anil M; Fegade, Harshal; Anand, Sridhar; Dave, Vivek S
2017-10-15
The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.
Dissolution of Commercially Available Mesalamine Formulations at Various pH Levels.
Tenjarla, Srini
2015-06-01
Mesalamine (5-aminosalicylic acid; 5-ASA) is recommended first-line therapy for mild-to-moderate ulcerative colitis. Many mesalamine formulations employ a pH-dependent release mechanism designed to maximize drug release in the colon. This study compared the in vitro release of 5-ASA from six commercially available mesalamine formulations at pH levels similar to those typically encountered in the human gastrointestinal tract. The release of 5-ASA from six mesalamine formulations [Mesalazin-Kohlpharma (Kohlpharma, Germany), Mesalazin-Eurim (Eurimpharm, Germany), Mesalazina-Faes (Faes Farma, Spain), Mesalazine EC (Actavis B.V., Netherlands), Mesalazine EC 500 PCH (Pharmachemie B.V., Netherlands); multimatrix mesalamine (Shire US Inc., USA)] was monitored separately at three different pH levels [1.0 (2 h), 6.4 (1 h), and 7.2 (8 h)] using United States Pharmacopeia dissolution apparatus II. The dissolution percentage was calculated as a mean of 12 units for each formulation. At pH 1.0 and 6.4, <1 % of 5-ASA release was observed for each of the mesalamine formulations tested. At pH 7.2, complete release of 5-ASA occurred within 1 h for Mesalazine EC and Mesalazine EC 500 PCH, and within 2 h for Mesalazin-Kohlpharma, Mesalazin-Eurim, and Mesalazina-Faes; complete release of 5-ASA from multimatrix mesalamine occurred within 7 h. Little variability in rate of 5-ASA dissolution was observed between tablets of each formulation. At pH 7.2, 5-ASA release profiles were variable among the commercially available mesalamine formulations that were tested.
UNCOMPAHGRE PRIMITIVE AREA, COLORADO.
Luedke, R.G.; Sheridan, M.J.
1984-01-01
A mineral-resource study was made of that part of the Uncompahgre National Forest, Colorado constituting the officially designated primitive area. Because the primitive area and its southern border zone contained operating mines producing gold, silver, copper, lead, zinc, and minor amounts of a few other metals, and had been a part of a highly productive mining region, the area was concluded to have large segments of both probable and substantiated mineral-resource potential. No energy resources were identified in the study.
Primitive myxoid mesenchymal tumor of infancy in a preterm infant.
Lam, Joseph; Lara-Corrales, Irene; Cammisuli, Salvatore; Somers, Gino R; Pope, Elena
2010-01-01
Primitive myxoid mesenchymal tumor of infancy is a recently recognized entity that has been added to the differential diagnosis of myxoid tumors of the soft tissue. Few cases have been reported of this entity in the literature, but none presenting in a preterm infant. We present the case and clinical course of a preterm boy with a primitive myxoid mesenchymal tumor of infancy that occurred following excision of a congenital juvenile xanthogranuloma. © 2010 Wiley Periodicals, Inc.
HIGH UINTAS PRIMITIVE AREA, UTAH.
Crittenden, Max D.; Sheridan, Michael J.
1984-01-01
Mineral surveys in the High Uintas Primitive Area, Utah and the additions subsequently proposed concluded that the area has little promise for mineral resources. Of the areas around the fringes, a strip along the north flank fault can be classed as having probable energy-resource potential for oil and gas. The oil and gas potential could be tested by additional seismic studies followed by drilling. Much of the necessary information probably could be obtained without drilling within the primitive area itself.
Olza Fernández, Ibone; Malalana Martínez, Ana M.; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-01-01
Abstract Aim: Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. Materials and Methods: A cohort prospective study was conducted at a tertiary hospital. Mother–infant dyads who received intrapartum oxytocin (n=53) were compared with mother–infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. Results: The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Conclusions: Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent. PMID:25785487
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
NASA Astrophysics Data System (ADS)
Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.
2015-12-01
An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.
Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; McGowan, Francis X; Kheir, John N
2014-08-01
Tissue hypoxia is a final common pathway that leads to cellular injury and death in a number of critical illnesses. Intravenous injections of self-assembling, lipid-based oxygen microbubbles (LOMs) can be used to deliver oxygen gas, preventing organ injury and death from systemic hypoxemia. However, current formulations exhibit high polydispersity indices (which may lead to microvascular obstruction) and poor shelf-lives, limiting the translational capacity of LOMs. In this study, we report our efforts to optimize LOM formulations using a mixture response surface methodology (mRSM). We study the effect of changing excipient proportions (the independent variables) on microbubble diameter and product loss (the dependent variables). By using mRSM analysis, the experimental data were fit using a reduced Scheffé linear mixture model. We demonstrate that formulations manufactured from 1,2-distearoyl-sn-glycero-3-phosphocholine, corn syrup, and water produce micron-sized microbubbles with low polydispersity indices, and decreased product loss (relative to previously described formulations) when stored at room temperature over a 30-day period. Optimized LOMs were subsequently tested for their oxygen-releasing ability and found to have similar release kinetics as prior formulations. © 2014 Wiley Periodicals, Inc.
State-Space Formulation for Circuit Analysis
ERIC Educational Resources Information Center
Martinez-Marin, T.
2010-01-01
This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…
Essential roles for Cdx in murine primitive hematopoiesis.
Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David
2017-02-15
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.
Kulkeaw, Kasem; Inoue, Tomoko; Ishitani, Tohru; Nakanishi, Yoichi; Zon, Leonard I; Sugiyama, Daisuke
2018-02-01
Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5 TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5 high and DRAQ5 low populations. DRAQ5 high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5 TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5 high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5 TM -based flow cytometry enables purification of primitive zebrafish erythrocytes. © 2017 John Wiley & Sons Ltd.
A subjective study and an objective metric to quantify the granularity level of textures
NASA Astrophysics Data System (ADS)
Subedar, Mahesh M.; Karam, Lina J.
2015-03-01
Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.
Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.
Sturgeon, Christopher M; Chicha, Laurie; Ditadi, Andrea; Zhou, Qinbo; McGrath, Kathleen E; Palis, James; Hammond, Scott M; Wang, Shusheng; Olson, Eric N; Keller, Gordon
2012-07-17
Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Correlation Scales of the Turbulent Cascade at 1 au
NASA Astrophysics Data System (ADS)
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1995-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature, researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. This paper presents a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
Choudhary, Sandeep; Jain, Ashay; Amin, Mohd Cairul Iqbal Mohd; Mishra, Vijay; Agrawal, Govind P; Kesharwani, Prashant
2016-05-01
The study was intended to develop a new intra-gastric floating in situ microballoons system for controlled delivery of rabeprazole sodium and amoxicillin trihydrate for the treatment of peptic ulcer disease. Eudragit S-100 and hydroxypropyl methyl cellulose based low density microballoons systems were fabricated by employing varying concentrations of Eudragit S-100 and hydroxypropyl methyl cellulose, to which varying concentrations of drug was added, and formulated by stirring at various speed and time to optimize the process and formulation variable. The formulation variables like concentration and ratio of polymers significantly affected the in vitro drug release from the prepared floating device. The validation of the gastro-retentive potential of the prepared microballoons was carried out in rabbits by orally administration of microballoons formulation containing radio opaque material. The developed formulations showed improved buoyancy and lower ulcer index as compared to that seen with plain drugs. Ulcer protective efficacies were confirmed in ulcer-bearing mouse model. In conclusion, greater compatibility, higher gastro-retention and higher anti-ulcer activity of the presently fabricated formulations to improve potential of formulation for redefining ulcer treatment are presented here. These learning exposed a targeted and sustained drug delivery potential of prepared microballoons in gastric region for ulcer therapeutic intervention as corroborated by in vitro and in vivo findings and, thus, deserves further attention for improved ulcer treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Minimization search method for data inversion
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
Technique has been developed for determining values of selected subsets of independent variables in mathematical formulations. Required computation time increases with first power of the number of variables. This is in contrast with classical minimization methods for which computational time increases with third power of the number of variables.
Primitive African Medical Lore and Witchcraft *
Thompson, Ethel E.
1965-01-01
This article presents a comprehensive study of the methods, practices, equipment, and paraphernalia of African witch doctors in carrying out primitive medical practices. The chief tribes studied are the Azandes of the Sudan, the Manos of Liberia, the Congo tribes, the Bundas of Angola, and the Zulus and other Bantu tribes of South Africa. Primitive beliefs and customs are discussed only insofar as they have a direct bearing on medical practices. The medical practices considered deal mainly with the application of general remedies for ailments and diseases, but certain specialized fields such as obstetrics, surgery, treatment for fractures, and dentistry are also included. Primitive medicaments are presented with reference to their application for various illnesses. An alphabetical list of these medicaments is given at the end of the article. PMID:14223742
Carotid-vertebrobasilar Anastomoses with Reference to Their Segmental Property.
Namba, Katsunari
2017-06-15
The primitive carotid-vertebrobasilar anastomoses are primitive embryonic cerebral vessels that temporarily provide arterial supply from the internal carotid artery to the longitudinal neural artery, the future vertebrobasilar artery in the hindbrain. Four types known are the trigeminal, otic, hypoglossal, and proatlantal intersegmental arteries. The arteries are accompanied by their corresponding nerves and resemble an intersegmental pattern. These vessels exist in the very early period of cerebral arterial development and rapidly involute within a week. Occasionally, persistence of the carotid to vertebrobasilar anastomosis is discovered in the adult period, and is considered as the vestige of the corresponding primitive embryonic vessel. The embryonic development and the segmental property of the primitive carotid-vertebrobasilar anastomoses are discussed. This is followed by a brief description of the persisting anastomoses in adults.
Impact of Discrete Corrections in a Modular Approach for Trajectory Generation in Quadruped Robots
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.; Santos, Cristina P.; Rocha, Diana; Matos, Vítor
2011-09-01
Online generation of trajectories in robots is a very complex task that involves the combination of different types of movements, i.e., distinct motor primitives. The later are used to model complex behaviors in robots, such as locomotion in irregular terrain and obstacle avoidance. In this paper, we consider two motor primitives: rhythmic and discrete. We study the effect on the robots' gaits of superimposing the two motor primitives, considering two distinct types of coupling. Additionally, we simulate two scenarios, where the discrete primitive is inserted in all of the four limbs, or is inserted in ipsilateral pairs of limbs. Numerical results show that amplitude and frequency of the periodic solutions, corresponding to the gaits trot and pace, are almost constant for diffusive and synaptic couplings.
An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics
NASA Astrophysics Data System (ADS)
Rogers, David M.; Beck, Thomas L.; Rempe, Susan B.
2011-10-01
Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium `process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Linearized simulation of flow over wind farms and complex terrains
NASA Astrophysics Data System (ADS)
Segalini, Antonio
2017-03-01
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.
On the Miller-Tucker-Zemlin Based Formulations for the Distance Constrained Vehicle Routing Problems
NASA Astrophysics Data System (ADS)
Kara, Imdat
2010-11-01
Vehicle Routing Problem (VRP), is an extension of the well known Traveling Salesman Problem (TSP) and has many practical applications in the fields of distribution and logistics. When the VRP consists of distance based constraints it is called Distance Constrained Vehicle Routing Problem (DVRP). However, the literature addressing on the DVRP is scarce. In this paper, existing two-indexed integer programming formulations, having Miller-Tucker-Zemlin based subtour elimination constraints, are reviewed. Existing formulations are simplified and obtained formulation is presented as formulation F1. It is shown that, the distance bounding constraints of the formulation F1, may not generate the distance traveled up to the related node. To do this, we redefine the auxiliary variables of the formulation and propose second formulation F2 with new and easy to use distance bounding constraints. Adaptation of the second formulation to the cases where new restrictions such as minimal distance traveled by each vehicle or other objectives such as minimizing the longest distance traveled is discussed.
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin
2010-03-01
The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained ψ(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.
Patwardhan, Ketaki; Asgarzadeh, Firouz; Dassinger, Thomas; Albers, Jessica; Repka, Michael A
2015-05-01
In this study, the principles of quality by design (QbD) have been uniquely applied to a pharmaceutical melt extrusion process for an immediate release formulation with a low melting model drug, ibuprofen. Two qualitative risk assessment tools - Fishbone diagram and failure mode effect analysis - were utilized to strategically narrow down the most influential parameters. Selected variables were further assessed using a Plackett-Burman screening study, which was upgraded to a response surface design consisting of the critical factors to study the interactions between the study variables. In process torque, glass transition temperature (Tg ) of the extrudates, assay, dissolution and phase change were measured as responses to evaluate the critical quality attributes (CQAs) of the extrudates. The effect of each study variable on the measured responses was analysed using multiple regression for the screening design and partial least squares for the optimization design. Experimental limits for formulation and process parameters to attain optimum processing have been outlined. A design space plot describing the domain of experimental variables within which the CQAs remained unchanged was developed. A comprehensive approach for melt extrusion product development based on the QbD methodology has been demonstrated. Drug loading concentrations between 40- 48%w/w and extrusion temperature in the range of 90-130°C were found to be the most optimum. © 2015 Royal Pharmaceutical Society.
Distributed Computation and TENEX-Related Activities
1978-01-01
IPCF) which provides the inter-job communication functions required by MSG. MSG will be modified to use the IPCF primitives when running under TOPS...mmummi iiiwnrnrtnr’in i^WMBi. ■a^j.i.aiAj.k ■*"-’"’’"— •’ ’■■ BBN Report No. 3752 Bolt Beranek and Newman Inc. . . - . *. - primitive (e.g...from a process to MSG when a communication primitive is executed, and from MSG to a process when a pending event (e.g., outstanding receive operation
Primitive ideals of C q [ SL(3)
NASA Astrophysics Data System (ADS)
Hodges, Timothy J.; Levasseur, Thierry
1993-10-01
The primitive ideals of the Hopf algebra C q [ SL(3)] are classified. In particular it is shown that the orbits in Prim C q [ SL(3)] under the action of the representation group H ≅ C *× C * are parameterized naturally by W×W, where W is the associated Weyl group. It is shown that there is a natural one-to-one correspondence between primitive ideals of C q [ SL(3)] and symplectic leaves of the associated Poisson algebraic group SL(3, C).
A comment on methanogenic bacteria and the primitive ecology
NASA Technical Reports Server (NTRS)
Woese, C. R.
1977-01-01
As the phenotype of methanogenic bacteria is suggested to have been one of the major factors creating a dynamic balance between CO2 and CH4 in the primitive atmosphere, these organisms are thought to be very ancient. Their antiquity may be further postulated by comparative characterization of their ribosomal RNA. Accepting this antiquity, it is concluded that a carbon-dioxide-methane cycle, driven by photosynthesis, was the major carbon cycle in primitive ecology, and that photosynthesis and methanogens were thus contemporaneous.
Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture
Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François
1973-01-01
Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379
Simplified Discontinuous Galerkin Methods for Systems of Conservation Laws with Convex Extension
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1999-01-01
Simplified forms of the space-time discontinuous Galerkin (DG) and discontinuous Galerkin least-squares (DGLS) finite element method are developed and analyzed. The new formulations exploit simplifying properties of entropy endowed conservation law systems while retaining the favorable energy properties associated with symmetric variable formulations.
The role of water in the petrogenesis of Marina trough magmas
NASA Astrophysics Data System (ADS)
Stolper, Edward; Newman, Sally
1994-02-01
Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana trough basalts were extracted from primitive mantle, the residual mantle would have many of the minor and trace element characteristics of typical oceanic upper mantle; primitive mantle enriched in such fluid would be a satisfactory source for the continental crust in terms of its trace and minor element chemical composition.
High grade primitive neuroectodermal tumor of the uterus: A case report.
Dizon, A Mitch; Kilgore, Larry C; Grindstaff, Alan; Winkler, Marcus; Kimball, Kristopher J
2014-01-01
•Primitive neuroectodermal tumor of the uterus is extremely rare.•Diagnosis requires timely evaluation with molecular analysis.•Different combinations of adjuvant chemotherapy have been reported.
PATTERN PREDICTION OF ACADEMIC SUCCESS.
ERIC Educational Resources Information Center
LUNNEBORG, CLIFFORD E.; LUNNEBORG, PATRICIA W.
A TECHNIQUE OF PATTERN ANALYSIS WHICH EMPHASIZES THE DEVELOPMENT OF MORE EFFECTIVE WAYS OF SCORING A GIVEN SET OF VARIABLES WAS FORMULATED. TO THE ORIGINAL VARIABLES WERE SUCCESSIVELY ADDED TWO, THREE, AND FOUR VARIABLE PATTERNS AND THE INCREASE IN PREDICTIVE EFFICIENCY ASSESSED. RANDOMLY SELECTED HIGH SCHOOL SENIORS WHO HAD PARTICIPATED IN THE…
Ermer, James C; Adeyi, Ben A; Pucci, Michael L
2010-12-01
Methylphenidate- and amfetamine-based stimulants are first-line pharmacotherapies for attention-deficit hyperactivity disorder, a common neurobehavioural disorder in children and adults. A number of long-acting stimulant formulations have been developed with the aim of providing once-daily dosing, employing various means to extend duration of action, including a transdermal delivery system, an osmotic-release oral system, capsules with a mixture of immediate- and delayed-release beads, and prodrug technology. Coefficients of variance of pharmacokinetic measures can estimate the levels of pharmacokinetic variability based on the measurable variance between different individuals receiving the same dose of stimulant (interindividual variability) and within the same individual over multiple administrations (intraindividual variability). Differences in formulation clearly impact pharmacokinetic profiles. Many medications exhibit wide interindividual variability in clinical response. Stimulants with low levels of inter- and intraindividual variability may be better suited to provide consistent levels of medication to patients. The pharmacokinetic profile of stimulants using pH-dependent bead technology can vary depending on food consumption or concomitant administration of medications that alter gastric pH. While delivery of methylphenidate with the transdermal delivery system would be unaffected by gastrointestinal factors, intersubject variability is nonetheless substantial. Unlike the beaded formulations and, to some extent (when considering total exposure) the osmotic-release formulation, systemic exposure to amfetamine with the prodrug stimulant lisdexamfetamine dimesylate appears largely unaffected by such factors, likely owing to its dependence on systemic enzymatic cleavage of the precursor molecule, which occurs primarily in the blood involving red blood cells. The high capacity but as yet unidentified enzymatic system for conversion of lisdexamfetamine dimesylate may contribute to its consistent pharmacokinetic profile. The reasons underlying observed differential responses to stimulants are likely to be multifactorial, including pharmacodynamic factors. While the use of stimulants with low inter- and intrapatient pharmacokinetic variability does not obviate the need to titrate stimulant doses, stimulants with low intraindividual variation in pharmacokinetic parameters may reduce the likelihood of patients falling into subtherapeutic drug concentrations or reaching drug concentrations at which the risk of adverse events increases. As such, clinicians are urged both to adjust stimulant doses based on therapeutic response and the risk for adverse events and to monitor patients for potential causes of pharmacokinetic variability.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
NASA Astrophysics Data System (ADS)
Swensson, Richard G.; King, Jill L.; Good, Walter F.; Gur, David
2000-04-01
A constrained ROC formulation from probability summation is proposed for measuring observer performance in detecting abnormal findings on medical images. This assumes the observer's detection or rating decision on each image is determined by a latent variable that characterizes the specific finding (type and location) considered most likely to be a target abnormality. For positive cases, this 'maximum- suspicion' variable is assumed to be either the value for the actual target or for the most suspicious non-target finding, whichever is the greater (more suspicious). Unlike the usual ROC formulation, this constrained formulation guarantees a 'well-behaved' ROC curve that always equals or exceeds chance- level decisions and cannot exhibit an upward 'hook.' Its estimated parameters specify the accuracy for separating positive from negative cases, and they also predict accuracy in locating or identifying the actual abnormal findings. The present maximum-likelihood procedure (runs on PC with Windows 95 or NT) fits this constrained formulation to rating-ROC data using normal distributions with two free parameters. Fits of the conventional and constrained ROC formulations are compared for continuous and discrete-scale ratings of chest films in a variety of detection problems, both for localized lesions (nodules, rib fractures) and for diffuse abnormalities (interstitial disease, infiltrates or pnumothorax). The two fitted ROC curves are nearly identical unless the conventional ROC has an ill behaved 'hook,' below the constrained ROC.
Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny
2013-01-01
The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.
NASA Astrophysics Data System (ADS)
She, Yuchen; Li, Shuang
2018-01-01
The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.
NASA Technical Reports Server (NTRS)
Turon, Albert; Camanho, Pedro P.; Costa, Josep; Davila, Carlos G.
2004-01-01
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics (DM). The constitutive equations that result from the variation of the free energy with damage are used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. Interfacial penetration of two adjacent layers after complete decohesion is prevented by the formulation of the free energy. The model is implemented into the commercial finite element code ABAQUS by means of a user-written decohesion element. Finally, the numerical predictions given by the model are compared with experimental results.
Thota, S; Khan, S M; Tippabhotla, S K; Battula, R; Gadiko, C; Vobalaboina, V
2013-11-01
An open-label, 2-treatment, 3-sequence, 3-period, single-dose, partial replicate crossover studies under fasting (n=48), fed (n=60) and fasting-applesauce (n=48) (sprinkled on one table spoonful of applesauce) modalities were conducted in healthy adult male volunteers to evaluate bioequivalence between 2 formulations of lansoprazole delayed release capsules 30 mg. In all the 3 studies, as per randomization, either test or reference formulations were administered in a crossover manner with a required washout period of at least 7 days. Blood samples were collected adequately (0-24 h) to determine lansoprazole plasma concentrations using a validated LC-MS/MS analytical method. To characterize the pharmacokinetic parameters (Cmax, AUC0-t, AUC0-∞, Tmax, Kel and T1/2) of lansoprazole, non-compartmental analysis and ANOVA was applied on ln-transformed values. The bioequivalence was tested based on within-subject variability of the reference formulation. In fasting and fed studies (within-subject variability>30%) bioequivalence was evaluated with scaled average bioequivalence, hence for the pharmacokinetic parameters Cmax, AUC0-t and AUC0-∞, the 95% upper confidence bound for (μT-μR)2-θσ2 WR was ≤0, and the point estimates (test-to-reference ratio) were within the regulatory acceptance limit 80.00-125.00%. In fasting-applesauce study (within-subject variability<30%) bioequivalence was evaluated with average bioequivalence, the 90% CI of ln-transformed data of Cmax, AUC0-t and AUC0-∞ were within the regulatory acceptance limit 80.00-125.00%. Based on these aforesaid statistical inferences, it was concluded that the test formulation is bioequivalent to reference formulation. © Georg Thieme Verlag KG Stuttgart · New York.
Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia
NASA Astrophysics Data System (ADS)
Brügmann, G. E.; Arndt, N. T.; Hofmann, A. W.; Tobschall, H. J.
1987-08-01
The distribution of the chalcophile and siderophile metals Cu, Ni, Au, Pd, Ir, Os and Ru in an Archaean komatiite flow from Alexo, Ontario and in a Phanerozoic komatiitic suite of Gorgona Island, Colombia, provides new information about the geochemical behaviour of these elements. Copper, Au and Pd behave as incompatible elements during the crystallization of these ultramafic magmas. In contrast, Ni, Ir, Os and Ru concentrations systematically decrease with decreasing MgO contents, a pattern characteristic of compatible elements. These trends are most probably controlled by olivine crystallization, which implies that Ir, Os and Ru are compatible in olivine. Calculated partition coefficients for Ir, Os and Ru between olivine and the melt are about 1.8. Compared to primitive mantle, parental komatiitic liquids are enriched in (incompatible) Cu, Au and Pd and depleted in (compatible) Ir, Os and Ru. Within both Archaean and Phanerozoic komatiites, noble metal ratios such as Au/Pd, Ir/Os, Os/Ru and Ru/Ir and ratios of lithophile and siderophile elements such as Ti/Pd, Ti/Au are constant and similar to primitive mantle values. This implies that Au and Pd are moderately incompatible elements and that there has been no significant fractionation of siderophile and lithophile elements since the Archaean. Platinum-group element abundances of normal MORB are highly variable and always much lower than in komatiites, because MORB magma is saturated with sulfur and a variable but minor amount of sulfide segregated during mantle melting or during the ascent of magma to the surface. Sulfide deposits associated with komatiites display similar chalcophile element patterns to those of komatiites. Noble metal ratios such as Pd/Ir, Au/Ir, Pd/Os and Pd/Ru can be used to determine the composition of the host komatiite at the time of sulfide segregation.
Primitive macrophages control HSPC mobilization and definitive haematopoiesis.
Travnickova, Jana; Tran Chau, Vanessa; Julien, Emmanuelle; Mateos-Langerak, Julio; Gonzalez, Catherine; Lelièvre, Etienne; Lutfalla, Georges; Tavian, Manuela; Kissa, Karima
2015-02-17
In vertebrates, haematopoietic stem/progenitor cells (HSPCs) first emerge in the aorta-gonad-mesonephros (AGM) before colonizing transitory and subsequently definitive haematopoietic organs allowing haematopoiesis throughout adult life. Here we identify an unexpected primitive macrophage population accumulated in the dorsal mesenteric mesoderm surrounding the dorsal aorta of the human embryo and study its function in the transparent zebrafish embryo. Our study reveals dynamic interactions occurring between the HSPCs and primitive macrophages in the AGM. Specific chemical and inducible genetic depletion of macrophages or inhibition of matrix metalloproteinases (Mmps) leads to an accumulation of HSPCs in the AGM and a decrease in the colonization of haematopoietic organs. Finally, in vivo zymography demonstrates the function of primitive macrophages in extracellular matrix degradation, which allows HSPC migration through the AGM stroma, their intravasation, leading to the colonization of haematopoietic organs and the establishment of definitive haematopoiesis.
Design principles of a cooperative robot controller
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1987-01-01
The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.
Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.
Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood
2017-12-26
Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.
Cabral-Marques, Helena; Almeida, Rita
2009-09-01
This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.
Chaudhary, Hema; Kohli, Kanchan; Amin, Saima; Rathee, Permender; Kumar, Vikash
2011-02-01
The aim of this study was to develop and optimize a transdermal gel formulation for Diclofenac diethylamine (DDEA) and Curcumin (CRM). A 3-factor, 3-level Box-Behnken design was used to derive a second-order polynomial equation to construct contour plots for prediction of responses. Independent variables studied were the polymer concentration (X(1)), ethanol (X(2)) and propylene glycol (X(3)) and the levels of each factor were low, medium, and high. The dependent variables studied were the skin permeation rate of DDEA (Y(1)), skin permeation rate of CRM (Y(2)), and viscosity of the gels (Y(3)). Response surface plots were drawn, statistical validity of the polynomials was established to find the compositions of optimized formulation which was evaluated using the Franz-type diffusion cell. The permeation rate of DDEA increased proportionally with ethanol concentration but decreased with polymer concentration, whereas the permeation rate of CRM increased proportionally with polymer concentration. Gels showed a non-Fickian super case II (typical zero order) and non-Fickian diffusion release mechanism for DDEA and CRM, respectively. The design demonstrated the role of the derived polynomial equation and contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation for transdermal drug release. Copyright © 2010 Wiley-Liss, Inc.
Design and Optimization of Floating Drug Delivery System of Acyclovir
Kharia, A. A.; Hiremath, S. N.; Singhai, A. K.; Omray, L. K.; Jain, S. K.
2010-01-01
The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 32 full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1) and hydroxypropylmethylcellulose K4M (X2) were selected as independent variables. The times required for 50% (t50%) and 70% (t70%) drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2). The closeness of predicted and observed values for t50% and t70% indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi's kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix. PMID:21694992
Design and optimization of floating drug delivery system of acyclovir.
Kharia, A A; Hiremath, S N; Singhai, A K; Omray, L K; Jain, S K
2010-09-01
The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 3(2) full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1) and hydroxypropylmethylcellulose K4M (X2) were selected as independent variables. The times required for 50% (t(50%)) and 70% (t(70%)) drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2). The closeness of predicted and observed values for t(50%) and t(70%) indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi's kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix.
Hancock, Bruno C; Garcia-Munoz, Salvador
2013-03-01
Responses from the second Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) survey of industry have been reanalyzed to identify potential links between formulation and processing variables and the measured uniformity of blends and unit dosage forms. As expected, the variability of the blend potency and tablet potency data increased with a decrease in the loading of the active pharmaceutical ingredient (API). There was also an inverse relationship between the nominal strength of the unit dose and the blend uniformity data. The data from the PQRI industry survey do not support the commonly held viewpoint that granulation processes are necessary to create and sustain tablet and capsule formulations with a high degree of API uniformity. There was no correlation between the blend or tablet potency variability and the type of process used to manufacture the product. Although it is commonly believed that direct compression processes should be avoided for low API loading formulations because of blend and tablet content uniformity concerns, the data for direct compression processes reported by the respondents to the PQRI survey suggest that such processes are being used routinely to manufacture solid dosage forms of acceptable quality even when the drug loading is quite low. Copyright © 2012 Wiley Periodicals, Inc.
Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R
2017-05-01
Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box-Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of -32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.
Paradowska, Katarzyna; Jamróz, Marta Katarzyna; Kobyłka, Mariola; Gowin, Ewelina; Maczka, Paulina; Skibiński, Robert; Komsta, Łukasz
2012-01-01
This paper presents a preliminary study in building discriminant models from solid-state NMR spectrometry data to detect the presence of acetaminophen in over-the-counter pharmaceutical formulations. The dataset, containing 11 spectra of pure substances and 21 spectra of various formulations, was processed by partial least squares discriminant analysis (PLS-DA). The model found coped with the discrimination, and its quality parameters were acceptable. It was found that standard normal variate preprocessing had almost no influence on unsupervised investigation of the dataset. The influence of variable selection with the uninformative variable elimination by PLS method was studied, reducing the dataset from 7601 variables to around 300 informative variables, but not improving the model performance. The results showed the possibility to construct well-working PLS-DA models from such small datasets without a full experimental design.
An uncertainty analysis of the flood-stage upstream from a bridge.
Sowiński, M
2006-01-01
The paper begins with the formulation of the problem in the form of a general performance function. Next the Latin hypercube sampling (LHS) technique--a modified version of the Monte Carlo method is briefly described. The essential uncertainty analysis of the flood-stage upstream from a bridge starts with a description of the hydraulic model. This model concept is based on the HEC-RAS model developed for subcritical flow under a bridge without piers in which the energy equation is applied. The next section contains the characteristic of the basic variables including a specification of their statistics (means and variances). Next the problem of correlated variables is discussed and assumptions concerning correlation among basic variables are formulated. The analysis of results is based on LHS ranking lists obtained from the computer package UNCSAM. Results fot two examples are given: one for independent and the other for correlated variables.
Tholeiitic basalt magmatism of Kilauea and Mauna Loa volcanoes of Hawaii
Murata, K.J.
1970-01-01
The primitive magmas of Kilauca and Mauna Loa are generated by partial melting of mantle peridotite at depths of -60 km or more. Results of high-pressure melting experiments indicate that the primitive melt must contain at least 20% MgO in order to have olivine as a liquidus mineral. The least fractionated lavas of both volcanoes have olivine (Fa13) on the liquidus at 1 atmosphere, suggesting that the only substance lost from the primitive melt, during a rather rapid ascent to the surface, is olivine. This relation allows the primitive composition to be computed by adding olivine to the composition of an erupted lava until total MgO is at least 20 percent. Although roughly similar, historic lavas of the two volcanoes show a consistent difference in composition. The primitive melt of Mauna Loa contains 20% more dissolved orthopyroxene, a high-temperature melting phase in the mantle, and is deficient in elements such as potassium, uranium, and niobium, which presumably occur in minor low-melting phases. Mauna Loa appears to be the older volcano, deriving its magma at higher temperature and greater depth from a more depleted source rock. ?? 1970 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor
2016-02-01
Two primitive near-Earth asteroids, (101955) Bennu and (162173) Ryugu, will be visited by a spacecraft with the aim of returning samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, Polana, Clarissa, and Sulamitis) or in the background of asteroids outside these families, the characterization of these primitive populations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the Erigone collisional family by means of visible spectroscopy. Asteroid (163) Erigone has been classified as a primitive object, and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. We found that 87% of the objects have typically primitive visible spectra consistent with that of (163) Erigone. In addition, we found that a significant fraction of these objects (~50%) present evidence of aqueous alteration.
Developmental Approach for Behavior Learning Using Primitive Motion Skills.
Dawood, Farhan; Loo, Chu Kiong
2018-05-01
Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
The primitive code and repeats of base oligomers as the primordial protein-encoding sequence.
Ohno, S; Epplen, J T
1983-01-01
Even if the prebiotic self-replication of nucleic acids and the subsequent emergence of primitive, enzyme-independent tRNAs are accepted as plausible, the origin of life by spontaneous generation still appears improbable. This is because the just-emerged primitive translational machinery had to cope with base sequences that were not preselected for their coding potentials. Particularly if the primitive mitochondria-like code with four chain-terminating base triplets preceded the universal code, the translation of long, randomly generated, base sequences at this critical stage would have merely resulted in the production of short oligopeptides instead of long polypeptide chains. We present the base sequence of a mouse transcript containing tetranucleotide repeats conserved during evolution. Even if translated in accordance with the primitive mitochondria-like code, this transcript in its three reading frames can yield 245-, 246-, and 251-residue-long tetrapeptidic periodical polypeptides that are already acquiring longer periodicities. We contend that the first set of base sequences translated at the beginning of life were such oligonucleotide repeats. By quickly acquiring longer periodicities, their products must have soon gained characteristic secondary structures--alpha-helical or beta-sheet or both. PMID:6574491
Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B.; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M.
2017-01-01
There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation. PMID:28813877
2017-09-18
Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
ERIC Educational Resources Information Center
Byars-Winston, Angela
2010-01-01
Scholarship is emerging on intervention models that purposefully attend to cultural variables throughout the career assessment and career counseling process. One heuristic model that offers promise to advance culturally relevant vocational practice with African Americans is the Outline for Cultural Formulation (CF). This article explicates the…
USDA-ARS?s Scientific Manuscript database
An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...
Optimizing habitat location for black-tailed prairie dogs in southwestern South Dakota
John Hof; Michael Bevers; Daniel W. Uresk; Gregory L. Schenbeck
2002-01-01
A spatial optimization model was formulated and used to maximize black-tailed prairie dog populations in the Badlands National Park and the Buffalo Gap National Grassland in South Dakota. The choice variables involved the strategic placement of limited additional protected habitat. Population dynamics were captured in formulations that reflected exponential population...
Current advances on polynomial resultant formulations
NASA Astrophysics Data System (ADS)
Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar
2017-08-01
Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.
Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.
Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei
2016-08-01
To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.
Remarks on the "Non-canonicity Puzzle": Lagrangian Symmetries of the Einstein-Hilbert Action
NASA Astrophysics Data System (ADS)
Kiriushcheva, N.; Komorowski, P. G.; Kuzmin, S. V.
2012-07-01
Given the non-canonical relationship between variables used in the Hamiltonian formulations of the Einstein-Hilbert action (due to Pirani, Schild, Skinner (PSS) and Dirac) and the Arnowitt-Deser-Misner (ADM) action, and the consequent difference in the gauge transformations generated by the first-class constraints of these two formulations, the assumption that the Lagrangians from which they were derived are equivalent leads to an apparent contradiction that has been called "the non-canonicity puzzle". In this work we shall investigate the group properties of two symmetries derived for the Einstein-Hilbert action: diffeomorphism, which follows from the PSS and Dirac formulations, and the one that arises from the ADM formulation. We demonstrate that unlike the diffeomorphism transformations, the ADM transformations (as well as others, which can be constructed for the Einstein-Hilbert Lagrangian using Noether's identities) do not form a group. This makes diffeomorphism transformations unique (the term "canonical" symmetry might be suggested). If the two Lagrangians are to be called equivalent, canonical symmetry must be preserved. The interplay between general covariance and the canonicity of the variables used is discussed.
Shah, Neha; Mehta, Tejal; Gohel, Mukesh
2017-08-01
The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.
Ahmed, Tarek A
2016-01-01
In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559
On the Primitive Ideal spaces of the C(*) -algebras of graphs
NASA Astrophysics Data System (ADS)
Bates, Teresa
2005-11-01
We characterise the topological spaces which arise as the primitive ideal spaces of the Cuntz-Krieger algebras of graphs satisfying condition (K): directed graphs in which every vertex lying on a loop lies on at least two loops. We deduce that the spaces which arise as Prim;C(*(E)) are precisely the spaces which arise as the primitive ideal spaces of AF-algebras. Finally, we construct a graph wt{E} from E such that C(*(wt{E})) is an AF-algebra and Prim;C(*(E)) and Prim;C(*(wt{E})) are homeomorphic.
Chemical evolution of primitive solar system bodies
NASA Technical Reports Server (NTRS)
Oro, J.; Mills, T.
1989-01-01
Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.
NASA Astrophysics Data System (ADS)
Mohan Negi, Lalit; Jaggi, Manu; Talegaonkar, Sushama
2013-01-01
Development of an effective formulation involves careful optimization of a number of excipient and process variables. Sometimes the number of variables is so large that even the most efficient optimization designs require a very large number of trials which put stress on costs as well as time. A creative combination of a number of design methods leads to a smaller number of trials. This study was aimed at the development of nanostructured lipid carriers (NLCs) by using a combination of different optimization methods. A total of 11 variables were first screened using the Plackett-Burman design for their effects on formulation characteristics like size and entrapment efficiency. Four out of 11 variables were found to have insignificant effects on the formulation parameters and hence were screened out. Out of the remaining seven variables, four (concentration of tween-80, lecithin, sodium taurocholate, and total lipid) were found to have significant effects on the size of the particles while the other three (phase ratio, drug to lipid ratio, and sonication time) had a higher influence on the entrapment efficiency. The first four variables were optimized for their effect on size using the Taguchi L9 orthogonal array. The optimized values of the surfactants and lipids were kept constant for the next stage, where the sonication time, phase ratio, and drug:lipid ratio were varied using the Box-Behnken design response surface method to optimize the entrapment efficiency. Finally, by performing only 38 trials, we have optimized 11 variables for the development of NLCs with a size of 143.52 ± 1.2 nm, zeta potential of -32.6 ± 0.54 mV, and 98.22 ± 2.06% entrapment efficiency.
Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions
NASA Technical Reports Server (NTRS)
Becker, H.; Walker, R. J.
2003-01-01
Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.
Assessing bioequivalence of generic modified-release antiepileptic drugs
Chang, Yi-Ting; Davit, Barbara; Gidal, Barry E.; Krauss, Gregory L.
2016-01-01
Objectives: The purpose of this study was to determine how closely generic modified-release antiepileptic drugs (MR-AEDs) resemble reference (brand) formulations by comparing peak concentrations (Cmax), total absorption (area under the curve [AUC]), time to Cmax (Tmax), intersubject variability, and food effects between generic and reference products. Methods: We tabulated Cmax and AUC data from the bioequivalence (BE) studies used to support the approvals of generic Food and Drug Administration–approved MR-AEDs. We compared differences in 90% confidence intervals of the generic/reference AUC and Cmax geometric mean ratios, and intersubject variability, Tmax and delivery profiles and food effects. Results: Forty-two MR-AED formulations were studied in 3,175 healthy participants without epilepsy in 97 BE studies. BE ratios for AUC and Cmax were similar between most generic and reference products: AUC ratios varied by >15% in 11.4% of BE studies; Cmax varied by >15% in 25.8% of studies. Tmax was more variable, with >30% difference in 13 studies (usually delayed in the fed compared to fasting BE studies). Generic and reference MR products had similar intersubject variability. Immediate-release AEDs showed less intersubject variability in AUC than did MR-AEDs. Conclusions: Most generic and reference MR-AEDs have similar AUC and Cmax values. Ratios for some products, however, are near acceptance limits and Tmax values may vary. Food effects are common with MR-AED products. High variability in pharmacokinetic values for once-a-day MR-AEDs suggests their major advantage compared to immediate-release AED formulations may be the convenience of less frequent dosing to improve adherence. PMID:27016518
Dynamic rupture modeling with laboratory-derived constitutive relations
Okubo, P.G.
1989-01-01
A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author
On the formulation and solution of an emergency routing problem.
DOT National Transportation Integrated Search
2007-10-01
In this work, we will identify important variables that contribute to : vehicular movement in an emergency environment. In particular, we for- : mulate and pose the Convoy Routing Problem (using far fewer variables : than other important models witho...
Byars-Winston, Angela M.
2010-01-01
Scholarship is emerging on intervention models that purposefully attend to cultural variables throughout the career assessment and career counseling process (Swanson & Fouad, in press). One heuristic model that offers promise to advance culturally-relevant vocational practice with African Americans is the Outline for Cultural Formulation (American Psychiatric Association, 1994). This article explicates the Outline for Cultural Formulation in career assessment and career counseling with African Americans integrating the concept of cultural identity into the entire model. The article concludes with an illustration of the Outline for Cultural Formulation model with an African American career client. PMID:20495668
Adetunji, Charles Oluwaseun; Oloke, Julius Kola; Osemwegie, Osarenkhoe Omorefosa
2018-03-01
This work investigated the effect of variably formulated pesta granules containing wild and UV mutated Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae on the rate of CO 2 evolution, organic carbon content, enzymatic activity (acidic and alkaline phosphatase, dehydrogenases, urease and protease) and representative soil microorganisms in the soils using different assay techniques. After the 35th day period of experiment, the pesta granule formulation BH4 showed the best evolution of CO 2 (824 ± 6.2 mg CO 2 kg -1 soil hr -1 ) as against control treatment (689 ± 3.7 mg CO 2 kg -1 soil hr -1 ). Enzymes activities, organic carbon content of 3.8% on the 15th day of study and stable representation of microorganisms that include actinomycetes, fungi, heterogenous as well as soil nitrogen-mediatory bacteria were equally at their maximum level BH4 treatments. The phytotoxic assay showed no inhibitory effect on Solanum lycopersicum seeds and seedlings compared to the observed growth inhibition on the tested weeds (Amaranthus hybridus and Echinocholoa crus-galli) which corresponds with positive control glyphosate treatment. The glyphosate treated soil had the least critical results on parameters investigated during the study. The order of bioherbicidal activity is BH4>BH2>BH6>BH3>BH1>BH5>positive control. Results from this study confirmed the target efficacy of variably formulated pesta granules which is sustainable, cheap, ecologically suitable and recent. This is in addition to recognizing the microbial-derived formulations as characteristically potent alternative to chemical herbicides utility in agrosystems practice. Further study of the underlining factor responsible for the bioherbicidal performances of the variably formulated pesta granules and field trials are critical for their future commercialization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemistry-split techniques for viscous reactive blunt body flow computations
NASA Technical Reports Server (NTRS)
Li, C. P.
1987-01-01
The weak-coupling structure between the fluid and species equations has been exploited and resulted in three, closely related, time-iterative implicit techniques. While the primitive variables are solved in two separated groups and each by an Alternating Direction Implicit (ADI) factorization scheme, the rate-species Jacobian can be treated in either full or diagonal matrix form, or simply ignored. The latter two versions render the split technique to solving for species as scalar rather than vector variables. The solution is completed at the end of each iteration after determining temperature and pressure from the flow density, energy and species concentrations. Numerical experimentation has shown that the split scalar technique, using partial rate Jacobian, yields the best overall stability and consistency. Satisfactory viscous solutions were obtained for an ellipsoidal body of axis ratio 3:1 at Mach 35 and an angle of attack of 20 degrees.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Drews, Michael
1990-01-01
The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.
Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes
Shen, Liang; Ji, Hong-Fang
2011-01-01
It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260
Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment
NASA Technical Reports Server (NTRS)
Deamer, D. W.
1992-01-01
The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.
Clay minerals in primitive meteorites and interplanetary dust 1
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Keller, L. P.
1991-01-01
Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.
Formulation effects on the mechanical and release properties of metronidazole suppositories.
Adegboye, T A; Itiola, O A
2003-09-01
A study of the effects of Tween 20 and Tween 80 non-ionic surfactants, and witepsol H15 and polyethylene glycol (PEG) 2850 bases, on the mechanical and release properties of metronidazole suppositories was made. Mechanical strength was assessed by breaking strength values F. The values of F increased with increase in concentration of surfactant. The values of F for formulations containing Tween 20 were higher than those obtained for formulations containing Tween 80. Witepsol bases gave higher values of F than corresponding PEG bases. Release characteristics were assessed by the time for 80% drug release (t80), values of dissolution rate constants, k1 and k2 and the time of intersection, t1. The values of t80 decreased while those of k1 and k2 increased with increase in surfactant concentration. The values of t80 were lower, while those of k1 and k2 were higher, for formulations containing Tween 20 than for those formulations containing Tween 80. Witepsol bases gave lower t80 values and higher k1 and k2 values than their corresponding PEG bases. The concentration of surfactant, C, had the largest individual effect on the mechanical and release parameters while the nature of surfactant, S, had the lowest. The ranking for the individual effects of the variables on F and k1 was C > N > S, on t80 and k2 was C > N approximately = S, was on t1 was C = N = S. The interactions between S and C were largest for F, t80 and k2, and lowest for k1 and t1. The ranking of the interaction effects of the variables on F and k2 was S-C > N-C > N-S, on t80 was S-C > N-S approximately = N-C, on k1 was N-C > N-S > S-C, and on t1 was N-S = N-C > S-C. The results suggest that the individual and interaction effects of formulation variables would provide useful guides in optimizing metronidazole suppository formulations.
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Moraes, Carolina Morales; de Matos, Angélica Prado; Grillo, Renato; de Melo, Nathalie F S; de Paula, Eneida; Dias Filho, Newton Luiz; Rosa, André Henrique; Fraceto, Leonardo Fernandes
2011-03-01
In this work we describe the screening of four parameters in the preparation, by nanoprecipitation, of poly(epsilon-caprolactone) nanocapsules, used as a drug carrier system for the local anesthetic, benzocaine. A 2(4-1) factorial experimental design was used to study the influence of four different independent variables (polymer, oily phase, Span 60 and Tween 80) on nanocapsule characteristics (size, polydispersion index, zeta potential) and drug loading capability. Best results were obtained using an aqueous formulation comprising 100 mg of polymer, 200 mg of oily phase, 40 mg of Span 60 and 60 mg of Tween 80 in a final volume of 10 mL which produced a colloidal system with particle size of 188 nm, zeta potential -32 mV, polydispersion index 0.07, and benzocaine association efficiency > 87%. These findings open the way for future clinical studies using such formulations.
Advances of the smooth variable structure filter: square-root and two-pass formulations
NASA Astrophysics Data System (ADS)
Gadsden, S. Andrew; Lee, Andrew S.
2017-01-01
The smooth variable structure filter (SVSF) has seen significant development and research activity in recent years. It is based on sliding mode concepts, which utilize a switching gain that brings an inherent amount of stability to the estimation process. In an effort to improve upon the numerical stability of the SVSF, a square-root formulation is derived. The square-root SVSF is based on Potter's algorithm. The proposed formulation is computationally more efficient and reduces the risks of failure due to numerical instability. The new strategy is applied on target tracking scenarios for the purposes of state estimation, and the results are compared with the popular Kalman filter. In addition, the SVSF is reformulated to present a two-pass smoother based on the SVSF gain. The proposed method is applied on an aerospace flight surface actuator, and the results are compared with the Kalman-based two-pass smoother.
Nanoethosomes mediated transdermal delivery of vinpocetine for management of Alzheimer's disease.
Moghaddam, Atefeh Afshar; Aqil, Mohd; Ahmad, Farhan J; Ali, Mushir M; Sultana, Yasmin; Ali, Asgar
2015-12-01
To develop and statistically optimize nanoethosomal formulation for transdermal delivery of vinpocetine as an anti-Alzheimer's drug. Box-Behnken experimental design was applied for optimization of nanoethosomes. The independent variables were phospholipid (X 1 ), Tween 80 (X 2 ) and Ethanol (X 3 ) while entrapment efficiency (Y 1 ), particle sizes (Y 2 ), elasticity (Y 3 ) and flux (Y 4 ) were the dependent variables. Optimized nanoethosomal vinpocetine formulation with mean particle size 50.57 ± 26.11 nm showed 97.51 ± 0.86% entrapment efficiency, achieved mean transdermal flux 925.60 ± 39.80 µg/cm 2 /h and elasticity of 86.61 ± 2.88. Ex-vivo study of nanoethosomal formulation showed a significant increase flux and entrapment efficiency compared with control vinpocetine solution. Our results suggest that nanoethosome is an efficient carrier for transdermal delivery of vinpocetine as compared to its oral form.
Stacking-sequence optimization for buckling of laminated plates by integer programming
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Walsh, Joanne L.
1991-01-01
Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.
[Gastrointestinal stromal tumors: clinical considerations].
Castronovo, G; Ciulla, A; Tomasello, G; Urso, G; Damiani, S
2003-01-01
Gastrointestinal stromal tumors (61ST) are an heterogeneous group of non epithelial tumors of the gastrointestinal tract. They are peculiar to extreme cellular variability and uncertain malignancy. Gist are rare tumors that arise from primitive mesenchymal cells located in all gastrointestinal tract. Till now they are object of discussion about their origin, diagnostic standards, prognostic factors, histopathological classification. They are more frequently in over 40 years old people without difference in two sex, but they can appear in the child too and in the young man suffering from HIV. The authors relate two cases of recent observation, and discuss on the biological behaviour of these rare tumors.
Progress in The Semantic Analysis of Scientific Code
NASA Technical Reports Server (NTRS)
Stewart, Mark
2000-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.
Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.
1981-01-01
Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.
Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori
NASA Astrophysics Data System (ADS)
T. Sardari, Naser
2018-03-01
Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.
Sirisha, Pathuri Lakshmi; Babu, Govada Kishore; Babu, Puttagunta Srinivasa
2014-01-01
Ambulatory blood pressure monitoring is regarded as the gold standard for hypertensive therapy in non-dipping hypertension patients. A novel compression coated formulation of captopril and hydrochlorothiazide (HCTZ) was developed in order to improve the efficacy of antihypertensive therapy considering the half-life of both drugs. The synergistic action using combination therapy can be effectively achieved by sustained release captopril (t1/2= 2.5 h) and fast releasing HCTZ (average t1/2= 9.5 h). The sustained release floating tablets of captopril were prepared by using 23 factorial design by employing three polymers i.e., ethyl cellulose (EC), carbopol and xanthan gum at two levels. The formulations (CF1-CF8) were optimized using analysis of variance for two response variables, buoyancy and T50%. Among the three polymers employed, the coefficients and P values for the response variable buoyancy and T50% using EC were found to be 3.824, 0.028 and 0.0196, 0.046 respectively. From the coefficients and P values for the two response variables, formulation CF2 was optimized, which contains EC polymer alone at a high level. The CF2 formulation was further compression coated with optimized gastric dispersible HCTZ layer (HF9). The compression coated tablet was further evaluated using drug release kinetics. The Q value of HCTZ layer is achieved within 20 min following first order release whereas the Q value of captopril was obtained at 6.5 h following Higuchi model, from which it is proved that rapid release HCTZ and slow release of captopril is achieved. The mechanism of drug release was analyzed using Peppas equation, which showed an n >0.90 confirming case II transportation mechanism for drug release. PMID:25006552
Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh
2009-01-01
We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
NASA Technical Reports Server (NTRS)
Neal, C. R.; Taylor, L. A.; Schmitt, R. A.; Hughes, S. S.; Lindstrom, M. M.
1989-01-01
The understanding of basalt petrogenesis at the Apollo 14 site has increased markedly due to the study of 'new' samples from breccia 'pull-apart' efforts. Whole-rock compositions of 26 new high alumina (HA) and 7 very high potassium (VHK) basalts emphasize the importance of combined assimilation and fractional crystallization in a lunar regime. Previously formulated models for HA and VHK basalt petrogenesis are modified in order to accomodate these new data, although modeling parameters are essentially the same. The required range in HA basalt compositions is generated by the assimilation of KREEP by a 'primitive' parental magma. The VHK basalts can be generated by three parental HA basalts assimilating granite. Results indicate that VHK basalt compositions are dominated by the parental magma, and only up to 8 percent granite assimilation is required. This modeling indicates that at least three VHK basalt flows must be present at the Apollo 14 site.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Moorthi, S.; Higgins, R. W.
1993-01-01
An adiabatic global multilevel primitive equation model using a two time-level, semi-Lagrangian semi-implicit finite-difference integration scheme is presented. A Lorenz grid is used for vertical discretization and a C grid for the horizontal discretization. The momentum equation is discretized in vector form, thus avoiding problems near the poles. The 3D model equations are reduced by a linear transformation to a set of 2D elliptic equations, whose solution is found by means of an efficient direct solver. The model (with minimal physics) is integrated for 10 days starting from an initialized state derived from real data. A resolution of 16 levels in the vertical is used, with various horizontal resolutions. The model is found to be stable and efficient, and to give realistic output fields. Integrations with time steps of 10 min, 30 min, and 1 h are compared, and the differences are found to be acceptable.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The second step in development of MODEL III is summarized. It combines the four radiative transfer equations of the first step with the equations for a geostrophic and hydrostatic atmosphere. This step is intended to bring radiance into a three dimensional balance with wind, height, and temperature. The use of the geostrophic approximation in place of the full set of primitive equations allows for an easier evaluation of how the inclusion of the radiative transfer equation increases the complexity of the variational equations. Seven different variational formulations were developed for geostrophic, hydrostatic, and radiative transfer equations. The first derivation was too complex to yield solutions that were physically meaningful. For the remaining six derivations, the variational method gave the same physical interpretation (the observed brightness temperatures could provide no meaningful input to a geostrophic, hydrostatic balance) at least through the problem solving methodology used in these studies. The variational method is presented and the Euler-Lagrange equations rederived for the geostrophic, hydrostatic, and radiative transfer equations.
Mançanares, Celina A F; Leiser, Rudolf; Favaron, Phelipe O; Carvalho, Ana F; Oliveira, Vanessa C De; Santos, José M Dos; Ambrósio, Carlos E; Miglino, Maria A
2013-07-01
The yolk sac (YS) is the main source of embryonic nutrition during the period when the placenta has not yet formed. It is also responsible for hematopoiesis because the blood cells develop from it as part of the primitive embryonic circulation. The objective of this study was to characterize the transitional area between the YS and primitive gut using the techniques of light microscopy, transmission electron microscopy, and immunohistochemistry to detect populations of pluripotent cells by labeling with Oct4 antibody. In all investigated embryos, serial sections were made to permit the identification of this small, restricted area. We identified the YS connection with the primitive intestine and found that it is composed of many blood islands, which correspond to the vessels covered by vitelline and mesenchymal cells. We identified large numbers of hemangioblasts inside the vessels. The mesenchymal layer was thin and composed of elongated cells, and the vitelline endodermal membrane was composed of large, mono- or binucleated cells. The epithelium of the primitive intestine comprised stratified columnar cells and undifferentiated mesenchymal cells. The transitional area between the YS and the primitive intestine was very thin and composed of cells with irregular shapes, which formed a delicate lumen containing hemangioblasts. In the mesenchyme of the transitional area, there were a considerable number of small vessels containing hemangioblasts. Using Oct4 as a primary antibody, we identified positive cells in the metanephros, primordial gonad, and hepatic parenchyma as well as in YS cells, suggesting that these regions contain populations of pluripotent cells. Copyright © 2013 Wiley Periodicals, Inc.
Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm
Stuckey, Daniel W.; Di Gregorio, Aida; Clements, Melanie; Rodriguez, Tristan A.
2011-01-01
Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo. PMID:21445260
Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre
2013-09-10
In a previous study of ours, the association of sodium caseinate and lecithin was demonstrated to be promising for masking the bitterness of acetaminophen via drug encapsulation. The encapsulating mechanisms were suggested to be based on the segregation of multicomponent droplets occurring during spray-drying. The spray-dried particles delayed the drug release within the mouth during the early time upon administration and hence masked the bitterness. Indeed, taste-masking is achieved if, within the frame of 1-2 min, drug substance is either not released or the released amount is below the human threshold for identifying its bad taste. The aim of this work was (i) to evaluate the effect of various processing and formulation parameters on the taste-masking efficiency and (ii) to determine the optimal formulation for optimal taste-masking effect. Four investigated input variables included inlet temperature (X1), spray flow (X2), sodium caseinate amount (X3) and lecithin amount (X4). The percentage of drug release amount during the first 2 min was considered as the response variable (Y). A 2(4)-full factorial design was applied and allowed screening for the most influential variables i.e. sodium caseinate amount and lecithin amount. Optimizing these two variables was therefore conducted by a simplex approach. The SEM and DSC results of spray-dried powder prepared under optimal conditions showed that drug seemed to be well encapsulated. The drug release during the first 2 min significantly decreased, 7-fold less than the unmasked drug particles. Therefore, the optimal formulation that performed the best taste-masking effect was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.
García-Gargallo, M; Zurlohe, M; Montero, E; Alonso, B; Serrano, J; Sanz, M; Herrera, D
2017-11-01
To compare the effect of two newly formulated chlorhexidine (CHX) and cetylpyridinium chloride (CPC) mouthrinses after scaling and root planing (SRP) in terms of clinical, microbiological, patient-based variables and adverse events, with a positive control with the same active components, already marketed and tested. A pilot, randomized clinical trial, double-blind, parallel design with 1-month follow-up was conducted. Chronic periodontitis patients requiring non-surgical periodontal therapy were enrolled and randomly assigned to: (i) SRP and test-1 (new reformulation: 0.12% CHX and 0.05% CPC); (ii) SRP and test-2 (new formulation: 0.03% CHX and 0.05% CPC); or (iii) SRP and positive control (commercial product: 0.12% CHX and 0.05% CPC). All variables were evaluated at baseline and 1 month after SRP. Quantitative variables were compared by means of anova or Kruskal-Wallis test and qualitative variables by chi-square or McNemar tests. Thirty patients (10 per group) were included. After 1 month, there were significant differences among groups in plaque levels (P = 0.016) as test-1 showed less sites with plaque than test-2 (31.15% [standard error-SE 2.21%] versus 49.39% [SE 4.60%), respectively). No significant differences were found for global patient perception of the product or in adverse effects. Test groups showed better results in levels and proportions (P = 0.022) of Capnocytophaga spp. Within the limitations of this pilot study, it can be concluded that the newly formulated 0.12% CHX and 0.05% CPC mouthrinse showed larger plaque level reductions, without showing more adverse effects, when compared to the other two mouthrinses, after SRP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evolution of Computational Toxicology-from Primitive ...
Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 on the Evolution of Computational Toxicology-from Primitive Beginnings to Sophisticated Application
Zibetti, F M; Cardoso, A C A; Desmarais, G C; de Almeida, K B; do Nascimento, L M; Rolim, L F; Rocha, M S; Duarte, N G D; Azevedo, P H R A; Araújo, J L; Mourão, S C; Falcão, D Q
2016-10-01
The aim of this study was to evaluate by central composite design the influence of colouring agents in lipstick colour, expressed by L*, a*, b* parameters (CIELab system) where L* indicates lightness, and a* and b* are the chromaticity coordinates. The a* indicates colour direction from red to green and b* from yellow to blue. Lipsticks were formulated as described by (Recent Adv. Prosp. Potent Med. Plants, 2009 and 39). The combined effect of three variables (dye, pigment and opacifier) was evaluated by different formulations in a central composite design. Colour parameters (L*, a*, b*) were analysed by reflectance spectrophotometry. Lipsticks were characterized by visual analyses and melting point. All formulations were integrate and homogeneous. The pigments and dye do not influence in colour transfer neither in melting point of lipsticks. On the other hand, results indicated that variables studied show influence only in parameter b*, whereas for L* and a* values there was no significant difference (P < 0.05). It was possible to verify that only the colour parameter b* was influenced by the variation in colouring agent's concentrations in lipstick formulation, leading to the production of the colour ranging between violet and light red. Such results are useful for developing new lipstick formulations to obtain the desired colour in the final product. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Performance-based robotic assistance during rhythmic arm exercises.
Leconte, Patricia; Ronsse, Renaud
2016-09-13
Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided no active mechanical work to the patient on average. Our performance-based assistance method for training rhythmic movements is a viable candidate to complement robot-assisted upper-limb therapies for training a larger motor repertoire.
Schiller, Martin; Paton, Chad; Bizzarro, Martin
2015-01-15
The presence of isotope heterogeneity of nucleosynthetic origin amongst meteorites and their components provides a record of the diverse stars that contributed matter to the protosolar molecular cloud core. Understanding how and when the solar system's nucleosynthetic heterogeneity was established and preserved within the solar protoplanetary disk is critical for unraveling the earliest formative stages of the solar system. Here, we report calcium and magnesium isotope measurements of primitive and differentiated meteorites as well as various types of refractory inclusions, including refractory inclusions (CAIs) formed with the canonical 26 Al/ 27 Al of ~5 × 10 -5 ( 26 Al decays to 26 Mg with a half-life of ~0.73 Ma) and CAIs that show fractionated and unidentified nuclear effects (FUN-CAIs) to understand the origin of the solar system's nucleosynthetic heterogeneity. Bulk analyses of primitive and differentiated meteorites along with canonical and FUN-CAIs define correlated, mass-independent variations in 43 Ca, 46 Ca and 48 Ca. Moreover, sequential dissolution experiments of the Ivuna carbonaceous chondrite aimed at identifying the nature and number of presolar carriers of isotope anomalies within primitive meteorites have detected the presence of multiple carriers of the short-lived 26 Al nuclide as well as carriers of anomalous and uncorrelated 43 Ca, 46 Ca and 48 Ca compositions, which requires input from multiple and recent supernovae sources. We infer that the solar system's correlated nucleosynthetic variability reflects unmixing of old, galactically-inherited homogeneous dust from a new, supernovae-derived dust component formed shortly prior to or during the evolution of the giant molecular cloud parental to the protosolar molecular cloud core. This implies that similarly to 43 Ca, 46 Ca and 48 Ca, the short-lived 26 Al nuclide was heterogeneously distributed in the inner solar system at the time of CAI formation.
Solving the Inverse-Square Problem with Complex Variables
ERIC Educational Resources Information Center
Gauthier, N.
2005-01-01
The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…
Low-Resolution Spectroscopy of Primitive Asteroids: Progress Report for SARA/VSU Survey
NASA Technical Reports Server (NTRS)
Leake, M. A.; Nogues, J. P.; Gaines, J. K.; Looper, J. K.; Freitas, K. A.
2001-01-01
Progress on a low-resolution survey of primitive C-class asteroids continues using new equipment (and its associated problems) to understand aqueous alteration in the solar system. Additional information is contained in the original extended abstract.
Design of Quasi-Terminator Orbits near Primitive Bodies
NASA Technical Reports Server (NTRS)
Lantoine, Gregory; Broschart, Stephen B.; Grebow, Daniel J.
2013-01-01
Quasi-terminator orbits are a class of quasi-periodic orbits around a primitive body that exist in the vicinity of the well-known terminator orbits. The inherent stability of quasi-terminator trajectories and their wide variety of viewing geometries make them a very compelling option for primitive body mapping missions. In this paper, we discuss orbit design methodologies for selection of an appropriate quasi-terminator orbit that would meet the needs of a specific mission. Convergence of these orbits in an eccentric, higher-fidelity model is also discussed with an example case at Bennu, the target of the upcoming NASA's OSIRIS-REx mission.
1980-12-01
Commun- ications Corporation, Palo Alto, CA (March 1978). g. [Walter at al. 74] Walter, K.G. et al., " Primitive Models for Computer .. Security", ESD-TR...discussion is followed by a presenta- tion of the Kernel primitive operations upon these objects. All Kernel objects shall be referenced by a common...set of sizes. All process segments, regardless of domain, shall be manipulated by the same set of Kernel segment primitives . User domain segments
SMP: A solid modeling program version 2.0
NASA Technical Reports Server (NTRS)
Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.; Matthews, C. G.
1986-01-01
The Solid Modeling Program (SMP) provides the capability to model complex solid objects through the composition of primitive geometric entities. In addition to the construction of solid models, SMP has extensive facilities for model editing, display, and analysis. The geometric model produced by the software system can be output in a format compatible with existing analysis programs such as PATRAN-G. The present version of the SMP software supports six primitives: boxes, cones, spheres, paraboloids, tori, and trusses. The details for creating each of the major primitive types is presented. The analysis capabilities of SMP, including interfaces to existing analysis programs, are discussed.
Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets
NASA Technical Reports Server (NTRS)
Farah, Jeffrey J.; Kelley, Robert B.
1992-01-01
Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived.
AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.
Irwin, William P.; Thurber, Horace K.
1984-01-01
The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.
Perceptual integration of kinematic components in the recognition of emotional facial expressions.
Chiovetto, Enrico; Curio, Cristóbal; Endres, Dominik; Giese, Martin
2018-04-01
According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low-dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial "action units," which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low-dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones. In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low-dimensional parametrization of the associated facial expression.
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
Borg, L.E.; Clynne, M.A.; Bullen, T.D.
1997-01-01
The compositional continuum observed in primitive calc-alkaline lavas erupted from small volcanoes across the southernmost Cascade arc is produced by the introduction of a variable proportion of slab-derived fluid into the superjacent peridotite layer of the mantle wedge. Magmas derived from fluid-rich sources are erupted primarily in the forearc and are characterized by Sr and Pb enrichment (primitive mantle-normalized Sr/P > 5.5), depletions of Ta and Nb, low incompatible-element abundances, and MORB-like Sr and Pb isotopic ratios. Magmas derived from fluid-poor sources are erupted primarily in the arc axis and behind the arc, and are characterized by weak enrichment in Sr [1.0 < (Sr/P)N < 1.3], weak depletions in Ta and Nb, higher incompatible-element abundances, and OIB-like Sr, Nd, and Pb isotopic ratios. Fluxing the mantle wedge above the subducting slab with H2O-rich fluid stabilizes amphibole and enriches the wedge peridotites in incompatible elements, particularly unradiogenic Sr and Pb. The hydrated amphibole-bearing portion of the mantle wedge is downdragged beneath the forearc, where its solidus is exceeded, yielding melts that are enriched in Sr and Pb, and depleted in Ta and Nb (reflecting both high Sr and Pb relative to Ta and Nb in the fluid, and the greater compatibility of Ta and Nb in amphibole compared to other silicate phases in the wedge). A steady decrease of the fluid-contributed geochemical signature away from the trench is produced by the progressive dehydration of the downdragged portion of the mantle wedge with depth, resulting from melt extraction and increased temperature at the slab-wedge interface. Inverse correlation between incompatible-element abundances and the size of the fluid-contributed geochemical signature is generated by melting of more depleted peridotites, rather than by significant differences in the degree of melting. High-(Sr/P)N lavas of the forearc are generated by melting of a MORB-source-like peridotite that has been fluxed with a greater proportion of slab-derived fluid, and low (Sr/P)N lavas of the arc axis are produced by melting of an OIB-source-like peridotite in the presence of a smaller proportion of slab-derived fluid. This study documents the control that a slab-derived fluid can have on incompatible element and isotopic systematics of arc magmas by 1) the addition of incompatible elements to the wedge, 2) the stabilization of hydrous phases in the wedge, and 3) the lowering of peridotite solidi.
NASA Astrophysics Data System (ADS)
Dayi, Ömer F.
The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.
Global, Multi-Objective Trajectory Optimization With Parametric Spreading
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.
2017-01-01
Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
Patel, Rashmin B; Patel, Nilay M; Patel, Mrunali R; Solanki, Ajay B
2017-03-01
The aim of this work was to develop and optimize a robust HPLC method for the separation and quantitation of ambroxol hydrochloride and roxithromycin utilizing Design of Experiment (DoE) approach. The Plackett-Burman design was used to assess the impact of independent variables (concentration of organic phase, mobile phase pH, flow rate and column temperature) on peak resolution, USP tailing and number of plates. A central composite design was utilized to evaluate the main, interaction, and quadratic effects of independent variables on the selected dependent variables. The optimized HPLC method was validated based on ICH Q2R1 guideline and was used to separate and quantify ambroxol hydrochloride and roxithromycin in tablet formulations. The findings showed that DoE approach could be effectively applied to optimize a robust HPLC method for quantification of ambroxol hydrochloride and roxithromycin in tablet formulations. Statistical comparison between results of proposed and reported HPLC method revealed no significant difference; indicating the ability of proposed HPLC method for analysis of ambroxol hydrochloride and roxithromycin in pharmaceutical formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Habib, Basant A; AbouGhaly, Mohamed H H
2016-06-01
This study aims to illustrate the applicability of combined mixture-process variable (MPV) design and modeling for optimization of nanovesicular systems. The D-optimal experimental plan studied the influence of three mixture components (MCs) and two process variables (PVs) on lercanidipine transfersomes. The MCs were phosphatidylcholine (A), sodium glycocholate (B) and lercanidipine hydrochloride (C), while the PVs were glycerol amount in the hydration mixture (D) and sonication time (E). The studied responses were Y1: particle size, Y2: zeta potential and Y3: entrapment efficiency percent (EE%). Polynomial equations were used to study the influence of MCs and PVs on each response. Response surface methodology and multiple response optimization were applied to optimize the formulation with the goals of minimizing Y1 and maximizing Y2 and Y3. The obtained polynomial models had prediction R(2) values of 0.645, 0.947 and 0.795 for Y1, Y2 and Y3, respectively. Contour, Piepel's response trace, perturbation, and interaction plots were drawn for responses representation. The optimized formulation, A: 265 mg, B: 10 mg, C: 40 mg, D: zero g and E: 120 s, had desirability of 0.9526. The actual response values for the optimized formulation were within the two-sided 95% prediction intervals and were close to the predicted values with maximum percent deviation of 6.2%. This indicates the validity of combined MPV design and modeling for optimization of transfersomal formulations as an example of nanovesicular systems.
Formulation and characterization of sustained release dosage form of moisture sensitive drug
Patel, Priya; Dave, Abhishek; Vasava, Amit; Patel, Paresh
2015-01-01
Objective: The purpose of this study was to prepare sustained release tablet of moisture sensitive drug like Ranitidine Hydrochloride for treatment of gastroesophageal reflux disease along with the improvement of moisture stability to get better therapeutic efficacy. Materials and Methods: Pan coating technique was used for coating of the tablet. Film coating was done using Eudragit RLPO and Eugragit EPO as coating polymer. 32 full factorial design was applied for optimization purpose, and 9 runs were conducted. In that Eudragit RLPO and Eudragit EPO taken as an independent variables and moisture gain and Cummulative Drug Release (CDR) were taken as dependent variables. Drug and excipient compatibility was done using differential scanning calorimetry and Fourier transform infrared spectroscopy study. The tablet was evaluated for precompression parameter and all postcompression parameter. Stability study was carried out at room temperature (30°C ± 2°C/65% ± 5% relative humidity). Final formulation was compared with marketed formulation RANTEC 300. Result: Tablets were passing out all precompression parameter along with postcompression parameter. Stability study shows that the parameter such as hardness, friability, and dissolution are in the range. Hence, there is no significant change shown after stability study. Our final formulation was compared with marketed formulation RANTEC 300 and result demonstrates that our final formulation have less moisture gain and give release up to 12 h. Conclusion: The result of present study demonstrates that final formulation has less moisture gain and getting desired CDR for sustained release of drug. On the basis of all study, it was concluded that the tablet was coated by combination of Eudragit RLPO 10% and Eudragit EPO 10% give better result. This formation provided promising approach for the drug release up to 12 h for moisture sensitive drug like ranitidine hydrochloride. PMID:25838994
FIB-TEM Investigations of Fe-NI-Sulfides in the CI Chondrites Alais and Orgueil
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Lauretta, D. S.; Zega, T. J.; Keller, L. P.
2013-01-01
The CI chondrites are primitive meteorites with bulk compositions matching the solar photosphere for all but the lightest elements. They have been extensively aqueously altered, and are composed primarily of fine-grained phyllosilicate matrix material which is host to carbonates, sulfates, sulfides, and minor amounts of olivine and pyroxene. The alteration, while extensive, is heterogeneous. For example, CI-chondrite cubanite and carbonate grains differ on mm to sub-mm scales, demonstrating multiple aqueous episodes. CI-chondrite variability is also evidenced by degree of brecciation, abundance and size of coarse-grained phyllosilicates, olivine and pyroxene abundance, as well as Ni-content and size of sulfide grains. Our previous work revealed Orgueil sulfide grains with variable Ni-contents, metal:S ratios, crystal structures and textures. We continue to explore the variability of CI-chondrite pyrrhotite (Po, (FeNi)1-xS) and pentlandite (Pn, (Fe,Ni)9S8) grains. We investigate the microstructure of sulfides within and among CI-chondrite meteorites in order to place constraints on the conditions under which they formed.
Heuristics for Cooperative Problem Solving
1989-02-01
briefly, cooperation is a very common problem-solving technique in natural systems and occurs in a wide variety of animals ranging from termites and...primitive way with pheromones but sometimes more directly. As with social spiders, they show relatively primitive coordination of behavior. In spite
2018-06-28
Metastatic Ewing Sarcoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Malignant Neoplasm in the Bone Marrow; Metastatic Malignant Neoplasm in the Lung; Metastatic Peripheral Primitive Neuroectodermal Tumor of Bone; Peripheral Primitive Neuroectodermal Tumor of Soft Tissues
Cornuault, Lauriane; Mouchel, Victorine; Phan Thi, Thuy-Tan; Beaussier, Hélène; Bézie, Yvonnick; Corny, Jennifer
2018-06-02
Background Clinical pharmacists' involvement has improved patients' care, by suggesting therapeutic optimizations. However, budget restrictions require a prioritization of these activities to focus resources on patients more at risk of medication errors. Objective The aim of our study was to identify variables influencing the formulation of pharmaceutical to improve medication review efficiency. Setting This study was conducted in medical wards of a 643-acute beds hospital in Paris, France. Methods All hospital medical prescriptions of all patients admitted within four medical wards (cardiology, rheumatology, neurology, vascular medicine) were analyzed. The study was conducted in each ward for 2 weeks, during 4 weeks. For each patient, variables prospectively collected were: age, gender, weight, emergency admission, number of high-alert medications and of total drugs prescribed, care unit, serum creatinine. Number of pharmaceutical interventions (PIs) and their type were reported. Main outcome measures Variables influencing the number of pharmaceutical interventions during medication review were identified using simple and multiple linear regressions. Results A total of 2328 drug prescriptions (303 patients, mean age 70.6 years-old) were analyzed. Mean number of hospital drug prescriptions was 7.9. A total of 318 PIs were formulated. Most frequent PIs were drug omission (n = 88, 27.7%), overdosing (n = 69, 21.7%), and underdosing (n = 51, 16.0%). Among variables studied, age, serum creatinine level, number of high-alert medications prescribed and total number of drugs prescribed were significantly associated with the formulation of pharmaceutical interventions (adjusted R 2 = 0.34). Conclusions This study identified variables (age, serum creatinine level, number of high-alert medication, number of prescribed drugs) that may help institutions/pharmacists target their reviews towards patients most likely to require pharmacist interventions.
Dynamic characteristics of a two-stage variable-mass flexible missile with internal flow
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Bankovskis, J.
1972-01-01
A general formulation of the dynamical problems associated with powered flight of a two stage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, 3n ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation.
Evolutionary anatomy of the Neandertal ulna and radius in the light of the new El Sidrón sample.
Pérez-Criado, Laura; Rosas, Antonio
2017-05-01
This paper aims to improve our understanding of the phylogenetic trait polarity related to hominin forearm evolution, in particular those traits traditionally defined as "Neandertal features." To this aim, twelve adult and adolescent fragmented forelimb elements (including ulnae and radii) of Homo neanderthalensis recovered from the site of El Sidrón (Asturias, Spain) were examined comparatively using three-dimensional geometric and traditional morphometrics. Mean centroid size and shape comparisons, principal components analysis, and phylogenetic signal analysis were undertaken. Our investigations revealed that the proximal region of the ulna discriminated best between Neandertals and modern humans, with fewer taxonomically-informative features in the distal ulna and radius. Compared to modern humans, the divergent features in the Neandertal ulna are an increase in olecranon breadth (a derived trait), lower coronoid length (primitive), and anterior orientation of the trochlear notch (primitive). In the Neandertal radius, we observe a larger neck length (primitive), medial orientation of the radial tubercle (secondarily primitive), and a curved diaphysis (secondarily primitive). Anatomically, we identified three units of evolutionary change: 1) the olecranon and its fossa, 2) the coronoid-radius neck complex, and 3) the tubercle and radial diaphysis. Based on our data, forearm evolution followed a mosaic pattern in which some features were inherited from a pre-Homo ancestor, others originated in some post-ergaster and pre-antecessor populations, and other characters emerged in the specific Homo sapiens and H. neanderthalensis lineages, sometimes appearing as secondarily primitive. Future investigations might consider the diverse phylogenetic origin of apomorphies while at the same time seeking to elucidate their functional meaning. Copyright © 2017 Elsevier Ltd. All rights reserved.
New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications
NASA Astrophysics Data System (ADS)
Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris
2016-05-01
Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.
NASA Astrophysics Data System (ADS)
Wang, Jun; Gou, Guo-Ning; Wang, Qiang; Zhang, Chunfu; Dan, Wei; Wyman, Derek A.; Zhang, Xiu-Zheng
2018-02-01
An integrated petrologic, geochronologic, major and trace element geochemical, and Sr-Nd-Hf isotopic study of Late Triassic ( 215 Ma) diorites from the Hoh Xil area, northern Tibet, provides new constraints on the genesis of intermediate magmas and insights into the origin of the high-Mg# andesitic signature of continental crust. These dioritic rocks are characterized by high MgO contents (3.3-5.0 wt%) and Mg# values (50-57) comparable to the estimates for the bulk continental crust at the same level of SiO2 contents (61.1-64.5 wt%). They also display continental crust-like trace element distribution patterns and uniformly enriched isotope compositions ([87Sr/86Sr]i = 0.7081 to 0.7094, ɛNd[t] = - 8.0 to - 6.9, and ɛHf[t]zircon = - 10.1 to - 5.0). Combining our results with published data from crystallization experiments, we propose that they were probably produced by fractional crystallization from a primitive andesite parent, rather than a primitive basalt parent. This parental magma may be geochemically similar to the roughly contemporaneous primitive andesites in the adjacent Malanshan area of northern Tibet. Our compilation of modern arc lavas shows that progressive fractional crystallization of primitive andesites is also required to reproduce the Mg# versus SiO2 array for natural arc magmas, in addition to differentiation of mantle-derived primitive basaltic magmas and/or mixing of basaltic with felsic magmas. Therefore, we emphasize that fractional crystallization of primitive andesitic magmas is potentially a frequent occurrence in arc crust and hence may play an important role in producing the high-Mg# signature of intermediate magmas comprising the continental crust.
Slab melting and magma formation beneath the southern Cascade arc
Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.
2016-01-01
The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the slab (∼7–9 km below the slab top) cause flux melting of the subducted oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Casian, Tibor; Iurian, Sonia; Bogdan, Catalina; Rus, Lucia; Moldovan, Mirela; Tomuta, Ioan
2017-12-01
This study proposed the development of oral lyophilisates with respect to pediatric medicine development guidelines, by applying risk management strategies and DoE as an integrated QbD approach. Product critical quality attributes were overviewed by generating Ishikawa diagrams for risk assessment purposes, considering process, formulation and methodology related parameters. Failure Mode Effect Analysis was applied to highlight critical formulation and process parameters with an increased probability of occurrence and with a high impact on the product performance. To investigate the effect of qualitative and quantitative formulation variables D-optimal designs were used for screening and optimization purposes. Process parameters related to suspension preparation and lyophilization were classified as significant factors, and were controlled by implementing risk mitigation strategies. Both quantitative and qualitative formulation variables introduced in the experimental design influenced the product's disintegration time, mechanical resistance and dissolution properties selected as CQAs. The optimum formulation selected through Design Space presented ultra-fast disintegration time (5 seconds), a good dissolution rate (above 90%) combined with a high mechanical resistance (above 600 g load). Combining FMEA and DoE allowed the science based development of a product with respect to the defined quality target profile by providing better insights on the relevant parameters throughout development process. The utility of risk management tools in pharmaceutical development was demonstrated.
Ahad, Abdul; Aqil, Mohd; Kohli, Kanchan; Sultana, Yasmin; Mujeeb, Mohd
2014-08-01
The aim of this study was to develop and optimize a transdermal gel formulation of valsartan using Box-Behnken design and to evaluate it for pharmacokinetic study. The independent variables were Carbopol 940 (X1), PEG 400 (X2) and ethanol (X3) while valsartan flux (Y1), Tlag (Y2) and gel viscosity (Y3) were the dependent variables. Iso-eucalyptol was added in all gel formulations as permeation enhancer except for control gel. It was observed that the permeation rate of valsartan significantly increased in direct proportion to the ethanol concentration, but significantly decreased in direct proportion to polymer concentration. Lag time and viscosity decreased in reverse proportion to ethanol concentration. The optimized valsartan gel formulation (VGF-OPT) yielded flux of 143.27 ± 7.11 µg/cm(2)/h and 27.55 ± 2.51 µg/cm(2)/h across rat and human cadaver skin, respectively. In vivo pharmacokinetic study of VGF-OPT-transdermal therapeutic system containing iso-eucalyptol showed a significant increase in the bioavailability (2.52 times) compared with oral formulation of valsartan by virtue of better permeation through Wistar rat skin. It was concluded that the developed transdermal gel accentuates the flux of valsartan and could be used as an antihypertensive dosage form for effective transdermal delivery of valsartan.
Elmer L. Schmidt; Timothy P. Murphy; Charles N. Cheeks; Alan S. Ross; T. S. (Eugene) Chiu; R. Sam Williams
2002-01-01
Water-repellency of preservative formulations used in the millwork industry has long been evaluated by measurement of the dimensional changes in wood treated and then submerged in water according to guidelines published by the millwork industry. Perceptions that this swellometer test was highly variable led to a round-robin test of one solvent-borne and one waterborne...
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo
2018-03-01
In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.
Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis
Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang
2014-01-01
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. PMID:24829209
Technical design and system implementation of region-line primitive association framework
NASA Astrophysics Data System (ADS)
Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian
2017-08-01
Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.
Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis.
Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang
2014-06-17
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. © 2014 The Authors.
Lombardo, Michael P
2012-01-02
Sports have received little attention from evolutionary biologists. I argue that sport began as a way for men to develop the skills needed in primitive hunting and warfare, then developed to act primarily as a lek where athletes display and male spectators evaluate the qualities of potential allies and rivals. This hypothesis predicts that (1) the most popular modern male sports require the skills needed for success in male-male physical competition and primitive hunting and warfare; (2) champion male athletes obtain high status and thereby reproductive opportunities in ways that parallel those gained by successful primitive hunters and warriors; (3) men pay closer attention than do women to male sports so they can evaluate potential allies and rivals; and (4) male sports became culturally more important when opportunities to evaluate potential allies and rivals declined as both the survival importance of hunting and the proportion of men who experience combat decreased. The characteristics of primitive and modern sports are more consistent with these predictions than those generated by intersexual sexual selection theories of sport.
Xia, P; Liu, Z; Qin, P
2011-04-01
To date, reports about the ultrastructure of porcine embryonic discs have not shown details of the primitive streak. The main objective of this study was to examine the ultrastructure of interior and exterior embryonic discs in porcine in vivo blastocysts with diameters of 1, 3 and 9 mm using scanning electron microscopy and transmission electron microscopy. For the first time, we revealed the ultrastructure of the unusual group of cells in the pre-primitive streak area of embryonic discs. The cells were 1-2 μm in diameter, had high electron density and contained abundant, free ribosomes and endoplasmic reticulum. These primitive streak cells could represent original embryonic stem cells or represent a stem cell niche. The results also showed three types of cells on the exterior surface of the embryonic discs. Moreover, our results provided morphological evidence of condensed nuclei in the smooth cells on the surface of the embryonic disc. © 2010 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Bellairs, R; Veini, M
1984-02-01
A new theory of control of somite segmentation in chick embryos is proposed. This supposses that tiny clusters of already programmed cells are present throughout the presumptive somite area at stage 4, but that in order to fulfill their destiny they probably depend on the addition of further cells from the primitive streak. Evidence is based on the two groups of experiments: a) Experiments involving transection across the primitive streak at various stages, (which results in a 'tail' which possesses mesodermal derivatives) and across the segmental plate (which results in a 'tail' lacking mesodermal derivatives). b) Experiments in which parts of embryos have been explanted with or without their primitive streak. It is suggested that the initial clusters of pre-programmed cells move further and further posteriorly, developing into somitomeres (the precursors of true somites) only as they receive re-inforcements from the primitive streak or, ultimately, from the tail bud.
Byakika-Tusiime, Jayne; Chinn, Leslie W.; Oyugi, Jessica H.; Obua, Celestino; Bangsberg, David R.; Kroetz, Deanna L.
2008-01-01
Background Generic antiretroviral therapy is the mainstay of HIV treatment in resource-limited settings, yet there is little evidence confirming the bioequivalence of generic and brand name formulations. We compared the steady-state pharmacokinetics of lamivudine, stavudine and nevirapine in HIV-infected subjects who were receiving a generic formulation (Triomune®) or the corresponding brand formulations (Epivir®, Zerit®, and Viramune®). Methodology/Principal Findings An open-label, randomized, crossover study was carried out in 18 HIV-infected Ugandan subjects stabilized on Triomune-40. Subjects received lamivudine (150 mg), stavudine (40 mg), and nevirapine (200 mg) in either the generic or brand formulation twice a day for 30 days, before switching to the other formulation. At the end of each treatment period, blood samples were collected over 12 h for pharmacokinetic analysis. The main outcome measures were the mean AUC0–12h and Cmax. Bioequivalence was defined as a geometric mean ratio between the generic and brand name within the 90% confidence interval of 0.8–1.25. The geometric mean ratios and the 90% confidence intervals were: stavudine Cmax, 1.3 (0.99–1.71) and AUC0–12h, 1.1 (0.87–1.38); lamivudine Cmax, 0.8 (0.63–0.98) and AUC0–12h, 0.8 (0.65–0.99); and nevirapine Cmax, 1.1 (0.95–1.23) and AUC0–12h, 1.1 (0.95–1.31). The generic formulation was not statistically bioequivalent to the brand formulations during steady state, although exposures were comparable. A mixed random effects model identified about 50% intersubject variability in the pharmacokinetic parameters. Conclusions/Significant Findings These findings provide support for the use of Triomune in resource-limited settings, although identification of the sources of intersubject variability in these populations is critical. PMID:19096711
Exploiting replication in distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Joseph, T. A.
1989-01-01
Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs.
Oxygen reservoirs in the early solar nebula inferred from an Allende CAI.
Young, E D; Russell, S S
1998-10-16
Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta (17)O against delta (18)O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in (17)O and (18)O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive (16)O-rich component of CAIs.
Oxygen reservoirs in the early solar nebula inferred from an allende CAI
Young; Russell
1998-10-16
Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.
Deuterium enrichment in the primitive ices of the protosolar nebula
NASA Technical Reports Server (NTRS)
Lutz, Barry L.; Owen, Tobias; De Bergh, Catherine
1990-01-01
On the basis of CH3D/CH4-ratio observations in the outer planets, the present effort to estimate the D/H ratio of the protosolar nebula's primitive ices arrives at two simple, yet effectively limiting models which constrain the degree of dilution undergone by deuterated volatiles through mixing with the initial hydrogen envelopes. These volatiles would have been contributed to planetary atmospheres by evaporated primordial ices. Ice D/H ratio model results of 0.0001 to 0.001 are compared with values for other potentially primitive material-containing bodies in the solar system, as well as with D/H ratio values from interstellar polyatomic molecules.
Interstellar chemistry recorded in organic matter from primitive meteorites.
Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R
2006-05-05
Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.
Peter Christoper, G.V.; Vijaya Raghavan, C.; Siddharth, K.; Siva Selva Kumar, M.; Hari Prasad, R.
2013-01-01
In the current study zidovudine loaded PLGA nanoparticles were prepared, coated and further investigated for its effectiveness in brain targeting. IR and DSC studies were performed to determine the interaction between excipients used and to find out the nature of drug in the formulation. Formulations were prepared by adopting 23 factorial designs to evaluate the effects of process and formulation variables. The prepared formulations were subjected for in vitro and in vivo evaluations. In vitro evaluations showed particle size below 100 nm, entrapment efficiency of formulations ranges of 28–57%, process yield of 60–76% was achieved and drug release for the formulations were in the range of 50–85%. The drug release from the formulations was found to follow Higuchi release pattern, n–value obtained after Korsemeyer plot was in the range of 0.56–0.78. In vivo evaluations were performed in mice after intraperitoneal administration of zidovudine drug solution, uncoated and coated formulation. Formulation when coated with Tween 80 achieved a higher concentration in the brain than that of the drug in solution and of the uncoated formulation. Stability studies indicated that there was no degradation of the drug in the formulation after 90 days of preparation when stored in refrigerated condition. PMID:24648825
Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A
2015-01-01
The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.
Fractions We Cannot Ignore: The Nonsymbolic Ratio Congruity Effect
ERIC Educational Resources Information Center
Matthews, Percival G.; Lewis, Mark R.
2017-01-01
Although many researchers theorize that primitive numerosity processing abilities may lay the foundation for whole number concepts, other classes of numbers, like fractions, are sometimes assumed to be inaccessible to primitive architectures. This research presents evidence that the automatic processing of nonsymbolic magnitudes affects processing…
Intuitive Test Theory. CSE Report 631
ERIC Educational Resources Information Center
Braun, Henry I.; Mislevy, Robert J.
2004-01-01
Psychologist Andrea diSessa coined the term "phenomenological primitives", or p-prims, to talk about nonexperts' reasoning about physical situations. P-prims are primitive in the sense that they stand without significant explanatory substructure or explanation. Examples are "Heavy objects fall faster than light objects" and "Continuing force is…
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B
2016-11-01
Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative physicochemical evaluation of a marketed herbomineral formulation: naga bhasma.
Garg, M; Das, S; Singh, G
2012-11-01
In the practice of Ayurveda, where herbomineral formulations are said to be made biocompatible through specific processes like Shodhana and Marana, the western medical science on the contrary has raised the safety concerns of these formulations in the recent past. In the present study, comparative physico-chemical analysis of Naga bhasma, a herbo-mineral preparation having a reputation of miraculous drug commonly used to treat several health disorders, was carried out using five marketed formulations through analytical methods like differential scanning calorimetry, X-ray difraction, thermogravimetric analysis, Fourier Transform infrared spectroscopy and also subjected for particle size analysis and estimation of trace and heavy metals to access the safety of these formulation. The results revealed variable observations regarding particle size, metal form and content of lead. The presence of free lead in five different formulations indicated towards the possible risk of severe side effects to the consumer. Present findings certainly put doubt over the safety of this formulation but at the same time, variation in the results with all five formulations also indicated that these formulations were not prepared as per the mentioned Ayurvedic text. Hence, enforcement of strict regulatory guidelines is strongly warranted before launching into the market. Further, a series of biological studies need to be conducted before taking any final verdict on the safety of this formulation.
Decision-Tree Formulation With Order-1 Lateral Execution
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index
2013-10-07
Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma
Mathematical Observations: The Genesis of Mathematical Discovery in the Classroom
ERIC Educational Resources Information Center
Beaugris, Louis M.
2013-01-01
In his "Proofs and Refutations," Lakatos identifies the "Primitive Conjecture" as the first stage in the pattern of mathematical discovery. In this article, I am interested in ways of reaching the "Primitive Conjecture" stage in an undergraduate classroom. I adapted Realistic Mathematics Education methods in an…
Multiphase Complete Exchange: A Theoretical Analysis
1993-08-01
Birkhiuser, Boston, 1984. 24 [9] C-T. Ho and M. T. Raghunath . Efficient communication primitives on hy- percubes. In Proc. 6th. DMCC, pages 390-397...1991. [10] C-T. Ho and M. T. Raghunath . Efficient communication primitives on hy- percubes. Technical Report RJ 7932 (72915), IBM, T. J. Watson Center
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
The Grammar of Mental Predicates in Japanese.
ERIC Educational Resources Information Center
Onishi, Masayuki
1997-01-01
Examines Japanese equivalents of the six mental predicates defined as semantic universals in Natural Semantic Metalanguage theory, with special attention to syntax and semantics of complementation types. It is shown that each primitive predicate has a specific set of syntactic frames for expressing primitive meaning and that extended meanings that…
Nilpotent representations of classical quantum groups at roots of unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Yuuki; Nakashima, Toshiki
2005-11-01
Properly specializing the parameters in 'Schnizer modules', for types A,B,C, and D, we get its unique primitive vector. Then we show that the module generated by the primitive vector is an irreducible highest weight module of finite dimensional classical quantum groups at roots of unity.
Could 433 Eros have a Primitive Achondritic Composition?
NASA Technical Reports Server (NTRS)
Burbine, T. H.; McCoy, T. J.; Nittler, L. R.; Bell, J. F., III
2001-01-01
One of the goals of the NEAR (Near Earth Asteroid Rendezvous) mission to 433 Eros is to determine if it has a meteoritic analog. We are currently investigating if primitive achondrites have bulk compositions and spectral properties similar to Eros. Additional information is contained in the original extended abstract.
A Test of Durkheim's Theory of Suicide in Primitive Societies.
ERIC Educational Resources Information Center
Lester, David
1992-01-01
Classified primitive societies as high, moderate, or low on independent measures of social integration and social regulation to test Durkheim's theory of suicide. Estimated frequency of suicide did not differ between those societies predicted to have high, moderate, and low suicide rates. Durkheim's theory was not confirmed. (Author/NB)
Shiledar, Rewathi R; Tagalpallewar, Amol A; Kokare, Chandrakant R
2014-01-30
A novel bilayered mucoadhesive buccal patch of zolmitriptan was prepared using xanthan gum (XG) as mucoadhesive polymer. Hydroxypropyl methylcellulose E-15 was used as film-former and polyvinyl alcohol (PVA) was incorporated, to increase the tensile strength of the patches. To study the effect of independent variables viz. concentrations of XG and PVA, on various dependent variables like in vitro drug release, ex vivo mucoadhesive strength and swelling index, 3(2) factorial design was employed. In vitro drug release studies of optimized formulation showed initially, rapid drug release; 43.15% within 15 min, followed by sustained release profile over 5h. Incorporation of 4% dimethyl sulfoxide enhanced drug permeability by 3.29 folds, transported 29.10% of drug after 5h and showed no buccal mucosal damage after histopathological studies. In conclusion, XG can be used as a potential drug release modifier and mucoadhesive polymer for successful formulation of zolmitriptan buccal patches. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vestibular blueprint in early vertebrates.
Straka, Hans; Baker, Robert
2013-11-19
Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Probabilistic simulation of the human factor in structural reliability
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1993-01-01
A formal approach is described in an attempt to computationally simulate the probable ranges of uncertainties of the human factor in structural probabilistic assessments. A multi-factor interaction equation (MFIE) model has been adopted for this purpose. Human factors such as marital status, professional status, home life, job satisfaction, work load and health, are considered to demonstrate the concept. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Suitability of the MFIE in the subsequently probabilistic sensitivity studies are performed to assess the validity of the whole approach. Results obtained show that the uncertainties for no error range from five to thirty percent for the most optimistic case.